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Abstract

Theminimum positive `-degree δ+` (G) of a non-empty k-graphG is the maximum
m such that every `-subset of V (G) is contained in either none or at least m edges
of G; let δ+` (G) := 0 if G has no edges. For a family F of k-graphs, let co+ex`(n,F)
be the maximum of δ+` (G) over all F-free k-graphs G on n vertices. We prove that

the ratio co+ex`(n,F)/
(
n−`
k−`
)
tends to limit as n → ∞, answering a question of

Halfpap, Lemons and Palmer. Also, we show that the limit can be obtained as the
value of a natural optimisation problem for k-hypergraphons; in fact, we give an
alternative description of the set of possible accumulation points of almost extremal
k-graphs.

Mathematics Subject Classifications: 05D05, 05C65

1 Introduction

A k-graph G is a pair (V (G), E(G)), where V (G) is the vertex set of G and E(G) is a
collection of k-subsets of V (G), called edges. We call G non-empty if E(G) 6= ∅.

Fix an integer ` with 0 6 ` 6 k − 1. The minimum positive `-degree of a non-
empty k-graph G, denoted by δ+` (G), is the maximum m such that every `-subset L of
V (G) is contained in either none or at least m edges of G. If G has no edges then we
define δ+` (G) := 0. For a family F of k-graphs, the corresponding positive `-degree Turán
problem is to determine co+ex`(n,F), the maximum of δ+` (G) over all F -free k-graphs G
on n vertices. Let

γ+` (F) := lim sup
n→∞

co+ex`(n,F)(
n−`
k−`

) . (1)

If ` = 0, then co+ex0(n,F) is the usual Turán function ex(n,F), the maximum number
of edges in an n-vertex F -free k-graph and thus γ+0 (F) is the Turán density π(F) :=
limn→∞ ex(n,F)/

(
n
k

)
, where the existence of the limit was established by Katona, Nemetz

and Simonovits [9] by an easy averaging argument. Also, one can show that γ+1 (F) =
π(F). (For example, this easily follows from Proposition 1 which states that the ratio in
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the right-hand side of (1) tends to a limit.) For surveys of the hypergraph Turán problem,
we refer the reader to Sidorenko [16] and Keevash [10].

Another relative is the `-degree Turán fuction co-ex`(n,F), the maximum m such that
there is an F -free n-vertex k-graph G such that for every `-subset L of V (G) we have
degL(G) > m, where the degree degL(G) of a set L ⊆ V (G) is the number of edges of G
that contain L. Trivially, we always have co+ex`(n,F) > co-ex`(n,F). A systematic study
of the latter function for ` = k− 1 was started by Mubayi and Zhao [14, Proposition 1.2]
who in particular proved that the limit

γ`(F) := lim
n→∞

co-ex`(n,F)(
n−`
k−`

) (2)

exists for ` = k − 1. The existence of the limit in (2) for every ` was proved by Lo and
Markström [12, Proposition 1.5] (see also Keevash [10, Page 118]). Balogh, Clemen and
Lidicky [2] present a survey of these (and some related) Turán-type problems for 3-graphs.

The problem of determining co+ex(n,F) for ` = k− 1 was introduced and studied by
Halfpap, Lemons and Palmer [7], motivated by an earlier paper of Balogh, Lemons and
Palmer [3] who studied positive degree in the context of intersection families. Note that
our definition of the minimum positive `-degree of G deviates from the one in [3] when G
has no edges: in this case the authors of [3] leave δ+` (G) undefined while we set δ+` (G) := 0
(with this leading to slightly cleaner statements of some of our results).

Halfpap, Lemons and Palmer [7] computed γ2({F}) (and, in some cases, the exact
value of co+ex2(n, {F})) for a few natural 3-graphs F ; see also Wu [18] for some further
such results. The value of γ+2 ({F}) is in general different from γ2({F}) (as well as from
π({F})).

Halfpap, Lemons and Palmer [7] asked whether, for every fixed k-graph F , the ratio
co+exk−1(n, {F})/n tends to a limit as n→∞ and proved this ([7, Proposition 21]) in a
special case when every (k − 1)-set of vertices of F is covered by an edge.

Here we answer this question for every k-graph family F (and an arbitrary integer `).

Proposition 1. For every (possibly infinite) k-graph family F and every integer ` with
0 6 ` 6 k − 1, the ratio co+ex`(n,F)/

(
n−`
k−`

)
tends to a limit as n→∞.

Our second result, Theorem 5, describes the set of possible k-hypergraphons that are
the limits of sequences of almost optimal constructions for co+ex`(n,F) as n → ∞, in
particuar giving an optimisation problem for k-hypergraphons that produces γ+` (F). This
can be viewed as the natural limit version of the positive `-degree Turán problem.

Since the statement of Theorem 5 is technical and requires quite a few definitions
(for a non-expert), we state it only after presenting the (purely combinatorial) proof of
Proposition 1.

2 Proof of Proposition 1

The main proof idea (to take an n-vertex sample from a larger nearly optimal F -free
k-graph) is the same as in the proofs of Mubayi and Zhao [14, Proposition 1.2] and Lo
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and Markström [12, Proposition 1.5] that the limit in (2) exists. Here, we face some
new (minor) technicalities due to the fact that `-sets of zero degree have to be treated
differently.

We need the following auxiliary lemma which states, roughly speaking, that a k-graph
with n→∞ vertices and positive `-degree Ω(nk−`) must have Ω(nk) edges.

Lemma 2. Let 0 6 ` < k be integers and γ > 0 be a real number. If a k-graph G with m
vertices and e > 0 edges satisfies δ+` (G) > γmk−`/(k − `)! then e > γk/(k−`)mk/k!.

Proof. Assume that γ > 0 as otherwise there is nothing to prove. Let λ > 0 be the
number of `-sets covered by at least one edge of G. Let x be the real number at least k
that satisfies e =

(
x
k

)
, where we define(
y

k

)
:=

y(y − 1) · · · (y − k + 1)

k!
, for y ∈ R.

Note that the function
(
y
k

)
is strictly increasing and continuous for y > k, so x exists and

is unique. By a version of the Kruskal-Katona Theorem [8, 11] that is due to Lovász [13,
Exercise 13.31(b)], we have that λ >

(
x
`

)
.

Thus the number of pairs (K,L), where K ∈ E(G) and L is an `-subset of K is at
least λ · γmk−`/(k − `)! on one hand and is exactly e ·

(
k
`

)
on the other hand. Putting

these two estimates together, we get that(
x

k

)(
k

`

)
>

(
x

`

)
γmk−`

(k − `)!
.

By canceling the same (positive) factors and rearranging, we get that (x−`) · · · (x−k+1) >
γmk−`. Now, the required inequality follows:

k! e =
k∏
i=1

(x− i+ 1) >

(
k∏

i=`+1

(x− i+ 1)

)k/(k−`)

> γk/(k−`)mk,

where the first inequality can be proved by observing that, after raising it to power k− `
and cancelling identical terms, we are left with two products of `(k− `) factors, with each
factor at least x− `+1 on the left-hand side and at most x− ` on the right-hand side.

Proof of Proposition 1. Let γ := lim supn→∞
co+ex`(n,F)

(n−`k−`)
be the limit superior in of the

stated ratios. If γ = 0, then by the non-negativity of each term, the limit exists and is 0.
So suppose that γ > 0. Take any ε ∈ (0, γ).

Let n be sufficiently large. Pick any F -free k-graph G with N > n vertices such that
δ+` (G) > (γ − ε/2)

(
N−`
k−`

)
.

Take a uniformly random n-subset of V (G) and a uniformly random enumeration
v1, . . . , vn of its vertices. Equivalently, for i = 1, . . . , n, let vi be a random element of
V (G) \ {v1, . . . , vi−1} with all N − i+ 1 choices being equally likely.

Let H be the k-graph on [n] where a k-set {i1, . . . , ik} ⊆ [n] is an edge if and only
if {vi1 , . . . , vik} is an edge of G. Thus, up to relabelling of its vertices, H is the k-graph
induced in G by a uniformly random set of n vertices. Clearly, H is F -free.
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Claim 3. Let g :=
⌊
(γ− ε)

(
n−`
k−`

)⌋
. Then the probability that there is an `-set L ⊆ [n] with

0 < degL(H) 6 g is less than 1/2.

Proof of Claim. It is enough to show by the Union Bound that, for every `-set L ⊆ [n], the

probability over the random choices of v1, . . . , vn that degL(H) ∈ [g] is less than 1
2

(
n
`

)−1
.

Fix any L ∈
(
[n]
k

)
. By symmetry between the vertices of H, we can assume for notational

convenience that L = [`]. It is enough to prove the stated bound when we condition on
A := {v1, . . . , v`}. The conditional distribution can be obtained by picking v`+1, . . . , vn
one by one, each being uniform in the remaining subset of V (G) \ A. If degA(G) = 0,
then degL(H) = 0 deterministically and the stated event cannot occur. So suppose that
degA(G) > 0 and thus it is at least δ+` (G) > (γ − ε/2)

(
N−`
k−`

)
. For i = 0, . . . , n − `, let

Xi be the expectation of degL(H) after we have exposed v`+1, . . . , v`+i. In other words,
(X0, . . . , Xn−`) is the vertex-exposure martingale for degL(H) conditioned on A. Note
that X0 is constant and its value is

X0 = E[Xn−`] = degA(G)

(
n− `
k − `

)/(N − `
k − `

)
> (γ − ε/2)

(
n− `
k − `

)
, (3)

while Xn−` = degL(H).
Let us show that |Xi − Xi−1| 6

(
n−`−1
k−`−1

)
for every i ∈ [n − `]. It is enough to prove

this inequality, conditioned on every choice of v`+1, . . . , v`+i−1. For every two different
choices u and u′ for the vertex v`+i there is a natural coupling of the follow-up processes
so that |B4B′| 6 2 always holds for the current unordered sets B,B′ ⊆ V (H) of the
selected vertices: namely, run the process for u and let the process for u′ choose the same
vertex at each step, except if we see a vertex on which the current sets B and B′ differ
then we make these two sets equal from this step onwards. Thus the final unordered sets
{v`+1, . . . , vn} differ in at most two places and the respective degrees of L differ by at
most

(
n−`−1
k−`−1

)
, giving the claimed inequality.

Thus Azuma’s inequality (see e.g. [1, Theorem 7.2.1]) gives that the probability of
Xn−` 6 X0 − (ε/2)

(
n−`
k−`

)
is at most

e
−( ε2(n−`k−`))

2
/(

2(n−`)(n−`−1
k−`−1)

2
)
< e−ε

2n/(9k2) <
1

2

(
n

`

)−1
.

Recalling that Xn−` = degL(H) while the constant X0 satisfies (3), we obtain that the

probability of degH(L) 6 g is less than 1
2

(
n
`

)−1
, giving the claim.

Claim 4. The probability that H is empty is less than 1/2.

Proof of Claim. Since n is large, the edge density of G is by Lemma 2 at least, for
example, β := (γ − ε)k/(k−`) > 0. Thus the expected size of H is at least β

(
n
k

)
. Consider

the vertex-exposure martingale (Y0, . . . , Yn) for |E(H)|. Similarly as before, one can show
that |Yi− Yi−1| 6

(
n−1
k−1

)
for each i ∈ [n]. Thus if H has no edges then Yn = |E(H)| = 0 is
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at least β
(
n
k

)
away from its mean Y0 and, again by Azuma’s inequality, the probability of

this is at most

e
−(β(nk))

2
/(

2n(n−1
k−1)

2
)
< e−β

2n/(3k2) <
1

2
,

as desired.

By Claims 3 and 4 the random F -free k-graph H on [n] is non-empty and satisfies
δ+` (H) > (γ − ε)

(
n−`
k−`

)
with positive probability. So at least one such choice for H exists

and co+ex(n,F) > (γ − ε)
(
n−`
k−`

)
. Since ε > 0 was arbitrary and this inequality holds for

all sufficiently large n, we conclude that the ratio co+ex(n,F)/
(
n−`
k−`

)
tends to γ, finishing

the proof of the proposition.

3 Positive degree via hypergraph limits

In order to state our main result of this paper (Theorem 5) we need to give various
definitions related to the limit theory of hypergraphs. We generally follow the notation
from [19].

For a finite set A and an integer m > 1, let

r(A,m) := {X ⊆ A : 0 < |X| 6 m},

consist of all non-empty subsets of A with at most m elements. Also, let

r(A) := r(A, |A|) = {X : ∅ 6= X ⊆ A}

denote the set of all non-empty subsets of A and

r<(A) := r(A, |A| − 1) = {X : ∅ 6= X ( A}

denote the set of all proper subsets of A. If A is [m] = {1, . . . ,m}, then we may abbreviate
r([m]) and r<([m]) to r[m] and r<[m] respectively.

For a family A of sets, let xA ∈ RA denotes the vector of reals (xA)A∈A indexed by A.
When x has already been specified, we use this notation as follows. If every index in x
appears in A then by xA we mean an extension of x, that is, any vector indexed by A
which coincides with x on the common set of indices. If every element of A appears as
an index in x then xA means the restriction of x to A, that is, the vector indexed by A
whose A-coordinate is the same as the A-coordinate of x for every A ∈ A. We assume
that the sets in A come in some fixed and consistently used order, which is preserved
when we pass to subfamilies. In all concrete examples for A ⊆ r[n] that we give, we first
order the sets increasingly by their size and then use the lexicographic order to break ties
on sets of equal size.

The symmetric group Symk (consisting of all permutations of [k]) acts naturally on
[0, 1]r<[k]. A function W : [0, 1]r<[k] → R is called symmetric if its values do not change
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under the action of Symk on [0, 1]r<[k]. For example, for r = 2, this means thatW (x1, x2) =
W (x2, x1) for all (x1, x2) ∈ [0, 1]2, and for r = 3 this means that

W (x1, x2, x3, x12, x13, x23) = W (xσ), for all x ∈ [0, 1]r<[3] and σ ∈ S3, (4)

where we abbreviate x{a1,...,as} to xa1...as and denote

xσ := (xσ(1), xσ(2), xσ(3), xσ(1)σ(2), xσ(1)σ(3), xσ(2)σ(3)).

A k-hypergraphon is a symmetric (Lebesgue) measurable function W : [0, 1]r<[k] →
[0, 1].

Elek and Szegedy [4, Theorem 7] (see also Zhao [19, Theorem 1.5] for a different
proof) showed that k-hypergraphons can serve as limit objects for k-graphs as follows.
The (homomorphism) density of a k-graph F in W is defined as

t(F,W ) :=

∫
[0,1]r(V (F ),k−1)

∏
A∈E(F )

W (xr<(A)) dx. (5)

A k-graph G with vertices enumerated as v1, . . . , vn corresponds to the k-hypergraphon
WG constructed as follows: partition [0, 1] into n intervals I1, . . . , In of length 1/n each,
and let

WG(x) :=

{
1, if {vi1 , . . . , vik} ∈ E(G), where ij is the index with Iij 3 xj for j ∈ [k],
0, otherwise.

(6)
Thus WG is a {0, 1}-valued function on [0, 1]r<[k] that depends on the 1-dimensional
coordinates only, naturally encoding the edge set of G. Note that

t(F,WG) = t(F,G), for every k-graph F , (7)

where t(F,G) is the usual (homomorphism) density of F in G, which is the probability
that a random function f : V (F ) → V (G), with all |V (G)||V (F )| choices being equally
likely, sends every edge of F to an edge of G. Call a sequence (Gn)∞n=1 of k-graphs
convergent if, for every k-graph F , the densities t(F,Gn) converge to a limit as n → ∞.
One of the main results of Elek and Szegedy [4, Theorem 7] is that, for every convergent
sequence (Gn)∞i=1 of k-graphs, there is a k-hypergraphon W , called the limit of (Gn)∞i=1,
such that

t(F,W ) = lim
n→∞

t(F,Gn), for every k-graph F . (8)

Note that, even though the right-hand side of (8) involves hypergraphons depending on
the 1-dimensional coordinates only (when we replace t(F,Gn) by t(F,WGn) using (7)), the
resulting limit may in general depend on the extra (more than 1-dimensional) coordinates.
Informally speaking, we may need to account for the limits of hypergraph constructions
where the density of edges of E(G) depends not only on the locations of vertices in a
regularity partition of G but also on the higher-dimensional cylinder structure, that is,
the “colours” of subsets of sizes between 2 and k−1. One such example is the directed cycle
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3-graph construction C(T ) where one takes a quasi-random tournament T and defines the
edge set of C(T ) to consist of all triples spanning a directed cycle; this construction is
known to be asymptotically optimal for some extermal 3-graph problems, see e.g. [5, 6, 15].
A possible corresponding 3-hypergraphon can be defined to be 0 except it is 1 on xσ for
all σ ∈ S3 and x such that x1 < x2 < x3, x12, x23 ∈ [0, 1/2] and x13 ∈ (1/2, 1].

Accordingly, when we extend the definition of (positive) `-degree to a k-hypergraphon
W , we need to take into account not only the 1-dimensional coordinates (` of them) but
also all higher-dimensional ones (within the corresponding `-set). Formally, for 0 6 ` < k,
the degree of x ∈ [0, 1]r[`] in W is defined as

degW (x) :=

∫
[0,1]r<[k]\r[`]

W (xr<[k]) dxr<[k]\r[`], (9)

that is, we take the average of W over all extensions xr<[k] ∈ [0, 1]r<[k] of x ∈ [0, 1]r[`],
where the new coordinates (those indexed by r<[k] \ r[`]) are independent and uniformly
distributed in [0, 1]. Note that by Fubini-Tonelli’s theorem (see e.g. [17, Theorem 2.3.2]),
the integral in (9) is well-defined for a.e. choice of x ∈ [0, 1]r[`]. For those x ∈ [0, 1]r[`] for
which the integral is undefined, we set degW (x) := 0 for definiteness.

For example, if k = 3 and ` = 2, then the degree of x = (x1, x2, x12) is

degW (x) :=

∫
[0,1]3

W (x1, x2, x3, x12, x13, x23) dx3 dx13 dx23.

If W = WG for a k-graph G on {v1, . . . , vn} then, with ij being the unique index such
that xj ∈ Iij for j ∈ [`] (as in (6)), we have that

degWG(x) =

{
degG({vi1 , . . . , vi`})

(k−`)!
nk−`

, if i1, . . . , i` are pairwise distinct,
0, otherwise.

(10)

Indeed, every (k − `)-subset {vi`+1
, . . . , vik} that makes an edge of G with {vi1 , . . . , vi`}

corresponds to (k − `)! products (over all possible permutations of {i`+1, . . . , ik}) of the
corresponding k − ` distinct intervals Iv, with each product having measure 1/nk−`.

Call a k-hypergraphon W non-zero if the measure of x ∈ [0, 1]r<[k] with W (x) > 0 is
positive. Let the minimum positive `-degree of a non-zero k-hypergraphon W be defined
as

δ+` (W ) := ess-inf
x∈[0,1]r[`]
degW (x)>0

degW (x) = sup
A⊆[0,1]r[`]

µ(A)=0

inf
{

degW (x) : x ∈ [0, 1]r[`] \ A, degW (x) > 0
}
,

(11)
the essential infimum (that is, the infimum after ignoring a set A of x measure 0) of the
degrees degW (x) which are positive. If W is zero, then we define δ+` (W ) := 0. Note that,
for every k-graph G, we have by (10) that

δ+` (WG) =
(k − `)!
|V (G)|k−`

δ+` (G). (12)
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For 0 6 ` < k and a k-graph family F , let W+
` (F) consist those k-hypergraphons W

which are the limits of some sequence of almost extremal k-graphs, that is, a sequence
(Gn)∞n=1 of F -free k-graphs such that, as n → ∞, we have |V (Gn)| → ∞ and δ+` (Gn) =

(γ+` (F) + o(1))
(|V (Gn)|−`

k−`

)
. Also, a k-hypergraphon W is called F-free if t(F,W ) = 0

for every F ∈ F . With this preparation, we can now formulate our main result which
expresses the limit in Proposition 1 as the value of an optimisation problem involving
k-hypergraphons; in fact, we also give an alternative description of the set W+

` (F).

Theorem 5. Take any integers 0 6 ` < k and a (possibly infinite) family F of k-graphs.
Define γ := γ+` (F). Then the following statements hold.

1. The value of γ is the supremum (in fact, maximum) of δ+` (W ) over all F-free k-
hypergraphons W .

2. A k-hypergraphon W belongs to W+
` (F) if and only if it is F-free and satisfies

δ+` (W ) = γ.

Theorem 5 will be a direct consequence of the following two lemmas. In order to state
them, we need a few more definitions. The n-sample of W is the distribution G(n,W )
on (vertex-labelled) k-graphs on [n] where we sample G ∼ G(n,W ) in the following two
steps. First, we sample a uniform x ∈ [0, 1]r([n],k−1) (i.e. each xA is uniform in [0, 1] and
the choices over all different A ⊆ [n] are mutually independent). Second, every k-subset
A = {i1, . . . , ik} of [n] is included into E(G) with probability W (xr<(A)) ∈ [0, 1], with
all
(
n
k

)
choices being mutually independent. (Recall that xr<(A) denotes the sub-vector

of x ∈ [0, 1]r([n],k−1) where we take all xB with ∅ 6= B ( A.) For example, if k = 3 then
{u, v, w} ⊆ [n] is made an edge with probability W (xu, xv, xw, xuv, xuw, xvw). One relation
between G ∼ G(n,W ) and the densities in W is that, for every k-graph F on [n], we have

t(F,W ) = P [E(F ) ⊆ E(G)] , (13)

that is, the t(F,W ) is the probability that every edge of F is an edge of G.
Now, we are ready to state the two key lemmas and show how they imply Theorem 5.

Lemma 6. Let k > ` > 0. Let (Gn)∞n=1 be an arbitrary sequence of k-graphs convergent
to a k-hypergraphon W such that |V (Gn)| → ∞ as n→∞. Then

δ+` (W ) > lim sup
n→∞

δ+` (Gn)(|V (Gn)|−`
k−`

) . (14)

This lemma states that, informally speaking, the (normalised) minimum positive `-
degree does not decrease when we pass to the limit. If ` > 1 then we have only one-sided
inequality here because there may be o(1)-fraction of “outlier” `-tuples in Gn whose
degree is positive but strictly smaller than (δ+` (W ) + o(1))

(|V (Gn)|
k−`

)
; these `-tuples bring

the positive `-degree of Gn down but leave no trace in the limit W .
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Lemma 7. Let k > ` > 0 and let W be any k-hypergraphon. For every ε > 0, there is n0

such that for all n > n0, if G ∼ G(n,W ) then the probability that |δ+` (G)−δ+` (W )
(
n−`
k−`

)
| >

ε
(
n−`
k−`

)
is at most ε.

This lemma states that minimum positive `-degree of a non-zero hypergraphon is
inherited within additive error o(1) by a typical n-sample as n→∞.

Proof of Theorem 5. First, suppose that γ > 0. Take any sequence (Gn)∞n=1 of almost
extremal k-graphs. By the standard diagonalization argument run over all (countably
many) non-isomorphic k-graphs F , pass to a convergent subsequence (where t(F,Gn)
tends to a limit as n→∞ for each F ). By the result of Elek and Szegedy [4, Theorem 7]
(see also [19, Theorem 1.5]) there is a k-hypergraphon W such that limn→∞ t(F,Gn) =
t(F,W ) for every k-graph F . Of course, t(F,W ) = limn→∞ t(F,Gn) = 0 for every F ∈ F ,
that is, W is F -free. By Lemma 6, it holds that δ+` (W ) > γ.

Let us show that for every F -free k-hypergraphon U , we have

δ+` (U) 6 γ. (15)

By Lemma 7, a typical n-vertex sample Hn of U for all large n has minimum positive
degree at least (δ+` (U) + o(1))

(
n−`
k−`

)
. (In fact, we only need this one-sided estimate from

Lemma 7.) Also, for every F ∈ F the probability that Hn contains F as a subgraph is
at most n! t(F,U) = 0 by (13). It follows that (δ+` (U) + o(1))

(
n−`
k−`

)
6 co+ex(n,F). We

conclude that (15) holds.
By applying (15) to W , the limit of almost extremal k-graphs Gn, we conclude

that δ+` (W ) = γ. This proves the first part and the forward implication in the second
part (also reproving Proposition 1).

Let us show the converse implication in the second part. Let an F -free k-hypergraphon
U satisfy δ+` (U) = γ. The sequence of random independent samples (Hn)∞n=1, Hn ∼
G(n, U), converges to U with probability 1 by [4, Theorem 12]. Furthermore, by Lemma 7,
for every m > 1 we can find Nm such that, for example, Nm > m and the probability of
δ+` (HNm) < (γ−1/m)

(
Nm−`
k−`

)
is at most 2−m−1. Clearly, HNm is F -free with probability 1.

Thus, with probability at least 1 −
∑∞

m=1 2−m−1 > 0, (HNm)∞m=1 is a sequence of almost
extremal k-graphs convergent to U , that is, U ∈ W+

` (F), proving the second part.
Finally, suppose that γ = 0. The only non-trivial claim that we have to establish is

that no F -free k-hypergraph U can satisfy δ+` (U) > 0 and this follows as above by taking
random samples from U and applying Lemma 7.

4 Proofs of Lemma 6 and 7

In order to present the proofs of Lemma 6 and 7 we need some further notation.
The following definition of a partially vertex-labelled hypergraph will suffice for the

purposes of this paper. Namely, for k > ` > 0, an `-labelled k-graph is a triple F =
(V,E, `) where (V,E) is a k-graph and V ⊇ [`]. We view 1, . . . , ` ∈ V as labelled vertices
and call them the roots.
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For a k-hypergraphon W , a vector x ∈ [0, 1]r[`] and an `-labelled k-graph F = (V,E, `),
the (x-rooted) density of F in W is

tx(F,W ) :=

∫
[0,1]r(V,k−1)\r[`]

∏
A∈E

W (xr<(A)) dxr(V,k−1)\r[`]. (16)

By Fubini-Tonelli’s theorem, this is defined for a.e. x ∈ [0, 1]r[`]; for all other x we set
tx(F,W ) := 0 for definiteness. For example, we have that the definition in (16) for

Edgek,` := ([k], {[k]}, `),

the `-labelled single k-edge, becomes exactly the one in (9), and thus

tx(Edgek,`,W ) = degW (x), for every x ∈ [0, 1]r[`],

The densities of an `-labelled k-graph F = (V,E, `) and its unlabelled version JF K :=
(V,E), where we just forget the labelling, satisfy by Fubini-Tonelli’s theorem the following
relation:

t(JF K ,W ) =

∫
[0,1]r[`]

tx(F,W ) dx. (17)

This can be informally interpreted as that the density of the unlabelled k-graph JF K is
the average over the uniform choice of an “`-tuple” x ∈ [0, 1]r[`] of the x-rooted density
of F .

The product FF ′ of any two `-labelled k-graphs F = (V,E, `) and F ′ = (V ′, E ′, `) is
obtained by replacing F ′ by an isomorphic `-labelled k-graph with V ∩ V ′ = [`] (that is,
making F and F ′ vertex-disjoint except for the roots) and then taking the union of the
vertex and edge sets:

FF ′ := (V ∪ V ′, E ∪ E, `).

The name “product” comes from the relation

tx(FF ′,W ) = tx(F,W ) tx(F ′,W ), for every x ∈ [0, 1]r[`], (18)

which holds since the integral for tx(FF ′,W ) can be written by Fubini-Tonelli’s theorem
as the product of two integrals by partioning its variables into two groups: namely xA
with A ∩ (V \ [`]) 6= ∅ and xA′ with A′ ∩ (V ′ \ [`]) 6= ∅. (Recall that ` < k so the roots
do not span any edges.) It follows that, with Edgemk,` denoting the m-fold product of the
`-labelled single k-edge with itself, we have

tx(Edgemk,`,W ) =
(
tx(Edgek,`,W )

)m
, for every x ∈ [0, 1]r[`]. (19)

Now we are ready to prove the lemmas.

Proof of Lemma 6. Suppose that a sequence (Gn)∞n=1 convergent to some W gives a
counterexample to the lemma. By passing to a subsequence, we can assume that the
ratios δ+` (Gn)/

(|V (Gn)|−`
k−`

)
converge to some δ, which is strictly larger that δ+` (W ). By
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Lemma 2, the edge density of Gn is at least δk/(k−`) + o(1) > 0 as n →∞, so their limit
W is non-zero. Thus the set

X := {x ∈ [0, 1]r[`] : degW (x) ∈ (0, δ)}

has positive measure.
By the countable additivity of measure, there is ε > 0 such that the set

Xε :=
{
x ∈ [0, 1]r[`] : degW (x) ∈ (ε, δ − ε)

}
,

has measure at least ε. Indeed, X is the countable union ∪∞m=1X1/m, so X1/m has positive
measure for some m and we can take ε := min{1/m, µ(X1/m)}.

Since Xε 6= ∅, we have ε < δ/2. Fix any β ∈ (0, ε/2). Let L(x) : [0, 1] → R be
the piecewise linear function whose graph in [0, 1] × R consists of the linear segments
connecting the points (0, β), (ε, 1 +β), (δ− ε, 1 +β), (δ− ε/2, β), and (1, β) in this order,
see Figure 1. In particular, L is constant 1 +β on [ε, δ− ε] and constant β on [δ− ε/2, 1].
Informally, the “penalty” function L penalises values strictly between 0 and δ.

β

1 + β

ε δ − ε/2δ − ε 1

x

L(x)

Figure 1: The graph of the function L.

Since the function L is continuous, the Stone-Veierstrass Theorem gives a polynomial
p(x) =

∑D
i=1 aix

i such that |p(x)−L(x)| 6 β for every x ∈ [0, 1]. This polynomial clearly
has the following properties:

p(x) > 0, for all x ∈ [0, 1], (20)

p(x) 6 2β, for all x ∈ {0} ∪ [δ − ε/2, 1], (21)

p(x) > 1, for all x ∈ [ε, δ − ε]. (22)

For a k-hypergraphon U , define QU :=
∫
[0,1]r[`]

qU(x) dx to be the average of

qU(x) := p
(
tx(Edgek,`, U)

)
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over uniform x ∈ [0, 1]r[`]. Note by (19) that

qU(x) =
D∑
i=0

ai
(
tx(Edgek,`, U)

)i
= a0 +

D∑
i=1

ai tx(Edgeik,`, U), for all x ∈ [0, 1]r[`],

Thus, by the linearity of integral and by (17),

QU = a0 +
D∑
i=0

ai

∫
[0,1]r[`]

tx(Edgeik,`, U) dx = a0 +
D∑
i=1

ai t(
q
Edgeik,`

y
, U).

Let Un := WGn be the hypergraphon of Gn. As Gn converges to W , we have
that, for every i ∈ [D], the (unlabelled) k-graph density t(

q
Edgeik,`

y
, Un) converges to

t(
q
Edgeik,`

y
,W ) and thus

lim
n→∞

QUn = QW . (23)

If we take n → ∞ and evaluate QUn then, with m := |V (Gn)|, the outer integral
becomes the average value of the polynomial p evaluated at the (obviously defined) rooted
density tv1,...,v`(Edgek,`, Gn) where v1, . . . , v` are independent uniformly chosen vertices
of Gn. For each of these evaluations of p, its argument is either 0 (if some two vi’s coincide
or the `-set {v1, . . . , v`} is not covered by any edge of Gn) or at least δ+` (Gn) ·(k−`)!/mk−`

(in all other cases). Thus, if n is large enough, then by δ+` (Gn) ·(k−`)!/mk−` = δ+o(1) >
δ−ε/2 and by (21) each computed value of p is at most 2β. Thus we have that QUn 6 2β
for all large n.

On the other hand, since qW (x) > 0 for every x by (20), we have by (22) that

QW >
∫
Xε

qW (x) dx > 1 · µ(Xε) > ε.

Since 2β < ε, QW cannot be be the limit of QUn , a contradiction to (23) proving Lemma 6.

Proof of Lemma 7. Let δ := δ+` (W ), n → ∞ and let G ∼ G(n,W ). We have to show
that δ+` (G) is unlikely to be far from δ

(
n−`
k−`

)
. Assume that W is non-zero as otherwise G

is empty with probability 1 and the lemma trivially holds.
Consider the vertex exposure martingale (Y0, . . . , Yn) with Yn = |E(G)|, where for

i = 1, . . . , n we expose all xA’s with maxA = i as well as all edges of G whose maximal
element is i. We have that |Yi − Yi−1| 6

(
n−1
k−1

)
for every i ∈ [n] because if we change our

choices at Step i this will affect only edges of G containing i. (Note that, unlike in the
proof of Proposition 1, we do not have to worry about the measure-0 event that some
different xi’s coincide.) Also,

Y0 = E(Yn) = t(Edgek,0,W )

(
n

k

)
,

which is Ω(nk) since W is non-zero. Azuma’s inequality gives that the probability that
G spans no edges (i.e. Yn = 0) is e−Ω(n) < ε/3.
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Next, let us show that, for every fixed `-set L ⊆ [n], the probability that its degree

degL(G) in G ∼ G(n,W ) is positive but less than (δ − ε)
(
n−`
k−`

)
is at most (ε/3)

(
n
`

)−1
.

By symmetry, assume that L = [`]. Take any x ∈ [0, 1]r[`]. By ignoring a set of x of
measure 0, we have that degW (x) is 0 or at least δ. In the former case, degL(G) = 0
with probability 1. So suppose that degW (x) > δ. Given x, consider the natural vertex
exposure martingale (X0, . . . , Xn−`) for degL(G). It holds that |Xi −Xi−i| 6

(
n−`−1
k−`−1

)
for

each i ∈ [n− `]. Since

X0 = E[Xn−`] = degW (x)

(
n− `
k − `

)
> δ

(
n− `
k − `

)
,

Azuma’s inequality gives that the probability ofXn−` < X0−ε
(
n−`
k−`

)
is e−Ω(n) < (ε/3)

(
n
`

)−1
,

as claimed.
The Union Bound over all

(
n
`

)
choices of an `-set L ⊆ [m] shows that the probability

that G is empty or δ+` (G) < (δ − ε)
(
n−`
k−`

)
is at most 2ε/3.

Finally, it remains to upper bound the probability that δ+` (G) is too large. Since this
part of the lemma is not used anywhere else in the paper, we will be rather brief. By the
definition of δ = δ+` (W ) and since W is non-zero, the set

Y := {x ∈ [0, 1]r[l] : 0 < degW (x) 6 δ + ε/2}

has positive measure. By decreasing ε > 0 if necessary, assume that

Z := {x ∈ [0, 1]r[l] : ε < degW (x) 6 δ + ε/2}

has positive measure. Take a uniform x ∈ [0, 1]r([n],k−1). The expected number of `-sets
L ⊆ [n] such that xr(L) ∈ Z is Ω(n`). By Azuma’s inequality, the probability that no L
satisfies this is e−Ω(n) < ε/6. Furthermore, if we take any L with xr(L) ∈ Z and condition
on xr(L) then Azuma’s equality, when applied to the martingale where we expose for each
vertex i ∈ [n] \ L all information up to i, shows that the probability of degG(L) being at
least (ε/2)

(
n−`
k−`

)
away from its expected value degW (x)

(
n−`
k−`

)
is e−Ω(n) < ε/6. Thus with

probability at least 1 − ε/3 there is an `-set L ⊆ [n] with 0 < degG(L) 6 (δ + ε)
(
n−`
k−`

)
,

which implies that δ+` (G) 6 (δ + ε)
(
n−`
k−`

)
.

By putting all together, we conclude that, with probability at least 1− ε, the random
n-sample G ∼ G(n,W ) has positive `-degree (δ ± ε)

(
n−`
k−`

)
, as desired.

5 Concluding remarks

One can also consider extremal limits for the `-degree Turán problem. Namely, letW`(F)
consist of all k-hypergraphons W such that there is a sequence (Gn)∞n=1 of F -free k-graphs
convergent to W such that |V (Gn)| → ∞ and the mininum `-degree

δ`(Gn) := min{degGn(L) : L ⊆ [n], |L| = `}
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is (γ`(F)+o(1))
(|V (Gn)|−`

k−`

)
as n→∞, where γ`(F) is defined in (2). Also, let the minimum

`-degree of a k-hypergraphon W be

δ`(W ) := ess-inf
x∈[0,1]r[`]

degW (x).

Our proof of Theorem 5 can be easily adapted to to produce the following result (in fact,
the proof is simpler since we do not have to treat `-sets of zero degree in a special way).

Theorem 8. Let k > ` > 0 be integers and let F be a k-graph family. Then γ`(F) is the
maximum of δ`(W ) over all F-free k-hypergraphons W . Moreover, W ∈ W`(F) if and
only if W is F-free and δ`(W ) = γ`(F).
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[15] C. Reiher, V. Rödl, and M. Schacht, On a Turán problem in weakly quasirandom
3-uniform hypergraphs, J. Europ. Math. Soc 20 (2018), 1139–1159.

[16] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs
Combin. 11 (1995), 179–199.

[17] E. M. Stein and R. Shakarchi, Real analysis, Princeton Lectures in Analysis, vol. 3,
Princeton University Press, Princeton, NJ, 2005, Measure theory, integration, and
Hilbert spaces.

[18] Z. Wu, Positive co-degree Turán number for C5 and C−5 , arXiv:2212.12815, 2022.

[19] Y. Zhao, Hypergraph limits: a regularity approach, Random Struct. Algorithms 47
(2015), 205–226.

the electronic journal of combinatorics 30(3) (2023), #P3.25 15

https://arxiv.org/abs/2212.12815

	Introduction
	Proof of Proposition 1
	Positive degree via hypergraph limits
	Proofs of Lemma 6 and 7
	Concluding remarks

