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Abstract

Let G be a graph and let « be a real number in [0, 1]. In 2017, Nikiforov proposed
the Ap-matrix for G as Ay (G) = aD(G) + (1 — a) A(G), where A(G) and D(G) are
the adjacency matrix and the degree diagonal matrix of G, respectively. The largest
eigenvalue of A,(G) is called the A,-index of G. The famous Erdés-Sés conjecture
states that every n-vertex graph with more than %(k — 1)n edges must contain
every tree on k + 1 vertices. In this paper, we consider an A,-spectral version of
this conjecture. For n > k, let S, ;. be the join of a clique on k vertices with an
independent set of n — k vertices and denote by S;: i the graph obtained from Sy, x

by adding one edge. We show that for fixed ¥ > 2,0 < a <1 and n > %,

if a graph on n vertices has A,-index at least as large as .S,  (resp. S:; i), then it
contains all trees on 2k + 2 (resp. 2k + 3) vertices, or it is isomorphic to Sy, ; (resp.
S*t.). These extend the results of Cioabd, Desai and Tait (2022), in which they
confirmed the adjacency spectral version of the Erdos-Sés conjecture.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In this paper, we consider only simple and finite graphs. Unless otherwise stated, we
follow the traditional notation and terminology (see, for instance, Bollobas [2], Godsil
and Royle [17]).
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Let F be a fixed graph. We say that G is F-free if it does not contain F' as a subgraph.
As usual, let P,, C,, and K, be the path, the cycle and the complete graph on n vertices,
respectively. And let K,; be the complete bipartite graph with the sizes of partite sets
being a and b, respectively.

In 2017, Nikiforov [29] proposed the A,-matriz of G, which is a convex combination
of D(G) and A(G), i.e.,

AL(G) =aD(G) + (1 — a)A(G), a<€]0, 1],

where A(G) and D(G) are, respectively, the adjacency matrix and the degree diagonal
matrix of G (see below). It is obvious that Ao(G) = A(G), A%(G) = 1Q(G) and A,(G) =
D(G), where Q(G) = D(G) + A(G) is the signless Laplacian matriz of G. The largest
eigenvalue of A,(G) is called the A,-index of G, denoted by A\, (G) as usual. The Agp-index
(resp. twice of A 1 -index) of G is usually referred to as the index (resp. @Q-index) of G,
denoted by p(G) (resp. ¢(G)).

In 2013, Fiiredi and Simonovits [15] posed the following problem:

Problem 1 (Fiiredi-Simonovits type problem). Assume U is a family of graphs and G
is in U. For a specific pair of parameters (7,v) on G, our aim is to maximize the second
parameter v under the condition that G is F-free and its first parameter 7 is given.

For a simple graph G = (V(G), E(G)), we use n := |V(G)| and m := |E(G)| to denote
the order and the size of GG, respectively. With no confusion, we also use the size to
denote the cardinality of a set. If the pair of parameters above are the order and size of a
graph, i.e., (1,v) = (n,m), then the Fiiredi-Simonovits type problem is just the classical
Turan type problem: determine the maximum number of edges, ex(n, F'), of an n-vertex
F-free graph. The value ex(n, F') is called the Turdn number of F. The research for the
Turan number attracts much attention, and it has become to be one of the most attractive
fundamental problems in extremal graph theory (see [15, 28] for surveys).

For each non-bipartite graph F) the celebrated Erdés-Stone-Simonovits theorem [11,
12] determines an asymptotic formula for ex(n, F'). It is natural and interesting for us to
study the Turan number of a bipartite graph. For more advances in this topic, readers
may refer to the survey [15]. In particular, let 7" be a tree on k + 1 vertices, considering
the disjoint copies of K} shows that ex(n,T) > %] (’;)

The following Erd8s-Sés conjecture predicts that ex(n,T) < 5(k — 1)n for all trees T
of order k + 1.

Conjecture 2 (Erdés-Sés [10]). Let G be an n-vertex graph of size m. If m > £ (k — 1)n,
then G contains all trees of order £ + 1.

The Erdés-Sos conjecture is still open, however it has been confirmed in some special
cases. For example, the conjecture is true when G is Cy-free [31], Pyis-free [9]; when
k is large compared to n [42, 32, 37, 35, 38, 19]; and for some special classes of trees
[13, 14, 16, 23].

In Problem 1, if one lets (7,v) = (n, p(G)), i.e., the pair of parameters are the order
and the index on U, then it becomes to be the spectral Turan type problem (also known
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as Brualdi-Solheid-Turdn type problem, see [3]): what is the maximal index of an F-free
graph of order n? Over the past decade, much attention has been paid to the Brualdi-
Solheid-Turan type problem. For more details, one may consult the references, such as
for FF = K, [24, 36], [' = K, [1, 24, 26], F' = Py [27], F' = Cy [25, 41, 39, 8], whereas
when F' is a K,-minor, or K ;-minor, we may consult [33, 40].

For two graphs G and H, we define G U H to be their disjoint union. The join GV H
is the graph obtained from G U H by joining every vertex of G with every vertex of H.
Then define S, = K V (n — k)K; and S:;k =Ky V(KyU(n—k—2)K).

In 2010, Nikiforov [27] posed a conjecture, which is an adjacency spectral version of
Erdo6s-Sos conjecture.

Conjecture 3 (Nikiforov [27]). Let k£ > 2 and G be a graph of sufficiently large order n.
(a) If p(G) = p(Snk), then G contains all trees of order 2k + 2 unless G = S, 4;

(b) If p(G) = p(S, 1), then G contains all trees of order 2k 4 3 unless G' = S,/ .

There are many results involving Conjecture 3, see [21, 22, 27]. Very recently, Con-
jecture 3 was completely resolved by Cioaba, Desai and Tait [7].

In this paper, we consider an A,-spectral version of Erdés-Sés conjecture for o € (0, 1),
which extends the main results of Cioaba, Desai and Tait [7]. Our main results can be
stated as:

88k2 (k+1)2
at(l—a) -

() If \a(G) = Aa(Snk), then G contains all trees of order 2k 4+ 2 unless G = S, x;

Theorem 4. Let 0 < a <1, k> 2, and G be a graph of order n >

(b) If A\a(G) = Aa(Sy,), then G contains all trees of order 2k + 3 unless G = S, .

Over the past decade, the signless Laplacian spectral extremal problems were studied
extensively. For more details, one may refer to [4, 5, 6, 20, 30] and the references therein.
Taking o = % in Theorem 4 resolves a signless Laplacian spectral version of Erdos-Sos
conjecture.

Theorem 5. Let k > 2 and G be a graph of order n > 2816k*(k + 1)2.
(a) If ¢(G) = q(Snk), then G contains all trees of order 2k + 2 unless G = S, x;
(b) If ¢(G) = q(S, ), then G contains all trees of order 2k + 3 unless G = S, .

Our paper is organized as follows. In the remainder of this section, we introduce some
necessary notation and terminology. In Section 2, we give some necessary preliminaries.
In Section 3, we progressively refine the structure of our extremal graphs Gy xa, G, 1 4
(see below) and complete the proof of Theorem 4, finally. Some concluding remarks are
given in the last section.

For two disjoint vertex subsets V; and V5 of V(G), denote by G[V;] a subgraph of G

induced on V; and G[Vj, V3] a subgraph of G with one end vertex in V; and the other in
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V,. Then the number of edges of G[V;i] and G[V1, V5] can be abbreviated to e(V;) and
e(V1, V), respectively. The neighborhood of a vertex v (in a graph ) is denoted by N (v).
The degree d(v) of a vertex v (in a graph G) is the number of edges incident with it. Then
the mazimum degree of G is denoted by A(G).

We say that two vertices u and v in G are adjacent (or neighbours) if they are joined
by an edge and we write it as u ~ v. Then the adjacency matriz of G is defined as an
n x n (0,1)-matrix A(G) = (a;;) with a;; = 1 if and only if v; ~ v;. The degree diagonal
matriz of G is defined as an n x n diagonal matrix D(G) = diag(d(v1), ..., d(v,)).

Noting that A,(G) is real symmetric, its eigenvalues are real. If G is connected and
a # 1, then A,(G) is a non-negative and irreducible matrix. From Perron-Frobenius
theory, there exists a unique positive eigenvector of A,(G) corresponding to \,(G) for
a € 10,1), and we call this vector the Perron vector of A,(G).

For k > 2, let Ty, (resp. T,') denote the set of all trees of order 2k 4 2 (resp. 2k + 3),
and let G, (resp. G, ;) denote the set of graphs of order n not containing at least one
tree in Ty, (vesp. T}). For a € (0,1), let Gy, o (vesp. G7, ) be a graph with maximum
Ag-index among all graphs in G, . (resp. G}, ;).

2 Preliminaries

In this section we give some preliminary results, which will be used to prove our main
results.
The following upper bound for the Turdn number of trees is well-known.

Lemma 6 ([7]). For all trees T of order t, one has
ex(n,T) < (t — 2)n.

Lemma 7 ([7]). For k > 2, the graphs Kyi1 2k+1 and K,:fgk,ﬂ = kK1 V((2k—1)K; UK))
contain all trees in Ty; the graphs Ky iort2, Kjopo = kK1 V ((2k — 1)Ky U Ps) and
K opyo = kK1 V ((2k — 2) Ky U2K>) contain all trees in Ty

Lemma 8 ([29]). For 0 < o < 1, if G is a graph of order n, then A\, (G) = oA(G).

Let M be an n xn real symmetric matrix and let 7 : V' = V;UVLU- - -UV; be a partition
of V.={1,2,...,n}. Then corresponding to the partition 7, M can be partitioned into
the following block matrix:

Mll M12 e Mls
M= MZl MQZ : MQS
Msl M82 T Mss

The quotient matriz of M with respect to 7 is the matrix M, = (b;;)sxs, where b;; is the
average row sum of the block M;;. The partition 7 is said to be equitable if each block
M;; has constant row sums for 4,7 € {1,2,...,s}.
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Lemma 9 ([18]). Let M be a real symmetric matriz and let M, be an equitable quotient
matrix of M. Then the eigenvalues of M, are also the eigenvalues of M. Furthermore, if
M is nonnegative and irreducible, then N\(M) = X(M,), where A(M) and A(M) are the

largest eigenvalues of M and M., respectively.

Recall that G, and G}, , are the extremal graphs with the maximum A,-index

among all graphs in G, and G, , respectively, where a € (0,1). The obvious fact
Gni C G, implies

)‘a( ,n,k,a> > )‘a(Gn,k,a>‘ (1)
Lemma 10. Let O < a <1,k > 2, and n > gaif. Then

2k(k+1)
an—a?(k+1+a)+ak’

k k
Aa(Grka) = max {om—i———k—l— an+——k—1—a, a(n—l)}.
a a

Proof. As S, does not contain Pyyo (in 7), one has S, € G, ;. Then the definition of
G ko implies
Aa(Grka) Z Aa(Sn)- (2)
On the other hand, by Lemma 8, one has
Aa(Snk) = aA(Sy k) = a(n —1). (3)

Furthermore, let Vi = {v € V(S,x)|ds, . (v) = n — 1} and Vo = V(S,,x)\Vi. Considering
the partition V' (5, ) = ViUV, we have the following equitable quotient matrix of A, (S, 1)

E=1+an—k) (1—a)(n—Ek)
B:( (1—-a)k ak )

According to Lemma 9, one has A\, (S,x) = A(B), the largest eigenvalue of B, i.e.,

an+k — 1+ +/a?n? + (4k — 6ak — 2a)n + (4o — 3)k2 + (4o — 2)k + 1

)‘a(Sn,k) - 9
Together with n > gaif, one has
k 2k(k +1) k
A > ——k—-1- > ——k—1—-a (4
a(Sn) Om—i_oz a’n—a?(k+ 14 a)+ak om—i—a a ()
Then (2)-(4) give us
2k(k +1)

k
Aa(Grka) = max {om—i—ﬁ—k—l— ant+——k—1—q, a(n—l)}.
« «

adn —a?(k+1+a) + ak’
This completes the proof. n
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3 The proof of Theorem 4

In this section, in order to prove Theorem 4, we need the following preliminary.

Lemma 11. Let G be a connected graph and let'y be a Perron vector of Ay(G). Then,
for each v € V(QG), one has

>‘3<G)YU :ad(v))‘a(G)YU + a(l - a) Z d(u)YU + (1 - Q)Z Z Z Yu- (5)

u~v w~Y Uu~Nw

Proof. By the definition of A,(G) one has
AL(G) =[aD(G) + (1 — ) A(G)]?

=a’D*(G) + a(l — a)D(GYA(G) + a(1 — a)A(G)D(G) + (1 — a)*A*(G).

Based on A,(G)y = A\(G)y, for each v € V(G), one has
A(G)ye = (Aa(@y)s = ad(®)ys + (1 - 0) 3y (©)
and
Aa(G)yo =(A2(G)y)s
=(a’D*(G)y)y + (a1 = ) D(G)A(G)y)o + (a(l — @) A(G)D(G)y)y
+((1 = @)’ A%(G)y).

=a?d(v)ys + ol — a)d(v) Y yu +a(l — ) Y dwy. + (1 -0 Y >y,

=ad(v) |ad(v (1-a) Zyu +a(l —a) Zd w)yu + 1—a)222yu
=ad(v)Xa(G)yy + a(l =) Y duyu+ (1 =) Y > yu. (by (6))
This completes the proof. O

In what follows, all the lemmas in this section are applied to both Gk« and G} ; -
For brevity, we write all the proofs only for G , . The same results for G, 1o follow by
replacing G’ with Gy, i« in the proofs.

n,k,a

Fix0<a<1l,k>2andn > %. Denote by Ao = Aa(G),40), and let x be

an eigenvector corresponding to A, whose maximum entry is equal to 1 (here x is the

Perron vector of A,(G, ) if G7, ., is connected). Further, let z be a vertex with x, =1

(if there are at least two such vertices, then we choose one arbitrarily). Take o = ﬁ
and let V := V(G ;. ,)- Then let L be the set of vertices in V having “large” eigenvector
entries, and let S = V\L be the set of vertices in V' having “small” eigenvector entries,

ie.,

n,k,a

L={veVx, >0}, S={veVlx, <o}

The following lemma shows that our extremal graph G, , is connected, and so x is
positive.
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Lemma 12. The graph G, , is connected.

Proof. Suppose to the contrary that G, , has t > 2 components Gy, ...,G;. Then let
G be a component of G such that A\, = A\,(G1). Let y be the Perron vector of A,(G1)
whose maximum entry is equal to 1, and set x = (yT,07)T, where 0 is a zero-vector of
dimension n — |V (Gy)]. It is easy to see that x is an eigenvector corresponding to \,. So
z € V(G1). According to A (G, 1. o)X = AaX, one has

Ao = AaX, = ad(2)x, + (1 — ) qu—ad (1—-a) qu\

u~z u~z

Then by (1) and Lemma 10,
d(z) 2 Ao = a(n —1).

Take a vertex u € V(Gz). Define a graph Gn ko Which is obtained from G7 , , by
deleting all edges adjacent to u and adding the edge uz. Then Gy is a proper subgraph of

some component of Gn ko> and so by the Perron-Frobenius theory,

Ao = AalG1) < Aa(Glhpn)- (7)

On the other hand, we have the following claim.

Claim 13. ¢, ko does not contain any trees in Ty which are not contained in G, ;. .

Proof of Claim 13. Suppose to the contrary that there exists a tree T’ € T, such that
T is contained in G, ; , but is not contained in G, ,. Then uz is a pendant edge of T.
As T is a tree on 2k + 3 vertices and dey (2) = dG%,ka(Z) > a(n — 1), one see that

an—1)—2k+1) > 1forn > %. Hence, there exists at least one vertex, say w,
not in V(7T') such that w ~ z. Thus one finds that 7" — zu + zw is an isomorphic copy of

T in G}, ,, a contradiction. []

Now, by Claim 13 we see @;hk’a € G, 1, and so (7) gives a contradiction to the choice
of G, 1 o Therefore, G ; , is connected. O

Lemma 14. For allv € L, one has d(v) > (1 - 2(k—1+1)>n

Proof. Suppose to the contrary that there is a vertex v € L such that d(v) < (1— m)n
Applying (5) to v gives
Mx, =ad(v) A%, + (1 — a) Z du)x, + (1 — «) Z Z Xy
Lad(v)A\aXy + 2a(1 — a)uT:LU(Gn o) +2(1—a)? “;:;E “’leka) (8)
Note that there exists a tree 7" in T} such that G, , is T-free. By Lemma 6, one has
m(G), o) < ex(n,T) < (2k + 1)n. 9)
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Then (8) implies
Aa(Aa — ad(v))x, < 2(1 — a)(2k + 1)n. (10)

In view of (1), Lemma 10 and d(v) < (1 — )n, we obtain

_1
2(k+1)

Ma(Aa — ad(v))x, > a(n — 1) {a(n 1) -a (1 - Q(k—lﬂ)) n] X,

Together with (10) and x, > o for all v € L, we obtain

2

_>9 n+a’oc <0
2(k+1) ’

alon?

—  — 21— )(2k+1 2
201 1) [( a)2k+ 1)+ ao +
88k? (k+1)2 > 8(k+1)?2 u

a contradiction for n > oi(=a)” 2= o2

For convenience, let
k .
f=an+——k—-1—-awithO<a<l1 k>2andn>0. (11)
o

Lemma 15. |L| = k.

Proof. 1t |L| > k + 1, then there is a subset L’ of L such that |L'| = k + 1. Let N
be the set of common neighbors of the vertices in L’. From Lemma 14, we see that
IN| > (k+1)(1 — (k+1 ) —kn=752>2k+2forn> 88’“4((1—“1) 4k + 4. Now the graph
G roll/, N| contains Kj i o2, that is to say, Kiy12642 € G, 1 By Lemma 7, G
contains all trees in 7/, a contradiction.

In what follows, we show that |L| < k — 1 will never happen. Recall that z is the

vertex with x, = 1. If |L| < k — 1, then applying (5) to the vertex z gives

A = A2x, =ad(2)\oX. + a(l — a) Z du)x, + (1 — ) Z Z Xy

n,k,a

u~z wn~zZ u~Nw
=al,d(z) + a(l — a) E d(u xu—i—g d(u
u~z u~z
u€eL ues
M=ol | 2D %+ D D xu+d D kD D x
W~z u~Sw w~z u~w W~z u~Nw w~z u~w
weS ues weS uweL weL ueS weL weLl

<adgd(z) + ol = a)[(k = 2)n + 2m(G), ;. ) 0]
+ (1= )’2m(Gy 1 q)0 + (k — 1)n + (k — 2)no + 2¢(L)].

Then, by (9) one has

Aa(Ae —ad(2)) < [(1 —a)k — 14 a®n + (1 — a)5kno + (1 — a)?(k — 1)(k —2). (12)
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In view of Lemma 10, (1), (11) and d(2) < n — 1, we obtain

2k (k + 1)

Aa(Ao — ad(2)) = f[f +a-— o2

—a(n — 1)] :
Together with (12), we obtain

[a2—(k—|—1)a+k:]n—|—<E—k—1—a)(ﬁ—k—1+a

« «

) _ 2k(k+1)
K@= (k+Da+k—1+an+ (1 —a)dkno + (1 —a)*(k—1)(k —2),

which implies

2k(k+1) [k k 9 42
(1—a)(1—5ka)n<a2—<a—k—1—a> <a—k—1+a>—|—(l—a) (k—1)(k-2) < o
a contradiction to n > Sscf((lkf;))z Z — (17;1543(21751@0)‘

This completes the proof. O

By Lemmas 14 and 15, we have

1 1
‘L‘ =k and d(’l]) 2 (1—m>n/ <1—%)nfor all v e L.

Let N be the set of common neighbors of the vertices in L and V' = V\(N U L). Then
IN| > k(1 —5)n— (k—1)n =%, and so [V’| < %. In order to show that V' = 0, (and so

G, k.o cOntains Kj,,_; as a spanning subgraph), we need the following lemma.

Lemma 16. It holds that x, > 1 — % for allv € L.

Proof. Suppose to the contrary that there is a vertex v € L such that x, < 1 — ;. Recall
that z is the vertex with x, =1 > 1 — +. Therefore, v # z. Applying (5) to the Vertex z
gives

M =22x, = ad(2) X, +a(l — ) Z d(u)x, + (1 — «) Z Z Xy

u~z w~rz u~Nw

<adad(z) +a(l—a) [ D dw)x, +dw)x, + Y d(u)x

U~z U~z

ueL\{v} ues
RN DIDBLED IO BLED DD DI TED BPBETED B DL
Wz u~Sw Wz u~Sw wrz u~w Wz u~w Wz u~Sw
weS ueS weS u=v weS ueL\{v} weL ueSsS weL u€eL

<ar,d(2) + a(l — «) [(k —2)n+d(v)x, + 2m( nka)a} +(1—a)? [Qm( nka)cr
+d(v)x, + (k = 1)n + (k — 1)no + 2e(L)] .
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In view of (9), d(v) < n and x, < 1 — 1, we obtain

Aa(Aa — ad(2)) <[(1 — @)k + a®> = 1n+ (1 — a)(5k + 1)no
1

+(1—a)k(k—1)+ (1 —a)n(l — E)‘ (13)

In view of Lemma 10, (1), (11) and d(z) < n — 1, we obtain

2%k (k + 1)

Aa(Ao — ad(2)) = f[f +a-— o2

—a(n — 1)] :
Together with (13), we have

[042—(k+1)a+k]n+(E—k—1_a)(ﬁ_k_1+a>_Qk(k+1)

« « o?

<[(1—a)k+a*—1n+ (1 —a)5k+1)no+ (1 —a)*k(k—1) + (1 — a)n(l — l),

k
ie.,
1 2k(k + 1
<E — (5k + 1)0) (1—a)n <% + (1 —a)’k(k —1)
k k 4k
) ()
o o o
a contradiction to n > SiﬁQ((lkj;))Q Z B A‘%’f L Therefore, for all v € L, we have
X, =>1— 1. ]

k

Lemma 17. The set V' is empty, and so G, ; , contains Ky, as a spanning subgraph.

e’

Proof. Suppose to the contrary that V' # (). Then the following (a)-(d) hold.

(a) For each v € V', e({v},L) < k — 1. Otherwise, v is a common neighbor of the
vertices in L, and so v € N, a contradiction.

(b) Foreachwv e V', e({v}, N) < 2k+1. Otherwise, G/, . ,[LU{v}, N] contains Ky 1 o2,

n,k,a
and so by Lemma 7, G}, , contains all trees in 7/, a contradiction.

(c) The number of edges of G! ,  [V'] satisfies e(V’) < (2k + 1)|V’|. Otherwise, by

n,k,«
Lemma 6, G/, , ,[V'] contains all trees in 7;/, and so G/, , , contains all trees in 7/,

n,k,a
a contradiction.

(d) There is a vertex v € V' satisfying dgr | vy(v) < 5k. Otherwise, 2e(V’) > 5k[V7|,
and so e(V') > 2k|V'| > (2k + 1)|V'], a contradiction to (c).
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According to (d), we can choose a vertex v € V' such that dg  v/(v) < 5k. Then

1
n,k,x

!
n,k,a?

incident to v and then adding the edges wv for all w € L. We see that G’n,m does not

contain any trees in 7, which are not contained in G/, , .

which is obtained from G by deleting all the edges

construct a new graph G

!/

Suppose to the contrary that there is a tree 7" € 7 such that 7" is contained in G’mk’a

but is not contained in G, ; ,. Then T' contains v. As N is the set of common neighbors
of the vertices in L, and |[N| > § > 2k +3 = |V/(T)| for n > %. By replacing v
with a vertex w in N\V(7T'), one finds an isomorphic copy of 7" in G/

n,k,a’
This implies G}, ;. ., € G, ;.-

n,k,a

Furthermore, by the Courant-Fischer theorem (see [18, Section 2.6]), one has

a contradiction.

Ay XT(AQ(G;'L,k,oc) B AO‘(G;L,k,a))X
)‘04( n,k,a) - )‘Oé Z xTx
_EueL[axi +2(1 — a)xyx, + ax?] — Zuw[axi +2(1 — a)x,X, + ax?]
- xT'x .

[Aa( ;z,k,a)_Aa]XTX = Z[axz +2(1 — a)xyxy + ax?]]
el

= laxg +2(1 — a)xuxy + oxt] — Y foxg 4 2(1 — a)xux, + ax7]. (14)

ueEN ueV/

In view of Lemma 16 and (a), we have

1 1
Z[axi +2(1 — @)X, X, + ax?] > ol — E)Q +2(1 —a)(1— E)XU + ax?. (15)
wel

In view of (b), der , v1(v) < 5k and x,, < o for each u € V' U N, we obtain

Z [ax? 4+2(1 — a)xyx, + ax?] + Z [ax? +2(1 — a)x,x, +ax?] < 8k[ao? +2(1 —a)ox, +ac?].

u€EN uev’

Together with (14) and (15), we have

PG ) — AalxTx > a(1— %)2 —16ko? +2(1 — a)(1 — % — Sko)x,.

In view of k > 2,0 = ﬁ and x, > 0, we obtain A,( £ ) > Ao. This gives a

n,k,«
contradiction to the choice of G, , ...

Therefore, V' = (), and so G, 1o contains Kj ,  as a spanning subgraph. O]
Proof of Theorem 4. It follows from Lemma 17 that both G,, 1, and G;L,k,a contain Ky ,,_j
as a spanning subgraph, where the part on k vertices is the set L and the part on n — k

vertices is the set V. By Lemma 7, ¢(N) = 0in G, 1, and e(N) < 1in G/ Therefore,

n,k,a"
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Gnka © Snr and G, C S:;k. By the Perron-Frobenius theory, one has A\, (G ka) <
Aa(Snk), Aa(Ghia) < )\a(S;;k). And Ao (Gria) = Aa(Sni) if and only if G, 0 = Shk,

n,k,a

Aa(Glga) = Xal(ST,) if and only if G, , = S7,. On the other hand, S,; € G, x and
Spx € Gy IMply Grpo = Spp and G, = S, This completes the proof of Theorem
4. [

4 Concluding remarks

In this paper, we confirm the A, spectral version of the Erd6s-Sés conjecture. Conse-
quently, the signless Laplacian spectral version of the Erdés-Sés conjecture is also con-
firmed (see Theorem 5). In 2017, Nikiforov [29] posed the following two problems:

Problem 18 ([29]). Given a graph F, what is the maximum A, (G) of a graph G of order
n, with no subgraph isomorphic to F'?

Problem 19 ([29]). Solve Problem 18 if F' is a path or a cycle of given order.

Nikiforov [29] solved Problem 18 when F' is a complete graph; Tian, Chen and Cui
34] solved Problem 18 and so Problem 19 when F is Cy for 3 < o < 1, n > 10 and when
FisC5f0r0<a<%,n>ﬁ+4.

As S, i (resp. S;: ) has no subgraph isomorphic to P42 (resp. Poiis), the following

corollary is a direct consequence of our main result (i.e., Theorem 4) in this paper.
Corollary 20. Let 0 < a < 1, k > 2 and G be a graph of order n > %.
(a) If Aa(G)

> Aa(Sni), then G contains Poyio unless G = Sy ;
(b) If A\a(G) = Aa(Syi,), then G contains Payys unless G = S} .

Then the value Ay (Snx) (resp. Aa(S, ;) is the maximum A, (G) of a graph G of order
n, with no subgraph isomorphic to Pagio (resp. Pagys). Therefore, our results solved

£ 121 ¢
Problem 18 and so Problem 19 when F'is P, for £ > 6,0 < a <1, and n > w.
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