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Abstract

Given relatively prime positive integers, a1, . . . , an, the Frobenius number is the
largest integer with no representations of the form a1x1+· · ·+anxn with nonnegative
integers xi. This classical value has recently been generalized: given a nonnegative
integer k, what is the largest integer with at most k such representations? Other
classical values can be generalized too: for example, how many nonnegative integers
are representable in at most k ways? For sufficiently large k, we give formulas for
these values by understanding the level sets of the restricted partition function (the
function f(t) giving the number of representations of t). Furthermore, we give the
full asymptotics of all of these values, as well as reprove formulas for some special
cases (such as the n = 2 case and a certain extremal family from the literature).
Finally, we obtain the first two leading terms of the restricted partition function as
a so-called quasi-polynomial.

Mathematics Subject Classifications: 11D07, 52C07, 05A15

1 Introduction

Given relatively prime positive integers, a1, . . . , an, we define the Frobenius number to be
the largest integer not contained in the semigroup

{a1x1 + · · ·+ anxn : xi ∈ Z>0} .

Formulas for some special cases have been known since at least Sylvester [18] in the 1880’s;
for example, if n = 2, the Frobenius number is a1a2 − a1 − a2. See the Ramı́rez Alfonśın
text [16] for much more background.

More recently, Beck and Robins [7] propose a generalization. While the classical
Frobenius number is the largest integer that can be represented as a nonnegative integer
combination of a1, . . . , an in zero ways, we could instead take a fixed k and look at integers
that can be represented in exactly k distinct ways. To be precise:
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Definition 1. Given a vector a = (a1, . . . , an) of relatively prime positive integers and
given t ∈ Z>0, define the restricted partition function

f(a; t) = #(x1, . . . , xn) ∈ Zn>0 : a1x1 + · · ·+ anxn = t

to be the number of ways to represent t by a nonnegative integer combination of the ai.
We write it as f(t) when a is clear from context. Then define

• g=k to be the maximum t ∈ Z>0 such that f(t) = k (the largest integer that can be
represented in precisely k ways), if any such t exist, and

• g6k to be the maximum t ∈ Z>0 such that f(t) 6 k (the largest integer that can be
represented in at most k ways).

The Frobenius number is g=0 = g60, but these numbers may differ for larger k:

Example 2. (Shallit and Stankewicz [17]) For a = (8, 9, 15), we have g=15 = 169, but
g615 = g=14 = 172.

Remark 3. A consequence of Theorem 12 will be that g=k = g6k, for all sufficiently large
k.

Example 4. Take a = (3, 4, 6). Here is a table of t and f(t) for small t:

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
f(t) 1 0 0 1 1 0 2 1 1 2 2 1 4 2 2 4 4 2 6 4 4 6 6 4 · · ·

For example, g=0 = 5 is the Frobenius number, and g=2 = 17; the two representations of
17 are 17 = 3 · 1 + 4 · 2 + 6 · 1 = 3 · 3 + 4 · 2 + 6 · 0. Except for k = 0, which appears 3 times
on this list of f(t), values of k seem to appear either 6 times (k = 1, 2, 4, . . .) or not at all
k = 3, 5, . . .. Figure 1 (inspired by Bardomero and Beck [3, Figure 1]) illustrates how the
level sets of f(t) “interlace”: the nonempty levels sets (except for f(t) = 0) are translates
of each other that eventually tile Z>0.

Figure 1: The horizontal axis is t = 0, 1, 2, 3, . . . and the vertical axis is f(t), in Example
4.

In order to attack the generalized Frobenius problem, we will generalize Figure 1 and
characterize how the level sets of f(t) will interlace and how they will increase with t.
We will make heavy use of the fact that f(t) is a very “nice” function. In fact, it is a
quasi-polynomial :
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Definition 5. A function f : Z>0 → Q is a quasi-polynomial of period m if there exist
polynomials f0, f1, . . . , fm−1 ∈ Q[t] such that

f(t) = fi(t), for t ≡ i mod m.

The polynomials, fi, are called the constituent polynomials of f .

The following folklore theorem shows that our f is a quasi-polynomial:

Proposition 6. Let a = (a1, . . . , an) be a vector of relatively prime positive integers.
Then f(a; t) is a quasi-polynomial of period m = lcm(a) = lcm(a1, . . . , an). Furthermore,
the leading term of all of the constituent polynomials is

1

(n− 1)!a1 · · · an
tn−1.

This proposition is apparently due to Issai Schur; see Wilf [21, Section 3.15], and we
present a proof as part of Proposition 19.

Our first theorem will tell us exactly how to determine whether f(s) = f(t), f(s) >
f(t), or f(s) < f(t), for sufficiently large s and t, and elucidate the structure of the output
of f . First some notation:

Notation 7. For 1 6 i 6 n, define a−i = (a1, . . . , ai−1, ai+1, . . . , an), so that, for example,
gcd(a−i) = gcd(a1, . . . , ai−1, ai+1, . . . , an).

Theorem 8. Let a = (a1, . . . , an) be a vector of relatively prime positive integers. For
1 6 i 6 n, let di = gcd(a−i), and let p = d1 · · · dn. Then

1. Let

L =

{∑
i

aibi : bi ∈ Z, 0 6 bi < di

}
.

If s ∈ Z>0 and ` ∈ L, then
f (sp+ `) = f(sp).

(These will give the level sets of f , for sufficiently large t, all translates of L.)

2. Given t ∈ Z>0, there exists s ∈ Z and ` ∈ L such that

t = sp+ `.

Furthermore, if f(t) > 0, then s > 0. (That is, Part (1) gives all of the level sets
except for f(t) = 0.)
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3. For 1 6 i 6 n, let

a′i =
ai∏
j 6=i di

and a′ = (a′1, . . . , a
′
n). Then

f(a; sp) = f(a′; p),

for s ∈ Z>0. (This will be useful to simplify calculations of f(sp), when p > 1.)

4. For all sufficiently large s ∈ Z>0,

f
(
a; (s+ 1)p

)
> f(a; sp).

(So these interlaced level sets will be broadly increasing with t.)

Example 9. Continuing Example 4 with a = (3, 4, 6), we can now better understand
Figure 1. Since d1 = gcd(4, 6) = 2, d2 = gcd(3, 6) = 3, and d3 = gcd(3, 4) = 1, we have
p = 2 · 3 · 1 = 6. The set of values in L are:

3 · 0 + 4 · 0 + 6 · 0 = 0, 3 · 0 + 4 · 1 + 6 · 0 = 4, 3 · 0 + 4 · 2 + 6 · 0 = 8,

3 · 1 + 4 · 0 + 6 · 0 = 3, 3 · 1 + 4 · 1 + 6 · 0 = 7, 3 · 1 + 4 · 2 + 6 · 0 = 11.

Therefore, given s ∈ Z>0, f(6s+ `) will be identical for ` ∈ L = {0, 3, 4, 7, 8, 11}, which is
exactly what we see in Figure 1. Furthermore, the value of f(6s) will eventually increase
with s; in this example, it is increasing for all s: f(0) = 1, f(6) = 2, f(12) = 4, f(18) = 6,
and so on. Except for f(t) = 0, all values in the range f(Z>0) will appear on this list
(these interlaced translates of L tile {t ∈ Z>0 : f(t) > 0}).

Finally, a′1 = 3/3 = 1, a′2 = 4/2 = 2, and a′3 = 6/6 = 1. One can check by hand that

f(a; 6s) = f(a′; s) =

{
s2

4
+ s+ 1 if s is even,

s2

4
+ s+ 3

4
if s is odd.

Remark 10. Since f(t) is a quasi-polynomial of period m = lcm(a) and we only need
to look at values of t that are multiples of p, we must compute m/p of the constituent
polynomials of f . In the above Example, m/p = 12/6 = 2 and we need two polynomials.

We now describe what this means for g=k and g6k, for sufficiently large k. We also
describe some other quantities that often appear in both the classical and generalized
Frobenius problem. Roughly, g=k and g6k find the maximum t with a given property,
but we might also want to find the minimum such t, count all such t, or even sum all
such t; generating functions have also proven useful in studying these properties, so we
analyze them too. The long list of precise definitions below — and the parts of theorems
pertaining to them — can be skipped on first reading, in order to focus on g=k and g6k.
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Definition 11. Let a = (a1, . . . , an) be a vector of relatively prime positive integers. For
k ∈ Z>0, define

• h=k to be the minimum t ∈ Z>0 such that f(t) = k (if any such t exist),

• h>k to be the minimum t ∈ Z>0 such that f(t) > k,

• c=k to be the number of t ∈ Z>0 such that f(t) = k,

• c6k to be the number of t ∈ Z>0 such that f(t) 6 k,

• s=k to be the sum of all t ∈ Z>0 such that f(t) = k,

• s6k to be the sum of all t ∈ Z>0 such that f(t) 6 k,

• F=k(x) to be the generating function ∑
t∈Z>0: f(t)=k

xt,

• F>k(x) to be the generating function ∑
t∈Z>0: f(t)>k

xt.

Theorem 12. Let a = (a1, . . . , an) be a vector of relatively prime positive integers, and
define p, di as in Theorem 8. Define g=k, g6k, h=k, h>k, c=k, c6k, s=k, s6k, F=k(x), F>k(x)
as in Definitions 1 and 11. Then there are constants C1, C2 such that, for sufficiently
large s ∈ Z>0,

g=f(sp) = g6f(sp) = sp+
n∑
i=1

(di − 1)ai,

h=f(sp) = h>f(sp) = sp,

c=f(sp) = p,

c6f(sp) = sp+ C1,

s=f(sp) = sp2 +
n∑
i=1

pai(di − 1)

2
,

s6f(sp) =
1

2
(sp)2 +

(
p+

∑n
i=1 ai(di − 1)

2

)
sp+ C2,

F=f(sp)(x) = xsp
∏
i

1− xdiai
1− xai

,

F>f(sp)(x) =
xsp

1− xp
∏
i

1− xdiai
1− xai

.
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Remark 13. Let’s call k such that no t has exactly k representations (c=k = 0) trivial.
By Theorem 8, the only nontrivial k are of the form k = f(sp), and the values of such
g=f(sp), etc., are given by the above theorem (for sufficiently large s). But this also gives
us the values for (sufficiently large) trivial k: for example, g6k = g6f(sp), if f(sp) 6 k <
f
(
(s+ 1)p

)
.

Notice that g6k (like several of the other quantities) is of the form g6f(sp) = sp + C,
where C is a constant. That is, it is roughly the inverse of f . Writing q1(x) ∼ q2(x), if
limx→∞ q1(x)/q2(x) = 1, Proposition 6 gives that

f(t) ∼ 1

(n− 1)!a1 · · · an
tn−1.

Therefore, if k ∼ f(sp) (in particular, if f(sp) 6 k < f
(
(s+ 1)p

)
), we have

sp ∼
(
(n− 1)!a1 · · · ank

)1/(n−1)
,

and we immediately get the asymptotics of these functions of k:

Corollary 14. Given a vector a = (a1, . . . , an) of relatively prime positive integers, let
p be the constant defined in Theorem 8. Then (restricting to k where the values are
defined/nonzero)

• g=k, g6k, h=k, h>k, c6k ∼
(
(n− 1)!a1 · · · ank

)1/(n−1)
,

• c=k ∼ p,

• s=k ∼ p
(
(n− 1)!a1 · · · ank

)1/(n−1)
,

• s6k ∼ 1
2

(
(n− 1)!a1 · · · ank

)2/(n−1)
.

Fukshansky and Schürmann [12] give bounds for g6k, for sufficiently large k, matching
these asymptotics, and Aliev, Fukshansky, and Henk [2] find bounds on g6k that are good
for all k. The asymptotics of the other quantities seem to be new here.

These quantities have already been calculated exactly for n = 2, in Beck and Robins
[7] and Bardomero and Beck [3]. We will reproduce these results nicely using Theorem 8:

Proposition 15. Given relatively prime positive integers a1, a2,

g=k = g6k = (k + 1)a1a2 − a1 − a2,
for k > 1, h=k = h>k = (k − 1)a1a2,

h=0 = 1 (unless a1 = 1 or a2 = 1),

for k > 1, c=k = a1a2,

c=0 =
a1a2 − a1 − a2 + 1

2
,

c6k = ka1a2 + c=0,
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for k > 1, s=k =
a1a2(2a1a2k − a1 − a2)

2
,

s=0 =
(a1 − 1)(a2 − 1)(2a1a2 − a1 − a2 − 1)

12
,

s6k =
a21a

2
2

2
k2 +

a1a2(a1a2 − a1 − a2)
2

k + s=0,

for k > 1, F=k(x) =
x(k−1)a1a2 (1− xa1a2)2

(1− xa1) (1− xa2)
,

F=0(x) =
1

1− x
− 1− xa1a2

(1− xa1) (1− xa2)
,

for k > 1, F>k(x) =
x(k−1)a1a2 (1− xa1a2)
(1− xa1) (1− xa2)

,

F>0 =
1

1− x
.

The formulas for g=k, g6k, h=k, h>k, c=k, c6k are due to (or immediately derivable from)
[7] and the formulas for s=k, s6k, F=k(s), F>k(x) are due to [3]. The k = 0 cases were
previously known: see Sylvester [18] for g=0, c=0, Brown and Shiue [9] for s=0, and Székely
and Wormald [19] for F=0(x), F>1(x). Proposition 15 is an immediate corollary (the n = 2
case) of Proposition 16 and Remark 17 below:

Proposition 16. Let d1, . . . , dn be pairwise coprime positive integers, and let ai =
∏

j 6=i di,
for 1 6 i 6 n. Let p = d1 · · · dn and σ = a1+· · ·+an. Other than k = 0, the only nontrivial
k (that is, such that c=k > 0) are k =

(
s+n−1
n−1

)
, for s ∈ Z>0, and we have

g=k = g6k = (s+ n)p− σ,
h=k = h>k = sp,

c=k = p,

c6k = (s+ 1)p+
(n− 1)p− σ + 1

2
,

s=k =
p
(
(2s+ n)p− σ

)
2

,

F=k(x) =
xsp (1− xp)n

(1− xa1) · · · (1− xan)
,

F>k(x) =
xsp (1− xp)n−1

(1− xa1) · · · (1− xan)
.

The formula for g=k = g6k was given in Beck and Kifer [6]. The other formulas seem
to be new. If n = 2, then a1 = d2 and a2 = d1 are generic relatively prime positive
integers, and setting k =

(
s+1
1

)
= s+ 1 retrieves Proposition 15 for k > 1; the k = 0 case

is covered by the following remark:
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Remark 17. For k = 0, Tripathi [20] proved that

g=0 = (n− 1)p− σ and c=0 =
(n− 1)p− σ + 1

2
.

These can be instead be obtained directly from F>1(x) above, as follows: We have

F>0(x) =
∑
t∈Z>0

xt =
1

1− x
and F=0(x) = F>0(x)− F>1(x).

Then g=0 is the degree of F=0(x) as a polynomial and c=0 = F=0(1), which matches
Tripathi’s [20] formulas. One could compute s=0 = F ′=0(1), which would also allow us to
give a formula for s6k, but the answer seems a bit messy; however, F ′=0(1) does match
the n = 2 value of s=0 given in Proposition 15.

The following well-known lemma gives a useful recurrence and is worth highlighting
here:

Lemma 18. Given t ∈ Z>0, and given i with t > ai,

f(a; t) = f(a; t− ai) + f(a−i; t).

If we define f(a; t) = 0 for t < 0 and f(∅; 0) = 1, this recurrence holds for all t ∈ Z.

The proof is immediate: the first term on the right-hand-side is the number of ways to
represent t with at least one ai, and the second term is the number of ways to represent
t with no ai’s.

Finally, we note that a partial fractions approach provides an alternative proof of
Theorem 8(4), and a standard proof of Proposition 6. We include it here, in case it is
useful. While the leading term of f(a; t) is well-known, this approach (together with
Theorem 8) also allows us to compute the second leading term(s) as well:

Proposition 19. Let a = (a1, . . . , an) be a vector of relatively prime positive integers,
and let m = lcm(a). For 1 6 i 6 n, let di = gcd(a−i), and let p = d1 · · · dn. Then

1. f(a; t) is a quasi-polynomial of period m, and the leading term of all of the con-
stituent polynomials is

1

(n− 1)!a1 · · · an
tn−1.

2. If di = 1 for all i, then the leading two terms of all of the constituent polynomials
are

1

(n− 1)!a1 · · · an
tn−1 +

a1 + · · ·+ an
2(n− 2)!a1 · · · an

tn−2.

3. For sufficiently large s ∈ Z>0, f
(
(s+ 1)p

)
> f(sp).
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Remark 20. Combining Proposition 19(2) and Theorem 8 allows us to compute the leading
two terms even when di > 1, though the second term will now depend on the constituent
polynomial: given t ∈ Z>0, compute r ∈ Z>0 such that t ≡ r (mod p) and f(a; t) =
f(a; t− r), using Theorem 8(1) and (2) (r depends only on t mod p). Let s ∈ Z be such
that t = sp+ r, and then

f(a; t) = f(a; sp) = f(a′; s),

by Theorem 8(3). The two leading terms of f(a′; s) are given by Proposition 19(2), and
then these can be used to compute the two leading terms of f(a; t) as a quasi-polynomial
in t, by substituting s = (t− r)/p. The second leading term will depend on t mod p.

In the next section, we prove Theorem 8, Theorem 12, Proposition 16, and Proposition
19. Then we conclude with some open questions.

2 Proofs

Proof of Theorem 8. Part 1 follows from the recurrence, Lemma 18. In particular, we
proceed by induction on ` =

∑
j bj. If all bj are zero, then this is trivially true: f(sp+0) =

f(sp). Now assume bi > 0, for some i. By Lemma 18 and the induction hypothesis,

f

(
a; sp+

∑
j

ajbj

)
= f

(
a; sp+ ai(bi − 1) +

∑
j 6=i

ajbj

)
+ f

(
a−i; sp+

∑
j

ajbj

)

= f (a; sp) + f

(
a−i; sp+

∑
j

ajbj

)
.

We need to show that f
(
a−i; sp+

∑
j ajbj

)
= 0. Indeed, using the facts that p and aj

(j 6= i) are multiples of di = gcd(a−i), that ai is relatively prime to di (or else gcd(a) > 1),
and bi is not a multiple of di (since 0 < bi < di), we have

sp+
∑
j

ajbj ≡ aibi 6≡ 0 (mod di).

Such a number cannot be represented as a combination of a−i, since aj (j 6= i) are
multiples of di.

Part 2 uses a standard number theory trick to compute ` =
∑

j bj. In particular, given

t ∈ Z>0 let bi (1 6 i 6 n) be defined so that 0 6 bi < di and bi ≡ a−1i t (mod di) (ai is
invertible mod di, since they are relatively prime). Since aj (j 6= i) is a multiple of di,∑

j

ajbj ≡ aibi ≡ t (mod di).

Since p = d1 · · · dn with the di pairwise coprime (or else gcd(a) > 1), the Chinese Remain-

der Theorem yields
∑

j ajbj ≡ t (mod p). Let s be the integer
(
t−
∑

j ajbj

)
/p, so that

t = sp+
∑

j ajbj, as desired.
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Now assume f(t) > 0, and we need to prove s > 0. Recall that if we define f(t) = 0
for t < 0, then the recurrence in Lemma 18 applies for all t ∈ Z, and therefore Part 1
(which only used that recurrence) holds for all s ∈ Z. Then

f(sp) = f

(
sp+

∑
j

ajbj

)
= f(t) > 0,

which requires that s > 0, as desired.

To prove Part 3, we must relate representations using a to representations using a′.
In particular, suppose sp =

∑
j ajxj (xj ∈ Z>0) is a representation of sp by a. For each

i, p and aj (j 6= i) are multiples of di, and so

aixi ≡
∑
j

ajxj = sp ≡ 0 (mod di).

Since ai and di are relatively prime, xi must be a multiple of di. Let yi ∈ Z>0 be such
that xi = diyi. Then

sp =
∑
i

aixi =
∑
i

(∏
j 6=i

di

)
a′i · diyi = p

∑
i

a′iyi,

So s =
∑

i a
′
iyi is a representation of s by a′. Conversely, given any representation

s =
∑

i a
′
iyi (yi ∈ Z>0) by a′, sp =

∑
i ai(diyi) is a representation of sp by a. Therefore

f(a; sp) = f(a′; p), as desired.

Part 4 requires a deeper understanding of the function f(t). First, we assume without
loss of generality (by Part 3) that di = 1 for all i, so we are trying to prove that f(s+1) >
f(s), for sufficiently large s ∈ Z>0. The complication is that f(s) and f(s + 1) are
evaluated on different constituent polynomials of f , and it seems like these might “jump
around.” We use the recurrence, Lemma 18, to show that f(s) and f(s+ 1) can both be
related to the same f(s− q) and therefore to each other, and this relation will entail that
f(s+ 1)− f(s) is eventually positive.

Indeed, we know that all sufficiently large integers can be represented by a. In par-
ticular, let q ∈ Z>0 be such that q and q + 1 are both representable; that is, q =

∑
i aixi

and q + 1 =
∑

i aiyi for xi, yi ∈ Z>0. Take s ∈ Z>0 sufficiently large (in particular, take
s > q). We will use Lemma 18 repeatedly to relate both f(s) and f(s + 1) to f(s − q).
Let’s start by applying the recursion x1 times on f(a; s), using i = 1:

f(a; s) = f(a; s− a1) + f(a−1; s) =

= f(a; s− 2a1) + f(a−1; s− a1) + f(a−1; s) = · · ·

= f(a; s− a1x1) +

x1−1∑
j=0

f(a−1; s− ja1).
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Now apply the recursion x2 times with i = 2, and so on, and we get constants (independent
of s) uij ∈ Z>0 such that

f(a; s) = f(a; s− q) +
n∑
i=1

xi−1∑
j=0

f(a−i; s− uij).

Now if we do the same thing for f(a; s + 1), applying the recursion y1 times with i = 1
and so forth, we get constants wij ∈ Z>0 such that

f(a; s+ 1) = f
(
a; s+ 1− (q + 1)

)
+

n∑
i=1

yi−1∑
j=0

f(a−i; s+ 1− wij).

Subtracting the two equations, the term f(a; s− q) = f
(
a; s + 1 − (q + 1)

)
cancels, and

we are left with

f(a; s+ 1)− f(a; s) =
n∑
i=1

yi−1∑
j=0

f(a−i; s+ 1− wij)−
n∑
i=1

xi−1∑
j=0

f(a−i; s− uij),

and we want to show that this quantity is (eventually) positive. By Proposition 6, f(a−i; s)
is a quasi-polynomial with leading term

1

(n− 2)!
∏

j 6=i aj
sn−2

(note that we are using that gcd(a−i) = di = 1). Therefore f(a; s + 1) − f(a; s) is a
quasi-polynomial with leading coefficient (on sn−2)

n∑
i=1

yi−1∑
j=0

1

(n− 2)!
∏

j 6=i aj
−

n∑
i=1

xi−1∑
j=0

1

(n− 2)!
∏

j 6=i aj

=
n∑
i=1

aiyi
(n− 2)!a1 · · · an

−
n∑
i=1

aixi
(n− 2)!a1 · · · an

=
1

(n− 2)!a1 · · · an

[
n∑
i=1

aiyi −
n∑
i=1

aixi

]
=

1

(n− 2)!a1 · · · an
(
(q + 1)− q

)
=

1

(n− 2)!a1 · · · an
.

Since this is a positive leading term, f(a; s + 1) − f(a; s) will eventually be positive, as
desired.
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Proof of Theorem 12. Let s be sufficiently large. By Theorem 8, the set of t with f(t) =
f(sp) is exactly {

sp+
∑
i

aibi : 0 6 bi < di

}
.

We simply need to check what that means for all of our different values:

The largest element of this set occurs at bi = di − 1 for all i, so

g=f(sp) = sp+
n∑
i=1

(di − 1)ai.

The smallest element of this set occurs at bi = 0 for all i, so

h=f(sp) = sp.

The number of elements in this set is

c=f(sp) = d1 · · · dn = p.

The sum of the elements in this set is

s=f(sp) =

d1−1∑
b1=0

· · ·
dn−1∑
bn=0

(
sp+

n∑
i=1

aibi

)

= d1 · · · dnsp+
n∑
i=1

(∏
j 6=i

dj ·
di−1∑
bi=0

aibi

)

= sp2 +
n∑
i=1

(∏
j 6=i

dj ·
aidi(di − 1)

2

)

= sp2 +
n∑
i=1

pai(di − 1)

2
.

The generating function for this set is

F=f(sp)(x) =

d1−1∑
b1=0

· · ·
dn−1∑
bn=0

xsp+
∑n

i=1 aibi

= xsp
∏
i

(
1 + xai + · · ·+ x(di−1)ai

)
= xsp

∏
i

1− xdiai
1− xai

.

Since f(sp) is an increasing function of s (for sufficiently large s), we have that g6f(sp) =
g=f(sp) and h>f(sp) = h=f(sp). To compute c6f(sp), we have to worry about small k. In
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particular, c=0 might not be p (see Example 4), and it is possible that f(rp) = f(r′p) for
distinct (small) r, r′ so that some c=k is a nontrivial multiple of p. But we will have (for
sufficiently large s) that

c6f(sp) = c=0 +
s∑
r=0

p = sp+ C1,

where C1 is a constant. Similarly, we may compute

s6f(sp) = s=0 +
s∑
r=0

(
rp2 +

n∑
i=1

pai(di − 1)

2

)

= s=0 +
s2p2 + sp2

2
+ (s+ 1)

n∑
i=1

pai(di − 1)

2

=
1

2
(sp)2 +

(
p+

∑n
i=1 ai(di − 1)

2

)
sp+ C2,

where C2 is a constant. Finally,

F>f(sp)(x) =
∞∑
r=s

F=f(rp)(x)

=
∞∑
r=s

xrp
∏
i

1− xdiai
1− xai

=
xsp

1− xp
∏
i

1− xdiai
1− xai

.

Proof of Proposition 16. In this setting, Theorem 12(3) drastically simplifies the calcula-
tion of f , allowing us to make quick work of the rest. In particular, note that the di as
defined in the proposition are indeed di = gcd(a−i), as required to apply Theorem 12. By
Theorem 8(1) and (2), we may concentrate on f(sp) for s ∈ Z>0. So let s ∈ Z>0 be given,
and let k =

(
s+n−1
n−1

)
. We have (in the notation of Theorem 8(3))

a′i =
ai∏
j 6=i di

= 1,

for all i. Then by Theorem 8(3),

f(a; sp) = f(a′; s) = f
(
(1, . . . , 1); s

)
=

(
s+ n− 1

n− 1

)
= k

(this calculation is a classical combinatorics problem on compositions: f
(
(1, . . . , 1); s

)
is

the number of ways to write s = x1 + · · · + xn, where xi ∈ Z>0, which is the number of
ways to shuffle s identical “stars” and n− 1 identical “bars”). Now we may simply apply
Theorem 12, and using that p = aidi:
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g=f(sp) = g6f(sp) = sp+
n∑
i=1

(di − 1)ai

= sp+
n∑
i=1

(p− ai)

= (s+ n)p− σ,
h=f(sp) = h>f(sp) = sp,

c=f(sp) = p,

s=f(sp) = sp2 +
n∑
i=1

pai(di − 1)

2

= sp2 +
n∑
i=1

p2 − pai
2

=
2sp2

2
+
np2 − pσ

2

=
p
(
(2s+ n)p− σ

)
2

,

F=f(sp)(x) = xsp
∏
i

1− xdiai
1− xai

=
xsp (1− xp)n

(1− xa1) · · · (1− xan)
,

F>f(sp)(x) =
xsp

1− xp
∏
i

1− xdiai
1− xai

=
xsp (1− xp)n

(1− xp) (1− xa1) · · · (1− xan)

=
xsp (1− xp)n−1

(1− xa1) · · · (1− xan)
.

Finally, using that c=0 = (n−1)p−σ+1
2

from Tripathi [20],

c6k = c=0 +
s∑
r=0

c=(r+n−1
n−1 )

=
(n− 1)p− σ + 1

2
+

s∑
r=0

p

= (s+ 1)p+
(n− 1)p− σ + 1

2
.
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Proof of Proposition 19. We will be brief, since much of this is classical; see Wilf’s text
[21, Section 3.15], for example. Define G(x) =

∑∞
t=0 f(a; t)xt. We see that

G(x) = (1 + xa1 + x2a1 + · · · ) · · · (1 + xan + x2an + · · · ) =
1∏

i(1− xai)
.

We will use the partial fraction expansion of G(x) to get our results. All of the poles of
G are mth roots of unity, where m = lcm(a). One pole is x = 1, of order n. Label the
other roots of unity by ζj, for 1 6 j < m, and suppose ζj is a pole of order bj. Then the
partial fraction expansion of G(x) yields that there exist C`, Dj` ∈ Q such that

G(x) =
n∑
`=1

C`
(1− x)`

+
m−1∑
j=1

bj∑
`=1

Dj`

(1− x/ζj)`
.

Suppose ζj is a primitive rth root of unity. Then a term
Dj`

(1−x/ζj)` , if expanded out as

a product of geometric series, contributes a degree `− 1 quasi-polynomial of period r to
f(t). Summed together, we will have a period m quasi-polynomial. We can see that ζj is
a root of exactly those 1− xai such that r divides ai; therefore, it will be a pole of order
bj = |i : r divides ai|.

Since gcd(a) = 1, we must have bj 6 n − 1, and so the only degree n − 1 piece will
come from

Cn/(1− x)n =
∞∑
t=0

Cn

(
t+ n− 1

n− 1

)
xt

(the tth coefficient in the power series will be the number of ways to write t = c1 + · · ·+cn
with ci ∈ Z>0, the same classic combinatorics problem as in the proof of Proposition 16).

Furthermore, if di = 1 for all i, then no r > 1 can divide n − 1 of the ai, and so
bj 6 n− 2, and the only degree n− 1 and n− 2 pieces will come from

Cn/(1− x)n + Cn−1/(1− x)n−1 =
∞∑
t=0

(
Cn

(
t+ n− 1

n− 1

)
+ Cn−1

(
t+ n− 2

n− 2

))
xt.

Noting that

Cn = (1− x)nG(x)
∣∣∣
x=1

and Cn−1 =
d

dx
(1− x)nG(x)

∣∣∣
x=1

,

we compute that

Cn =
1

a1 · · · an
and Cn−1 =

a1 + · · ·+ an − n
2a1 · · · an

,

and we can compute that

Cn

(
t+ n− 1

n− 1

)
+ Cn−1

(
t+ n− 2

n− 2

)
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=
1

(n− 1)!a1 · · · an
tn−1 +

a1 + · · ·+ an
2(n− 2)!a1 · · · an

tn−2 + lower order terms.

This gives the first leading term of f(t), in general, and the first two leading terms when
di = 1 for all i, and so Parts (1) and (2) are proved.

To prove Part (3), Theorem12(3) allows us to assume without loss of generality that
di = 1 for all i, and we want to prove that f(s+ 1) > f(s) for sufficiently large s. Indeed,
the leading term of f(s+ 1)− f(s), when expanded out as a quasi-polynomial using Part
(2), is

1

(n− 2)!a1 · · · an
sn−2.

Since this is a positive leading term, f(s + 1) − f(s) must eventually be positive, as
desired.

3 Open Questions

Question 21. We have made no effort to quantify what sufficiently large means in any of
these theorems, but probably one can, since f(t) is so “well-behaved” here. What bounds
can we give for when the results hold?

Question 22. The n = 2 case is well understood (see Proposition 15), and finding
formulas for n > 4 seems very difficult even in the k = 0 case. It seems possible that
there are interesting formulas when n = 3, however. For example, when n = 3 and k = 0,
there are reasonable formulas (see Ramı́rez Alfonśın [16, Chapter 2], and, for a generating
function approach, see Denham [10]). Are there interesting formulas for n = 3 and general
k?

Question 23. Let P ⊆ Rn be a d-dimensional polytope whose vertices are rational, and
let m be the smallest integer such that the vertices of mP (P dilated by a factor of m) are
integers. Then Ehrhart [11] proves that f(t) = |tP ∩Zn| is a quasi-polynomial of period m
(see the Beck and Robins text [8] for many more details). This is a generalization of our
problem, as taking P to be the convex hull of ei/ai (1 6 i 6 n), where ei is ith standard
basis vector, yields the Frobenius f(t). One can define g6k, and so forth, using this new f ,
and Aliev, De Loera, and Louveaux [1] study structural and algorithmic results related to
this. Do some of the results of this current paper generalize to that more general setting?

Question 24. What can we say about the computational complexity of computing g6k,
c6k, and so forth? If n is not fixed, then Ramı́rez Alfonśın [15] shows that even computing
g=0 is NP-hard. On the other hand, if n is fixed, then Kannan [13] shows that g=0 can
be computed in polynomial time, and Barvinok and Woods [4] show that c=0 and other
quantities can be computed in polynomial time. Generalizing, Aliev, De Loera, and
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Louveaux [1] show that, for fixed n and k, g6k and other quantities can be computed in
polynomial time, even in the general setting of f(t) = |tP ∩ Zn|.

This leaves the open question: Can these quantities be computed in polynomial time
if n is fixed, but a1, . . . , an and k are the input? Nguyen and Pak [14] prove that this
is NP-hard in the general setting of f(t) = |tP ∩ Zn|, disproving a conjecture from [1].
However, to do this, they construct a polytope P ⊆ R6 whose f(t) varies wildly across
the constituent polynomials, which is not true for our Frobenius f(t) (see Theorem 8).

When k is sufficiently large, Theorem 12 applies: For any given t, we can compute
f(t) in polynomial time, using the result of Barvinok [5] that |P ∩ Zn| can be computed
in polynomial time for fixed n; then binary search allows us to find s such that f(sp) 6
k < f

(
(s + 1)p

)
, and Theorem 12 gives us g=k. But what if k is bigger than a constant

but not “sufficiently large” for Theorem 12 to hold?
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