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Abstract

Let G be a graph and let α be a real number in [0, 1]. In 2017, Nikiforov proposed
the Aα-matrix for G as Aα(G) = αD(G) + (1−α)A(G), where A(G) and D(G) are
the adjacency matrix and the degree diagonal matrix of G, respectively. The largest
eigenvalue of Aα(G) is called the Aα-index of G. The famous Erdős-Sós conjecture
states that every n-vertex graph with more than 1

2(k − 1)n edges must contain
every tree on k + 1 vertices. In this paper, we consider an Aα-spectral version of
this conjecture. For n > k, let Sn,k be the join of a clique on k vertices with an
independent set of n− k vertices and denote by S+

n,k the graph obtained from Sn,k

by adding one edge. We show that for fixed k > 2, 0 < α < 1 and n > 88k2(k+1)2

α4(1−α) ,

if a graph on n vertices has Aα-index at least as large as Sn,k (resp. S+
n,k), then it

contains all trees on 2k+ 2 (resp. 2k+ 3) vertices, or it is isomorphic to Sn,k (resp.
S+
n,k). These extend the results of Cioabǎ, Desai and Tait (2022), in which they

confirmed the adjacency spectral version of the Erdős-Sós conjecture.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In this paper, we consider only simple and finite graphs. Unless otherwise stated, we
follow the traditional notation and terminology (see, for instance, Bollobás [2], Godsil
and Royle [17]).
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Let F be a fixed graph. We say that G is F -free if it does not contain F as a subgraph.
As usual, let Pn, Cn and Kn be the path, the cycle and the complete graph on n vertices,
respectively. And let Ka,b be the complete bipartite graph with the sizes of partite sets
being a and b, respectively.

In 2017, Nikiforov [29] proposed the Aα-matrix of G, which is a convex combination
of D(G) and A(G), i.e.,

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1],

where A(G) and D(G) are, respectively, the adjacency matrix and the degree diagonal
matrix of G (see below). It is obvious that A0(G) = A(G), A 1

2
(G) = 1

2
Q(G) and A1(G) =

D(G), where Q(G) = D(G) + A(G) is the signless Laplacian matrix of G. The largest
eigenvalue of Aα(G) is called the Aα-index of G, denoted by λα(G) as usual. The A0-index
(resp. twice of A 1

2
-index) of G is usually referred to as the index (resp. Q-index ) of G,

denoted by ρ(G) (resp. q(G)).
In 2013, Füredi and Simonovits [15] posed the following problem:

Problem 1 (Füredi-Simonovits type problem). Assume U is a family of graphs and G
is in U. For a specific pair of parameters (τ, υ) on G, our aim is to maximize the second
parameter υ under the condition that G is F -free and its first parameter τ is given.

For a simple graph G = (V (G), E(G)), we use n := |V (G)| and m := |E(G)| to denote
the order and the size of G, respectively. With no confusion, we also use the size to
denote the cardinality of a set. If the pair of parameters above are the order and size of a
graph, i.e., (τ, υ) = (n,m), then the Füredi-Simonovits type problem is just the classical
Turán type problem: determine the maximum number of edges, ex(n, F ), of an n-vertex
F -free graph. The value ex(n, F ) is called the Turán number of F. The research for the
Turán number attracts much attention, and it has become to be one of the most attractive
fundamental problems in extremal graph theory (see [15, 28] for surveys).

For each non-bipartite graph F, the celebrated Erdős-Stone-Simonovits theorem [11,
12] determines an asymptotic formula for ex(n, F ). It is natural and interesting for us to
study the Turán number of a bipartite graph. For more advances in this topic, readers
may refer to the survey [15]. In particular, let T be a tree on k + 1 vertices, considering
the disjoint copies of Kk shows that ex(n, T ) > bn

k
c
(
k
2

)
.

The following Erdős-Sós conjecture predicts that ex(n, T ) 6 1
2
(k − 1)n for all trees T

of order k + 1.

Conjecture 2 (Erdős-Sós [10]). Let G be an n-vertex graph of size m. If m > 1
2
(k− 1)n,

then G contains all trees of order k + 1.

The Erdős-Sós conjecture is still open, however it has been confirmed in some special
cases. For example, the conjecture is true when G is C4-free [31], Pk+5-free [9]; when
k is large compared to n [42, 32, 37, 35, 38, 19]; and for some special classes of trees
[13, 14, 16, 23].

In Problem 1, if one lets (τ, υ) = (n, ρ(G)), i.e., the pair of parameters are the order
and the index on U, then it becomes to be the spectral Turán type problem (also known
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as Brualdi-Solheid-Turán type problem, see [3]): what is the maximal index of an F -free
graph of order n? Over the past decade, much attention has been paid to the Brualdi-
Solheid-Turán type problem. For more details, one may consult the references, such as
for F = Kr [24, 36], F = Ks,t [1, 24, 26], F = Pk [27], F = C2k [25, 41, 39, 8], whereas
when F is a Kr-minor, or Ks,t-minor, we may consult [33, 40].

For two graphs G and H, we define G∪H to be their disjoint union. The join G∨H
is the graph obtained from G ∪ H by joining every vertex of G with every vertex of H.
Then define Sn,k = Kk ∨ (n− k)K1 and S+

n,k = Kk ∨ (K2 ∪ (n− k − 2)K1).
In 2010, Nikiforov [27] posed a conjecture, which is an adjacency spectral version of

Erdős-Sós conjecture.

Conjecture 3 (Nikiforov [27]). Let k > 2 and G be a graph of sufficiently large order n.

(a) If ρ(G) > ρ(Sn,k), then G contains all trees of order 2k + 2 unless G = Sn,k;

(b) If ρ(G) > ρ(S+
n,k), then G contains all trees of order 2k + 3 unless G = S+

n,k.

There are many results involving Conjecture 3, see [21, 22, 27]. Very recently, Con-
jecture 3 was completely resolved by Cioabǎ, Desai and Tait [7].

In this paper, we consider an Aα-spectral version of Erdős-Sós conjecture for α ∈ (0, 1),
which extends the main results of Cioabǎ, Desai and Tait [7]. Our main results can be
stated as:

Theorem 4. Let 0 < α < 1, k > 2, and G be a graph of order n > 88k2(k+1)2

α4(1−α) .

(a) If λα(G) > λα(Sn,k), then G contains all trees of order 2k + 2 unless G = Sn,k;

(b) If λα(G) > λα(S+
n,k), then G contains all trees of order 2k + 3 unless G = S+

n,k.

Over the past decade, the signless Laplacian spectral extremal problems were studied
extensively. For more details, one may refer to [4, 5, 6, 20, 30] and the references therein.
Taking α = 1

2
in Theorem 4 resolves a signless Laplacian spectral version of Erdős-Sós

conjecture.

Theorem 5. Let k > 2 and G be a graph of order n > 2816k2(k + 1)2.

(a) If q(G) > q(Sn,k), then G contains all trees of order 2k + 2 unless G = Sn,k;

(b) If q(G) > q(S+
n,k), then G contains all trees of order 2k + 3 unless G = S+

n,k.

Our paper is organized as follows. In the remainder of this section, we introduce some
necessary notation and terminology. In Section 2, we give some necessary preliminaries.
In Section 3, we progressively refine the structure of our extremal graphs Gn,k,α, G

′
n,k,α

(see below) and complete the proof of Theorem 4, finally. Some concluding remarks are
given in the last section.

For two disjoint vertex subsets V1 and V2 of V (G), denote by G[V1] a subgraph of G
induced on V1 and G[V1, V2] a subgraph of G with one end vertex in V1 and the other in
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V2. Then the number of edges of G[V1] and G[V1, V2] can be abbreviated to e(V1) and
e(V1, V2), respectively. The neighborhood of a vertex v (in a graph G) is denoted by N(v).
The degree d(v) of a vertex v (in a graph G) is the number of edges incident with it. Then
the maximum degree of G is denoted by ∆(G).

We say that two vertices u and v in G are adjacent (or neighbours) if they are joined
by an edge and we write it as u ∼ v. Then the adjacency matrix of G is defined as an
n× n (0, 1)-matrix A(G) = (aij) with aij = 1 if and only if vi ∼ vj. The degree diagonal
matrix of G is defined as an n× n diagonal matrix D(G) = diag(d(v1), . . . , d(vn)).

Noting that Aα(G) is real symmetric, its eigenvalues are real. If G is connected and
α 6= 1, then Aα(G) is a non-negative and irreducible matrix. From Perron-Frobenius
theory, there exists a unique positive eigenvector of Aα(G) corresponding to λα(G) for
α ∈ [0, 1), and we call this vector the Perron vector of Aα(G).

For k > 2, let Tk (resp. T ′k ) denote the set of all trees of order 2k + 2 (resp. 2k + 3),
and let Gn,k (resp. G ′n,k) denote the set of graphs of order n not containing at least one
tree in Tk (resp. T ′k ). For α ∈ (0, 1), let Gn,k,α (resp. G′n,k,α) be a graph with maximum
Aα-index among all graphs in Gn,k (resp. G ′n,k).

2 Preliminaries

In this section we give some preliminary results, which will be used to prove our main
results.

The following upper bound for the Turán number of trees is well-known.

Lemma 6 ([7]). For all trees T of order t, one has

ex(n, T ) 6 (t− 2)n.

Lemma 7 ([7]). For k > 2, the graphs Kk+1,2k+1 and K+
k,2k+1 := kK1∨ ((2k− 1)K1∪K2)

contain all trees in Tk; the graphs Kk+1,2k+2, K
′
k,2k+2 := kK1 ∨ ((2k − 1)K1 ∪ P3) and

K ′′k,2k+2 := kK1 ∨ ((2k − 2)K1 ∪ 2K2) contain all trees in T ′k .

Lemma 8 ([29]). For 0 6 α 6 1, if G is a graph of order n, then λα(G) > α∆(G).

Let M be an n×n real symmetric matrix and let π : V = V1∪V2∪· · ·∪Vs be a partition
of V = {1, 2, . . . , n}. Then corresponding to the partition π, M can be partitioned into
the following block matrix:

M =


M11 M12 · · · M1s

M21 M22 · · · M2s
...

...
. . .

...
Ms1 Ms2 · · · Mss

 .

The quotient matrix of M with respect to π is the matrix Mπ = (bij)s×s, where bij is the
average row sum of the block Mij. The partition π is said to be equitable if each block
Mij has constant row sums for i, j ∈ {1, 2, . . . , s}.
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Lemma 9 ([18]). Let M be a real symmetric matrix and let Mπ be an equitable quotient
matrix of M . Then the eigenvalues of Mπ are also the eigenvalues of M. Furthermore, if
M is nonnegative and irreducible, then λ(M) = λ(Mπ), where λ(M) and λ(Mπ) are the
largest eigenvalues of M and Mπ, respectively.

Recall that Gn,k,α and G′n,k,α are the extremal graphs with the maximum Aα-index
among all graphs in Gn,k and G ′n,k, respectively, where α ∈ (0, 1). The obvious fact
Gn,k ⊆ G ′n,k implies

λα(G′n,k,α) > λα(Gn,k,α). (1)

Lemma 10. Let 0 < α < 1, k > 2, and n > 9k2

α4 . Then

λα(Gn,k,α) > max

{
αn+

k

α
−k−1− 2k(k + 1)

α3n− α2(k + 1 + α) + αk
, αn+

k

α
−k−1−α, α(n−1)

}
.

Proof. As Sn,k does not contain P2k+2 (in Tk), one has Sn,k ∈ Gn,k. Then the definition of
Gn,k,α implies

λα(Gn,k,α) > λα(Sn,k). (2)

On the other hand, by Lemma 8, one has

λα(Sn,k) > α∆(Sn,k) = α(n− 1). (3)

Furthermore, let V1 = {v ∈ V (Sn,k)|dSn,k(v) = n − 1} and V2 = V (Sn,k)\V1. Considering
the partition V (Sn,k) = V1∪V2, we have the following equitable quotient matrix of Aα(Sn,k)

B =

(
k − 1 + α(n− k) (1− α)(n− k)

(1− α)k αk

)
.

According to Lemma 9, one has λα(Sn,k) = λ(B), the largest eigenvalue of B, i.e.,

λα(Sn,k) =
αn+ k − 1 +

√
α2n2 + (4k − 6αk − 2α)n+ (4α− 3)k2 + (4α− 2)k + 1

2
.

Together with n > 9k2

α4 , one has

λα(Sn,k) > αn+
k

α
− k − 1− 2k(k + 1)

α3n− α2(k + 1 + α) + αk
> αn+

k

α
− k − 1− α. (4)

Then (2)-(4) give us

λα(Gn,k,α) > max

{
αn+

k

α
−k−1− 2k(k + 1)

α3n− α2(k + 1 + α) + αk
, αn+

k

α
−k−1−α, α(n−1)

}
.

This completes the proof.
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3 The proof of Theorem 4

In this section, in order to prove Theorem 4, we need the following preliminary.

Lemma 11. Let G be a connected graph and let y be a Perron vector of Aα(G). Then,
for each v ∈ V (G), one has

λ2α(G)yv =αd(v)λα(G)yv + α(1− α)
∑
u∼v

d(u)yu + (1− α)2
∑
w∼v

∑
u∼w

yu. (5)

Proof. By the definition of Aα(G) one has

A2
α(G) =[αD(G) + (1− α)A(G)]2

=α2D2(G) + α(1− α)D(G)A(G) + α(1− α)A(G)D(G) + (1− α)2A2(G).

Based on Aα(G)y = λα(G)y, for each v ∈ V (G), one has

λα(G)yv = (Aα(G)y)v = αd(v)yv + (1− α)
∑
u∼v

yu (6)

and

λ2α(G)yv =(A2
α(G)y)v

=(α2D2(G)y)v + (α(1− α)D(G)A(G)y)v + (α(1− α)A(G)D(G)y)v

+ ((1− α)2A2(G)y)v

=α2d2(v)yv + α(1− α)d(v)
∑
u∼v

yu + α(1− α)
∑
u∼v

d(u)yu + (1− α)2
∑
w∼v

∑
u∼w

yu

=αd(v)

[
αd(v)yv + (1− α)

∑
u∼v

yu

]
+ α(1− α)

∑
u∼v

d(u)yu + (1− α)2
∑
w∼v

∑
u∼w

yu

=αd(v)λα(G)yv + α(1− α)
∑
u∼v

d(u)yu + (1− α)2
∑
w∼v

∑
u∼w

yu. (by (6))

This completes the proof.

In what follows, all the lemmas in this section are applied to both Gn,k,α and G′n,k,α.
For brevity, we write all the proofs only for G′n,k,α. The same results for Gn,k,α follow by
replacing G′n,k,α with Gn,k,α in the proofs.

Fix 0 < α < 1, k > 2 and n > 88k2(k+1)2

α4(1−α) . Denote by λα := λα(G′n,k,α), and let x be

an eigenvector corresponding to λα whose maximum entry is equal to 1 (here x is the
Perron vector of Aα(G′n,k,α) if G′n,k,α is connected). Further, let z be a vertex with xz = 1

(if there are at least two such vertices, then we choose one arbitrarily). Take σ = 1
11k2

and let V := V (G′n,k,α). Then let L be the set of vertices in V having “large” eigenvector
entries, and let S = V \L be the set of vertices in V having “small” eigenvector entries,
i.e.,

L = {v ∈ V |xv > σ}, S = {v ∈ V |xv < σ}.
The following lemma shows that our extremal graph G′n,k,α is connected, and so x is

positive.
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Lemma 12. The graph G′n,k,α is connected.

Proof. Suppose to the contrary that G′n,k,α has t > 2 components G1, . . . , Gt. Then let
G1 be a component of G such that λα = λα(G1). Let y be the Perron vector of Aα(G1)
whose maximum entry is equal to 1, and set x = (yT ,0T )T , where 0 is a zero-vector of
dimension n− |V (G1)|. It is easy to see that x is an eigenvector corresponding to λα. So
z ∈ V (G1). According to Aα(G′n,k,α)x = λαx, one has

λα = λαxz = αd(z)xz + (1− α)
∑
u∼z

xu = αd(z) + (1− α)
∑
u∼z

xu 6 d(z).

Then by (1) and Lemma 10,
d(z) > λα > α(n− 1).

Take a vertex u ∈ V (G2). Define a graph Ĝ′n,k,α which is obtained from G′n,k,α by
deleting all edges adjacent to u and adding the edge uz. Then G1 is a proper subgraph of
some component of Ĝ′n,k,α, and so by the Perron-Frobenius theory,

λα = λα(G1) < λα(Ĝ′n,k,α). (7)

On the other hand, we have the following claim.

Claim 13. Ĝ′n,k,α does not contain any trees in T ′k which are not contained in G′n,k,α.

Proof of Claim 13. Suppose to the contrary that there exists a tree T ∈ T ′k such that
T is contained in Ĝ′n,k,α but is not contained in G′n,k,α. Then uz is a pendant edge of T.
As T is a tree on 2k + 3 vertices and dĜ′n,k,α

(z) > dG′n,k,α(z) > α(n − 1), one see that

α(n− 1)− (2k + 1) > 1 for n > 88k2(k+1)2

α4(1−α) . Hence, there exists at least one vertex, say w,

not in V (T ) such that w ∼ z. Thus one finds that T − zu+ zw is an isomorphic copy of
T in G′n,k,α, a contradiction.

Now, by Claim 13 we see Ĝ′n,k,α ∈ G ′n,k, and so (7) gives a contradiction to the choice
of G′n,k,α. Therefore, G′n,k,α is connected.

Lemma 14. For all v ∈ L, one has d(v) >
(

1− 1
2(k+1)

)
n.

Proof. Suppose to the contrary that there is a vertex v ∈ L such that d(v) < (1− 1
2(k+1)

)n.

Applying (5) to v gives

λ2αxv =αd(v)λαxv + α(1− α)
∑
u∼v

d(u)xu + (1− α)2
∑
w∼v

∑
u∼w

xu

6αd(v)λαxv + 2α(1− α)m(G′n,k,α) + 2(1− α)2m(G′n,k,α). (8)

Note that there exists a tree T in T ′k such that G′n,k,α is T -free. By Lemma 6, one has

m(G′n,k,α) 6 ex(n, T ) 6 (2k + 1)n. (9)
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Then (8) implies

λα(λα − αd(v))xv 6 2(1− α)(2k + 1)n. (10)

In view of (1), Lemma 10 and d(v) < (1− 1
2(k+1)

)n, we obtain

λα(λα − αd(v))xv > α(n− 1)

[
α(n− 1)− α

(
1− 1

2(k + 1)

)
n

]
xv.

Together with (10) and xv > σ for all v ∈ L, we obtain

α2σn2

2(k + 1)
−
[
2(1− α)(2k + 1) + α2σ +

α2σ

2(k + 1)

]
n+ α2σ < 0,

a contradiction for n > 88k2(k+1)2

α4(1−α) > 8(k+1)2

σα2 .

For convenience, let

f := αn+
k

α
− k − 1− α with 0 < α < 1, k > 2 and n > 0. (11)

Lemma 15. |L| = k.

Proof. If |L| > k + 1, then there is a subset L′ of L such that |L′| = k + 1. Let N
be the set of common neighbors of the vertices in L′. From Lemma 14, we see that

|N | > (k + 1)(1− 1
2(k+1)

)n− kn = n
2
> 2k + 2 for n > 88k2(k+1)2

α4(1−α) > 4k + 4. Now the graph

G′n,k,α[L′, N ] contains Kk+1,2k+2, that is to say, Kk+1,2k+2 ⊆ G′n,k,α. By Lemma 7, G′n,k,α
contains all trees in T ′k , a contradiction.

In what follows, we show that |L| 6 k − 1 will never happen. Recall that z is the
vertex with xz = 1. If |L| 6 k − 1, then applying (5) to the vertex z gives

λ2α = λ2αxz =αd(z)λαxz + α(1− α)
∑
u∼z

d(u)xu + (1− α)2
∑
w∼z

∑
u∼w

xu

=αλαd(z) + α(1− α)

∑
u∼z
u∈L

d(u)xu +
∑
u∼z
u∈S

d(u)xu


+ (1− α)2

∑
w∼z
w∈S

∑
u∼w
u∈S

xu +
∑
w∼z
w∈S

∑
u∼w
u∈L

xu +
∑
w∼z
w∈L

∑
u∼w
u∈S

xu +
∑
w∼z
w∈L

∑
u∼w
u∈L

xu


6αλαd(z) + α(1− α)[(k − 2)n+ 2m(G′n,k,α)σ]

+ (1− α)2[2m(G′n,k,α)σ + (k − 1)n+ (k − 2)nσ + 2e(L)].

Then, by (9) one has

λα(λα − αd(z)) 6 [(1− α)k − 1 + α2]n+ (1− α)5knσ + (1− α)2(k − 1)(k − 2). (12)
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In view of Lemma 10, (1), (11) and d(z) 6 n− 1, we obtain

λα(λα − αd(z)) > f

[
f + α− 2k(k + 1)

α2f
− α(n− 1)

]
.

Together with (12), we obtain

[α2 − (k + 1)α + k]n+

(
k

α
− k − 1− α

)(
k

α
− k − 1 + α

)
− 2k(k + 1)

α2

6[α2 − (k + 1)α + k − 1 + α]n+ (1− α)5knσ + (1− α)2(k − 1)(k − 2),

which implies

(1−α)(1−5kσ)n 6
2k(k + 1)

α2
−
(
k

α
−k−1−α

)(
k

α
−k−1+α

)
+(1−α)2(k−1)(k−2) <

4k2

α2
,

a contradiction to n > 88k2(k+1)2

α4(1−α) > 4k2

α2(1−α)(1−5kσ) .
This completes the proof.

By Lemmas 14 and 15, we have

|L| = k and d(v) >

(
1− 1

2(k + 1)

)
n >

(
1− 1

2k

)
n for all v ∈ L.

Let N be the set of common neighbors of the vertices in L and V ′ = V \(N ∪ L). Then
|N | > k(1− 1

2k
)n− (k − 1)n = n

2
, and so |V ′| 6 n

2
. In order to show that V ′ = ∅, (and so

G′n,k,α contains Kk,n−k as a spanning subgraph), we need the following lemma.

Lemma 16. It holds that xv > 1− 1
k

for all v ∈ L.

Proof. Suppose to the contrary that there is a vertex v ∈ L such that xv < 1− 1
k
. Recall

that z is the vertex with xz = 1 > 1− 1
k
. Therefore, v 6= z. Applying (5) to the vertex z

gives

λ2α =λ2αxz = αd(z)λαxz + α(1− α)
∑
u∼z

d(u)xu + (1− α)2
∑
w∼z

∑
u∼w

xu

6αλαd(z) + α(1− α)

 ∑
u∼z

u∈L\{v}

d(u)xu + d(v)xv +
∑
u∼z
u∈S

d(u)xu


+ (1− α)2

∑
w∼z
w∈S

∑
u∼w
u∈S

xu +
∑
w∼z
w∈S

∑
u∼w
u=v

xu +
∑
w∼z
w∈S

∑
u∼w

u∈L\{v}

xu +
∑
w∼z
w∈L

∑
u∼w
u∈S

xu +
∑
w∼z
w∈L

∑
u∼w
u∈L

xu


6αλαd(z) + α(1− α)

[
(k − 2)n+ d(v)xv + 2m(G′n,k,α)σ

]
+ (1− α)2

[
2m(G′n,k,α)σ

+d(v)xv + (k − 1)n+ (k − 1)nσ + 2e(L)] .
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In view of (9), d(v) < n and xv < 1− 1
k
, we obtain

λα(λα − αd(z)) <[(1− α)k + α2 − 1]n+ (1− α)(5k + 1)nσ

+ (1− α)2k(k − 1) + (1− α)n(1− 1

k
). (13)

In view of Lemma 10, (1), (11) and d(z) 6 n− 1, we obtain

λα(λα − αd(z)) > f

[
f + α− 2k(k + 1)

α2f
− α(n− 1)

]
.

Together with (13), we have

[α2 − (k + 1)α + k]n+

(
k

α
− k − 1− α

)(
k

α
− k − 1 + α

)
− 2k(k + 1)

α2

<[(1− α)k + α2 − 1]n+ (1− α)(5k + 1)nσ + (1− α)2k(k − 1) + (1− α)n

(
1− 1

k

)
,

i.e., (
1

k
− (5k + 1)σ

)
(1− α)n <

2k(k + 1)

α2
+ (1− α)2k(k − 1)

−
(
k

α
− k − 1− α

)(
k

α
− k − 1 + α

)
<

4k2

α2
,

a contradiction to n > 88k2(k+1)2

α4(1−α) > 4k2

α2(1−α)[ 1
k
−(5k+1)σ]

. Therefore, for all v ∈ L, we have

xv > 1− 1
k
.

Lemma 17. The set V ′ is empty, and so G′n,k,α contains Kk,n−k as a spanning subgraph.

Proof. Suppose to the contrary that V ′ 6= ∅. Then the following (a)-(d) hold.

(a) For each v ∈ V ′, e({v}, L) 6 k − 1. Otherwise, v is a common neighbor of the
vertices in L, and so v ∈ N, a contradiction.

(b) For each v ∈ V ′, e({v}, N) 6 2k+1.Otherwise, G′n,k,α[L∪{v}, N ] containsKk+1,2k+2,
and so by Lemma 7, G′n,k,α contains all trees in T ′k , a contradiction.

(c) The number of edges of G′n,k,α[V ′] satisfies e(V ′) 6 (2k + 1)|V ′|. Otherwise, by
Lemma 6, G′n,k,α[V ′] contains all trees in T ′k , and so G′n,k,α contains all trees in T ′k ,
a contradiction.

(d) There is a vertex v ∈ V ′ satisfying dG′n,k,α[V ′](v) 6 5k. Otherwise, 2e(V ′) > 5k|V ′|,
and so e(V ′) > 5

2
k|V ′| > (2k + 1)|V ′|, a contradiction to (c).
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According to (d), we can choose a vertex v ∈ V ′ such that dG′n,k,α[V ′](v) 6 5k. Then

construct a new graph Ĝ′n,k,α, which is obtained from G′n,k,α by deleting all the edges

incident to v and then adding the edges uv for all u ∈ L. We see that Ĝ′n,k,α does not
contain any trees in T ′k which are not contained in G′n,k,α.

Suppose to the contrary that there is a tree T ∈ T ′k such that T is contained in Ĝ′n,k,α
but is not contained in G′n,k,α. Then T contains v. As N is the set of common neighbors

of the vertices in L, and |N | > n
2
> 2k + 3 = |V (T )| for n > 88k2(k+1)2

α4(1−α) . By replacing v

with a vertex w in N\V (T ), one finds an isomorphic copy of T in G′n,k,α, a contradiction.

This implies Ĝ′n,k,α ∈ G ′n,k.
Furthermore, by the Courant-Fischer theorem (see [18, Section 2.6]), one has

λα(Ĝ′n,k,α)− λα >
xT (Aα(Ĝ′n,k,α)−Aα(G′n,k,α))x

xTx

=

∑
u∈L[αx2

u + 2(1− α)xuxv + αx2
v]−

∑
u∼v[αx2

u + 2(1− α)xuxv + αx2
v]

xTx
.

Then

[λα(Ĝ′n,k,α)−λα]xTx >
∑
u�v
u∈L

[αx2
u + 2(1− α)xuxv + αx2

v]

−
∑
u∼v
u∈N

[αx2
u + 2(1− α)xuxv + αx2

v]−
∑
u∼v
u∈V ′

[αx2
u + 2(1− α)xuxv + αx2

v]. (14)

In view of Lemma 16 and (a), we have∑
u�v
u∈L

[αx2
u + 2(1− α)xuxv + αx2

v] > α(1− 1

k
)2 + 2(1− α)(1− 1

k
)xv + αx2

v. (15)

In view of (b), dG′n,k,α[V ′](v) 6 5k and xu < σ for each u ∈ V ′ ∪N , we obtain∑
u∼v
u∈N

[αx2
u+2(1−α)xuxv+αx2

v]+
∑
u∼v
u∈V ′

[αx2
u+2(1−α)xuxv+αx2

v] < 8k[ασ2+2(1−α)σxv+ασ2].

Together with (14) and (15), we have

[λα(Ĝ′n,k,α)− λα]xTx > α[(1− 1

k
)2 − 16kσ2] + 2(1− α)(1− 1

k
− 8kσ)xv.

In view of k > 2, σ = 1
11k2

and xv > 0, we obtain λα(Ĝ′n,k,α) > λα. This gives a
contradiction to the choice of G′n,k,α.

Therefore, V ′ = ∅, and so G′n,k,α contains Kk,n−k as a spanning subgraph.

Proof of Theorem 4. It follows from Lemma 17 that both Gn,k,α and G′n,k,α contain Kk,n−k
as a spanning subgraph, where the part on k vertices is the set L and the part on n− k
vertices is the set N. By Lemma 7, e(N) = 0 in Gn,k,α and e(N) 6 1 in G′n,k,α. Therefore,
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Gn,k,α ⊆ Sn,k and G′n,k,α ⊆ S+
n,k. By the Perron-Frobenius theory, one has λα(Gn,k,α) 6

λα(Sn,k), λα(G′n,k,α) 6 λα(S+
n,k). And λα(Gn,k,α) = λα(Sn,k) if and only if Gn,k,α

∼= Sn,k,

λα(G′n,k,α) = λα(S+
n,k) if and only if G′n,k,α

∼= S+
n,k. On the other hand, Sn,k ∈ Gn,k and

S+
n,k ∈ G ′n,k imply Gn,k,α

∼= Sn,k and G′n,k,α
∼= S+

n,k. This completes the proof of Theorem
4.

4 Concluding remarks

In this paper, we confirm the Aα spectral version of the Erdős-Sós conjecture. Conse-
quently, the signless Laplacian spectral version of the Erdős-Sós conjecture is also con-
firmed (see Theorem 5). In 2017, Nikiforov [29] posed the following two problems:

Problem 18 ([29]). Given a graph F, what is the maximum λα(G) of a graph G of order
n, with no subgraph isomorphic to F?

Problem 19 ([29]). Solve Problem 18 if F is a path or a cycle of given order.

Nikiforov [29] solved Problem 18 when F is a complete graph; Tian, Chen and Cui
[34] solved Problem 18 and so Problem 19 when F is C4 for 1

2
6 α < 1, n > 10 and when

F is C5 for 0 6 α < 1
2
, n > 11

1−2α + 4.

As Sn,k (resp. S+
n,k) has no subgraph isomorphic to P2k+2 (resp. P2k+3), the following

corollary is a direct consequence of our main result (i.e., Theorem 4) in this paper.

Corollary 20. Let 0 < α < 1, k > 2 and G be a graph of order n > 88k2(k+1)2

α4(1−α) .

(a) If λα(G) > λα(Sn,k), then G contains P2k+2 unless G = Sn,k;

(b) If λα(G) > λα(S+
n,k), then G contains P2k+3 unless G = S+

n,k.

Then the value λα(Sn,k) (resp. λα(S+
n,k)) is the maximum λα(G) of a graph G of order

n, with no subgraph isomorphic to P2k+2 (resp. P2k+3). Therefore, our results solved

Problem 18 and so Problem 19 when F is P` for ` > 6, 0 < α < 1, and n >
88(b `

2
c−1)2b `

2
c2

α4(1−α) .
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[38] L.-T. Yuan, X.-D. Zhang, On the Erdős-Sós conjecture for graphs on n = k + 4
vertices. Ars Math. Contemp., 13(1): 49–61, 2017.

the electronic journal of combinatorics 30(3) (2023), #P3.34 14



[39] M. Q. Zhai, H. Q. Lin, Spectral extrema of graphs: forbidden hexagon. Discrete
Math., 343(10): 112028, 2020.

[40] M. Q. Zhai, H. Q. Lin, Spectral extrema of Ks,t-minor free graph–On a conjecture of
M. Tait. J. Combin. Theory Ser. B, 157: 184–215, 2022.

[41] M. Q. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C4-free graphs.
Linear Algebra Appl., 437: 1641–1647, 2012.
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