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Abstract

A subcube partition is a partition of the Boolean cube {0, 1}n into subcubes. A
subcube partition is irreducible if the only sub-partitions whose union is a subcube
are singletons and the entire partition. A subcube partition is tight if it “mentions”
all coordinates.

We study extremal properties of tight irreducible subcube partitions: minimal
size, minimal weight, maximal number of points, maximal size, and maximal min-
imum dimension. We also consider the existence of homogeneous tight irreducible
subcube partitions, in which all subcubes have the same dimensions. We addition-
ally study subcube partitions of {0, . . . , q − 1}n, and partitions of Fn

2 into affine
subspaces, in both cases focusing on the minimal size.

Our constructions and computer experiments lead to several conjectures on the
extremal values of the aforementioned properties.
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1 Introduction

A subcube partition is a partition of the cube {0, 1}n into subcubes, that is, into sets of
the form

{x ∈ {0, 1}n : xi1 = b1, . . . , xid = bd}.

Here is an example of a subcube partition of length n = 3:

S3 = {000}, {111}, {001, 101}, {100, 110}, {010, 011}
= 000, 111, ∗01, 1∗0, 01∗.

We will usually express our subcubes as strings in {0, 1, ∗}n, in which stars stand for
unconstrained coordinates.

A subcube partition is reducible if it has a proper subset, consisting of more than one
subcube, whose union is a subcube. For example,

0∗, 10, 11

is reducible since 10 ∪ 11 = 1∗. In contrast, S3 is irreducible.
A subcube partition is tight if it mentions all coordinates, that is, if for every i ∈ [n],

some subcube constrains xi. Both subcube partitions above are tight, but the subcube
partition 0∗, 1∗ is not, since the second coordinate is not mentioned.

Peitl and Szeider [PS23] enumerated all tight irreducible subcube partitions for n =
3, 4, and counted the number of nonisomorphic subcube partitions with small size (number
of subcubes) for n = 5, 6, 7. They ask whether there are infinitely many tight irreducible
subcube partitions. In this work, we answer this question in the affirmative, giving many
constructions of tight irreducible subcube partitions.

The work of Peitl and Szeider raises many natural questions, such as:

• How to determine whether a subcube partition is irreducible?

• What is the minimal size of a tight irreducible subcube partition of length n?
(This question only makes sense if we impose tightness.)

• What is the maximal size of an irreducible subcube partition of length n?

• Do there exist irreducible subcube partitions in which all subcubes have the same
dimension?
(We call such subcube partitions homogeneous.)

We address these questions in Section 2. We describe an efficient algorithm for testing
whether a subcube partition is irreducible in Section 2.1, and give two infinite sequences
of irreducible formulas in Section 2.2.

We conjecture that the minimal size of a tight irreducible subcube partition of length
n is 2n − 1. We give a matching construction in Section 2.3, and optimize its Hamming
weight in Section 2.4 (this will be useful later on).
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We conjecture that the maximal size of an irreducible subcube partition of length n 󰃍 5
is 5

8
2n. We give a matching construction in Section 2.6, where we also give a nontrivial

upper bound. Our constructions involve 2n−2 points (0-dimensional subcubes) and 3 ·2n−3

edges (1-dimensional subcubes). We conjecture that 2n−2 is the maximum number of
points in an irreducible subcube partition of size n. A simple matching construction
appears in Section 2.5.

We present subcube partitions in which all subcubes have linear dimension in Sec-
tion 2.7. We close off the section with a discussion of homogeneous subcube partitions
in Section 2.8, where we describe several constructions, and determine all lengths n and
codimensions k 󰃑 4 for which there exists a tight irreducible subcube partition of length
n whose subcubes have dimension n − k. In particular, we describe a construction due
to Perezhogin [Per05] of irreducible subcube partitions of all length n 󰃍 7 in which all
subcubes have dimension 1.

Section 3 studies subcube partitions of [q]n for q 󰃍 3. We show how to construct
irreducible subcube partitions of [q]n from irreducible subcube partitions of {0, 1}n in
Section 3.1, and use this to construct tight irreducible subcube partitions of length n and
size (n − 1)q(q − 1) + 1 in Section 3.2.1; this uses the subcube partitions of Section 2.4.
We conjecture that (n− 1)q(q− 1)+ 1 is the minimum size of a tight irreducible subcube
partition, and prove this for n = 3 in Section 3.2.2. We close by showing, in Section 3.2.3,
that the minimal size of a tight minimal cover in this setting is (q − 1)n+ 1.

Finally, Section 4 briefly studies the linear analog of subcube partitions, in which
subcubes are replaced by affine subspaces. We show how to construct irreducible affine
vector space partitions from irreducible subcube partitions in Section 4.1, and use this
to construct tight irreducible affine subspace partitions of length n and size roughly 3

2
n

in Section 4.2. We discuss irreducible affine vector space partitions in more detail in the
companion work [BFIK23].

Background

Subcube partitions appear, under various names, in theoretical computer science, as an ab-
straction of the salient properties of decision trees, and elsewhere. Some examples include
Iwama [Iwa87, Iwa89] (as certain independent sets of clauses), Brandman, Orlitsky and
Hennessy [BOH90] (as nonoverlapping covers), Berger, Felzanbaum and Fraenkel [BFF90]
(as disjoint tautologies), Davydov and Davydova [DD98] (as dividing formulas), Friedgut,
Kahn and Wigderson [FKW02] (as subcube partitions), Kullmann [Kul04] (as unsatisfi-
able hitting clause-sets), Kisielewicz [Kis20] (as realizations of cube tiling codes), Taran-
nikov [Tar22] (as coordinate partitions). There are also orthogonal DNFs [CH11], also
known as disjoint DNFs [GK13], which are systems of disjoint subcubes which do not
necessarily cover the entire cube. (For the relation between decision trees and subcube
partitions, see Göös, Pitassi and Watson [GPW18].)

Irreducible subcube partitions appear in a work of Kullmann and Zhao [KZ16] (as
clause-reducibility), inspired by similar notions in the context of disjoint covering systems
of residue classes [Kor84, BFF90] and motivated by applications to the study of CNFs.
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Peitl and Szeider [PS23] enumerate all tight irreducible subcube partitions for n = 3, 4,
and determine the minimal size of a regular irreducible subcube partition for n = 5, 6, 7.
Instead of tightness, they use a different notion, regularity, which is equivalent to tightness
for irreducible subcube partitions when n 󰃍 3. Regularity was introduced by Kullmann
and Zhao [KZ13] under the name nonsingularity, and is defined in Section 2.3.1.

2 Subcube partitions

We start with a quick recap of the relevant definitions.

Definition 1 (Subcube partition). A subcube partition of length n is a partition of {0, 1}n
into subcubes, which are sets of the form

{x ∈ {0, 1}n : xi1 = b1, . . . , xid = bd}.

The parameter d is the codimension of the subcube, and n−d is its dimension. A subcube
of dimension 0 is called a point, and a subcube of dimension 1 is called an edge.

The size of a subcube partition is the number of subcubes.

We identify subcubes with words over {0, 1, ∗}. For example, 01∗ stands for the
subcube {(0, 1, 0), (0, 1, 1)}. We index the symbols in a word w of length n by [n] =
{1, . . . , n}. If b ∈ {0, 1}, we use b̄ to denote 1− b.

Definition 2 (Reducibility). A subcube partition F is reducible if there exists a subset
G ⊂ F , with 1 < |G| < |F |, such that the union of the subcubes in G is itself a subcube.

A subcube partition is irreducible if it is not reducible.

Definition 3 (Tightness). A subcube s mentions a coordinate i ∈ [n] if si ∕= ∗.
A subcube partition F of length n is tight if for every i ∈ [n], some subcube in F

mentions i.

It is coNP-complete to determine whether a given collection of subcubes covers {0, 1}n
(this problem is just SAT in disguise). In contrast, it is easy to test whether a given
collection of subcubes is a partition, as first observed by Iwama [Iwa89].

Definition 4 (Conflicting subcubes). Two subcubes s, t of the same length are said to
conflict if there is a coordinate i ∈ [n] such that si, ti ∕= ∗ and si ∕= ti.

Lemma 5. Two subcubes are disjoint if and only if they conflict.

Lemma 6. A collection F of disjoint subcubes of length n is a subcube partition if and
only if 󰁛

s∈F

2− codim(s) = 1.
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Similarly, it is easy to check whether a given subcube partition is tight. In contrast,
checking whether a subcube partition is irreducible using the definition takes exponential
time. We present an efficient algorithm for testing irreducibility in Section 2.1.

Following that, we give many examples of irreducible subcube partitions, starting with
Section 2.2, which describes subcube partitions whose irreducibility can be proved using a
simple parity argument. In Sections 2.3 to 2.7 we describe irreducible subcube partitions
which conjecturally optimize various parameters. Section 2.8 closes with a discussion of
irreducible subcube partitions in which all subcubes have the same dimension.

2.1 Testing irreducibility

In this section we give a polynomial time algorithm that checks whether a given subcube
partition F is reducible, and if so, identifies a subset G ⊂ F , with 1 < |G| < |F |, whose
union is a subcube.

The idea behind the algorithm is quite simple. Suppose that F were reducible, say
via the subset G. If s, t ∈ G then

󰁖
G must contain the join s ∨ t of s, t, which is the

smallest subcube containing both s and t, given explicitly by

(s ∨ t)i =

󰀫
b if si = ti = b ∈ {0, 1},
∗ otherwise.

If u ∈ F intersects s ∨ t (a condition we can check using Lemma 5) then G must contain
u, and so

󰁖
G must contain s ∨ t ∨ u. Continuing in this way, we are able to recover G

(or a subset of G whose union is also a subcube). The corresponding algorithm appears
as Algorithm 1.

Algorithm 1 Algorithm for checking whether a subcube partition is irreducible

Input: Subcube partition F = {s1, . . . , sm}
for 1 󰃑 i < j 󰃑 m do
G ← {si, sj}
while some sk /∈ G intersects

󰁚
G do

G ← G ∪ {sk}
end while
if G ∕= F then
return Reducible:

󰁖
G is a subcube

end if
end for
return Irreducible

Theorem 7. Algorithm 1 runs in polynomial time, and its output is correct.

Proof. We start by showing that the algorithm runs in polynomial time. The outer for
loop runs O(m2) times, and the inner while loop runs at most m times. Each basic
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operation can be implemented in polynomial time, and so the entire algorithm runs in
polynomial time.

Suppose first that the algorithm outputs “reducible”. By construction, all subcubes in
F \G are disjoint from

󰁚
G. Since F is a subcube partition, this means that

󰁖
G =

󰁚
G,

which is a subcube. By construction, 1 < |G| < |F |, and so F is indeed reducible.
To complete the proof, we show that if F is reducible, then the algorithm outputs

“reducible”. If F is reducible then there is a subset H ⊂ F , with 1 < |H| < |F |, such
that

󰁖
H is a subcube. Let si, sj ∈ H, and consider the (i, j) iteration of the outer for

loop.
We prove inductively that at each iteration of the inner while loop, G is contained in

H. This holds by construction at the very first step. Now suppose that G ⊆ H and that
sk /∈ G intersects

󰁚
G. Since G ⊆ H, also

󰁚
G ⊆

󰁚
H, and so sk intersects

󰁚
H. Since󰁚

H =
󰁖

H and the subcubes in F are disjoint, necessarily sk ∈ H. Hence G∪{sk} ⊆ H.
When the while loop ends, all sk /∈ G are disjoint from

󰁚
G. Since the subcubes in

F are disjoint, this means that
󰁚

G =
󰁖

G. Since G ⊆ H, necessarily G ∕= F , and so the
algorithm correctly declares that F is reducible.

2.2 Parity argument

In this section we present two constructions of infinite families of tight irreducible subcube
partitions.

Theorem 8. Let n = 2m + 1 󰃍 3. The following subcubes comprise a tight irreducible
subcube partition of size Θ(n3):

• The point 0n.

• All cyclic rotations of 0m1∗m.

• For every 0 󰃑 i, j, k 󰃑 m− 1 satisfying i+ j, j + k 󰃑 m− 1, the subcube

0i1∗j0k1∗m−1−j−k0j1∗m−1−i−j.

We found this subcube partition by starting with the subcube partition consisting of all
rotations of 0m1∗m together with all points not covered by them. This subcube partition
is reducible, and we can use Algorithm 1 to merge together points into subcubes. One
can show inductively that the rotations of 0m1∗m never get merged, and so the resulting
subcube partition is not trivial. It is precisely the one described in Theorem 8.

Here is the resulting partition for n = 5:

00000 001∗∗ ∗001∗ ∗∗001 1∗∗00 01∗∗0
11∗1∗ 1011∗ 011∗1 01011 1∗101

Theorem 9. Let n 󰃍 1 be odd. The following subcubes comprise a tight irreducible
subcube partition of size Fn+1 + Fn−1 + 1, where Fn is the n’th Fibonacci number:
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• The point 1n.

• All subcubes obtained by concatenating blocks of the form ∗1 or 0 in an arbitrary
way, and rotating the result arbitrarily.

This subcube partition appears in [Kis14, Section 2], where it is attributed to Lagarias
and Shor [LS94]. Here is the partition for n = 5:

00000 ∗1000 0∗100 00∗10 000∗1 1000∗
11111 ∗1∗10 ∗10∗1 0∗1∗1 1∗10∗ 10∗1∗

In both cases, we will prove the irreducibility using the following lemma, suggested to
us by Kisielewicz.

Definition 10 (Star pattern). The star pattern of a subcube s ∈ {0, 1, ∗}n is P (s) :=
{i ∈ [n] : si = ∗}.

Definition 11 (Parity of a subcube). The parity of a subcube s ∈ {0, 1, ∗}n is the parity
of the number of 1s in s.

Lemma 12 ([Kis23]). Let F be a subcube partition. Let G be a subset of F such that
|G| > 1 and the union of G is a subcube. Let S be an inclusion-minimal star pattern
occurring in G (this means that no star pattern strictly contained in S appears in G).

Among subcubes in G whose star pattern is S, half have even parity and half have odd
parity.

Proof. Let C ⊆
󰁖

G consist of all points p such that pi = 0 for all i ∈ S. If |C| = 1 then
S is the star pattern of

󰁖
G, which contradicts |G| > 1. Hence |C| > 1. Since C is a

subcube, it contains an equal number of points of even parity and of odd parity.
If s ∈ G has star pattern other than S then by inclusion-minimality, si = ∗ for some

i /∈ S. Therefore s ∩ C contains an equal number of points of even parity and of odd
parity. In contrast, if s ∈ G has star pattern S then s ∩ C contains a single point whose
parity is the same as the parity of s. Since C has an equal number of points of either
parity, the lemma immediately follows.

Corollary 13. Let F be a subcube partition in which there is a star pattern S occurring
twice, and every other star pattern occurs at most once. If G is a subset of F whose union
is a subcube and |G| > 1 then G contains both subcubes of F whose star pattern is S.

Proof. Let U be an inclusion-minimal star pattern in G. Lemma 12 implies that G must
contain an even number of subcubes whose star pattern is U . Necessarily U = S, and so
G contains both subcubes whose star pattern in S.

Corollary 13 almost immediately implies the irreducibility of the subcube partition in
Theorem 9: any non-singleton subset of the subcube partition whose union is a subcube
must contain both points 0n, 1n, and so its union must be {0, 1}n. The argument for
Theorem 8 is only slightly longer.

We prove Theorem 8 in Section 2.2.1, and Theorem 9 in Section 2.2.2.
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2.2.1 Cubic construction

In this section we prove Theorem 8.
We need to prove three things about the set of subcubes F given in the statement of

the theorem: that it is a subcube partition; that it is tight; and that it is irreducible.

Subcube partition The point 0n covers itself. All other subcubes of F contain at least
one 1.

Subcubes of the second type cover royal points. These are points which contain a royal
1, which is a 1 preceded cyclically by m many 0s. Since n < 2(m + 1), there can be at
most one royal 1, and so royal points are covered by precisely one subcube of the second
type. We will soon see that they are not covered by any subcube of the third type.

We can guarantee that a subcube does not contain any royal point by adding “block-
ing 1s”: if each cyclic interval of length m contains a 1, then the subcube cannot
contain any royal point. Each subcube of the third type is contained in the subcube
∗i1∗j+k1∗m−1−k1∗m−1−i−j, in which the 1s are separated by j+k,m−1−k,m−1−j 󰃑 m−1
many stars. Consequently, each royal point is covered by precisely one subcube of F .

It remains to handle points x ∕= 0n which are not royal. Let I + 1 be the index of the
first 1 in x. Since x is not royal, I 󰃑 m− 1.

Let I +1+m+ J +1 be the first 1 in x beyond position I +1+m (so J 󰃍 0). Such a
1 exists since otherwise x starts with 0I1 and ends with 0m−I , and is consequently royal.
For the same reason, J 󰃑 m− 1. Since I +1+m+ J +1 󰃑 n, we see that I + J 󰃑 m− 1.

Let I+1+J+K+1 be the first 1 in x beyond position I+1+J (so K 󰃍 0). Such a 1
exists as seen before. Since x is not royal, J +K 󰃑 m− 1. Collecting all the information,
we see that x belongs to the subcube of the third type

0I1∗J0K1∗m−1−J−K0J1∗m−1−I−J .

I + 1 + J I + 1 +m

If x ∈ 0i1∗j0k1∗m−1−j−k0j1∗m−1−i−j and we follow the steps above then we find that
i = I, j = J , and k = K. Therefore x belongs to a unique subcube of F .

Tightness This is clear, since the subcube 0n mentions all coordinates.

Irreducibility We will use Corollary 13 in order to prove irreducibility, so we first need
to understand the star patterns of the various subcubes in F .

A subcube of the second type has precisely m stars, and each subcube of the second
type has a different star pattern. Furthermore, each star pattern either consists of a single
interval, or of one interval starting at 1 and another interval ending at n.

A subcube of the third type has no interval of m stars, and cannot start with a star,
hence its star patterns differ from those of subcubes of the second type. Given the star
pattern of a subcube of the third type, we can determine i, j, k. First, we determine
i + j by counting the number of trailing stars, which is m− 1− i− j. This allows us to
determine j (and so i), by counting the number of stars in the first i + 1 + j symbols.
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We can now determine k by counting the number of stars in the first i+ 1 +m symbols,
which is m− 1− k.

Summarizing, if we consider only subcubes of the second and third types, then all
star patterns are unique. Considering the entire subcube partition, there is one star
pattern occurring twice, corresponding to the points 0n and 0m−110m−111, and all other
star patterns occur once.

If F were reducible then there would be a subset G ⊆ F such that 1 < |G| < |F |
and the union of G is a subcube. According to Corollary 13, G must contain both points
0n, 0m−110m−111, and so

󰁖
G must contain their join 0m−1∗0m−1∗∗. This implies that G

must cover the point 0m−110m−100, and so must contain the subcube 0m−11∗m0. Similarly,
it must cover the point 0m−100m−110, and so contain the subcube ∗m−10m1∗. Since the
join of the latter two subcubes is ∗n, we conclude that G = F , contrary to assumption.
Therefore F is irreducible.

2.2.2 Lagarias–Shor construction

In this section we prove Theorem 9.
We need to prove three things about the set of subcubes F given in the statement of

the theorem: that it is a subcube partition; that it is tight; and that it is irreducible. (We
leave it to the reader to prove the formula for the size of F .)

Subcube partition The point 1n covers itself. Since n is odd, every other subcube
contains 0, and so doesn’t cover 1n.

Consider now a point x ∈ {0, 1}n other than 1n. We will convert it, in stages, to a
subcube y ∈ F which contains it.

We initialize y with x. If there is an index i such that yi = 1 and yi+1 ∕= 1 (treating
indices cyclically) then any subcube in F which covers y must have yi = 1 and so yi−1 = ∗.
Accordingly, as long as there is an index i such that yi−1 ∕= ∗, yi = 1, yi+1 ∕= 1, we set
yi−1 = ∗.

When the process stops, every 1 is either preceded by ∗ or followed by 1. Since x ∕= 1n,
every run of 1 in y must terminate (followed by ∗ or 0). The final 1 in each such run is
not followed by 1, and so must be preceded by ∗ (implying that the run has length 1).
It follows that y is, up to rotation, a concatenation of copies of ∗1 and 0, and so y ∈ F .
Furthermore, the construction of y ensures that this is the only subcube in F covering x.

Tightness This is clear, since the subcube 1n mentions all coordinates.

Irreducibility In view of using Corollary 13, we first explore the star patterns of the
various subcubes in F . The main observation is that we can recover a subcube of the
second type from its star pattern. Indeed, every star must be followed by 1, and every
position not preceded by a star must be 0. This implies that apart from the two points
0n, 1n, all other star patterns are unique.

If F were reducible then there would exist a subset G ⊂ F with 1 < |G| < |F | whose
union is a subcube. Corollary 13 shows that G must contain both points 0n, 1n, and so
their join ∗n, contradicting the assumption G ∕= F . Hence F is irreducible.
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2.3 Minimal size

What is the minimal size of a tight irreducible subcube partition of length n? (The
question doesn’t make sense without assuming tightness, since ∗n is always irreducible.)

When n = 1, there is a single tight irreducible subcube partition: 0, 1. When n = 2,
there are no tight irreducible subcube partitions. When n = 3, there is a unique tight
irreducible subcube partition, up to flipping and rearranging coordinates:

000, ∗01, 1∗0, 01∗, 11.

For n = 4, 5, 6, 7, Peitl and Szeider [PS23] used a computer search to show that the min-
imal number of subcubes is 7, 9, 11, 13, respectively. This is consistent with the following
conjecture.

Conjecture 14. If n 󰃍 3 then the minimal size of a tight irreducible subcube partition
of length n is 2n− 1.

Section 2.3.1 explains the best lower bound on the size, due to Kullmann and Zhao
[KZ13]. Sections 2.3.2 and 2.3.3 present two constructions of an infinite family of tight
irreducible subcube partitions of length n and size 2n − 1. In Section 2.4 we present
several more such constructions which will be useful in Section 3.

2.3.1 Lower bound

Before presenting the constructions of tight irreducible subcube partitions of size 2n− 1,
here is the best lower bound on the size, due to Kullmann and Zhao [KZ16]. We give an
alternative proof using known results from the literature.

Theorem 15. If n 󰃍 4 then every tight irreducible subcube partition of length n has size
at least n+ 3.

Before proving the theorem, we need a simple lemma.

Definition 16 (Regularity). A subcube partition of length n is regular if for every i ∈ [n]
and every b ∈ {0, 1} there are at least two subcubes s ∈ F such that si = b.

This definition is due to Kullmann and Zhao [KZ13], who used the term nonsingular.
The term regular appears in Peitl and Szeider [PS23].

Lemma 17 ([KZ16, Lemma 39]). If F is a tight irreducible subcube partition of length
n 󰃍 2 then F is regular.

Proof. We prove the definition of regularity for i = 1.
For σ ∈ {0, 1, ∗}, let Fσ = {x : σx ∈ F}. Both F0 ∪ F∗ and F1 ∪ F∗ are subcube

partitions of length n− 1, and so
󰁖

F0 =
󰁖

F1. Since F is tight, F0, F1 are non-empty.
If F0 = {x} and |F1| > 1 then the union of the subcubes corresponding to F1 is the

subcube 1x, contradicting irreducibility.
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If F0 = {x} and |F1| = 1 then F0 = F1 = {x} and so the union of the corresponding
subcubes is ∗x. Since F is irreducible, necessarily x = ∗n−1, and so F = {0∗n−1, 1∗n−1}.
Since F is tight, necessarily n = 1, contradicting the assumption n 󰃍 2.

It follows that |F0| 󰃍 2. Similarly |F1| 󰃍 2.

We can now prove the size lower bound.

Proof of Theorem 15. Let F = {s1, . . . , sm} be a tight subcube partition of length n.
We can identify F with a formula Φ in conjunctive normal form (CNF) over variables
x1, . . . , xn whose clauses are “x /∈ si” for all i ∈ [m]. For example, the subcube partition
0∗, 10, 11 corresponds to the CNF x1 ∧ (x̄2 ∨ x3) ∧ (x̄2 ∨ x̄3).

Since every x belongs to some si, the formula Φ is unsatisfiable. It is moreover min-
imally unsatisfiable, meaning that if we remove any clause, then it becomes satisfiable.
Indeed, if we remove the clause “x /∈ si”, then any point in si would satisfy the formula.
Since F is tight, Φ mentions all n variables.

A well-known result attributed to Tarsi [AL86] states that a minimally unsatisfiable
CNF mentioning n variables must contain at least n+ 1 clauses, hence m 󰃍 n+ 1.

Suppose that m = n+1. Davydov, Davydova, and Kleine Büning [DDKB98, Theorem
12] showed that if a minimally unsatisfiable CNF mentioning n variables contains exactly
n+1 clauses, then some variable appears once positively and once negatively. In particular,
F is not regular, contradicting Lemma 17. Hence m 󰃍 n+ 2.

Suppose that m = n + 2. Kleine Büning [KB00, Theorem 6] showed that there
is a unique regular minimally unsatisfiable CNF mentioning n variables which contains
exactly n+2 clauses, up to renaming and reordering variables. The collection of subcubes
corresponding to this CNF consists of 0n, 1n together with all cyclic rotations of 10∗n−2.
When n 󰃍 4, these subcubes are not disjoint: for example, 10∗n−2 and ∗210∗n−4 both
contain the subcube 1010∗n−4. Hence m 󰃍 n+ 3.

In the following two subsections, we present two constructions of the same sequence
of tight irreducible subcube partitions of length n 󰃍 3 and size 2n− 1.

2.3.2 Merging

Our first construction is based on the following lemma, which is used to merge together
two subcube partitions.

Definition 18 (Reducibility for partial subcube partitions). A subset F ′ of a subcube
partition F of length n is reducible if there exists a subset G ⊆ F ′, with |G| > 1, such
that the union of the subcubes in G is a subcube different from ∗n.

Lemma 19. Let F0, F1 be two subcube partitions of length n. Let

G = {0x : x ∈ F0 \ F1} ∪ {1x : x ∈ F1 \ F0} ∪ {∗x : x ∈ F0 ∩ F1}.

Then

(a) G is a subcube partition of length n+ 1.
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(b) If F0 ∕= F1 and at least one of them is tight, then G is tight.

(c) If F0 ∩ F1 ∕= ∅ and both F0 \ F1 and F1 are irreducible (or both F1 \ F0 and F0 are
irreducible) then G is irreducible.

Proof. The first two items follow easily from the construction (the condition F0 ∕= F1 in
the second item guarantees that the first coordinate is mentioned).

Now suppose that F0 ∩ F1 ∕= ∅ and both F0 \ F1 and F1 are irreducible. We need to
show that G is irreducible. If not, then there is a subset H ⊂ G, with 1 < |H| < |G|,
whose union is a subcube x ∕= ∗n.

If x = 0y then y is a union of |H| subcubes in F0 \F1. Since F0 \F1 is irreducible and
|H| > 1, necessarily y = ∗n. However, this contradicts the assumption F0 ∩ F1 ∕= ∅.

We get a similar contradiction if x = 1y, using the irreducibility of F1.
Finally, if x = ∗y then y is a union of |H| subcubes of F0 as well as a union of |H|

subcubes of F1. Since F1 is irreducible and y ∕= ∗n, necessarily y ∈ F1. If y ∈ F0 then
x ∈ G, contradicting the assumption |H| > 1. If y /∈ F0 then 1y ∈ G and so y is a union
of subcubes in F0 \ F1. Since F0 \ F1 is irreducible and y ∕= ∗n, necessarily y ∈ F0 \ F1,
contradicting both y /∈ F0 and y ∈ F1.

We now construct the promised sequence of tight irreducible subcube partitions.

Theorem 20. For each n 󰃍 3 there is a tight irreducible subcube partition Sn of length n
and size 2n− 1.

Proof. We construct the subcube partitions inductively. The starting point is

S3 = {000, ∗01, 1∗0, 01∗, 111},

whose irreducibility was proved by Kullmann and Zhao [KZ16, Lemma 41], and can
also be checked using Algorithm 1. The construction will maintain the invariants that
01∗n−2 ∈ Sn and 1∗n−1, 00∗n−2 /∈ Sn, and moreover |Sn| = 2n− 1

Given Sn, we construct Sn+1 by applying Lemma 19 to F0 = {1∗n−1, 00∗n−2, 01∗n−2}
and F1 = Sn.

Since F0 is reducible and F1 is irreducible, clearly F0 ∕= F1, and so Sn+1 is tight by
Lemma 19.

The invariant implies that F0 \ F1 = {1∗n−1, 00∗n−2} is irreducible. It follows that
Sn+1 is irreducible by Lemma 19.

Since 1∗n−1 /∈ F1, it follows that 01∗n−1 ∈ Sn+1. Since 0∗n−1 /∈ F0, it follows that
00∗n−1 /∈ Sn+1. Since |F1| > 1, in particular ∗n /∈ F1, and so 1∗n /∈ Sn+1.

Finally, the invariants imply that F0 ∩ F1 = {01∗n−2}, and so

|Sn+1| = |F0 \ F1|+ |F1 \ F0|+ |F0 ∩ F1| = 2 + (|F1|− 1) + 1 = 2n+ 1,

using |F1| = 2n− 1.
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Here are the resulting subcube partitions for n = 3, 4, 5:

000 000∗ 000∗∗
01∗ 1000 1000∗
∗01 01∗∗ 11000

1∗0 ∗01∗ 01∗∗∗
111 1∗01 ∗01∗∗

11∗0 1∗01∗
1111 11∗01

111∗0
11111

2.3.3 Twisting

Our second construction starts with the observation

x00 ∪ x1∗ = x∗0 ∪ x11.

Up to permutation and flipping of coordinates, this is the only way in which a set of
points can be written as a union of two subcubes in two different ways, as we show below
in Lemma 23. Following Kullmann and Zhao [KZ16, Definitions 45–46], we call such a
pair of subcubes an nfs-pair. The nfs-flip of the pair on the left is the pair on the right.

Definition 21 (Nfs-pair, nfs-flip). Two subcubes s, t constitute an nfs-pair if they differ
on exactly two positions i, j, where (si, ti) ∈ {(0, 1), (1, 0)} and tj = ∗.

The nfs-flip of s, t is the pair of subcubes s′, t′ obtained by copying the coordinates
except for i, j, and setting s′i = ∗, s′j = sj, t

′
i = ti, t

′
j = s̄′j.

Lemma 22. If s, t is an nfs-pair with nfs-flip s′, t′ then s ∪ t = s′ ∪ t′.

Nfs-pairs are the only pairs of subcubes satisfying Lemma 22 non-trivially.

Lemma 23. Let s, t and s′, t′ be two pairs of disjoint subcubes such that s ∪ t = s′ ∪ t′,
the common value is not a subcube, and {s, t} ∕= {s′, t′}. Then either s, t or t, s is an
nfs-pair, and s′, t′ or t′, s′ is its nfs-flip.

Proof. Since s, t are disjoint, they must conflict. Without loss of generality, s = 0p and
t = 1q. If both s′ and t′ start with non-stars then clearly {s, t} = {s′, t′}, and if both
start with a star then p = q and so s ∪ t = ∗p is a subcube. Therefore without loss of
generality, s′ = ∗p′ and t′ = 1q′.

Since 0p ∪ 1q = ∗p′ ∪ 1q′, considering the points starting with 0, we see that p′ = p.
Considering the points starting with 1, we see that q = p∪q′. Since p, q′, q are all subcubes,
it must be that p, q′ are subcubes differing in a single non-star position, and q is obtained
from them by changing this position to a star. Thus s, t is an nfs-pair, and s′, t′ is its
nfs-flip.
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The construction is based on the following simple corollary of Lemma 19.

Lemma 24. Let F be a tight irreducible subcube partition containing an nfs-pair s, t, and
let s′, t′ be its nfs-flip. The following subcube partition is tight and irreducible, for any
b ∈ {0, 1}:

G = {∗x : x ∈ F, x ∕= s, t} ∪ {bs, bt, b̄s′, b̄t′}.

Furthermore, |G| = |F |+ 2, and G contains the nfs-pairs bs, bt and b̄s′, b̄t′.

Proof. Let F ′ be the formula obtained from F by replacing s, t with s′, t′. We apply
Lemma 19 on Fb = F and Fb̄ = F ′, obtaining the stated subcube partition G.

Since F ∕= F ′ and F is tight, G is tight.
Clearly F cannot consist only of s, t, and so F ∩ F ′ ∕= ∅. Since F and F ′ \ F ⊂ F ′ are

both irreducible, it follows that G is irreducible.

In order to obtain the sequence Sn constructed in Theorem 20 using Lemma 24, start
with S3. Given Sn, apply the lemma with s = 1n, t = 1n−2∗0, and b = 1, and rotate the
resulting subcube partition once to the left. The result is Sn+1. Here is an example:

000 ∗000 000∗
01∗ ∗01∗ 01∗∗
∗01 ∗∗01 ∗01∗
1∗0 11∗0 1∗01
111 0100 1000

1111 1111

011∗ 11∗0

2.4 Minimal weight

In Section 3, we will consider irreducible subcube partitions over larger alphabets. As we
show in Section 3.1, one of the ways to construct an irreducible subcube partition over
an alphabet {0, . . . , q − 1} is to start with an irreducible subcube partition over {0, 1},
and replace each 1 in each subcube with each of {1, . . . , q − 1}. The resulting number of
subcubes is 󰁛

s∈F

(q − 1)#1(s),

where F is the subcube partition we start with, and #1(s) is the number of 1s in s.
This suggests looking for a tight irreducible subcube partition which minimizes the above
objective function.

The concept of majorization allows us to optimize this objective function for all q’s at
once.

the electronic journal of combinatorics 30(3) (2023), #P3.29 14



Definition 25 (Weight vector). Let F be a subcube partition of length n. Its weight
vector is the vector w(F ) = w0, . . . , wn, where wh is the number of subcubes of F of
weight h, that is, with h many 1s.

The notation w󰃍h stands for wh + · · ·+ wn, which is the number of subcubes with at
least h many 1s.

Definition 26 (Majorization). Let a, b be two weight vectors of length n + 1. We say
that a majorizes b if for every h 󰃑 n, we have a󰃍h 󰃍 b󰃍h.

Lemma 27. Let F,G be subcube partitions of length n. If w(F ) majorizes w(G) then for
all monotone non-decreasing functions φ : {0, . . . , n} → R,

󰁛

s∈F

φ(#1(s)) 󰃍
󰁛

s∈G

φ(#1(s)).

In particular, this holds for φ(h) = (q − 1)h as long as q 󰃍 2.

Proof. We will show that

n󰁛

h=0

wh(F )φ(h) 󰃍
n󰁛

h=0

wh(G)φ(h).

Indeed,

n󰁛

h=0

wh(F )φ(h) = w󰃍0(F )φ(0) +
n󰁛

h=1

w󰃍h(F )(φ(h)− φ(h− 1))

󰃍 w󰃍0(G)φ(0) +
n󰁛

h=1

w󰃍h(G)(φ(h)− φ(h− 1)) =
n󰁛

h=0

wh(G)φ(h).

Lemma 27 allows us to reformulate our goal: find the minimal weight vectors (in the
sense of majorization) of the tight irreducible subcube partitions of length n. (There
could be more than one minimal weight vector, since majorization is not a linear order.)

Conjecture 28. For every n 󰃍 3, the minimal weight vectors of tight irreducible subcube
partitions of length n are 1, n− 1, n− 1, 0, . . . , 0 and 1, n, n− 3, 1, 0, . . . , 0.

In Section 2.4.1, we show that Conjecture 14 implies the lower bound part of Conjec-
ture 28. In Section 2.4.2 we give matching constructions.

Unconditionally, we can show that every tight irreducible subcube partition of length
n 󰃍 3 must contain a subcube of weight 2.

Lemma 29. If F is a tight irreducible subcube partition of length n 󰃍 3 then F contains
a subcube of weight at least 2.

Proof. Suppose that every subcube in F has weight at most 1. Let s ∈ F be the subcube
containing 1n. If s has weight 0 then s = ∗n, contradicting the tightness of F . If s has
weight 1 then, without loss of generality, s = 1∗n−1. The union of all other subcubes of F
must be 0∗n−1, and so by irreducibility, F = {0∗n−1, 1∗n−1}, contradicting tightness.
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2.4.1 Lower bound

In this section we prove the lower bound part of Conjecture 28, assuming Conjecture 14.
As we explain in the proof, this amounts to ruling out the weight vector 1, n, n−2, 0, . . . , 0.

Theorem 30. Assume Conjecture 14. For every n 󰃍 3, the weight vector of any tight
irreducible subcube partition of length n majorizes either 1, n−1, n−1, 0, . . . , 0 or 1, n, n−
3, 1, 0, . . . , 0.

Proof. Let F be a tight irreducible subcube partition of length n, and let w be its weight
vector. The theorem states that (i) w󰃍0 󰃍 2n − 1; (ii) w󰃍1 󰃍 2n − 2; and either (iii)
w󰃍2 󰃍 n− 1 or (iv) w󰃍2 󰃍 n− 2 and w󰃍3 󰃍 1.

We start with the following observation: wh 󰃑
󰀃
n
h

󰀄
. Indeed, every subcube s of weight

h contains the point xs obtained by switching all ∗s to 0s, which has weight h. Since the
subcubes in F are disjoint, every s ∈ F of weight h has a different xs. Since there are

󰀃
n
h

󰀄

many possible xs, it follows that wh 󰃑
󰀃
n
h

󰀄
.

The inequality w󰃍0 󰃍 2n−1 is Conjecture 14. Since w0 󰃑 1, the inequality w󰃍1 󰃍 2n−2
follows. Since w1 󰃑 n, we deduce the inequality w󰃍2 󰃍 n − 2. To complete the proof,
we need to show that either (iii) w󰃍2 󰃍 n − 1 or (iv) w󰃍3 󰃍 1. We will show that the
assumptions w󰃍2 = n− 2 and w󰃍3 = 0 lead to a contradiction.

Suppose, therefore, that w2 = n − 2 and w󰃍3 = 0. Since w󰃍0 󰃍 2n − 1 and w0 󰃑 1,
w1 󰃑 n, this implies that w0 = 1 and w1 = n.

Since w1 = n, for every i ∈ [n] there is a subcube s(i) ∈ F which contains 1 in the

i’th position: s
(i)
i = 1. The point 0n is covered by the unique subcube s(0) ∈ F of weight

0. Since s(0) and s(i) must conflict, necessarily s
(0)
i = 0 (this is the only possible conflict),

and so s(0) = 0n is a point.
Since 0n ∈ F , the subcubes s(i) cannot be points. Indeed, if s(i) is a point then

s(i) = 0i−110n−i, and so s(0) ∪ s(i) = 0i−1∗0n−i, contradicting irreducibility. Consequently,
all points in F have even weight, contradicting Lemma 12 (applied on the star pattern
∅).

2.4.2 Construction

In this section, we prove (unconditionally) the upper bound part of Conjecture 28, by
constructing tight irreducible subcube partitions of length n 󰃍 3 and weight vectors
1, n− 1, n− 1, 0, . . . , 0 and 1, n, n− 3, 1, 0, . . . , 0. The constructions will use the method
of Theorem 20. The same subcube partitions can also be constructed using the method
of Lemma 24; we leave the details to the reader.

Theorem 31. For each n 󰃍 3 there is a tight irreducible subcube partition An whose
weight vector is 1, n− 1, n− 1, 0, . . . , 0.

Proof. We construct the subcube partitions inductively, starting with

A3 = {∗00, 001, 01∗, 110, 1∗1},
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which is obtained from S3 of Theorem 20 by flipping the third coordinate. The construc-
tion will maintain the invariants that 01∗n−2 ∈ An and 1∗n−1, 00∗n−2 /∈ An.

Given An, we construct An+1 by applying Lemma 19 to F0 = An and F1 = {1∗n−1,
00∗n−2, 01∗n−2}, and rotating the result G once to the left, that is, An+1 = {xb : bx ∈ G},
where b ∈ {0, 1, ∗} and x ∈ {0, 1, ∗}n.

Since F0 is irreducible and F1 is reducible, clearly F0 ∕= F1, and so An+1 is tight by
Lemma 19.

The invariant implies that F1 \ F0 = {1∗n−1, 00∗n−2} is irreducible, and so An+1 is
irreducible by Lemma 19.

The invariant states that 01∗n−2 ∈ F0. Since 01∗n−2 ∈ F1 by definition, it follows that
∗01∗n−2 ∈ G, and so 01∗n−1 ∈ An+1. Since An+1 is irreducible, necessarily 00∗n−1 /∈ An+1

(otherwise 00∗n−1 ∪ 01∗n−1 = 0∗n would be a subcube) and 1∗n /∈ An+1 (otherwise the
union of all other subcubes would be 0∗n).

Finally, the invariants imply that F1 \ F0 = {1∗n−1, 00∗n−2}, and so compared to F0,
the subcube partition G gains one subcube of weight 2 (namely, 11∗n−1) and one subcube
of weight 1 (namely, 100∗n−2); all other subcubes originate from F0 and maintain their
weight.

Theorem 32. For each n 󰃍 3 there is a tight irreducible subcube partition Dn whose
weight vector is 1, n, n− 3, 1, 0, . . . , 0.

Proof. The proof is very similar to that of Theorem 31. We take

D3 = S3 = {∗01, 000, 01∗, 111, 1∗0}.

The rest of the proof is identical.

The subcube partition D3 is obtained from A3 by flipping the third coordinate, and
this holds for every n, by construction. By flipping coordinates appropriately, we can also
obtain other tight irreducible subcube partitions Bn, Cn whose weight vectors are 1, n −
1, n − 1, 0, . . . , 0. The subcube partition Bn is obtained by flipping the first coordinate,
and Cn is obtained by flipping both the first and the third coordinates. The subcube
partitions Bn, Cn can also be obtained using an iterative construction as above.

Here are the subcube partitions A5, B5, C5, D5 after rotation once to the left:

0000∗ 0000∗ 0100∗ 0100∗
01000 01001 00001 00000
0∗100 0∗101 0∗101 0∗100
0∗∗10 0∗∗11 0∗∗11 0∗∗10
1∗∗∗0 1∗∗∗1 1∗∗∗1 1∗∗∗0
10001 10000 11000 11001
∗1001 ∗1000 ∗0000 ∗0001
∗∗101 ∗∗100 ∗∗100 ∗∗101
∗∗∗11 ∗∗∗10 ∗∗∗10 ∗∗∗11
A5 B5 C5 D5
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Among all subcube partitions obtained from An by flipping coordinates, these are the
only ones whose weight vector is either 1, n− 1, n− 1, 0, . . . , 0 or 1, n, n− 3, 1, 0, . . . , 0.

2.5 Maximal number of points

In the following section, we tackle the problem of maximizing the number of subcubes in
an irreducible subcube partition. As a warm-up, we start with the problem of maximizing
the number of points (zero-dimensional subcubes) in an irreducible subcube partition.

For n = 3, 4, 5, 6, a computer search reveals that the maximum number of points in an
irreducible subcube partition of length n is 2, 4, 8, 16. This is consistent with the following
conjecture.

Conjecture 33. If n 󰃍 3 then the maximum number of points in an irreducible subcube
partition of length n is 2n−2.

It is easy to see that an irreducible subcube partition of length n contains at most
2n−1 points. Indeed, if the subcube partition contained more than 2n−1 points then there
would be two points differing in a single coordinate. The union of these two points is an
edge (a one-dimensional subcube), contradicting irreducibility.

In the rest of this section, we construct an irreducible subcube partition of length n
containing 2n−2 many points. The construction uses the following lemma.

Lemma 34. If F ∕= {0∗n−1, 1∗n−1} is an irreducible subcube partition of length n then
the following is an irreducible subcube partition of length n+ 1:

G = {00t, 11t : 0t ∈ F} ∪ {01t, 10t : 1t ∈ F} ∪ {∗∗t : ∗t ∈ F}.

Proof. Let F ′ be the irreducible subcube partition obtained from F by flipping the first
coordinate. The subcube partition G results from applying Lemma 19 to F and F ′.
According to the lemma, in order to show that G is irreducible, it suffices to show that
F ∩ F ′ ∕= ∅.

If F ∩F ′ = ∅ then all subcubes in F start with 0 or 1. Hence the union of all subcubes
in F starting with 0 is 0∗n−1, and the union of all subcubes in F starting with 1 is 1∗n−1.
Since F is irreducible, it follows that F = {0∗n−1, 1∗n−1}, contrary to the assumption.
Therefore F ∩ F ′ ∕= ∅, completing the proof.

Corollary 35. If F ∕= {0∗n−1, 1∗n−1} is an irreducible subcube partition of length n then
for every k 󰃍 1, the following is an irreducible subcube partition of length n+ k:

G = {a1 . . . akt : bt ∈ F, a1, . . . , ak, b ∈ {0, 1}, a1 ⊕ · · ·⊕ ak = b} ∪ {∗kt : ∗t ∈ F}.

Proof. Apply the lemma iteratively k− 1 times to F , noticing that the subcube partition
constructed in the lemma is never of the form {0∗m, 1∗m}.

In order to construct an irreducible subcube partition of length n with 2n−2 many
points, we apply the corollary to the irreducible subcube partition S3 from Theorem 20.
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Theorem 36. For every n 󰃍 3 there is an irreducible subcube partition of length n
containing 2n−2 many points.

Proof. The subcube partition S3 = {000, ∗01, 1∗0, 01∗, 111} is irreducible (according to
Theorem 20) and contains two points. Applying Corollary 35 with k = n− 3, we get an
irreducible subcube partition of length n in which each of the two original points gives
rise to 2n−3 points, for a total of 2n−2 points.

Using similar ideas, we can construct an irreducible subcube partition of length n
containing any even number of points between 2 and 2n−2. We leave the details to the
reader.

2.6 Maximal size

What is the maximal size of an irreducible subcube partition of length n? Here are some
values, based on experiments and an upper bound which we present in Section 2.6.1:

n 3 4 5 6 7 8 9
Lower bound 5 9 20 40 80 160 320
Upper bound 5 9 20 40 83 166 334

Based on these results, we make the following conjecture.

Conjecture 37. For every n 󰃍 5, the maximal size of an irreducible subcube partition
of length n is 5 · 2n−3.

We give a matching construction in Section 2.4.2. The size 5 · 2n−3 is best possible,
assuming Conjecture 33.

Lemma 38. Assume Conjecture 33. For every n 󰃍 3, every irreducible subcube partition
of length n has size at most 5 · 2n−3.

Proof. Let F be an irreducible subcube partition of length n. According to Conjecture 33,
F contains m 󰃑 2n−2 points. All other subcubes of F cover at least two points, and so
the size of F is at most

m+
2n −m

2
= 2n−1 +

m

2
󰃑 2n−1 + 2n−3.

2.6.1 Upper bound

In this section, we use a result of Forcade [For73] to give an upper bound on the size of
irreducible subcube partitions.

Theorem 39. For every n 󰃍 3, the size of any irreducible subcube partition of length n
is at most

2n− 1

3n− 1
2n =

󰀕
16

3
−Θ

󰀕
1

n

󰀖󰀖
2n−3.
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Proof. Let F be an irreducible subcube partition of length n. LetG be a subcube partition
obtained from F by subdividing each subcube of dimension larger than 1 into edges
(subcubes of dimension 1) in an arbitrary way.

Since F is irreducible, no two points in G span an edge. Therefore the set of edges
in G constitutes a maximal matching in the n-dimensional hypercube. Forcade [For73]
proved that any maximal matching in the n-dimensional hypercube contains m 󰃍 n

3n−1
2n

edges. Therefore

|F | 󰃑 |G| = m+ (2n − 2m) = 2n −m 󰃑 2n − n

3n− 1
2n.

Forcade showed that the bound n
3n−1

2n is asymptotically tight by giving a matching
construction. Therefore this method cannot prove the conjectured upper bound 5 · 2n−3.

2.6.2 Construction

In this section we construct irreducible subcube partitions of size 5 · 2n−3 for all n 󰃍 3
except for n = 4. When n = 4, a computer search reveals that the maximum number of
subcubes is 9, which is achieved by

0000, 0011, 1101, 1110, ∗100, ∗111, 0∗01, 0∗10, 10∗∗.

We prove this below.
Our construction is based on the work of Perezhogin [Per05], brought to our attention

by Tarannikov [Tar23].1 The construction is inductive, increasing the length by 2 at each
step. Consequently, we will need two base cases, for n = 3 and for n = 6. The same
inductive construction will also be used in Section 2.8 to construct subcube partitions
consisting only of edges for all n 󰃍 4 except for n = 5.

We start with the inductive step. The construction uses a mapping from Z4 to {0, 1}2:

0 1 2 3
00 01 11 10

From a geometric perspective, we enumerate vertices of a two-dimensional face clockwise:

0
00

1
01

2
11

3
10

0∗

∗1

1∗

∗0
1The construction on page 55 in [Per05] contains several minor errors. Tarannikov pointed out to us
that the definition of the Mn+2

σiσj
there should read

Mn+2
00 = (Mn

00(00) ∪Mn
01(01) ∪Mn

11(11) ∪Mn
10(10) ∪ v00

1 ∪ v00
2 ∪ v00

3 ∪ v00
4 ) \ (e1(00) ∪ e2(01) ∪ e3(11) ∪ e4(10)),

Mn+2
01 = (Mn

00(01) ∪Mn
01(11) ∪Mn

11(10) ∪Mn
10(00) ∪ v01

1 ∪ v10
2 ∪ v01

3 ∪ v10
4 ) \ (e1(01) ∪ e2(11) ∪ e3(10) ∪ e4(00)),

Mn+2
11 = (Mn

00(11) ∪Mn
01(10) ∪Mn

11(00) ∪Mn
10(01) ∪ v11

1 ∪ v11
2 ∪ v11

3 ∪ v11
4 ) \ (e1(11) ∪ e2(10) ∪ e3(00) ∪ e4(01)),

Mn+2
10 = (Mn

00(10) ∪Mn
01(00) ∪Mn

11(01) ∪Mn
10(11) ∪ v10

1 ∪ v01
2 ∪ v10

3 ∪ v01
4 ) \ (e1(10) ∪ e2(00) ∪ e3(01) ∪ e4(11)).
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We denote this mapping, known as the Gray map, by α 󰀁→ 󰌻α󰌼. We use the same notation
to associate two adjacent elements of Z4 with the corresponding edge, e.g. 󰌻1, 2󰌼 = ∗1.

Let W4 consist of all subsets of Z4 which are either singletons or pairs of adjacent
elements. The function φ 󰀁→ 󰌻φ󰌼 maps W4 into {0, 1, ∗}2 \ {∗∗}. Given φ ∈ W4 and
α ∈ Z4, we define φ+α in the obvious way. For example, {1}+2 = {3} and {1, 2}+2 =
{3, 0} = {0, 3}.

The construction will apply to subcube partitions which satisfy the following comple-
mentation property.

Definition 40 (Complementation property). A subcube partition F of length n 󰃍 2
satisfies the complementation property if the following properties hold:

(a) No subcube in F ends with ∗∗.

(b) If s󰌻φ󰌼 ∈ F , where φ ∈ W4, then s󰌻φ+ 2󰌼 /∈ F .

(Note that 󰌻α + 2󰌼 is obtained from 󰌻α󰌼 by complementing both symbols, leaving stars
untouched.)

The construction is given by the following lemma.

Lemma 41. Let F be an irreducible subcube partition of length n 󰃍 2 containing 0n−2󰌻0, 1󰌼
and satisfying the complementation property. Define

F ′ = {s󰌻φ− α󰌼󰌻α󰌼 : s󰌻φ󰌼 ∈ F,α ∈ Z4, s󰌻α󰌼 ∕= 0n−2󰌻0, 1󰌼}
∪ {0n−2󰌻−α󰌼󰌻α,α + 1󰌼 : α ∈ Z4}.

Then F ′ is a tight irreducible subcube partition of length n + 2 containing 0n󰌻0, 1󰌼 and
satisfying the complementation property. Moreover, for every d, if F contains m subcubes
of dimension d then F ′ contains 4m subcubes of dimension d.

Proof. We can write F ′ as follows:

F ′ = {s󰌻φ− α󰌼󰌻α󰌼 : s󰌻φ󰌼 ∈ F}󰁿 󰁾󰁽 󰂀
F ′′

\ {0n−2󰌻α,α + 1󰌼󰌻−α󰌼}󰁿 󰁾󰁽 󰂀
removed edges

∪ {0n−2󰌻−α󰌼󰌻α,α + 1󰌼}󰁿 󰁾󰁽 󰂀
added edges

,

where α ranges over Z4. We use the terms “removed edges” and “added edges” below to
refer to the sets in the expression above.

Most of the properties (apart from irreducibility) are easy to verify:

Subcube partition The removed edges and the added edges cover the same set of points,
namely

{0n−2󰌻α󰌼󰌻β󰌼 : α + β ∈ {0, 1}},
and so F ′ is a subcube partition.

Tightness The added edges 0n−2󰌻0󰌼󰌻0, 1󰌼 and 0n−2󰌻3󰌼󰌻1, 2󰌼 together mention all coordi-
nates.

the electronic journal of combinatorics 30(3) (2023), #P3.29 21



Contains 0n󰌻0, 1󰌼 This is one of the added edges.

Complementation property By construction, no subcube in F ′ ends with ∗∗. It re-
mains to show that if t󰌻ψ󰌼 ∈ F ′ then t󰌻ψ + 2󰌼 /∈ F ′. If ψ is a pair then t󰌻ψ󰌼 is one
of the added edges, and each of these has a different t.
If ψ = {α} is a singleton then t󰌻ψ󰌼 = s󰌻φ− α󰌼󰌻α󰌼 for some s󰌻φ󰌼 ∈ F . If F ′ also con-
tains t󰌻ψ + 2󰌼 = s󰌻φ− α󰌼󰌻α + 2󰌼 then s󰌻φ+ 2󰌼 ∈ F , contradicting the assumption
that F satisfies the complementation property.

Subcube counts Since 󰌻φ+ α󰌼 has the same number of stars as 󰌻φ󰌼 and 󰌻α󰌼 has no
stars, each subcube in F gives rise to four subcubes of the same dimension in F ′′.
Getting from F ′′ to F ′ involved adding and removing four edges, hence the claim
about subcube counts.

Irreducibility The main part of the proof is proving the irreducibility of F ′. Let G′

be a non-empty set whose union is a subcube. We need to show that either |G′| = 1 or
G′ = F ′.

For every α ∈ Z4, define

Gα = {s󰌻φ󰌼 : s󰌻φ− α󰌼󰌻α󰌼 ∈ G′},
Hα = {s󰌻φ− α󰌼 : s󰌻φ− α󰌼󰌻α󰌼 ∈ G′},

Pα = {t ∈ {0, 1}n : t󰌻α󰌼 ∈
󰁞

G′}.

By construction, Gα ⊆ F \ {0n−2󰌻0, 1󰌼}.
We consider several cases, according to which added edges (if any) belong to G′.

No added edges Suppose first that G′ contains no added edge. In this case,

G′ =
󰁞

α

{t󰌻α󰌼 : t ∈ Hα}.

This implies that
󰁖

Hα, and so
󰁖

Gα, are subcubes of F for each α. By irreducibility of
F , each Gα is either empty or a singleton.

If there is a single non-empty Hα then G′ is a singleton, and we are done. Suppose
therefore that at least two Hβ are non-empty. If Hα, Hα+2 are non-empty then since
󰌻α󰌼 ∨ 󰌻α + 2󰌼 = ∗∗, in fact Hβ is non-empty for all β. Therefore we can assume that
Hα, Hα+1 are non-empty for some α.

Suppose Hα = {s󰌻φ− α󰌼}, where s󰌻φ󰌼 ∈ F . Since
󰁖

G′ is a subcube, we have
󰁖

Hα =󰁖
Hα+1. Recalling that Hα+1 is a singleton, this shows that s󰌻φ− α󰌼 ∈ Hα+1, and so

s󰌻φ+ 1󰌼 ∈ F . Thus s󰌻φ󰌼, s󰌻φ+ 1󰌼 ∈ F .
If φ = {α} then s󰌻α󰌼 ∪ s󰌻α + 1󰌼 = s󰌻α,α + 1󰌼, contradicting the irreducibility of F .

If φ = {α,α + 1}, then s󰌻φ󰌼 ∩ s󰌻φ+ 1󰌼 = s󰌻α + 1󰌼, contradicting the assumption that F
is a partition. Therefore this case cannot happen.
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Single added edge Suppose that G′ contains a single added edge, 0n−2󰌻−α󰌼󰌻α,α + 1󰌼.
Then

Pα =
󰁞

Hα ∪ {0n−2󰌻−α󰌼},
󰁞

Gα = {s󰌻β + α󰌼 : s󰌻β󰌼 ∈ Pα, s󰌻β󰌼 ∕= 0n−2󰌻−α󰌼}
= {s󰌻β + α󰌼 : s󰌻β󰌼 ∈ Pα} \ {0n−2󰌻0󰌼},

Pα+1 =
󰁞

Hα+1 ∪ {0n−2󰌻−α󰌼},
󰁞

Gα+1 = {s󰌻β + α + 1󰌼 : s󰌻β󰌼 ∈ Pα+1, s󰌻β󰌼 ∕= 0n−2󰌻−α󰌼}
= {s󰌻β + α + 1󰌼 : s󰌻β󰌼 ∈ Pα+1} \ {0n−2󰌻1󰌼}.

Since
󰁖

G′ is a subcube, we have Pα = Pα+1, and the common value is a subcube
containing 0n−2󰌻−α󰌼. We claim that this subcube must be of the form r󰌻−α󰌼. This is
because of the following:

• Since 0n−2󰌻0, 1󰌼 ∈ F , in particular 0n−2󰌻1󰌼 /∈ F , and so 0n−2󰌻1− α󰌼 /∈ Pα.

• By assumption G′ doesn’t contain the added edge 0n−2󰌻−α− 1󰌼󰌻α + 1,α + 2󰌼, and
so 0n−2󰌻−α− 1󰌼 /∈ Pα+1 = Pα.

• Since 󰌻−α󰌼 ∨ 󰌻2− α󰌼 = ∗∗, also 0n−2󰌻2− α󰌼 /∈ Pα (otherwise Pα would contain
0n−2∗∗ since Pα is a subcube).

Notice now that

󰁞
(Gα ∪Gα+1 ∪ 0n−2󰌻0, 1󰌼) = {s󰌻β + α󰌼, s󰌻β + α + 1󰌼 : s󰌻β󰌼 ∈ Pα} = r󰌻0, 1󰌼.

The irreducibility of F implies that r󰌻0, 1󰌼 = 0n−2󰌻0, 1󰌼. Therefore either
󰁖

G′ =
0n−2󰌻−α󰌼󰌻α,α + 1󰌼 or

󰁖
G′ = 0n−2󰌻−α󰌼∗∗. In the former case, G′ is a singleton con-

sisting just of a single added edge, and so it remains to rule out the latter case.
If

󰁖
G′ = 0n−2󰌻−α󰌼∗∗ then in particular 0n−2󰌻−α󰌼󰌻α + 2,α + 3󰌼 ⊆

󰁖
G′, and so󰁖

Hα+2 = 0n−2󰌻−α󰌼 and
󰁖

Hα+3 = 0n−2󰌻−α󰌼. This implies that
󰁖

Gα+2 = 0n−2󰌻2󰌼 and󰁖
Gα+3 = 0n−2󰌻3󰌼, and so both 0n−2󰌻2󰌼, 0n−2󰌻3󰌼 ∈ F . However, this contradicts the

irreducibility of F , since 0n−2󰌻2󰌼 ∪ 0n−2󰌻3󰌼 = 0n−2󰌻2, 3󰌼 is a subcube.

Exactly two adjacent added edges Suppose next that G′ contains precisely two
added edges, whose indices differ by 1, say the edge 0n−2󰌻−α󰌼󰌻α,α + 1󰌼 and the edge
0n−2󰌻−α− 1󰌼󰌻α + 1,α + 2󰌼. Therefore

Pα+1 =
󰁞

Hα+1 ∪ {0n−2󰌻−α− 1,−α󰌼},

which implies that

󰁞
Gα+1 = {s󰌻β + α + 1󰌼 : s󰌻β󰌼 ∈ Pα+1} \ {0n−2󰌻0, 1󰌼}.
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Since
󰁖

G′ is a subcube, also Pα+1 is a subcube, and so
󰁖
(Gα+1 ∪ 0n−2󰌻0, 1󰌼) is a

subcube. The irreducibility of F implies that Gα+1 = ∅, and so Pα+1 = 0n−2󰌻−α− 1,−α󰌼.
The join of the two added edges is 0n−2󰌻−α− 1,−α󰌼∗∗, and this shows that all Pβ are

equal. In particular, since Pα =
󰁖

Hα∪{0n−2󰌻−α󰌼}, we haveHα = {0n−2󰌻−α− 1󰌼} and so
Gα = {0n−2󰌻3󰌼}. Similarly, Pα+2 =

󰁖
Hα+2∪{0n−2󰌻−α− 1󰌼} and so Hα+2 = {0n−2󰌻−α󰌼},

implying that Gα+2 = {0n−2󰌻2󰌼}. However, then 0n−2󰌻2󰌼, 0n−2󰌻3󰌼 ∈ F , which contradicts
the irreducibility of F since 0n−2󰌻2󰌼 ∪ 0n−2󰌻3󰌼 = 0n−2󰌻2, 3󰌼 is a subcube.

Two non-adjacent added edges In the remaining case, the set G′ contains two non-
adjacent edges, say 0n−2󰌻−α󰌼󰌻α,α + 1󰌼 and 0n−2󰌻−α− 2󰌼󰌻α + 2,α + 3󰌼. The join of these
two edges is 0n−2∗∗∗∗, and so

󰁖
G′ is a subcube ending with ∗∗∗∗. In particular, G′ must

contain all added edges.
Let G′′ be obtained from G′ by replacing the added edges with the removed edges.

Since the added edges and the removed edges span the same points,
󰁖

G′′ is still a subcube.
Consider

G′′
0 = {s󰌻φ󰌼 : s󰌻φ󰌼󰌻0󰌼 ∈ G′′} ⊆ F.

Since
󰁖

G′′
0 is a subcube, the irreducibility of F implies that either G′′

0 is a singleton or󰁖
G′′

0 = {0, 1}n. In the latter case, clearly
󰁖

G′ = {0, 1}n+2, and so G′ = F ′. In the
former case, since the removed edge 0n−2󰌻0, 1󰌼 belongs to G′′

0 by construction, we see that
G′′

0 = {0n−2󰌻0, 1󰌼}. However, since
󰁖

G′′ is a subcube ending with ∗∗∗∗, we see that󰁖
G′′

0 should be a subcube ending with ∗∗ rather than with 󰌻0, 1󰌼. So this case cannot
happen.

We can now construct the desired subcube partitions.

Theorem 42. For every n 󰃍 3 other than n = 4 there is a tight irreducible subcube
partition of length n and size 5 · 2n−3.

Proof. Using Lemma 41, it suffices to construct tight irreducible subcube partitions of
lengths n ∈ {3, 6} containing 0n−1∗ and satisfying the complementation property in the
lemma.

For n = 3, we can take
100, ∗10, 1∗1, 00∗, 011.

For n = 6, we can take

abcdef : a⊕ b = c⊕ f = d⊕ e

∗abab̄ā
a∗ābāb
ab∗b̄āb
abā∗ab
abab̄∗b̄
ababa∗

Here a, b, c, d, e, f range over {0, 1}.
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We close this section by showing that n = 4 is indeed exceptional. We first need the
following lemma, which will also be useful in Section 2.8.

Lemma 43. Let F be an irreducible subcube partition of length 4. The set of points in F
is either empty or one of the following, up to permutation and flipping of coordinates:

0000 0000

1110 1110

1101

0011

Proof. Suppose that F contains a point, say 0000 ∈ F . According to Lemma 12, F must
contain a point of odd parity. Due to irreducibility, this point needs to have weight 3, say
1110 ∈ F .

If |F | > 2 then according to Lemma 12, F contains another point of odd parity, which
due to irreducibility needs to have weight 3, say 1101 ∈ F . According to Lemma 12, F
needs to contain another point of even parity, which due to irreducibility cannot be one
of 1100, 1010, 0110, 1001, 0101, 1111. Therefore 0011 ∈ F .

Due to irreducibility, 1011, 0111 /∈ F , and so Lemma 12 shows that in this case F
contains precisely the following points: 0000, 1110, 1101, 0011.

We can now show that Theorem 42 cannot hold for n = 4.

Lemma 44. There is no irreducible subcube partition of length 4 and size 10.

Proof. Let F be an irreducible subcube partition of length 4 and size 10. According to
Lemma 43, F contains at most 4 points, and so has to consist of 4 points and 6 edges.
Moreover, without loss of generality the points in F are 0000, 1110, 1101, 0011.

Let Fi consist of all subcubes s ∈ F with si = ∗. Note that Fi is non-empty, since
otherwise the union of subcubes s ∈ F with si = 0 is ∗i−10∗4−i, contradicting irreducibility.

There are exactly two points in F belonging to ∗i−10∗4−i. Each edge outside of Fi

contains an even number of such points, and each edge in Fi contains one such point.
Therefore |Fi| is even, and so |Fi| 󰃍 2. This implies that |F1| + |F2| + |F3| + |F4| 󰃍 8,
contradicting the fact that F contains only 6 edges.

This lemma also follows from the computation of Peitl and Szeider [PS23, Table 1].

2.7 Maximal minimum dimension

All irreducible subcube partitions we have exhibited so far contain points. Is this nec-
essary? More generally, given n, what is the maximal d such that there exists a tight
irreducible subcube partition in which every subcube has dimension at least d? (The
question doesn’t make sense without assuming tightness, since ∗n is always irreducible.)

The constructions we give below suggest the following conjecture.
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Definition 45 (Minimum dimension). For a subcube partition F , let δ(F ) denote the
minimum dimension of a subcube of F .

Also, let δ∗(F ) denote the minimum dimension of a subcube of F ending with a star
(if such a subcube exists), and let δb(F ) denote the minimum dimension of a subcube of
F not ending with a star (if such a subcube exists).

Conjecture 46. Every tight irreducible subcube partition F of length n satisfies δ(F ) 󰃑
n/2− o(n).

One can similarly ask for the maximum value of ∆(F ), which is the minimum codi-
mension of a subcube of F , over all irreducible subcube partitions of length n. The results
in Section 2.6 shows that when n 󰃍 3 the maximal value is ∆(F ) = n− 1 (the case n = 4
is covered in Section 2.8).

In the remainder of this section, we give a construction matching Conjecture 46. The
construction is based on the following lemma.

Lemma 47. Let F be a subcube partition of length n. Define

G = {∗t∗∗ : t∗ ∈ F} ∪ {0tb∗, 1t∗b : b ∈ {0, 1}, tb ∈ F}.

Then

(a) G is a subcube partition of length n+ 2.

(b) If F is tight then G is tight.

(c) If F is irreducible and contains a subcube ending with a star then G is irreducible and
contains a subcube ending with a star.

(d) We have δ∗(G) = min(δ∗(F ) + 2, δb(F ) + 1) and δb(G) = δb(F ) + 1, and so δ(G) 󰃍
δ(F ) + 1. Moreover, if δ(F ) = δb(F ) then δ(G) = δ∗(G) = δb(G) = δ(F ) + 1.

Proof. Let F0 = {tc∗ : tc ∈ F} and F1 = {t∗c : tc ∈ F}, where c ∈ {0, 1, ∗} in both cases.
Applying Lemma 19 to F0, F1, we obtain the subcube partition G.

Suppose that F is tight. For every i ∈ {1, . . . , n − 1}, some subcube of F mentions
coordinate i. The corresponding subcube or subcubes of G mention coordinate i + 1.
Some subcube of F mentions coordinate n. The corresponding subcubes of G mention
the remaining coordinates 1, n+ 1, n+ 2.

Suppose that F is irreducible and contains a subcube s ∈ F ending with a star. The
irreducibility of F directly implies the irreducibility of F0 and F1. Since s∗ ∈ F0 ∩ F1,
Lemma 19 implies that G is irreducible. Furthermore, ∗s∗ ∈ G is a subcube ending with
a star.

The remaining claims are easy to verify directly once we notice that the dimension of
a subcube is the number of star coordinates.

We apply the construction on three specific tight irreducible subcube partitions (one
only for n = 4) in order to obtain the following result, which gives the best constructions
we are aware of.
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Theorem 48. For every odd n 󰃍 3 there is a tight irreducible subcube partition F of
length n with δ(F ) = n−3

2
.

For n = 4 there is a tight irreducible subcube partition F of length n with δ(F ) = n−4
2
.

For every even n 󰃍 6 there is a tight irreducible subcube partition F of length n with
δ(F ) = n−2

2
.

Proof. The first part follows from applying Lemma 47 to the tight irreducible subcube
partition S3 of Theorem 20. The second part follows from taking the tight irreducible
subcube partition S4 of the same theorem. The third part follows from applying Lemma 47
to the following tight irreducible subcube partition, whose irreducibility can be checked
using Algorithm 1:

0∗0∗1∗ 00∗∗0∗ 001∗1∗ 010∗0∗ 0110∗∗
1∗∗0∗1 10∗∗∗0 10∗1∗1 11∗0∗0 1101∗∗

∗111∗∗

2.8 Homogeneous subcube partitions

So far we have considered various parameters of irreducible subcube partitions, attempting
to optimize them. The final question we consider concerns subcube partitions in which
all subcubes have the same codimension.

Definition 49 (Homogeneity). An (n, k)-homogeneous subcube partition is a tight sub-
cube partition of length n in which all subcubes have codimension k.

In this section, we explore the following question: for which n, k does there exist an
irreducible (n, k)-homogeneous subcube partition?

Here is a table with some experimental results:

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
k = 3 󰃀 × × × × ×
k = 4 × 󰃀 × × ×
k = 5 󰃀 󰃀 󰃀 󰃀
k = 6 󰃀 󰃀 󰃀
k = 7 󰃀 󰃀
k = 8 󰃀

In Section 2.8.1 we prove several elementary results: an irreducible (n, 1)-homogeneous
subcube partition exists only for n = 1; no irreducible (n, 2)-homogeneous partition exists;
and for k 󰃍 3, if an irreducible (n, k)-homogeneous subcube partition exists then k+1 󰃑
n 󰃑 2k−3. In Section 2.8.2 we show that the weight distribution of an (n, k)-homogeneous
subcube partition is binomial.

In Section 2.8.3, we describe a construction of Perezhogin [Per05], which gives irre-
ducible (n, n − 1)-homogeneous subcube partitions for all n 󰃍 4 other than n = 5. We
also show that no irreducible (5, 4)-homogeneous subcube partition exists, and that an
irreducible (6, 4)-homogeneous subcube partition does exist.
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In Section 2.8.4, we show how the irreducible subcube partitions constructed in Sec-
tion 2.8.3 give rise to even more irreducible subcube partitions, using a simple inductive
construction.

Finally, in Section 2.8.5 we show that an irreducible (n, 3)-homogeneous partition
exists only for n = 4, and in Section 2.8.6 we show that an irreducible (n, 4)-homogeneous
partition exists only for n = 6 (with the help of a computer).

2.8.1 Elementary bounds

We start with the following general bound.

Lemma 50. Suppose that n 󰃍 4 and k 󰃍 2. If there exists an irreducible (n, k)-
homogeneous subcube partition then k + 1 󰃑 n 󰃑 2k − 3.

Proof. Let F be an irreducible (n, k)-homogeneous subcube partition. Clearly n 󰃍 k. If
n = k then all subcubes in F are points, and so F is not irreducible. Hence n 󰃍 k + 1.
Since F has size 2k, the upper bound n 󰃑 2k − 3 follows from Theorem 15.

The following corollary of Lemma 12 will be useful. The corollary itself, and its
applications below, were suggested to us by Kisielewicz [Kis23].

Corollary 51. Let F be a homogeneous subcube partition, and let S be a star pattern
occurring in F . Among subcubes in F whose star pattern is S, half have even parity and
half have odd parity.

Proof. Since F is homogeneous, all star patterns in F are inclusion-minimal, and so the
corollary follows immediately from Lemma 12 (applied with G = F ).

We now determine when an irreducible (n, k)-homogeneous subcube partition exists
for k = 1 and k = 2.

Lemma 52. If F is an irreducible (n, 1)-homogeneous subcube partition then n = 1 and
F = {0, 1}.

Proof. The two subcubes in F contain a single non-star position, which must be identical.
Since F is tight, necessarily n = 1, and so F = {0, 1}.

Lemma 53. There are no irreducible (n, 2)-homogeneous subcube partitions, for any n.

Proof. Let F be an (n, 2)-homogeneous subcube partition. Suppose, without loss of
generality, that 00∗n−2 ∈ F . Corollary 51 implies that F must contain a subcube
with the same star pattern and odd parity, without loss of generality 01∗n−2. Since
00∗n−2 ∪ 01∗n−2 = 0∗n−1 is a subcube, F is reducible.

Here is an alternative proof, suggested by the reviewer. As in the proof of Lemma 50,
we have n 󰃍 k + 1 = 3. On the other hand, the result of Tarsi mentioned in the proof of
Theorem 15 implies that n 󰃑 2k − 1 = 3. Hence n = 3, and this case can be ruled out by
hand (and also follows from [KZ16, Lemma 41]).
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2.8.2 Weight distribution

In this section we prove the following surprising property, which involves the concept of
weight vector defined in Section 2.4.

Lemma 54. The weight vector of any (n, k)-homogeneous subcube partition is

󰀕
k

0

󰀖
,

󰀕
k

1

󰀖
, . . . ,

󰀕
k

k

󰀖
, 0, . . . , 0.

Proof. Let F be an (n, k)-homogeneous subcube partition, and let w be its weight vector.
Considering the number of points of weight ℓ which are covered, for each ℓ ∈ {0, . . . , k}
we have

ℓ󰁛

r=0

󰀕
n− k

ℓ− r

󰀖
wr =

󰀕
n

ℓ

󰀖
.

This is a triangular system of equations, and so it has a unique solution. In other words,
all (n, k)-homogeneous subcube partitions (if any) have the same weight vector.

The argument above applies even if we don’t assume that F is tight. Therefore all
(n, k)-homogeneous subcube partitions have the same weight vector as the subcube par-
tition {x∗n−k : x ∈ {0, 1}k}, whose weight vector is the one in the statement of the
lemma.

2.8.3 Special perfect matchings

Perezhogin [Per05] defines a special perfect matching to be a perfect matching in the
hypercube graph which is irreducible (in our terminology). If the hypercube has dimension
n, then this is the same as an irreducible (n, n − 1)-homogeneous subcube partition. He
constructs a special perfect matching for all n 󰃍 4 other than n = 5, and shows that no
special perfect matching exists when n = 5. In this section, we give an exposition of his
work.

We start with the construction.

Theorem 55. For every n 󰃍 4 other than n = 5 there exists an irreducible (n, n − 1)-
homogeneous subcube partition.

Proof. Using Lemma 41, it suffices to construct irreducible (n, n − 1)-homogeneous sub-
cube partitions of lengths n ∈ {4, 7} containing 0n−1∗ and satisfying the complementation
property in the lemma.

For n = 4, we can take

0∗10, 01∗1, 000∗, 1∗01, 10∗0, 111∗, ∗100, ∗011.

For n = 7, we can take the subcube partition obtained by applying Lemma 19 with
F0 being the subcube partition constructed in Theorem 42 for n = 6, and with F1 being
obtained from F0 by flipping the first two coordinates.
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The following result shows that Theorem 55 cannot be extended to n = 5.

Lemma 56. There is no irreducible (5, 4)-homogeneous subcube partition.

Proof. Suppose that F is an irreducible (5, 4)-homogeneous subcube partition. Every
subcube in F contains a single ∗. For i ∈ {1, . . . , 5}, let Fi ⊂ F consist of those subcubes
s ∈ F with si = ∗. According to Lemma 12, |Fi| is even. If |Fi| = 0 then the union of all
subcubes s ∈ F with si = 0 is the subcube ∗i−10∗5−i, contradicting irreducibility, and so
|Fi| > 0.

The proof of Lemma 43 implies that for each i ∈ {1, . . . , 5}, either |Fi| = 2 or |Fi| = 4.
Moreover, if |Fi| = 4 then each coordinate in Fi is balanced (0 appears the same number
of times as 1), whereas if |Fi| = 2 then exactly one coordinate is unbalanced. In the entire
formula, each coordinate is balanced, since the union of subcubes with si = 0 is the same
as the union of subcubes with si = 1, and each subcube contains exactly two points.

Without loss of generality, |F1| 󰃑 · · · 󰃑 |F5|. Since |F1| + · · · + |F5| = 16, it follows
that |F1| = |F2| = 2 and |F3| = |F4| = |F5| = 4. Recall that each of F1 and F2 contains
exactly one unbalanced coordinates. Since all coordinates in F3, F4, F5, F are balanced,
F1 and F2 have the same unbalanced coordinate. In particular, the second coordinate in
F1 and the first coordinate in F2 are balanced.

Let F1 = {∗0x0, ∗1x1} and F2 = {0∗y0, 1∗y1}. For α, β ∈ {0, 1}, we have {s : αβs ∈
F1∪F2} = {xα, yβ}. The set {s : αβs ∈ F3∪F4∪F5} consists of three edges, each covering
a point of even parity and a point of odd parity. Therefore xα and yβ have opposite parity.

Suppose that xα and yβ differ in a single bit, say xα = 000 and yβ = 001. The set
{s : αβs ∈ F3 ∪ F4 ∪ F5} must be a matching of the remaining points. There are only
four possibilities:

01∗, 10∗, 11∗
01∗, 1∗0, 1∗1
∗10, ∗01, ∗11
∗10, 0∗1, 1∗1

In each of them, F is reducible. Therefore yβ must be the negation of xα. However, this
implies that x0 = x1, contradicting irreducibility.

In contrast, there does exist an irreducible (6, 4)-homogeneous subcube partition.

Lemma 57. There exists an irreducible (6, 4)-homogeneous subcube partition.

Proof. Here is such a subcube partition:

0000∗∗, 001∗∗1, 01∗01∗, 01∗∗00, 0∗01∗1, 0∗∗110, ∗010∗0, ∗0∗100,
1101∗∗, 111∗∗0, 10∗11∗, 10∗∗01, 1∗00∗0, 1∗∗011, ∗111∗1, ∗1∗001.

Computer search reveals that up to permutation and flipping of coordinates, the irre-
ducible (6, 4)-homogeneous subcube partition is unique.

the electronic journal of combinatorics 30(3) (2023), #P3.29 30



2.8.4 More infinite families

In this section we show how any irreducible homogeneous subcube partition gives rise to
an infinite family.

Lemma 58. Let k 󰃍 2. If there exists an irreducible (n, k)-homogeneous subcube partition
then there exists an irreducible (3n, 2k)-homogeneous subcube partition.

Proof. Let F be an irreducible (n, k)-homogeneous subcube partition. We start by ob-
serving that for each coordinate i, there must be some subcube s ∈ F with si = ∗.
Otherwise, the union of the subcubes s ∈ F with si = 0 will be ∗i−10∗n−i, which contra-
dicts irreducibility.

Repeat the following operation n times to F : apply Lemma 47, and rotate the result
twice to the right (equivalently, replace t∗ ∈ F with ∗∗∗t and tb ∈ F with b∗0t, ∗b1t,
where b ∕= ∗). The observation in the preceding paragraph ensures that the resulting
subcube partition G is tight and irreducible. By construction, G has length n+ 2n = 3n
and codimension k + k = 2k.

Applying this to the results of Section 2.8.3, we obtain the following infinite families.

Corollary 59. For every t 󰃍 0 and every n 󰃍 4 other than n = 5 there exists an
irreducible (3t · n, 2t · (n− 1))-homogeneous subcube partition.

For every t 󰃍 0 there exists an irreducible (3t ·6, 2t ·4)-homogeneous subcube partition.

2.8.5 Codimension 3

Theorem 55 shows that an irreducible (4, 3)-homogeneous subcube partition exists. In this
section, we show that an irreducible (n, 3)-homogeneous subcube partition exists only for
n = 4, and that it is unique up to permutation and flipping of coordinates.

Theorem 60. If there exists an irreducible (n, 3)-homogeneous subcube partition then
n = 4. Moreover, the irreducible (4, 3)-homogeneous subcube partition is unique up to
permutation and flipping of coordinates.

Proof. Let F be an irreducible (n, 3)-homogeneous subcube partition. We start by proving
the following claims:

(i) If s ∈ F then s̄ ∈ F , where s̄ is obtained by flipping all bits in s.

(ii) If s ∈ F then s and s̄ are the only subcubes in F of the star pattern P (s).

(iii) Every two subcubes in F have at least two non-star coordinates in common.

Suppose that s ∈ F , without loss of generality s = 000∗n−3. Corollary 51 implies that
F contains another subcube having the same star pattern but with opposite parity. Since
F is irreducible, this cannot be one of 100∗n−3, 010∗n−3, 001∗n−3, and so 111∗n−3 ∈ F ,
proving Item i. Irreducibility implies that no other subcube with the same star pattern
can belong to F , proving Item ii. Any other subcube in F must conflict with both 000∗n−3
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and 111∗n−3, hence must mention at least two coordinates among the first three, proving
Item iii.

Suppose now without loss of generality that 000∗n−3 ∈ F . According to Item i, also
111∗n−3 ∈ F . According to Item ii, these are the only two subcubes with this star pattern.
Hence F must contain a subcube s with a different star pattern. According to Item iii,
the subcube s must mention at least two coordinates out of {1, 2, 3}. Since s must conflict
with both 000∗n−3 and 111∗n−3, without loss of generality s = 01∗0∗n−4 ∈ F . According
to Item i, also 10∗1∗n−4 ∈ F , and according to Item ii, these are the only subcubes in F
with this star pattern.

According to Item iii, every other subcube t in F must mention two coordinates out
of {1, 2, 3} and two coordinates out of {1, 2, 4}. If t mentions coordinates 1, 2 (and a third
coordinate not in {3, 4}) then t cannot possibly conflict with all of 000∗n−3, 111∗n−3,
01∗0∗n−4, 10∗1∗n−4, and so t must mention either {1, 3, 4} or {2, 3, 4}. Since F is tight,
we deduce that n = 4.

According to Item ii, F contains precisely two subcubes mentioning {1, 3, 4} and
precisely two subcubes mentioning {2, 3, 4}. Moreover, in each pair, one of the subcubes
is the negation of the other, according to Item i. The subcube of the form 0∗ab must
be 0∗11 in order to conflict with 000∗ and 01∗0, and so 0∗11, 1∗00 ∈ F . Similarly, the
subcube of the form ∗0ab must be ∗010 in order to conflict with 000∗ and 10∗0, and so
∗010, ∗101 ∈ F . Since F contains eight subcubes, this completes the description of F ,
and so F is unique up to permutation and flipping of coordinates.

2.8.6 Codimension 4

Lemma 57 shows that an irreducible (6, 4)-homogeneous subcube partition exists. Using
techniques similar to the preceding section, in this section we show that an irreducible
(n, 4)-homogeneous subcube partition exists only for n = 6.

Theorem 61. If there exists an irreducible (n, 4)-homogeneous subcube partition then
n = 6.

Since the proof is a bit long, we break it into three parts, starting with the following
lemma.

Lemma 62. If F is an irreducible (n, 4)-homogeneous subcube partition and s, t ∈ F are
two different subcubes, then s, t have at least two non-star coordinates in common.

Proof. Let F be an irreducible (n, 4)-homogeneous subcube partition. We start with the
following observations:

(i) If u ∈ F then F contains another subcube with the same star pattern differing in
exactly three coordinates.

(ii) For every coordinate i, there is some v ∈ F with vi = ∗.
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Let u ∈ F , say u = 0000∗n−4. According to Corollary 51, F must contain another
subcube with the same star pattern and opposite parity. Since F is irreducible, this
cannot be one of 1000∗n−4, 0100∗n−4, 0010∗n−4, 0001∗n−4, implying Item i.

If all v ∈ F satisfy vi ∈ {0, 1} then the union of all subcubes with vi = 0 is the subcube
∗i−10∗n−i, hence ∗i−10∗n−i ∈ F by irreducibility; but then F is not (n, 4)-homogeneous.
This proves Item ii.

Suppose, for the sake of contradiction, that F contains two subcubes s, t which share
fewer than two non-star coordinates. Since s, t conflict, they have exactly one non-star
coordinate in common. Without loss of generality, s = 0000∗n−4 and t = ∗∗∗1000∗n−7.
Applying Item i, F must contain one of 0111∗n−4, 1011∗n−4, 1101∗n−4, 1110∗n−4. The only
one of these which conflicts with t is 1110∗n−4. Applying Item i to t, we similarly get that
∗∗∗1111∗n−7 ∈ F . Thus F contains the following subcubes:

0000∗∗∗ ∗n−7

1110∗∗∗ ∗n−7

∗∗∗1000 ∗n−7

∗∗∗1111 ∗n−7

According to Item ii with i = 4, the subcube partition F must contain a subcube v with
v4 = ∗. In order to conflict with the first two subcubes above, v must contain a 0 and a
1 in coordinates 1, 2, 3. In order to conflict with the latter two subcubes, it must contain
a 0 and a 1 in coordinates 5, 6, 7. Without loss of generality, v is the following subcube:

01∗∗01∗ ∗n−7

Applying Item i to v, one of the following subcubes belongs to F :

00∗∗10∗ ∗n−7

11∗∗10∗ ∗n−7

10∗∗00∗ ∗n−7

10∗∗11∗ ∗n−7

However, the i’th subcube in this list fails to conflict with the i’th subcube in the previous
list, and we reach the desired contradiction.

We use Lemma 62 together with the following lemma to bound n.

Lemma 63. Let F be an irreducible (n, k)-homogeneous subcube partition, where n 󰃍 2.
Each coordinate is mentioned in at least six subcubes of F .

Proof. We will show that the first coordinate is mentioned at least six times. For σ ∈
{0, 1, ∗}, let Fσ = {x : σx ∈ F}. Since F0 ∪ F∗ and F1 ∪ F∗ are both subcube partitions,󰁖

F0 =
󰁖

F1, and so |F0| = |F1|.
Lemma 17 shows that |F0| 󰃍 2. If |F0| = 2 then let F0 = {s, t} and F1 = {s′, t′}.

Notice that s∪ t = s′∪ t′ and the union is not a subcube, since otherwise F would contain
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0s, 0t whose union is a subcube, contradicting irreducibility. Lemma 23 shows that either
{s, t} = {s′, t′} or s, t are an nfs-pair (in some order). In the former case, F contains
0s, 1s, contradicting irreducibility. The latter case is impossible by homogeneity, since
the two subcubes in an nfs-pair have different dimensions.

We can now prove the theorem.

Proof of Theorem 61. Let F be an irreducible (n, 4)-homogeneous subcube partition.
Suppose without loss of generality that 0000∗n−4 ∈ F . According to Lemma 62, every
other subcube in F mentions at most two coordinates beyond the first four, and so at
most 2 · 15/6 = 5 of these are mentioned at least six times. Lemma 63 implies that
n 󰃑 4 + 5 = 9.

We can slightly improve on this, as follows. Let u(1), u(2), u(3), u(4) be the subcubes con-
taining the points 1000 0n−4, 0100 0n−4, 0010 0n−4, 0001 0n−4, respectively. Each of these
subcubes must be different. Indeed, if for example u(1) = u(2) then u(1) ⊇ 1000 0n−4 ∨
0100 0n−4 = ∗∗00 0n−4, which intersects with 0000∗n−4.

Any two of u(1), u(2), u(3), u(4) must conflict, and so for distinct i, j ∈ {1, . . . , 4}, either
u
(i)
j = 0 or u

(j)
i = 0. This means that together, u(1), u(2), u(3), u(4) contain at least

󰀃
4
2

󰀄
= 6

zeroes among the first four coordinates. Therefore one of u(1), u(2), u(3), u(4) must contain
at least ⌈6/4⌉ = 2 zeroes among the first two coordinates, and so mentions at most one
coordinate beyond the first four.

This means that strictly fewer than 2 · 15/6 = 5 coordinates are mentioned at least
six times, and so n 󰃑 4 + 4 = 8.

Recalling that n 󰃍 5 due to Lemma 50, we complete the proof of the theorem by
checking with a computer that no irreducible (n, 4)-homogeneous subcube partitions exist
for n = 5, 7, 8. (The case n = 5 was also worked out by hand in Lemma 56.)

3 Nonbinary subcube partitions

So far we have considered subcube partitions of the hypercube {0, 1}n. In this section,
we study subcube partitions of {0, . . . , q − 1}n for arbitrary q 󰃍 2.

Definition 64 (Subcube partition). A subcube partition of {0, . . . , q−1}n (or: a subcube
partition over {0, . . . , q − 1} of length n) is a partition of {0, . . . , q − 1}n into subcubes,
which are sets of the form

{x ∈ {0, . . . , q − 1}n : xi1 = b1, . . . , xid = bd}.

We identify subcubes with words over {0, . . . , q − 1, ∗}. The definitions of the follow-
ing concepts are identical to the binary case: dimension and codimension of a subcube,
point, edge, size (Definition 1); reducible subcube partition (Definition 2); tight subcube
partition (Definition 3); conflicting subcubes (Definition 4).

Given a collection F of subcubes of {0, . . . , q − 1}n, we can determine whether they
form a subcube partition using the criterion of Lemma 6, replacing 2 with q. Determining
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whether a subcube partition of {0, . . . , q − 1}n is tight is easy using the definition, and
we can determine irreducibility using Algorithm 1.

We start our exploration of subcube partitions over {0, . . . , q−1} in Section 3.1, where
we show how to convert an irreducible subcube partition of {0, 1}n into an irreducible
subcube partition of {0, . . . , q − 1}n.

We then study the minimal size of tight irreducible subcube partitions over {0, . . . , q−
1} in Section 3.2.

3.1 Expansion

In this section we show how to convert a subcube partition of {0, 1}n into a subcube
partition of {0, . . . , q − 1}n in a way which preserves tightness and irreducibility.

Lemma 65. Let F be a subcube partition of {0, 1}n, let q 󰃍 2, and let φ1, . . . ,φn :
{0, . . . , q − 1} → {0, 1} be surjective functions.

Extend the definitions of φ1, . . . ,φn to {0, . . . , q − 1, ∗} by defining φi(∗) = ∗. Define
a function φ : {0, . . . , q − 1, ∗}n → {0, 1, ∗}n as follows: φ(σ1 . . . σn) = φ1(σ1) . . .φn(σn).
Let

G = {s ∈ {0, . . . , q − 1, ∗}n : φ(s) ∈ F}.

Then

(a) G is a subcube partition of {0, . . . , q − 1}n.

(b) If F is tight then so is G.

(c) If F is irreducible then so is G.

Proof. We start by showing that G is a subcube partition. Notice first that the subcubes
in G are disjoint. Indeed, suppose that s, s′ ∈ G are distinct. If φ(s) = φ(s′) then s, s′

must disagree on a non-star position, and so conflict. If φ(s) ∕= φ(s′) then φ(s),φ(s′)
conflict at some position i, and s, s′ conflict at the same position.

In order to show that the subcubes in G cover all of {0, . . . , q−1}n, let x ∈ {0, . . . , q−
1}n. Since F is a subcube partition, φ(x) is covered by some subcube t ∈ F . Define a
subcube s as follows: if ti = ∗ then si = ∗, and otherwise si = xi. Then φ(s) = t and so
s ∈ G, and s covers x by definition.

Now suppose that F is tight. Then for every i ∈ [n] there is a subcube t ∈ F
mentioning i. Since φ is surjective, we can find a subcube s mentioning i such that
φ(s) = t. Hence s ∈ G, and so G also contains a subcube mentioning i. Hence G is tight.

Finally, suppose that F is irreducible. If G is reducible then there is a a subset
H ⊂ G, with 1 < |H| < |G|, whose union is a subcube r. We claim that the union of
φ(H) = {φ(s) : s ∈ H} is the subcube φ(r).

Indeed, on the one hand, any s ∈ H satisfies s ⊆ r and so φ(s) ⊆ φ(r), hence󰁖
φ(H) ⊆ φ(r). On the other hand, let x ∈ φ(r) be an arbitrary point. Define a point

y ∈ {0, . . . , q − 1}n as follows: if ri = ∗ then yi is an arbitrary element of φ−1
i (xi), and
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otherwise yi = ri; in the latter case, φi(yi) = φi(ri) = xi. By construction, y ∈ r, and so
y is covered by some s ∈ H. Since φ(y) = x, it follows that φ(s) covers x.

Since F is irreducible, either |φ(H)| = 1 or |φ(H)| = |F |. In the latter case, φ(r) = ∗n
and so r = ∗n, implying that H = G, contrary to assumption. In the former case,
φ(s) = φ(r) for all s ∈ H. Choose two distinct subcubes s, s′ ∈ H. Let i ∈ [n] be a
coordinate at which s, s′ conflict. Since r ⊇ s ∨ s′ we have ri = ∗, and so φ(r)i = ∗. On
the other hand, si, s

′
i ∕= ∗, contradicting φ(s) = φ(s′) = φ(r).

3.2 Minimal size

Section 2.3 studies the minimal size of a tight irreducible subcube partition of {0, 1}n. In
this section we extend this study to tight irreducible subcube partitions of {0, . . . , q−1}n,
asking: what is the minimal size of a tight irreducible subcube partition of {0, . . . , q−1}n?

Applying Lemma 65 to the tight irreducible subcube partitions constructed in Theo-
rem 31, we obtain a tight irreducible subcube partition of size (n − 1)q(q − 1) + 1. We
conjecture that this is optimal.

Conjecture 66. If n 󰃍 3 then for all q 󰃍 2, the minimal size of a tight irreducible
subcube partition of {0, . . . , q − 1}n is (n− 1)q(q − 1) + 1.

We formally describe the matching construction in Section 3.2.1, where we also show
that this is the minimal size that can be achieved by a direct application of Lemma 65,
assuming Conjecture 14.

We prove Conjecture 66 for n = 3 in Section 3.2.2, where we also show that no tight
irreducible subcube partition exists for n = 2. We have also verified the conjecture using
a computer for n = 4 and q 󰃑 6, as well as for n = 5 and q = 3.

We close the section by proving a modest lower bound of (q− 1)n+ 1 on the size of a
tight subcube partition of {0, . . . , q− 1}n, using the technique of Tarsi [AL86]. The lower
bound applies more generally to tight minimal subcube covers, where it is sharp.

3.2.1 Construction

In this section we show how to construct tight irreducible subcube partitions of {0, . . . , q−
1}n of size (n−1)q(q−1)+1 using Lemma 65, and explain why this is the minimal possible
size when using the lemma, assuming Conjecture 14. We start with the construction.

Theorem 67. For each n 󰃍 3 and q 󰃍 2 there exists a tight irreducible subcube partition
of {0, . . . , q − 1}n of size (n− 1)q(q − 1) + 1.

Proof. Theorem 31 constructs a tight irreducible subcube partition of {0, 1}n whose weight
vector is 1, n − 1, n − 1, 0, . . . , 0. Applying Lemma 65 with the mappings φi given by
φi(0) = 0 and φi(1) = · · · = φi(q − 1) = 1 for all i ∈ [n], we obtain a tight irreducible
subcube partition of size

1 · (q − 1)0 + (n− 1) · (q − 1)1 + (n− 1) · (q − 1)2 = (n− 1)q(q − 1) + 1.
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We now show that this construction is the optimal way of applying Lemma 65, as-
suming Conjecture 14.

Theorem 68. Assume that Conjecture 14 holds for some n 󰃍 3. Let F be a tight irre-
ducible subcube partition of {0, 1}n. Let G be a subcube partition obtained by an application
of Lemma 65 on F , for some q 󰃍 2. Then G has size at least (n− 1)q(q − 1) + 1.

Proof. Let g(z1, . . . , zn) be the size of G when Lemma 65 is applied with functions
φ1, . . . ,φn : {0, . . . , q − 1} → {0, 1} such that |φ−1

i (0)| = zi for all i ∈ [n]. The func-
tion g is multilinear, and so its minimal value over {1, . . . , q − 1}n is attained at some
z ∈ {1, q − 1}n. Define a subcube partition F ′ by flipping all coordinates i such that
zi = q − 1. Then

|G| 󰃍 g(z) =
󰁛

s∈F ′

(q − 1)#1(s).

Since F ′ is tight and irreducible, a combination of Theorem 30 and Lemma 27 shows that

|G| 󰃍 min
󰀃
1+ (n− 1)(q− 1) + (n− 1)(q− 1)2, 1+ n(q− 1) + (n− 3)(q− 1)2 + (q− 1)3.

󰀄
.

If we subtract the first sum from the second then we obtain

(q − 1)3 − 2(q − 1)2 + (q − 1) = (q − 2)2(q − 1) 󰃍 0,

and so the minimum equals the first sum.

3.2.2 Short length

In this section we characterize all tight irreducible subcube partitions of {0, . . . , q − 1}n
for q 󰃍 2 and n 󰃑 3.

It is easy to see that the unique tight irreducible subcube partition of {0, . . . , q−1}1 is
{0, . . . , q−1}. In contrast, there is no tight irreducible subcube partition of {0, . . . , q−1}2.

Lemma 69. There are no tight irreducible subcube partitions of {0, . . . , q − 1}2 for any
q 󰃍 2.

Proof. Let F be a tight subcube partition of {0, . . . , q − 1}2. If all subcubes in F are
points then F is clearly reducible. Otherwise, without loss of generality 0∗ ∈ F . For
every a ∈ {1, . . . , q− 1}, let Fa ⊂ F consist of all subcubes of F starting with a. Since F
is tight, Fa ∕= {a∗} for some a. Since

󰁖
Fa = a∗, it follows that F is reducible.

Kullmann and Zhao [KZ16, Lemma 41] showed that there is a unique tight irreducible
subcube partition of {0, 1}3, up to flipping coordinates. An analogous result holds for all
q 󰃍 2.

Lemma 70. Every tight irreducible subcube partition of {0, . . . , q − 1}3, for any q 󰃍 2,
can be obtained from S3 = {000, 01∗, 1∗0, ∗01, 111} by Lemma 65.
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Proof. Let G be a tight irreducible subcube partition of {0, . . . , q − 1}3. Since G is
tight, ∗∗∗ /∈ G. Furthermore, no subcube in G contains two stars. Indeed, suppose that
0∗∗ ∈ G. Then for all a ∈ {1, . . . , q−1}, the subcubes in G starting with a together cover
a∗∗. Since G is irreducible, we see that G =

󰀋
a∗∗ : a ∈ {0, . . . , q − 1}

󰀌
, contradicting

tightness.
Let A(·?∗) denote the projection of all subcubes of G of the form ??∗ to the first

coordinate, and define other A-sets analogously.
If A(·?∗) = ∅ then no subcube of G ends with ∗. Therefore the subcubes ending

with b ∈ {0, 1, 2} cover all of ∗∗b. Since G is irreducible, ∗∗b ∈ G, which is impossible.
Therefore A(·?∗) ∕= ∅.

We claim that A(·?∗) and A(·∗?) are disjoint. Indeed, if a ∈ A(·?∗) ∩ A(·∗?), then
ab∗, a∗c ∈ G for some b, c ∈ {0, 1, 2}, which is impossible since these subcubes intersect.

We claim that if a ∈ A(·?∗) and b ∈ A(?·∗) then ab∗ ∈ G. Indeed, suppose that
ab′∗, a′b∗ ∈ G but ab∗ /∈ G. Consider a point abc ∈ {0, . . . , q − 1}3. This point cannot be
covered by a∗c since this subcube does not conflict with ab′∗, and cannot be covered by
∗bc since this subcube does not conflict with a′b∗. Therefore abc ∈ G. Since this holds
for all c and

󰁖
c abc = ab∗, we get a contradiction with the irreducibility of G.

It follows that G is composed of points and edges, where the edges are

{ab∗ : a ∈ A(·?∗), b ∈ A(?·∗)}
∪ {a∗c : a ∈ A(·∗?), c ∈ A(?∗·)}
∪ {∗bc : b ∈ A(∗·?), c ∈ A(∗?·)}.

We claim that A(·?∗) ∪ A(·∗?) = {0, . . . , q − 1}, and so these two sets partition
{0, . . . , q − 1}. Indeed, suppose that a is contained in neither set. Let b ∈ A(?·∗), so
that b /∈ A(∗·?). By construction, points of the form abc are not covered by any of the
edges of G, hence all of them belong to G. Since

󰁖
c abc = ab∗, this contradicts the

irreducibility of G.
It follows that G can be obtained by applying Lemma 65 to S3 with the mappings

φ1(a) = 1 ↔ a ∈ A(·∗?), φ2(b) = 1 ↔ b ∈ A(?·∗), φ3(c) = 1 ↔ c ∈ A(∗?·).

Indeed, the edges of G are

{ab∗ : φ1(a) = 0,φ2(b) = 1}
∪ {a∗c : φ1(a) = 1,φ3(c) = 0}
∪ {∗bc : φ2(b) = 0,φ3(c) = 1},

and these cover all points abc ∈ {0, . . . , q − 1}3 other than the ones satisfying φ1(a) =
φ2(b) = φ2(c).

Corollary 71. Conjecture 66 holds for n = 3 and all q 󰃍 2.

Proof. Let G be a tight irreducible subcube partition of {0, . . . , q − 1}3, where q 󰃍 2.
According to the lemma, it can be obtained by applying Lemma 65. The result now
follows from Theorem 68, since it is known that all tight irreducible subcube partitions
of {0, 1}3 have size 5.
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When n 󰃍 4, not all tight irreducible subcube partitions are obtained via Lemma 65.
Here is an example:

0000, 0002, 0020, 0022, 0101, 0102, 0111, 0122, 0200, 0201, 0211, 0220, 1010,

1011, 1020, 1021, 1102, 1110, 1120, 1122, 1201, 1202, 1211, 1212, 2011, 2012,

2021, 2022, 2110, 2111, 2200, 2212, 2220, 2222, 2100, 2101, 01∗0, 02∗2, 0∗21,
10∗2, 11∗1, 1∗00, 20∗0, 22∗1, 2∗02, 001∗, 122∗, 212∗, ∗001, ∗112, ∗210.

This is a tight irreducible subcube partition of {0, 1, 2}4. The underlined subcubes
show that it cannot be obtained by applying Lemma 65, since both 001, 122, 212 and
001, 112, 210 are not product sets.

3.2.3 Lower bound

Theorem 15 gives our best lower bound on the size of a tight irreducible subcube partition
of {0, 1}n, slightly improving on the “trivial” lower bound of n+1 which follows from the
well-known lemma of Tarsi [AL86] on minimally unsatisfiable CNFs.

Tarsi’s lemma applies more generally to subcube covers.

Definition 72 (Subcube cover). A subcube cover of {0, . . . , q − 1}n is a collection of
subcubes whose union is {0, . . . , q − 1}n.

A subcube cover is minimal if no proper subset of it is a subcube cover.

In this language, Tarsi’s lemma states that a tight minimal subcube cover of {0, 1}n
has size at least n+ 1. This bound is achieved, for example, by the subcube partition

{0i1∗n−i−1 : 0 󰃑 i 󰃑 n− 1} ∪ {0n}.

The analogous subcube partition for arbitrary q 󰃍 2 is

{0ib∗n−i−1 : 0 󰃑 i 󰃑 n− 1, 1 󰃑 b 󰃑 q − 1} ∪ {0n},

which has size (q − 1)n+ 1.
In this section, we generalize Tarsi’s lemma to the setting of matroids. A special case

of our generalization shows that every tight minimal subcube cover of {0, . . . , q−1}n (and
so every tight subcube partition of {0, . . . , q− 1}n) has size at least (q− 1)n+ 1, proving
the optimality of the above construction.

There are several proofs of Tarsi’s lemma [AL86, CS88, ML97, DDKB98, Kul00,
BET01]. We generalize the well-known proof using Hall’s theorem.

Definition 73 (Cover). Let M be a matroid. A collection F of subsets of the ground set
of M is an M-cover if no basis of M intersects all sets in F . An M -cover is minimal if
no proper subset is an M -cover.

Theorem 74 (Generalized Tarsi’s lemma). Let M be a matroid with rank function r.
Every minimal M-cover F satisfies

|F | > r
󰀓󰁞

F
󰀔
.
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The statement might look opaque, so before proving the theorem, we first show how
it can be used to derive the lower bound (q − 1)n+ 1.

Theorem 75. Every tight minimal subcube cover of {0, . . . , q − 1}n, where n 󰃍 1 and
q 󰃍 2, has size at least (q − 1)n+ 1.

Proof. Let H(n, q) be the matroid over the ground set [n]× {0, . . . , q − 1} in which a set
is independent if for every i ∈ [n], it doesn’t contain all elements of the form (i, ?). A
basis of H(n, q) is any set of the form B(a1, . . . , an) := {(i, j) : i ∈ [n], j ∈ [q], j ∕= ai},
where a1, . . . , an ∈ {0, . . . , q − 1}.

Let F be a tight minimal subcube cover of {0, . . . , q − 1}n. We can represent every
subcube in s ∈ F as the following subset of the ground set of H(n, q):

φ(s) = {(i, si) : i ∈ [n], si ∕= ∗}.

Let φ(F ) = {φ(s) : s ∈ F}. We claim that φ(F ) is an H(n, q)-cover. Indeed, let
B(a1, . . . , an) be any basis of H(n, q). Since F is a subcube cover, the point a1 . . . an is
covered by some subcube s. If (i, si) ∈ φ(s) then si = ai, and so φ(s) is disjoint from
B(a1, . . . , an).

A similar argument shows that φ(F ) is a minimal H(n, q)-cover. Indeed, any proper
subset of φ(F ) has the form φ(G) for some proper subset G ⊂ F . Since F is a mini-
mal subcube cover, some point a1 . . . an is not covered by G. The corresponding basis
B(a1, . . . , an) intersects all sets in φ(G). Indeed, if φ(s) ∈ φ(G) then s doesn’t cover a,
and so si ∕= ai, ∗ for some i ∈ [n]. Consequently, φ(s) contains (i, si) ∈ B(a1, . . . , an).

Since φ(F ) is a minimal H(n, q)-cover, Theorem 74 shows that |F | = |φ(F )| exceeds
the rank of

󰁖
φ(s). We will show that

󰁖
φ(s) = [n]× {0, . . . , q − 1}, a set whose rank is

(q − 1)n, completing the proof.
Let i ∈ [n]. Since F is tight, some subcube s ∈ F mentions i. Since F is minimal,

there exists a point x ∈ {0, . . . , q − 1}n which is only covered by s. In particular, no
subcube of F contains xi→∗, the subcube obtained from x by changing the i’th coordinate
to a star. This implies that for every b ∈ {0, . . . , q − 1}, every subcube of F containing
xi→b must contain b in its i’th coordinate. Therefore

󰁖
φ(F ) contains all elements of the

form (i, b), for any b ∈ {0, . . . , q − 1}, as promised.

The proof of Theorem 74 uses a generalization of Hall’s theorem to matroids.

Proposition 76 (Hall–Rado [Rad67, Wel71]). Let M be a matroid with rank function r,
and let F be a collection (multiset) of subsets of the ground set of M .

If each subset G ⊆ F satisfies |G| 󰃑 r(
󰁖

G) then we can choose an element es from
each set s ∈ F such that the elements es are distinct, and {es : s ∈ F} is an independent
set of M .

We can now prove Theorem 74.
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Proof of Theorem 74. Let F be a minimal M -cover, and suppose that |F | 󰃑 r(
󰁖

F ). We
will show that this assumption leads to a contradiction.

If every subset G ⊆ F satisfies |G| 󰃑 r(
󰁖

G) then Proposition 76 shows that F
intersects the independent set {es : s ∈ F}. Since every independent set can be completed
to a basis, this contradicts the assumption that F is an M -cover.

We conclude that some subset G ⊂ F satisfies |G| > r(
󰁖

G). Among all such subsets,
choose one which is inclusion-maximal. By assumption, G ∕= F , and so by minimality, G
is not an M -cover, say the basis B intersects all sets in G.

LetM ′ = M/
󰁖

G be the contraction ofM by
󰁖

G. The ground set ofM ′ is the ground
set of M with

󰁖
G removed, and its rank function is r′(S ′) = r(S ′ ∪

󰁖
G)− r(

󰁖
G).

Let F ′ = {S \
󰁖

G : S ∈ F \ G}. Suppose that H ′ is a non-empty subset of F ′, say
H ′ = {S \

󰁖
G : S ∈ H}. Since G is inclusion-maximal,

r′(H ′) = r
󰀓󰁞

H ′ ∪
󰁞

G
󰀔
− r

󰀓󰁞
G
󰀔
= r

󰀓󰁞
(H ∪G)

󰀔
− r

󰀓󰁞
G
󰀔

> |H ∪G|− |G| = |H| = |H ′|.

Applying Proposition 76, we obtain a basis B′ of F ′ which intersects all sets in F ′, and
so all sets in F \G.

The set B ∩
󰁖

G is an independent subset of
󰁖

G. Complete it to a basis BG of
M |

󰁖
G. Since B′ is a basis of M ′, B′ ∪BG is a basis of M . By construction, B intersects

all subsets in F , contradicting the assumption that F is an M -cover.

4 Affine vector space partitions

Section 2 considers partitions of {0, 1}n into subcubes. In this section, we consider parti-
tions of {0, 1}n into affine subspaces. The companion work [BFIK23] considers the more
general case of partitions of Fn

q into affine subspaces.

Definition 77 (Affine vector space partition). An affine vector space partition of length
n is a partition of {0, 1}n into affine subspaces, that is, sets of the form x + V , where
x ∈ {0, 1}n and V is a subspace of {0, 1}n (identified with Fn

2 ). The size of an affine
vector space partition is the number of affine subspaces.

The linear part of an affine subspace U = x+V is the subspace V . The dimension of an
affine subspace is the dimension of its linear part, and codimension is defined analogously.

The notion of reducibility is defined just as in Definition 2 and Definition 18, replacing
subcube with affine subspace.

Definition 78 (Reducibility). A collection F of disjoint affine subspaces of {0, 1}n is
reducible if there exists a subset G ⊆ F , with |G| > 1, whose union is an affine subspace
of {0, 1}n other than {0, 1}n. If no such G exists then F is irreducible.

The definition of tightness is perhaps less obvious. A subcube partition of length n
is not tight if it arises from a subcube partition of length n − 1 via an embedding of
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{0, 1}n−1 inside {0, 1}n. If this is the case, then there is a direction i which is “ignored”
by all subcubes, in the sense that si = ∗. This definition generalizes to our setting, where
an affine subspace x + V “ignores” a direction y ∈ {0, 1}n \ {0n} if y ∈ V . The same
definition was proposed by Agievich [Agi08], under the name primitivity, and was dubbed
A-primitivity by Tarannikov [Tar22].

Definition 79 (Tightness). An affine vector space partition F of length n is tight if the
intersection of the linear parts of all affine subspaces in F is {0n}.

We can determine whether two affine subspaces intersect by solving linear equations.
Using this, we can determine whether a collection of affine subspaces forms an affine vector
space partition as in Lemma 6, by checking that

󰁛

s

2− codim(s) = 1.

We can check tightness using the definition, and irreducibility using Algorithm 1,
suitably generalized. For this we need to be able to compute the join of two affine
subspaces, which is the minimal affine subspace containing their union.

Lemma 80. The minimal affine subspace containing a+V and b+W is a+span(V,W, b−
a).

We leave the straightforward proof to the reader.

We commence the study of affine vector space partitions in Section 4.1, where we
show how to convert an irreducible subcube partition to an irreducible affine vector space
partition. We use this technique in Section 4.2 to construct tight irreducible affine vector
space partitions of length n and size 3

2
n−O(1). In the same section we also prove a lower

bound of n+ 1 on the size of a tight irreducible affine vector space partition of length n.

4.1 Compression

Every subcube partition of length n can be viewed as an affine vector space partition of
length n. Furthermore, if the subcube partition is tight, then so is the affine vector space
partition. However, irreducibility is not maintained in this conversion. For example,

000, 111, 01∗, 1∗0, ∗01

is irreducible as a subcube partition but reducible as an affine vector space partition, since
000 ∪ 111 is an affine subspace, which we can represent by aaa. If we merge these two
points, we get the tight irreducible affine vector space partition

aaa, 01∗, 1∗0, ∗01.

In this section we generalize this process of merging for arbitrary irreducible subcube
partitions, using the concept of star pattern introduced in Definition 10: the star pattern
of a subcube s ∈ {0, 1, ∗}n is P (s) := {i ∈ [n] : si = ∗}.
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Lemma 81. Let F be an irreducible subcube partition. For S ⊆ [n], let FS consist of all
subcubes in F whose star pattern is S. For each S ⊆ [n], choose a partition of FS in which
the union of each part is an affine subspace, and let GS be the corresponding collection of
affine subspaces. (If FS = ∅, take GS = ∅.)

If all GS are irreducible then G =
󰁖

S GS is also irreducible.

Proof. If G is reducible then there exists a subset G′ ⊂ G, with |G′| > 1, whose union is
an affine subspace U other than {0, 1}n. Each affine subspace in G′ is a union of subcubes
of F . Let F ′ be the collection of all such subcubes, so that

󰁖
F ′ = U .

If F ′ contains a subcube s with si = ∗ then according to Lemma 80, the linear part
of U contains 0i−110n−i. This motivates defining S as the set of coordinates i ∈ [n] such
that si = ∗ for some s ∈ F ′. Note that S ∕= [n], since otherwise U = {0, 1}n.

Let U |S̄ be the projection of U into the coordinates outside of S, so that

U = {x ∈ {0, 1}n : x|S̄ ∈ U |S̄}.

Let y ∈ U |S̄. Every x ∈ {0, 1}n such that x|S̄ = y is covered by some subcube s ∈ F ′.
The definition of S implies that si = yi for all i ∈ S̄. Consequently the union of all
subcubes s ∈ F ′ such that s|S̄ = y is the subcube sy := {x ∈ {0, 1}n : x|S̄ = y}. Since
F is irreducible, sy ∈ F and so sy ∈ F ′. Since sy ∈ FS, it follows that F

′ ⊆ FS, and so
G′ ⊆ GS. This contradicts the irreducibility of G′.

In general, F being tight doesn’t guarantee that G is tight. For example, applying
Lemma 81 to the tight subcube partition

∗000, ∗111, 001∗, 0∗01, 01∗0, 110∗, 1∗10, 10∗1

results in the non-tight affine vector space partition

∗aaa, aaā∗, a∗aā, aā∗a,

in which all linear parts contain the non-zero vector 1111.

The following lemma is a simplification of Lemma 81 which also includes a criterion
for tightness.

Lemma 82. Let F be an irreducible subcube partition. For S ⊆ [n], let FS consist of all
subcubes in F whose star pattern is S.

Suppose that whenever FS is non-empty, the union of all subcubes in FS is an affine
subspace gS (this is always the case when |FS| 󰃑 2). Then G = {gS : FS ∕= ∅} is an
irreducible affine vector space partition.

Furthermore, G is tight if

󰁟

S : FS ∕=∅

P
󰀓󰁢

FS

󰀔
= ∅, (1)

where the join is taken in the sense of subcubes.
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Proof. The irreducibility of G follows directly from Lemma 81. Indeed, if for every non-
empty FS we take the partition consisting of a single part then the affine vector space
partition G in this lemma coincides with that in Lemma 81. Moreover, if FS = {a} then
a is itself an affine subspace, and if FS = {a, b} then a∪ b is the affine subspace obtained
from a by adding the following vector to the linear part: vi = 1 if ai ∕= bi and vi = 0
otherwise.

We proceed to show that if Equation (1) holds then G is tight. Let S ⊆ [n] be such
that FS is non-empty. If i /∈ P (

󰁚
FS) then all x ∈ gS have the same value of xi, and

so yi = 0 for all y in the linear part of gS. Therefore if yi = 1 for some y in the linear
part of gS then i ∈ P (

󰁚
FS). Equation (1) thus guarantees that the only vector in the

intersection of the linear parts of all gS is the zero vector, and so G is tight.

4.2 Minimal size

In Section 2.3 we conjectured that the minimal size of a tight irreducible subcube partition
of length n is 2n− 1. Using a computer, we have determined the minimal size of a tight
irreducible affine vector space partition of length n for small n [BFIK23]:

n 3 4 5 6 7
scp 5 7 9 11 13

avsp 4 6 7 8 10

The first row is the minimal size of a tight irreducible subcube partition of length n, and
the second row is the minimal size of a tight irreducible affine vector space partition of
length n.

The constructions presented later in this section suggest the following conjecture.

Conjecture 83. The minimal size of a tight irreducible affine vector space partition is
3
2
n− o(n).

We give a matching construction in Section 4.2.2. The best lower bound we are aware
of is n + 1, which we prove in Section 4.2.1 using an argument similar to the proof of
Theorem 74.

4.2.1 Lower bound

In this section, we adapt the proof of Theorem 74 to the setting of affine vector space
partitions.

Theorem 84. Every tight affine vector space partition of length n 󰃍 1 has size at least
n+ 1.

As in Theorem 75, the lower bound holds more generally for every tight minimal affine
vector space cover, a concept we do not define formally.
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Proof. Let M be the matroid over {0, 1}n in which a subset is independent if it is linearly
independent, and let r be its rank function.

Suppose that F a tight irreducible affine vector space partition of length n 󰃍 1, and
let F = {V ⊥ : x+ V ∈ F} (which we consider as a multiset).

We claim that r(F) = n. Indeed, since F is tight,

span({V ⊥ : x+ V ∈ F}) =
󰀓󰁟

{V : x+ V ∈ F}
󰀔⊥

= {0n}⊥ = {0, 1}n,

and so r(F) = n.
Suppose that every G ⊆ F satisfies |G| 󰃑 r(

󰁖
G). According to Proposition 76,

we can choose an element yx+V ∈ V ⊥ for each x + V ∈ F such that the elements yx+V

form an independent set. In particular, we can find an element z ∈ {0, 1}n such that
〈z, yx+V 〉 ∕= 〈x, yx+V 〉 for all x + V ∈ F . By construction, z /∈ x + V for all x + V ∈ F ,
contradicting the assumption that F is an affine vector space partition.

It follows that there exists some subset G ⊆ F satisfying |G| > r(
󰁖

G). Among all
such subsets, choose one which is inclusion-maximal. If G = F then we are done, so
suppose that G ∕= F. Since F is an affine vector space partition, there is a point z0 which
is not covered by any subspace in G.

Let M ′ = M/ span(G), and let r′ be its rank function. Let F′ = {V ⊥ \ span(G) :
V ⊥ ∈ F \G}. If G′ ⊆ F′ then

r′(G′) = r(G′ ∪ span(G))− r(span(G)) = r(G′ ∪G)− r(G) > |G′ ∪G|− |G| = |G′|,

using the inclusion-maximality of G′. Hence Proposition 76 allows us to choose y′x+V ∈
V ⊥ \ span(G) for all x+ V ∈ F \G such that these vectors are independent in M ′, which
means that no linear combination of them lies in span(G) (and in particular, they are
linearly independent).

Let z be a point such that 〈z, y′x+V 〉 ∕= 〈x, y′x+V 〉 for all x+V ∈ F \G and 〈z, y〉 = 〈z0, y〉
for all y ∈ span(G). By construction, z is not covered by any of the subspaces of F \G. It
is also not contained in any x+V ∈ G, since x+V = {w : 〈w, y〉 = 〈x, y〉 for all y ∈ V ⊥}
and 〈z, y〉 = 〈z0, y〉 for all y ∈ V ⊥ (recalling that z0 is not covered by G). This contradicts
the assumption that F is an affine vector space partition.

It is tempting to conjecture a common generalization of Theorem 75 and Theorem 84,
namely that a tight affine vector space partition of Fn

q has size at least (q − 1)n + 1.
Unlike Theorem 75 and Theorem 84, this cannot be true for tight minimal affine vector
space covers for q 󰃍 4 (hence, the proof above cannot generalize): we can construct tight
minimal affine vector space covers of size (q − 1)(n− 3) + 3

2
(q + 1)− 1 for q odd, and we

can construct tight minimal affine vector space covers of size (q − 1)(n− 3) + q + q/p for
q = ph, where p is a prime. These constructions derive from the two examples of minimal
blocking sets in a projective plane described in [BB86]. We leave the details for elsewhere.

4.2.2 Construction

In this section, we construct tight irreducible affine vector space partitions of length n
and size 3

2
n− O(1) for all n 󰃍 3, using Lemma 82. To construct the underlying subcube
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partitions, we use an inductive approach in the style of the constructions in Sections 2.3
and 2.4.

Lemma 85. Let F,H be irreducible subcube partitions of length n 󰃍 2 satisfying the
following conditions, where FS consists of all subcubes in F whose star pattern in S:

(i) {s ∈ F : s1 = ∗} = {s ∈ H : s1 = ∗}.

(ii) |FS|, |HS| 󰃑 2 for all S.

(iii) Equation (1) holds for H.

Let m = m(H) be the number of star patterns S such that HS is non-empty, and let
m′ = m′(H) be the number of those star patterns where 1 /∈ S (that is, the first coordinate
is not a star).

For every k 󰃍 0 there exists a tight irreducible affine vector space partition of length
n+ 2k and size m+ km′.

Proof. For N 󰃍 0, let F∗N = {s∗N : s ∈ F}, and define ∗NF similarly.
Let F ∗ = {s ∈ {0, 1}n−1 : ∗s ∈ F}. If F ∗ is empty then the union of the subcubes

starting with b ∈ {0, 1} is b∗n−1. Since F is irreducible, F = {0∗n−1, 1∗n−1}. However,
this contradicts Equation (1), using n 󰃍 2. Therefore F ∗ is non-empty.

We will construct an infinite sequence of subcube partitions F (k) such that the following
hold:

(i) F (k) is an irreducible subcube partition of length n+ 2k.

(ii) F ∗∗2k+1 ⊆ F (k).

(iii) Subcubes in F ∗∗2k+1 have different star patterns from subcubes in F (k) \ F ∗∗2k+1.

(iv) |F (k)
S | 󰃑 2 for all S.

(v) m(F (k)) = m+ km′.

(vi) Equation (1) holds for F (k).

The result then follows by applying Lemma 82 to F (k).

The starting point is F (0) = {sa : as ∈ H, |a| = 1, |s| = n− 1}. By assumption, F (0) is
irreducible and F ∗∗ = H∗∗. By construction, F ∗∗ ⊆ F (0), and all subcubes in F (0) \ F ∗∗
end with a non-star. The remaining properties are by assumption.

Given F (k), we construct F (k+1) as follows. Apply Lemma 19 with F0 = ∗F (k) and
F1 = F∗2k+1 to obtain a subcube partition G(k). We define F (k+1) = {tab : abt ∈
G(k), |a| = |b| = 1, |t| = n+ 2k}. Since F ∗∗2k+1 ⊆ F (k), we can explicitly write

F (k+1) = {t∗∗ : t ∈ F ∗∗2k+1} ∪ {t0∗ : t ∈ F (k) \ F ∗∗2k+1} ∪ {t1b : bt ∈ F∗2k+1, b ∕= ∗}.

We now verify the properties of F (k+1) one by one:
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(i) By the induction hypothesis, F ∗∗2k+1 ⊆ F (k), and so ∗F ∗∗2k+1 ⊆ ∗F (k). Since F ∗ is
non-empty, F0 ∩F1 = ∗F ∗∗2k+1 is non-empty. Therefore Lemma 19 shows that G(k)

is irreducible, and it follows that F (k+1) is irreducible.

(ii) The formula for F (k+1) immediately implies that F ∗∗2k+3 ⊆ F (k+1).

(iii) The formula for F (k+1) shows that all s ∈ F (k+1) \ F ∗∗2k+3 satisfy sn+2k+1 ∕= ∗, and
so have different star patterns from any subcube in F ∗∗2k+3.

(iv) The subcubes in each of the three sets in the formula for F (k+1) have different star

patterns. Since |F ∗
S | 󰃑 2 for all S and |F (k)

S | 󰃑 2 for all S, it follows that |F (k+1)
S | 󰃑 2

for all S.

(v) Denote the three parts in the formula for F (k+1) by A,B,C. Clearly m(A) = m(F ∗).
Since the star patterns of the subcubes in F ∗∗2k+1 are different from the star patterns
of the subcubes in F (k) \ F ∗∗2k+1, we have m(B) = m(F (k)) − m(F ∗). Finally,
m(C) = m′. We conclude that m(F (k+1)) = m(F (k)) +m′ = m+ (k + 1)m′.

(vi) Since the star patterns of the subcubes in F ∗∗2k+1 are different from the star pat-
terns of the subcubes in F (k) \ F ∗∗2k+1, the induction hypothesis implies that the
intersection of P (

󰁚
FS) for all star patterns S appearing in A ∪ B is contained in

{n+ 2k + 1, n+ 2k + 2}.
Equation (1) for F implies that some s ∈ F satisfies s1 ∕= ∗, and so C is non-empty.
All star patterns of subcubes in S do not contain n + 2k + 1 or n + 2k + 2, and so
Equation (1) holds for F (k+1).

Using this lemma, we construct tight irreducible affine vector space partitions of length
n and size 3

2
n − O(1) for all n 󰃍 3. Our construction matches the optimal values in the

table appearing in the beginning of the section.

Theorem 86. For all odd n 󰃍 3 there is a tight irreducible affine vector space partition
of length n and size 3

2
n− 1

2
.

There is a tight irreducible affine vector space partition of length 4 and size 6.
For all even n 󰃍 6 there is a tight irreducible affine vector space partition of length n

and size 3
2
n− 1.

Proof. Consider the following subcube partitions:

S3 = {∗01, 000, 111, 1∗0, 01∗},
S4 = {∗01∗, 1000, 1111, 11∗0, 1∗01, 000∗, 01∗∗},
T6 = {∗0110∗, ∗1101∗, ∗001∗1, ∗010∗0, ∗00∗∗0, ∗0∗0∗1,

∗∗111∗, 011∗0∗, 110∗1∗, 010∗∗∗, 11∗∗0∗}.

Using Algorithm 1, one can check that they are irreducible. One checks directly that
the prerequisites of Lemma 85 hold in all cases (with H = F ).
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Since m(S3) = 4 and m′(S3) = 3, Lemma 85 with F = H = S3 constructs tight
irreducible affine subspace partitions of length 3 + 2k and size 4 + 3k = 3

2
(3 + 2k)− 1

2
.

Applying Lemma 82 directly to S4, we obtain a tight irreducible affine subspace par-
tition of length 4 and size 6.

Since m(T6) = 8 and m′(T6) = 3, Lemma 85 with F = H = T6 constructs tight
irreducible affine subspace partitions of length 6+2k and size 8+3k = 3

2
(6+2k)− 1.

Applying Lemma 85 with F = S3∗ and H = S4 constructs tight irreducible affine
subspace partitions of length 4 + 2k and size 6 + 3k = 3

2
(4 + 2k), which is slightly worse

than what we get using F = H = T6.
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