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Abstract
A weakly distance-regular digraph is P -polynomial if its attached scheme is P -

polynomial. In this paper, we characterize all P -polynomial weakly distance-regular
digraphs.
Mathematics Subject Classifications: 05E30

1 Introduction

All the digraphs considered in this paper are finite, simple, strongly connected and not
undirected. For a digraph Γ, we write V Γ and AΓ for the vertex set and the arc set
of Γ, respectively. In Γ, a path of length r from x to y is a finite sequence of vertices
(x = w0, w1, . . . , wr = y) such that (wt−1, wt) ∈ A(Γ) for 1 ⩽ t ⩽ r. The length of a
shortest path from x to y is called the distance from x to y in Γ, denoted by ∂Γ(x, y).
The maximum value of distance function in Γ is called the diameter of Γ. We define Γi

(0 ⩽ i ⩽ d) to be the set of ordered pairs (x, y) with ∂Γ(x, y) = i, where d is the diameter
of Γ. A path (w0, w1, . . . , wr−1) is called a circuit of length r when (wr−1, w0) ∈ AΓ. The
girth of Γ is the length of a shortest circuit in Γ. Let ∂̃Γ(x, y) := (∂Γ(x, y), ∂Γ(y, x)) be the
two-way distance from x to y in Γ, and ∂̃(Γ) the set of all pairs ∂̃Γ(x, y). For any ĩ ∈ ∂̃(Γ),
we define Γĩ to be the set of ordered pairs (x, y) with ∂̃Γ(x, y) = ĩ.

As a natural directed version of distance-regular graphs, Wang and Suzuki [10] intro-
duced the concept of weakly distance-regular digraphs. A digraph Γ is said to be weakly
distance-regular if, for any h̃, ĩ, j̃ ∈ ∂̃(Γ) and ∂̃Γ(x, y) = h̃, the number of z ∈ V Γ such
that ∂̃Γ(x, z) = ĩ and ∂̃Γ(z, y) = j̃ depends only on h̃, ĩ, j̃. In other words, Γ is weakly
distance-regular if X(Γ) = (V Γ, {Γĩ}ĩ∈∂̃(Γ)) is an association scheme. We call X(Γ) the
attached scheme of Γ. A weakly distance-regular digraph is P -polynomial if its attached
scheme is P -polynomial.
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Since 2003, some special families of weakly distance-regular digraphs have been clas-
sified. See [6, 9, 10, 11, 12, 13] for small valency, [9] for thin case, [14] for quasi-thin case,
and [15] for thick case.

In this paper, we study P -polynomial weakly distance-regular digraphs, and obtain
the following result.

Theorem 1. Let Γ be a weakly distance-regular digraph whose attached scheme X =
(X, {Ri}di=0) is P -polynomial with respect to the ordering R0, R1, . . . , Rd. Then Γ is
isomorphic to one of the following digraphs:

(i) (X,R1) or (X,Rg−1);

(ii) (X,R2) or (X,Rg−2), where k1 > kg + 1 and g ∈ {6, 8};

(iii) (X,R1 ∪R2) or (X,Rg−2 ∪Rg−1), where 2 | g;

(iv) (X,R1 ∪Rg) or (X,Rg−1 ∪Rg), where d = g;

(v) (X,R2 ∪Rg) or (X,Rg−2 ∪Rg), where k1 > kg + 1, d = g and g ∈ {6, 8};

(vi) (X,R1 ∪R2 ∪Rg) or (X,Rg−2 ∪Rg−1 ∪Rg), where d = g, 2 | g and g > 4.

Here, ki is the valency of the relation Ri for i ∈ {1, g} and g is the girth of (X,R1).

The examples of non-symmetric P -polynomial association schemes are very few, we
do not know whether all the cases mentioned above are actually realized. One can verify
the cases (i) and (iv) are realized. The case (iii) is realized when (X,R1) is one of the
examples in [7]. The case (vi) is realized when (X,R1) is a lexicographic product of a
directed cycle by a complete graph. We do not know at present whether the case (ii) or
the case (v) is actually realized.

The remaining of this paper is organized as follows. In Section 2, we provide the
required concepts and notations about association schemes. In Section 3, we recall the
definition of distance-regular digraphs, and prove some results which are used frequently
in this paper. In Section 4, we give a proof of Theorem 1.

2 Association schemes

In this section, we present some concepts and notations of association schemes.
A d-class association scheme X is a pair (X, {Ri}di=0), where X is a finite set, and each

Ri is a nonempty subset of X × X satisfying the following axioms (see [1, 16, 17] for a
background of the theory of association schemes):

(i) R0 = {(x, x) | x ∈ X} is the diagonal relation;

(ii) X ×X = R0 ∪R1 ∪ · · · ∪Rd, Ri ∩Rj = ∅ (i ̸= j);

(iii) for each i, RT
i = Ri∗ for some 0 ⩽ i∗ ⩽ d, where RT

i = {(y, x) | (x, y) ∈ Ri};
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(iv) for all i, j, h, the cardinality of the set

Pi,j(x, y) := Ri(x) ∩Rj∗(y)

is constant whenever (x, y) ∈ Rh, where R(x) = {y | (x, y) ∈ R} for R ⊆ X × X
and x ∈ X. This constant is denoted by phi,j.

The integers phi,j are called the intersection numbers of X. We say that X is commutative
if phi,j = phj,i for all 0 ⩽ i, j, h ⩽ d. The subsets Ri are called the relations of X. For each
i, the integer ki (= p0i,i∗) is called the valency of Ri. A relation Ri is called symmetric
if i = i∗, and non-symmetric otherwise. An association scheme is called symmetric if all
relations are symmetric, and non-symmetric otherwise.

Let X = (X, {Ri}di=0) be an association scheme with |X| = n. The adjacency matrix
Ai of Ri is the n×n matrix whose (x, y)-entry is 1 if (x, y) ∈ Ri, and 0 otherwise. We say
that X is a P -polynomial association scheme with respect to the ordering R0, R1, . . . , Rd,
if there exist some complex coefficient polynomials vi(x) of degree i (0 ⩽ i ⩽ d) such that
Ai = vi(A1).

We close this section with a property of intersection numbers which will be used
frequently in the remainder of this paper.

Lemma 2. ([1, Section 2, Proposition 2.2]) Let X = (X, {Ri}di=0) be an association
scheme. The following hold:

(i) phi,jkh = pih,j∗ki = pji∗,hkj;

(ii)
∑d

r=0 p
r
e,lp

h
m,r =

∑d
t=0 p

t
m,ep

h
t,l.

3 Distance-regular digraphs

As a directed version of distance-regular graph, Damerell [2] introduced the concept of
distance-regular digraphs. A digraph Γ of diameter d is said to be distance-regular if
X(Γ) = (V Γ, {Γi}0⩽i⩽d) is a P -polynomial non-symmetric association scheme with respect
to the ordering Γ0,Γ1, . . . ,Γd. Moreover, every P -polynomial non-symmetric association
scheme arises from a distance-regular digraph in this way.

A digraph Γ of girth g is stable if 0 < ∂Γ(x, y) < g implies that ∂Γ(x, y)+∂Γ(y, x) = g. In
[2], Damerell proved that a distance-regular digraph is stable, and presented the following
basic results.

Theorem 3. ([2, Theorems 2 and 4]) Let Γ be a distance-regular digraph of diameter d
and girth g. Then d = g − 1 (short type) or d = g (long type). Moreover, if d = g, then
Γ is a lexicographic product of a distance-regular digraph of diameter g − 1 by an empty
graph.

In view of [4] and the stability of distance-regular digraphs, we say that the girth of
a P -polynomial non-symmetric association scheme (V Γ, {Γi}0⩽i⩽d) with respect to the
ordering Γ0,Γ1, . . . ,Γd is the girth of (V Γ,Γ1).
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Enomoto and Mena [3] showed that two one-parameter families of distance-regular
digraphs of girth 4 could possibly exist. Subsequently, Liebler and Mena [7] gave an
infinite one-parameter family of distance-regular digraphs over an extension ring of Z/4Z.
In 1993, Leonard and Nomura [5] proved that except directed cycles all short distance-
regular digraphs have girth not more than 8.

In the remaining of this section, we always assume that Γ is a distance-regular digraph
of valency k1 > kg +1 with diameter d and girth g. Next we give some results concerning
such digraphs which will be used frequently in this paper.

Lemma 4. If 1 ⩽ i ⩽ g − 1, then p12,i ̸= 0.

Proof. In view of Theorem 3, we only need to consider the case d = g − 1. Since kg = 0,
one gets k1 > 1. By setting (h,m, e, l) = (g − i, 1, 1, g − 1) in Lemma 2 (ii), we have

pg−i−1
1,g−1 p

g−i
1,g−i−1 + pg−1

1,g−1p
g−i
1,g−1 ⩽ p11,1p

g−i
1,g−1 + p21,1p

g−i
2,g−1. (1)

Since Γ is stable, we obtain pg−1
1,g−1 = p11,1 from Lemma 2 (i), and so

pg−i−1
1,g−1 p

g−i
1,g−i−1 ⩽ p21,1p

g−i
2,g−1

from (1). Note that k1 > 1. In view of [5, Lemma 2.1], one has pg−i−1
1,g−1 ̸= 0, and so

pg−i
2,g−1 ̸= 0. By Lemma 2 (i), and the stability and commutativity of Γ, we have

k1p
1
2,i = kg−ip

g−i
2,g−1 ̸= 0.

This completes the proof of this lemma.

The stability and commutativity of Γ will be used frequently in the sequel, so we no
longer refer to it for the sake of simplicity.

Lemma 5. If 0 ⩽ i ⩽ min{3, g − 3}, then pi1,i+1 < pig−1,i+1.

Proof. In view of Theorem 3, we only need to consider the case d = g − 1. It is valid
when i = 0. By setting (h,m, e, l) = (i, 1, i, g − 1) in Lemma 2 (ii), we obtain

g−1∑
r=i−1

pri,g−1p
i
1,r =

i+1∑
t=1

pt1,ip
i
t,g−1.

According to Lemma 2 (i), one gets, for i− 1 ⩽ r < g and 1 ⩽ t ⩽ i+ 1,

krp
r
i,g−1 = kip

i
1,r and ktp

t
1,i = kip

i
g−1,t,

which imply
g−1∑

r=i−1

(pi1,r)
2/kr =

i+1∑
t=1

(pit,g−1)
2/kt.
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Since pi1,g−1 = pig−1,1 and i+ 1 < g − 1, we get

(pi1,i−1)
2/ki−1 + (pi1,i)

2/ki + (pi1,i+1)
2/ki+1 ⩽

i+1∑
t=2

(pig−1,t)
2/kt. (2)

If i = 1, from (2), then

(p11,0)
2 + (p11,1)

2/k1 + (p11,2)
2/k2 ⩽ (p1g−1,2)

2/k2,

and so p11,2 < p1g−1,2 since p11,0 ̸= 0. In view of Lemma 2 (i), we have pi1,i = pig−1,i. If i = 2,
from (2), then

(p21,1)
2/k1 + (p21,3)

2/k3 ⩽ (p2g−1,3)
2/k3,

and so p21,3 < p2g−1,3 since p21,1 ̸= 0.
We only need to consider the case i = 3. By Lemma 2 (i), we get

p21,3k2 = p3g−1,2k3 and p2g−1,3k2 = p31,2k3.

The fact p21,3 < p2g−1,3 implies p3g−1,2 < p31,2. Since p31,3 = p3g−1,3, from (2), one has

(p31,2)
2/k2 + (p31,4)

2/k4 ⩽ (p3g−1,2)
2/k2 + (p3g−1,4)

2/k4.

It follows that p31,4 < p3g−1,4.

Lemma 6. If 0 ⩽ i ⩽ min{2, g/2− 1}, then pi1,i < pi+1
1,i+1.

Proof. According to [5, Lemma 2.1] and Lemma 3, we have p11,1 ̸= 0, and so 0 = p01,0 < p11,1.
Thus, the case i = 0 is valid. Now suppose i > 0. It follows that g ⩾ 4. By setting
(h,m, e, l) = (i+ 1, 1, i, g − 1) in Lemma 2 (ii), we obtain

g−1∑
r=i

pri,g−1p
i+1
1,r =

i+1∑
t=1

pt1,ip
i+1
t,g−1.

In view of Lemma 2 (i), one has pg−1
i,g−1 = p11,i and

k2ki+1p
g−2
i,g−1p

i+1
1,g−2 = k2

1p
1
2,ip

1
2,i+1 ̸= 0

from Lemma 4, which imply
g−3∑
r=i

pri,g−1p
i+1
1,r <

i+1∑
t=2

pt1,ip
i+1
t,g−1. (3)

According to Lemma 2 (i), we have pii,g−1 = pi1,i. If i = 1, from (3), then p11,1p
2
1,1 < p21,1p

2
1,2,

which implies p11,1 < p21,2. By Lemma 5, one gets p21,3 < p23,g−1, and so p32,g−1 < p31,2 from
Lemma 2 (i). If i = 2, then

p21,2(p
3
1,2 − p32,g−1) < p31,3(p

3
1,2 − p32,g−1)

from (3), which implies p21,2 < p31,3. This completes the proof of this lemma.
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Lemma 7. If 0 < i ⩽ (g + 1)/2, then p1i,i ̸= 0.

Proof. In view of Theorem 3, we only need to consider the case d = g − 1. It follows
that k1 > 1. According to [5, Theorem 3.3], we have g ⩽ 8, which implies i ⩽ 4 since
i ⩽ (g+1)/2. The case of i = 1 is valid from [5, Lemma 2.1], and the case of i = 2 is also
valid from Lemma 4.

Suppose i = 3. By setting (h,m, e, l) = (g − 3, 1, 2, g − 1) in Lemma 2 (ii), we have

pg−3
2,g−1p

g−3
1,g−3 + pg−1

2,g−1p
g−3
1,g−1 ⩽ p11,2p

g−3
1,g−1 + p21,2p

g−3
2,g−1 + p31,2p

g−3
3,g−1.

In view of Lemma 2 (i), we get

pg−1
2,g−1 = p11,2 and pg−3

1,g−3 = p31,3,

which imply

pg−3
2,g−1p

3
1,3 ⩽ p21,2p

g−3
2,g−1 + p31,2p

g−3
3,g−1. (4)

According to Lemma 2 (i), we obtain

k3p
g−3
2,g−1 = k1p

1
2,3 ̸= 0

from Lemma 4. By Lemma 6, one has p21,2 < p31,3. It follows from (4) that pg−3
3,g−1 ̸= 0.

Lemma 2 (i) implies p13,3 ̸= 0.
Suppose i = 4. Since i ⩽ (g + 1)/2, we have g = 7 or 8. If g = 7, then p14,4 = p63,3 ̸= 0

from Lemma 2 (i). Now we consider the case g = 8. Assume the contrary, namely,
p14,4 = 0. Pick (x, y) ∈ Γ3. According to Lemma 6, we have p31,3 ̸= 0. By Lemma 2 (i),
one gets

k3p
3
4,g−1 = k4p

4
1,3 ̸= 0.

Let z ∈ P1,3(x, y) and w ∈ P4,g−1(x, y). Since p31,2 ̸= 0, there exists w′ ∈ P1,2(x, y). The
fact y ∈ P2,1(w

′, w) implies w′ ∈ P1,3(x,w). By p14,4 = 0, we have z ∈ P1,3(x,w), and so
w ∈ P3,g−1(z, y). Since z ∈ P1,3(x, y) and w ∈ P4,g−1(x, y) were arbitrary, we have

P1,3(x, y) ∪ {w′} ⊆ P1,3(x,w) and P4,g−1(x, y) ⊆ P3,g−1(z, y).

Then p31,3 < p41,3 and p34,g−1 ⩽ p33,g−1. By Lemma 2 (i), we get p33,g−1 = p31,3, and so

k4p
3
1,3 < k4p

4
1,3 = k3p

3
4,g−1 ⩽ k3p

3
1,3.

It follows that k4 < k3, contrary to [5, Lemma 1.1 (c)].

Lemma 8. If 1 ⩽ i ⩽ min{4, g − 1}, then pi2,2 ̸= 0.

Proof. It is obvious that p42,2 ̸= 0. According to Lemma 4, we have p12,2 ̸= 0. We only
need to consider the case i ∈ {2, 3}. By setting (h,m, e, l) = (i, 2, 1, 1) in Lemma 2 (ii),
we get

p11,1p
i
2,1 + p21,1p

i
2,2 ⩾ p21,2p

i
2,1.

In view of Lemma 6, one gets p11,1 < p21,2, and so pi2,1 ̸= 0. Thus, pi2,2 ̸= 0.
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4 Proof of Theorem 1

With notations in Theorem 1, we shall give a proof of this theorem in this section. Before
that, we need some auxiliary facts and lemmas.

Fact 9. For all 1 ⩽ i ⩽ d, Ri ⊆ AΓ or Ri ∩ AΓ = ∅.

Fact 10. The digraph (X, (AΓ)T) is weakly distance-regular, and has the same attached
scheme with Γ.

Lemma 11. Let ∆ be a weakly distance-regular digraph of girth g′. Suppose that X(∆) is a
P -polynomial association scheme of girth d+1 with respect to the ordering R0, R1, . . . , Rd.
The following hold:

(i) If 2 | d or R(d+1)/2 ⊈ A∆, then a lexicographic product of ∆ by a complete graph is
a P -polynomial weakly distance-regular digraph;

(ii) If (g′, g′) /∈ ∂̃(∆), then a lexicographic product of ∆ by an empty graph is a P -
polynomial weakly distance-regular digraph.

Proof. (i) Let ∆′ be a lexicographic product of ∆ by a complete graph. If 2 | d, then Ri is
non-symmetric for 1 ⩽ i ⩽ d; if 2 ∤ d, then R(d+1)/2 is the unique symmetric relation. Since
2 | d or R(d+1)/2 ⊈ A∆, by Fact 9, we have (1, 1) /∈ ∂̃(∆). It follows from [10, Proposition
2.6 (i)] that ∆′ is weakly distance-regular. By [8, Theorem 2.1], ∆′ is P -polynomial. Thus,
(i) holds.

(ii) Let ∆′′ be a lexicographic product of ∆ by an empty graph. Note that (g′, g′) /∈
∂̃(∆). In view of [10, Proposition 2.4 (i)], ∆′′ is weakly distance-regular. By [8, Theorem
2.1], ∆′′ is P -polynomial. Thus, (ii) holds.

Lemma 12. Each digraph in Theorem 1 (i)–(vi) is a weakly distance-regular digraph with
X as its attached scheme.

Proof. According to Lemma 11 (i), it suffices to show that each digraph in Theorem 1
(i)–(iii) is a weakly distance-regular digraph with X as its attached scheme.

Since the digraphs (X,R1) and (X,Rg−1) are both distance-regular, we only need to
prove that the digraphs in Theorem 1 (ii) and (iii) are weakly distance-regular digraphs
with the attached scheme X. It follows that 2 | g. Let (x1, x2, . . . , xg/2 = x0) be a sequence
of elements such that (xi, xi+1) ∈ R2 with 0 ⩽ i ⩽ g/2− 1. According to Fact 10, we only
need to prove that (X,R2) with k1 > kg + 1 and g ∈ {6, 8}, and (X,R1 ∪ R2) with 2 | g
are weakly distance-regular digraphs with the attached scheme X.

Step 1. Show that (X,R2) with k1 > kg+1 and g ∈ {6, 8} is a weakly distance-regular
digraph with the attached scheme X.

Let ∆ = (X,R2). Since (X,R1) is distance-regular, (x1, x2, . . . , xg/2) is a shortest
circuit in ∆, and so the girth of ∆ is g/2. By Lemma 11 (ii), it suffices to show that ∆
is a weakly distance-regular digraph with the attached scheme X and (g/2, g/2) /∈ ∂̃(∆)
under the assumption d+ 1 = g.
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Since A∆ = R2, we have R2 = ∆(1,g/2−1). Pick (x, y) ∈ R1. Since p12,2 ̸= 0 from
Lemma 7, we get ∂∆(x, y) = 2.

Suppose g = 6. By Lemma 2 (i) and Lemma 4, one has p52,4 = p12,4 ̸= 0. Since
p52,2 = 0 and p42,2 ̸= 0, one gets ∂∆(y, x) = 3, and so R1 ⊆ ∆(2,3). In view of Lemma
8, we obtain p

g/2
2,2 ̸= 0, which implies R3 = ∆(2,2). It follows that R1 = ∆(2,3). By the

distance-regularity of (X,R1), ∆ is a P -polynomial weakly distance-regular digraph with
the attached scheme

(X, {∆(0,0),∆(1,2),∆(2,1),∆(2,2),∆(2,3),∆(3,2)}).

Suppose g = 8. Choose (x′, y′) ∈ R3. According to Lemma 8, we have ∂∆(x
′, y′) = 2.

Since p52,3 ̸= 0 and p52,2 = 0, one has ∂∆(y′, x′) = 3, and so R3 ⊆ ∆(2,3). The fact (y, x) ∈ R7

implies ∂∆(y, x) ⩾ 4. Since p42,2p
7
3,4 ̸= 0, we obtain ∂∆(y, x) = 4, and so R1 ⊆ ∆(2,4). The

fact that p42,2 ̸= 0 implies R4 = ∆(2,2). It follows that R3 = ∆(2,3) and R1 = ∆(2,4). By the
distance-regularity of (X,R1), ∆ is a P -polynomial weakly distance-regular digraph with
the attached scheme

(X, {∆(0,0),∆(1,3),∆(2,2),∆(2,3),∆(2,4),∆(3,1),∆(3,2),∆(4,2)}).

Step 2. Show that (X,R1 ∪ R2) with 2 | g is a weakly distance-regular digraph with
the attached scheme X.

Let ∆ = (X,R1∪R2). Since (X,R1) is distance-regular, (x1, x2, . . . , xg/2) is a shortest
circuit in ∆, and so the girth of ∆ is g/2. By Lemma 11 (ii), it suffices to show that ∆
is a weakly distance-regular digraph with the attached scheme X and (g/2, g/2) /∈ ∂̃(∆)
under the assumption d+ 1 = g.

Note that kg = 0. Suppose k1 = 1. Since (X,R1) is distance-regular, (X,R1) is
a directed cycle, which implies ki = 1 for 0 ⩽ i ⩽ d. It follows from [9, Theorem
1.2 (ii)] that ∆ is a weakly distance-regular digraph with the attached scheme X and
(g/2, g/2) /∈ ∂̃(∆). Now we consider the case k1 > 1.

Since (x1, x2, . . . , xg/2) is a shortest circuit in ∆, we obtain R2 ⊆ ∆(1,g/2−1). The fact
that p21,1 ̸= 0 implies R1 = ∆(1,g/2), and so R2 = ∆(1,g/2−1). If g = 4, by the distance-
regularity of (X,R1), then ∆ is a P -polynomial weakly distance-regular digraph with the
attached scheme

(X, {∆(0,0),∆(1,1),∆(1,2),∆(2,1)}).

If g = 6, then R3 = ∆(2,2) since p31,2 ̸= 0, which implies that ∆ is a P -polynomial weakly
distance-regular digraph with the attached scheme

(X, {∆(0,0),∆(1,2),∆(1,3),∆(2,1),∆(2,2),∆(3,1)}).

We only need to consider the case of g = 8. Choose (x, y) ∈ R3. Since p31,2 ̸= 0, we
have ∂∆(x, y) = 2. The fact (y, x) ∈ R5 implies ∂∆(y, x) ⩾ 3. Since p52,3 ̸= 0, one obtains
∂∆(y, x) = 3, which implies R3 ⊆ ∆(2,3). By p42,2 ̸= 0, one has R4 = ∆(2,2). It follows that
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R3 = ∆(2,3). By the distance-regularity of (X,R1) again, ∆ is a P -polynomial weakly
distance-regular digraph with the attached scheme

(X, {∆(0,0),∆(1,3),∆(1,4),∆(2,2),∆(2,3),∆(3,1),∆(3,2),∆(4,1)}).

This completes the proof of this lemma.

Lemma 13. If k1 > kg +1, then the number of Ri satisfying Ri ⊆ AΓ with 1 ⩽ i ⩽ g− 1
is at most two.

Proof. Suppose for the contrary that the number of Ri satisfying Ri ⊆ AΓ with 1 ⩽ i ⩽
g−1 is at least three. According to [5, Theorem 3.3] and Theorem 3, we have g ⩽ 8. Note
that X is the attached scheme of Γ. If (Ri ∪Rg−i)∩AΓ ̸= ∅ for some i ∈ {1, 2, . . . , g− 1}
with i ̸= g/2, by Fact 9, then Ri ⊆ AΓ and Rg−i∩AΓ = ∅, or Rg−i ⊆ AΓ and Ri∩AΓ = ∅
since Ri is non-symmetric. It follows that g ∈ {6, 7, 8}. Pick (xi, yi) ∈ Ri for 1 ⩽ i ⩽ 3.

Case 1. g = 7.
It is obviously that (R2 ∪R5)∩AΓ ̸= ∅. According to Facts 9 and 10, we may assume

R2 ⊆ AΓ. Hence, ∂Γ(x2, y2) = 1. Note that R3 ⊆ AΓ or R4 ⊆ AΓ. Suppose R3 ⊆ AΓ.
Then ∂Γ(x3, y3) = 1. By p42,2 ̸= 0 and p52,3 ̸= 0, one has ∂Γ(y3, x3) ⩽ 2 and ∂Γ(y2, x2) ⩽ 2.
Since R3 and R2 are non-symmetric, we have R3 = Γ(1,2) and R2 = Γ(1,2), a contradiction.
Therefore, R4 ⊆ AΓ and ∂Γ(y3, x3) = 1.

According to Lemma 8, one gets p32,2 ̸= 0, which implies ∂Γ(x3, y3) ⩽ 2, and so
R4 = Γ(1,2) since R4 is non-symmetric. Note that R1 ⊆ AΓ or R6 ⊆ AΓ. If R1 ⊆ AΓ, by
p51,4 ̸= 0, then R2 = Γ(1,2) since R2 is non-symmetric, which is impossible; if R6 ⊆ AΓ, by
p12,2 ̸= 0 from Lemma 7, then R6 = Γ(1,2) since R6 is non-symmetric, a contradiction.

Case 2. g = 6 or 8.
Case 2.1. (R2 ∪Rg−2) ∩ AΓ = ∅.
Note that g = 8 and R4 ⊆ AΓ. It is obvious that (R3 ∪ R5) ∩ AΓ ̸= ∅. By Facts 9

and 10, we may assume R3 ⊆ AΓ. Note that R1 ⊆ AΓ or R7 ⊆ AΓ. If R1 ⊆ AΓ, by
p51,4 ̸= 0 and p73,4 ̸= 0, then (x3, y3), (x1, y1) ∈ Γ(1,2), which implies R3 = R1 = Γ(1,2),
a contradiction; if R7 ⊆ AΓ, by p63,3 ̸= 0 and p23,7 = p61,5 ̸= 0 from Lemma 2 (i), then
R2 = Γ(2,2), contrary to the fact that R2 is non-symmetric.

Case 2.2. (R2 ∪Rg−2) ∩ AΓ ̸= ∅.
By Facts 9 and 10, we may assume R2 ⊆ AΓ. Hence, ∂Γ(x2, y2) = 1.
Suppose Rg/2 ⊈ AΓ. It is obvious that g = 8 and (R3 ∪ R5) ∩ AΓ ̸= ∅. If R3 ⊆ AΓ,

by p52,3 ̸= 0 and p63,3 ̸= 0, then (x3, y3), (x2, y2) ∈ Γ(1,2), which implies R3 = R2 = Γ(1,2), a
contradiction. Thus, R5 ⊆ AΓ, and so ∂Γ(y3, x3) = 1.

According to Lemma 8, one gets p32,2 ̸= 0, which implies ∂Γ(x3, y3) = 2. It follows
that R5 = Γ(1,2). Note that R1 ⊆ AΓ or R7 ⊆ AΓ. If R1 ⊆ AΓ, then R2 = Γ(1,2) since
p61,5 ̸= 0, which is impossible; if R7 ⊆ AΓ, by p12,2 ̸= 0 from Lemma 7, then R7 = Γ(1,2), a
contradiction.

Suppose Rg/2 ⊆ AΓ. Note that g ∈ {6, 8} and Rg/2 = Γ(1,1). Since pg−2
2,g−4 ̸= 0, we

have R2 = Γ(1,2). If Rg−1 ⊆ AΓ, by p12,2 ̸= 0 from Lemma 7, then Rg−1 = Γ(1,2), which is
impossible. Therefore, Rg−1 ⊈ AΓ.
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If g = 6, then R1 ⊆ AΓ, which implies R1 = Γ(1,2) since p52,3 ̸= 0, a contradiction.
Thus, g = 8. If R3 ⊆ AΓ or R5 ⊆ AΓ, by p52,3 ̸= 0 and p32,2 ̸= 0 from Lemma 8, then
(y3, x3) or (x3, y3) ∈ Γ(1,2), which implies R3 = Γ(1,2) or R5 = Γ(1,2), contrary to the fact
that R2 = Γ(1,2). Hence, R1 ⊆ AΓ. Since p31,2 ̸= 0 and p51,4 ̸= 0, one gets R3 = Γ(2,2),
contrary to the fact that R3 is non-symmetric.

Lemma 14. Suppose k1 > kg + 1. If Γ is not one of the digraphs in Theorem 1 (i) and
(iv), then g is even.

Proof. Suppose for the contrary that g is odd. According to [5, Theorem 3.3] and Theorem
3, we have g ⩽ 8. It follows that g = 3, 5 or 7. If g = 3, then Γ is one of the digraphs in
Theorem 1 (i) or (iv), a contradiction. Thus, g = 5 or 7.

Case 1. g = 5.
Since Γ is strongly connected and not one of the digraphs in Theorem 1 (i) or (iv), by

Fact 9, there exists i ∈ {2, 3} such that Ri ⊆ AΓ. Let (x, y) ∈ Ri. According to Lemma 2
(i) and Lemma 8, one gets p23,3 = p32,2 ̸= 0, and so (x, y) ∈ Γ(1,2), which imply Ri = Γ(1,2).

Let (u, v) ∈ R1. By Lemma 2 (i) and Lemma 7, we have p43,3 = p12,2 ̸= 0 and p42,2 =
p13,3 ̸= 0, which imply ∂Γ(v, u) ⩽ 2 and ∂Γ(u, v) ⩽ 2. Since R1 is non-symmetric, we obtain
(u, v) ∈ Γ(1,2) ∪ Γ(2,1), contrary to the fact that Ri = Γ(1,2).

Case 2. g = 7.
Since Γ is strongly connected and not one of the digraphs in Theorem 1 (i) or (iv), by

Fact 9, there exists i ∈ {2, 3, 4, 5} such that Ri ⊆ AΓ.
Suppose (R2 ∪ R5) ∩ AΓ ̸= ∅. According to Fact 10, we may assume R2 ⊆ AΓ. Let

(u, v) ∈ R3. By Lemma 8, one gets p32,2 ̸= 0, and so ∂Γ(u, v) ⩽ 2. Since p42,2 ̸= 0, one has
∂Γ(v, u) ⩽ 2. The fact that R3 is non-symmetric implies (u, v) ∈ Γ(1,2) ∪ Γ(2,1). It follows
that R3 = Γ(1,2) or R4 = Γ(1,2). Since p52,3 ̸= 0 and k5p

5
2,4 = k3p

3
2,2 ̸= 0 from Lemma 2 (i),

one has R2 = Γ(1,2), a contradiction.
Suppose (R2 ∪ R5) ∩ AΓ = ∅. It is obvious that (R3 ∪ R4) ∩ AΓ ̸= ∅. By Fact

10, we may assume R3 ⊆ AΓ. Let (u, v) ∈ R1. Since p63,3 ̸= 0 and p13,3 ̸= 0 from
Lemma 7, we get ∂Γ(v, u) ⩽ 2 and ∂Γ(u, v) ⩽ 2. Since R1 is non-symmetric, one obtains
(u, v) ∈ Γ(1,2) ∪ Γ(2,1), which implies R1 = Γ(1,2) or R6 = Γ(1,2). If R1 = Γ(1,2), by
p41,3 ̸= 0, then R3 = Γ(1,2), a contradiction. Then R6 = Γ(1,2). Since p23,6 = p51,4 ̸= 0 and
p56,6 = p21,1 ̸= 0 from Lemma 2 (i), we have R2 = Γ(2,2), contrary to the fact that R2 is
non-symmetric.

Lemma 15. Suppose k1 > kg + 1. If g ∈ {6, 8}, then (R3 ∪Rg−3 ∪Rg/2) ∩ AΓ = ∅.

Proof. Suppose not. By Facts 9 and 10, we may assume R3 ⊆ AΓ or Rg/2 ⊆ AΓ.
Without loss of generality, we may assume Ri ⊆ AΓ for some i < d/2. Let (xi, yi) ∈ Ri

for 1 ⩽ i ⩽ 3.
Case 1. g = 6.
Note that R3 ⊆ AΓ. Then R3 = Γ(1,1). Since Ri ⊆ AΓ for some i < d/2, from Lemma

13 and Fact 9, one has R1 ⊆ AΓ and R2 ∩ AΓ = ∅, or R1 ∩ AΓ = ∅ and R2 ⊆ AΓ. If
R1 ⊆ AΓ and R2 ∩ AΓ = ∅, by p21,1p

4
1,3 ̸= 0, then R2 = Γ(2,2), contrary to the fact that
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R2 is non-symmetric; if R1 ∩ AΓ = ∅ and R2 ⊆ AΓ, by p52,3p
1
2,2 ̸= 0 from Lemma 7, then

R1 = Γ(2,2), a contradiction.
Case 2. g = 8.
We divide it into two subcases according to whether R3 is a subset of AΓ.
Case 2.1. R3 ⊆ AΓ.
Since p63,3 ̸= 0, one has ∂Γ(y2, x2) ⩽ 2. If R6 ⊆ AΓ, by Lemma 2 (i) and Lemma 7,

then p76,6 = p12,2 ̸= 0 and p13,6 = p72,5 ̸= 0, which imply R1 = Γ(2,2) from Lemma 13, a
contradiction. Hence, ∂Γ(y2, x2) = 2, and so R6 ⊆ Γ2.

Since R2 is non-symmetric, we get ∂Γ(x2, y2) = 1 or ∂Γ(x2, y2) > 2. If ∂Γ(x2, y2) = 1,
then R2 = Γ(1,2), and so R3 = Γ(1,2) since p52,3 ̸= 0, a contradiction. Hence, ∂Γ(x2, y2) > 2.
By Lemma 2 (i) and Lemma 8, one has k2p

2
3,6 = k3p

3
2,2 ̸= 0. Since R6 ⊆ Γ2, we get

∂Γ(x2, y2) = 3, and so R2 = Γ(3,2).
By Lemma 7, we obtain p13,3 ̸= 0, and so ∂Γ(x1, y1) ⩽ 2. If ∂Γ(x1, y1) = 1, then R1 ⊆

AΓ, which implies ∂Γ(x2, y2) = 2 since p21,1 ̸= 0, contrary to the fact that ∂Γ(x2, y2) = 3.
Thus, ∂Γ(x1, y1) = 2, and so R1 ⊆ Γ2.

Since R1 is non-symmetric, we have ∂Γ(y1, x1) = 1 or ∂Γ(y1, x1) > 2. Lemma 2 (i)
implies p23,7 = p61,5 ̸= 0. If ∂Γ(y1, x1) = 1, then R7 ⊆ AΓ, which implies ∂Γ(x2, y2) = 2,
a contradiction. Therefore, ∂Γ(y1, x1) > 2. By Lemma 2 (i) and Lemma 7, one has
p73,6 = p12,5 ̸= 0. Since R6 = Γ(2,3), we obtain ∂Γ(y1, x1) = 3, and so R1 = Γ(2,3), a
contradiction.

Case 2.2. R3 ⊈ AΓ.
According to Fact 9, we have R3∩AΓ = ∅. It follows that R4 ⊆ AΓ, and so R4 = Γ(1,1).

Since Ri ⊆ AΓ for some i < d/2, from Lemma 13 and Fact 9, one has R1 ⊆ AΓ and
R2 ∩ AΓ = ∅, or R1 ∩ AΓ = ∅ and R2 ⊆ AΓ.

Suppose R1 ⊆ AΓ and R2 ∩ AΓ = ∅. Since p21,1p
5
1,4 ̸= 0, we have ∂Γ(x2, y2) =

∂Γ(y3, x3) = 2 from Lemma 13. It follows that R2 ⊆ Γ2 and R5 ⊆ Γ2. Since R2 and
R3 are non-symmetric, one gets ∂Γ(y2, x2) > 2 and ∂Γ(x3, y3) > 2 from Lemma 13. The
fact that p62,4p

3
1,2 ̸= 0 implies ∂Γ(y2, x2) = ∂Γ(x3, y3) = 3. Then R2 = R5 = Γ(2,3), a

contradiction.
Suppose R1 ∩AΓ = ∅ and R2 ⊆ AΓ. In view of Lemma 8, we obtain p12,2p

3
2,2 ̸= 0, and

so ∂Γ(x1, y1) = ∂Γ(x3, y3) = 2. It follows that R1 ⊆ Γ2 and R3 ⊆ Γ2. Since R1 and R3

are non-symmetric, one has ∂Γ(y1, x1) > 2 and ∂Γ(y3, x3) > 2 from Lemma 13. The fact
that p73,4p

5
1,4 ̸= 0 implies ∂Γ(y1, x1) = ∂Γ(y3, x3) = 3, and so R1 = R3 = Γ(2,3), which is

impossible.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. In view of Lemma 12, each digraph in Theorem 1 (i)–(vi) is a weakly
distance-regular digraph with X as its attached scheme. Assume the contrary, namely, Γ
is not isomorphic to one of the digraphs in Theorem 1 (i)–(vi).

First we consider the case k1 = kg+1. Suppose d = g−1. Then k1 = 1. Since (X,R1)
is distance-regular, (X,R1) is a directed cycle, which implies ki = 1 for 0 ⩽ i ⩽ d. It
follows from [9, Theorem 1.2] that Γ is isomorphic to one of the digraphs in Theorem 1
(i) and (iii), a contradiction. Suppose d = g. Then (X,R1) is a lexicographic product of a
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directed cycle ∆ of length g and diameter g− 1 by an empty graph. It follows that X(∆)
is a P -polynomial non-symmetric association scheme. According to [8, Theorem 2.1], Γ
is a lexicographic product of Γ′ by an empty graph or a lexicographic product of Γ′ by
a complete graph, where Γ′ is a weakly distance-regular digraph with attached scheme
X(∆). By the case of d = g − 1, Γ′ is isomorphic to one of the digraphs in Theorem 1 (i)
and (iii). Therefore, Γ is isomorphic to one of the digraphs in Theorem 1 (i), (iii), (iv)
and (vi), which is impossible.

Now, we consider the case that k1 ̸= kg+1. In view of Theorem 3, one gets k1 > kg+1.
By Facts 9 and 10, we may assume Ri ⊆ AΓ for some i < d/2. According to [5, Theorem
3.3] and Theorem 3, we have g ⩽ 8. It follows from Lemma 14 that g ∈ {4, 6, 8}. If g = 4,
then Γ is one of the digraphs in Theorem 1 (i), (iii) and (iv) since X is non-symmetric, a
contradiction. Thus, g = 6 or 8.

Case 1. g = 6.
Note that Ri ⊆ AΓ for some i < d/2 and Γ is not one of the digraphs in Theorem

1 (i)–(vi). By Lemma 15 and Fact 9, we have R1 ∪ R4 ⊆ AΓ or R2 ∪ R5 ⊆ AΓ. If
R1 ∪R4 ⊆ AΓ, then R1 = R4 = Γ(1,2) since p51,4p

2
1,1 ̸= 0; if R2 ∪R5 ⊆ AΓ, by p42,2 ̸= 0 and

p12,2 ̸= 0 from Lemma 7, then R2 = R5 = Γ(1,2), a contradiction.
Case 2. g = 8.
Note that Ri ⊆ AΓ for some i < d/2 and Γ is not one of the digraphs in Theorem 1

(i)–(vi). By Lemmas 13, 15 and Fact 9, we get R1 ⊆ AΓ and R2∩AΓ = ∅, or R1∩AΓ = ∅
and R2 ⊆ AΓ. If R1 ⊆ AΓ and R2 ∩ AΓ = ∅, from Lemma 15, then R6 ⊆ AΓ, which
implies R1 = Γ(1,2) and R6 = Γ(1,2) since p71,6p

2
1,1 ̸= 0, a contradiction. Hence, R1∩AΓ = ∅

and R2 ⊆ AΓ. By Lemma 15, we have R7 ⊆ AΓ. In view of Lemma 2 (i), one gets
p67,7 = p21,1 ̸= 0, and so R2 = Γ(1,2). According to Lemma 7, we have p12,2 ̸= 0, which
implies R7 = Γ(1,2), a contradiction.
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