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Abstract

We give enumerative interpretations of the polynomials arising as numerators
and denominators of the q-deformed rational numbers introduced by Morier-Genoud
and Ovsienko. The considered polynomials are quantum analogues of the classical
continuants and of their cyclically invariant versions called rotundi. The combi-
natorial models involve triangulations of polygons and annuli. We prove that the
quantum continuants are the coarea-generating functions of paths in a triangulated
polygon and that the quantum rotundi are the (co)area-generating functions of
closed loops on a triangulated annulus.

Mathematics Subject Classifications: 05A15, 05A30, 11A55

1 Introduction

Continuants are determinants of tridiagonal matrices. They have a long history going
back to Euler’s work on continued fractions [11, Chap. 18], see also [29], [34], [14]. The
name, coming from the fusion of “continued fraction” and “determinant”, was introduced
by Thomas Muir in the middle of the 19th century [28].

The following two types of continuants:

Kn(a1, . . . , an) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1

−1 a2 1

. . .
. . .

. . .

−1 an−1 1

−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
and Ek(c1, . . . , ck) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 1

1 c2 1

. . .
. . .

. . .

1 ck−1 1

1 ck

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1)

are polynomial expressions in the variables ai and ci respectively, with the following
conventions for empty sets of variables: K0() = E0() = 1 and K−1() = E−1() = 0.
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Continuants are related to the numerators and denominators of the regular continued
fractions

a1 +
1

a2 +
1

. . . +
1

an

=
Kn(a1, . . . , an)

Kn−1(a2, . . . , an)
(2)

and of the negative signed continued fractions

c1 −
1

c2 −
1

. . . −
1

ck

=
Ek(c1, . . . , ck)

Ek−1(c2, . . . , ck)
, (3)

also known as Hirzebruch-Jung continued fractions.
The continuants also appear as the entries of 2×2-matrices computed by multiplication

of elementary matrices as follows

M+(a1, . . . , an) :=

(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
=

(
Kn(a1, . . . , an) Kn−1(a1, . . . , an−1)

Kn−1(a2, . . . , an) Kn−2(a2, . . . , an−1)

)

M(c1, . . . , ck) :=

(
c1 −1

1 0

)
· · ·

(
ck −1

1 0

)
=

(
Ek(c1, . . . , ck) −Ek−1(c1, . . . , ck−1)

Ek−1(c2, . . . , ck) −Ek−2(c2, . . . , ck−1)

)
(4)

The following combinations of continuants

R+(a1, . . . , an) := Kn(a1, . . . , an) +Kn−2(a2, . . . , an−1) = TrM+(a1, . . . , an)

R(c1, . . . , ck) := Ek(c1, . . . , ck)− Ek−2(c2, . . . , ck−1) = TrM(c1, . . . , ck)
(5)

are called rotundi. The rotundus R(c1, . . . , ck) was introduced and studied in [7]. Since
rotundi are the traces of the matrices (4) they are invariant under cyclic permutations on
the tuples of variables (a1, . . . , an) or (c1, . . . , ck).

For the classical continuants Kn(a1, . . . , an) several enumerative interpretations are
known, e.g. in terms of perfect matchings in snake graphs [6] or paths in lotuses [13].
The continuants Ek(c1, . . . , ck) are entries in Coxeter’s friezes [10] and enumerative in-
terpretations are known in terms of triangulations of polygons [8], [5], or snake graphs
[35], see also [24]. In terms of friezes the rotundus R(c1, . . . , ck) corresponds to “growth
coefficients” that were studied in [3], [15].

In the present paper we study q-analogues (also called “quantum analogues” or “q-
deformations”) of continuants and rotundi and their enumerative interpretations. The
q-analogues we consider come from the theory of q-deformations of rational numbers
and of continued fractions initiated in [26] and [27]. The combinatorial models involve
triangulations of polygons and triangulations of annuli.
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In Section 2 we review on the notion of q-rationals and give enumerative interpretations
for the numerators and denominators (which are continuants) using oriented paths in the
Farey tessellation.

In Section 3 we define the q-analogues of the objects introduced in this introduction.
We reformulate the results of the previous section in terms of continuants and triangula-
tions of polygons.

In Section 4 we prove our main result giving an enumerative interpretation of the
q-rotundus involving closed loops in a triangulated annulus.

Finally, in Section 5 we collect some extra facts and observations about q-rotundi. In
particular we discuss links with matchings, dual graphs, Pfaffians, Euler-Minding algo-
rithm.

2 q-analogues of rationals and Farey tessellation

The classical q-analogues of integers are the following polynomials in q or q−1

[n]q = 1−qn
1−q = 1 + q + q2 + · · ·+ qn−1 ,

[−n]q = 1−q−n
1−q = −q−1 − q−2 − · · · − q−n ,

(6)

where n is a positive integer. We also assume [0]q = 0.
In [26] q-analogues of rational numbers were introduced, extending the above notion

of q-integers. The approach is based on combinatorial properties of the rational numbers
related to the Farey tessellation and to the continued fraction expansions. The subject
has led to further developments in various directions. Notably there are established links
with knots invariants [22], [18], the modular group and the Picard group [20], [33], com-
binatorics of posets [23], [30], [31], Markov numbers and Markov-Hurwitz approximation
theory [9], [17], [19], [21], geometry of Grassmannians [32], triangulated categories [1].

2.1 Recursive definition of q-rationals with Farey tessellation

In this section, following [26] we define the q-analogues of positive rational numbers using
the Farey tessellation. Details on the Farey tessellation can be found in e.g. [16].

The q-analogues are defined for arbitrary rationals but for our combinatorial purpose
we will restrict ourself to positive rationals. We always assume a rational to be written in
the irreducible form, i.e. with coprime positive numerators and denominators. Moreover
we add an infinity point represented by the ratio 1

0
.

The elements of Q>0∪{10} are ordered on a horizontal segment drawn in the plane with
endpoints 0

1
at the left and 1

0
at the right. The Farey tessellation consists of a collection

of triangles whose vertices are the rational numbers and edges are half-circles joining r
s

and r′

s′
whenever rs′ − r′s = ±1. Every triangle is of the following form
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r′

s′
r
s

r+r′

s+s′

The Farey sum of two rationals r
s
, r
′

s′
is the rational r+r′

s+s′
appearing as the median vertex

in the triangle.
One defines the q-analogue

[
r
s

]
q

of the rational r
s

using the structure of the Farey

tessellation. First, one assigns a weight, which is a power of q, to each edges of the
triangles except for the one joining 0

1
and 1

0
. Then one uses a q-deformation of the Farey

sum involving the weights of the triangles. The starting point is given by the triangle

1
0

0
1

1
1

11

and the picture is completed recursively with the following local rule:

(7)

R′
S′

R
S

R+qdR′
S+qdS′

qd1

qd−1

This process assigns rational functions RS to each vertices r
s
. These are by definition

the q-analogues
[
r
s

]
q

of the rationals as introduced in [26].

Figure 1 gives the first steps of the process. The next step would be to add the
median points between all consecutive rational points already appearing in the picture.
For instance the next step would give

[
7
5

]
q

as the mediant point of
[
4
3

]
q

and
[
3
2

]
q
:[

7

5

]
q

=
(1 + q + q2 + q3) + q2(1 + q + q2)

(1 + q + q2) + q2(1 + q)
=

1 + q + 2q2 + 2q3 + q4

1 + q + 2q2 + q3

2.2 First properties of q-rationals

We give elementary properties of the polynomials appearing in the denominator and
numerator of

[
r
s

]
q

= R
S . Note that R and S can be computed recursively independently

one from the other. One has the following properties

• R and S are coprime polynomials in q;
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0
1

[
1
2

]
q

1

q1

1
0

1
1

[
2
1

]
q

1

[
3
2

]
q

1

[
3
1

]
q

q

[
4
3

]
q

1

1 q

[
5
3

]
q

q

1 q2

[
5
2

]
q

1

1 q

[
4
1

]
q

q2

1 q3

=
1+q
1

=

1+q+q2

1+q

=

1+q+q2

1

=

1+q+q2+q3

1+q+q2

=

1+q+2q2+q3

1+q+q2

=

1+2q+q2+q3

1+q

=

1+q+q2+q3

1

=q
1+q

Figure 1: Upper part of the Farey tessellation with weights carried by the edges and
q-deformed rationals labeling the vertices.

• they have positive integer coefficients;

• the coefficients of the lowest and of the highest degree terms are equal to 1;

• the sequences of coefficients are unimodal (this property was conjectured in [26],
proved in particular cases in [23], and finally proved in full generality in [31]).

In addition when r
s
> 1 both polynomials R and S in the q-deformation have a

constant term equal to 1. When r
s
< 1 a power of q can be factored out of R (see [20,

Prop 2.4] for a precise formula).
Furthermore when r

s
> 1 there is a unique continued fraction expansion of the form

(2) with positive coefficients ai and even length n. Enumerative interpretations for R
and S have been given using different combinatorial models encoded by the sequence of
positive coefficients ai (e.g. using closures of graphs [26], poset order ideals [23], snake
graphs [32]).

We present in the next subsection enumerative interpretations forR and S using paths
in the Farey tesselation.

2.3 Paths in the Farey tessellation

We assign an orientation of each edges of the Farey tessellation, except for the edge joining
0
1

and 1
0
, so that the following local rule holds in every triangle:
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Except for the vertices labeled by 0
1

and 1
0
, every vertex is the median point of a unique

triangle, so that at each vertex there are exactly two outgoing arrows, one oriented to the
left and the other to the right.

A path in the Farey tessellation is a sequence

π :
r0
s0

ρ1−→ r1
s1

ρ2−→ . . .
ρn−1−−−→ rn−1

sn−1

ρn−→ rn
sn

such that ρi is an edge oriented from ri−1

si−1
to ri

si
. We will write for short π : r0

s0
→ rn

sn
.

We denote by wt(ρ) the weight assigned to the edge ρ in Section 2.1. We define the

weight of the path π : r0
s0

ρ1−→ r1
s1

ρ2−→ . . .
ρn−1−−−→ rn−1

sn−1

ρn−→ rn
sn

by the product

wt(π) := wt(ρ1)wt(ρ2) · · ·wt(ρn). (8)

Let r
s

be a rational greater than 1.
We define the right-path of r

s
as the shortest path (in terms of numbers of edges

involved) from r
s

to 1
0
, starting with the edge oriented to the right. This path uses only

edges oriented to the right which have weight a positive power of q.
Similarly, we define the left-path of r

s
as the shortest path from r

s
to 1

0
, starting with

the edge oriented to the left. This path uses only edges of weight 1 which are all oriented
to the left except for the last one joining 1

1
to 1

0
which is oriented to the right.

Finally we define the area and coarea of a path π starting at r
s

as

ar(π) := #{triangles enclosed between π and the right-path of r
s
} (9)

coar(π) := #{triangles enclosed between π and the left-path of r
s
} (10)

Example 1. For example, in the case of 7
5

the left-path is 7
5
→ 4

3
→ 1

1
→ 1

0
and the

right-path is 7
5
→ 3

2
→ 2

1
→ 1

0
. They are drawn in orange and blue respectively in the

following picture.

1
0

1
1

2
1

3
2

4
3

7
5

1

1 q

1 q

1 q

1 q2

For our purpose we will only consider paths ending at 1
1

or 1
0
. Examples of such paths

and their corresponding areas/coareas are given in Figure 2 and 3.
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2.4 Enumerative interpretations of the q-rationals in the Farey tessellation

We are now ready to formulate two enumerative interpretations of the q-rationals in
terms of paths in the Farey tessellation. The proofs are given in Section 2.5. The first
interpretation requires the weight assignment on the edges of the tessellation introduced
in §2.1.

Theorem 2. Let r
s

be a rational greater than 1 and let RS =
[
r
s

]
q

be its q-deformation.

One has

R =
∑
π: r
s
→ 1

0

wt(π) ,

S =
∑
π: r
s
→ 1

1

wt(π) ,

where wt is the weight function defined in (8).

The second interpretation realizes the numerators and denominators of the q-rationals
as the generating functions for the area of the paths.

Theorem 3. Let r
s

be a rational greater than 1 and let RS =
[
r
s

]
q

be its q-deformation.

One has

R =
∑
π: r
s
→ 1

0

qcoar(π) ,

S =
∑
π: r
s
→ 1

1

qcoar(π) ,

where coar is the coarea of the path defined in (10).

Note that for q = 1 the theorems lead to the following immediate corollary.

Corollary 4. Let r
s

be a rational greater than 1. In the oriented Farey tessellation r is
the total number of paths from r

s
to 1

0
and s is the total number of paths from r

s
to 1

1
.

Example 5. Consider the case of[
7

5

]
q

=
1 + q + 2q2 + 2q3 + q4

1 + q + 2q2 + q3
.

All the paths from 7
5

to 1
1

or to 1
0

are depicted in Figure 2. One can check that the
power in the weight of a path coincides with the coarea of the path and they produce the
polynomials in the ratio of

[
7
5

]
q
. Also note that any path ending at 1

1
can be extended to

1
0

just by including the top edge, and this does not change the area.
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1
1

7
5

1
1

7
5

1
1

7
5

1
1

7
5

1
1

7
5

Figure 2: The 5 paths (in green) from 7
5

to 1
1
. The triangles shaded in gray count for

the coarea of the path whereas the triangles left blank count for the area. The coarea-
generating polynomial 1 + q + 2q2 + q3 corresponds to the denominator of

[
7
5

]
q
.

2.5 Proofs of Theorems 2 and 3

The theorems will be proved by induction. Suppose that the formula holds for RS =
[
r
s

]
q

and R
′

S′ =
[
r′

s′

]
q

where r
s
< r′

s′
are two rationals linked by an edge in the Farey tessellation.

The same formula will follow for R
′′

S′′ =
[
r′′

s′′

]
q

where r′′

s′′
= r+r′

s+s′
is the median due to the

local rule (7). Indeed, a path starting at r′′

s′′
will either use the left edge of weight 1 and

then a path starting at r
s

or it will use the right edge of weight qd and then a path starting

at r′

s′
.

Hence, one easily computes∑
π: r
′′
s′′→

1
0

wt(π) =
∑

π: r
′′
s′′→

r
s
→ 1

0

wt(π) +
∑

π: r
′′
s′′→

r′
s′→

1
0

wt(π)

=
∑
π: r
s
→ 1

0

wt(π) +
∑

π: r
′
s′→

1
0

qdwt(π)

= R + qdR′

= R′′.

And similarly for S. Theorem 2 is proved.
Theorem 3 is proved in the same inductive way by counting triangles enclosed with

respect to the left-paths. One notices that a path starting from r′′

s′′
and using the left

edge of weight 1 will not enclose more triangles than the rest of the path starting at r
s
.

Whereas a path starting from r′′

s′′
and using the right edge of weight qd will always enclose
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1
0

7
5

1
0

7
5

1
0

7
5

1
0

7
5

1
0

7
5

1
0

7
5

1
0

7
5

Figure 3: The 7 paths (in green) from 7
5

to 1
0
. The triangles shaded in gray count for

the coarea of the path whereas the triangles left blank count for the area. The coarea-
generating polynomial 1 + q + 2q2 + 2q3 + q4 corresponds to numerator of

[
7
5

]
q
.

d more extra triangles than the rest of the path starting at r′

s′
, located under the left-path

of r′

s′
and the right edge of weight qd, as shown in the following picture.

R′
S′

R3

S3

1

R
S

R′′
S′′

qd−1

qd1

...

q

the electronic journal of combinatorics 30(3) (2023), #P3.35 9



3 q-continuants and triangulated polygons

By using continued fraction expansions of the rationals we reformulate the results of
the previous section in terms of continuants and triangulations of polygons. We start
by defining the q-analogues of the objects given in the introduction. These q-analogues
already appeared in [26, §4.2, §5.2].

3.1 q-continuants

The q-deformations of the continuants in (1) are polynomials in q±1 defined by the fol-
lowing determinants of tridiagonal matrices [26, §5.2]:

Kn(a1, . . . , an)q := q
∑
i a2i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[a1]q qa1

−1 [a2]q−1 q−a2

−1 [a3]q qa3

−1 [a4]q−1 q−a4

. . . . . . . . .

−1 [an]q−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(11)

where ai are integers and [ai]q are as in (6) and n is even, and

Ek(c1, . . . , ck)q :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

[c1]q qc1−1

1 [c2]q qc2−1

. . . . . . . . .

1 [ck−1]q qck−1−1

1 [ck]q

∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

where ci are integers and [ci]q are as in (6). We recall the following conventions: K−1()q =
E−1()q = 0 and K0()q = E0()q = 1. We also define Kn−1(a2, . . . , an)q by removing the
first row and the first column in the determinant (11). When the coefficients ai’s and ci’s
are positive integers the q-continuants are both polynomials in q.

As in the classical case, q-continuants are related to continued fractions. Let us use
standard bracket notation for continued fractions: [a1, a2, . . . , an] stands for the regular
continued fraction, i.e. the left hand side of (2) and Jc1, c2, . . . , ckK stands for the negative
signed continued fraction, i.e. the left hand side of (3). The q-analogues of (2) and (3),
when the coefficients ai and ci are integers, were introduced in [26] as follows
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[a1, a2 . . . , an]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . . +
[an]±1q

=
Kn(a1, . . . , an)q
Kn−1(a2, . . . , an)q

(13)

Jc1, c2, . . . , ckKq := [c1]q −
qc1−1

[c2]q −
qc2−1

. . . −
qck−1−1

[ck]q

=
Ek(c1, . . . , ck)q
Ek−1(c2, . . . , ck)q

.

(14)

Finally, the q-continuants also appear in 2 × 2-matrices computed by multiplication
of elementary matrices that belong to GL(2,Z[q±1]). One has the following q-analogues
of (4) according to [26, §4.2].

M+(a1, . . . , an)q := q
∑

i a2i

(
[a1]q qa1

1 0

)(
[a2]q−1 q−a2

1 0

)
· · ·

(
[an−1]q qan−1

1 0

)(
[an]q−1 q−an

1 0

)

=

 qKn(a1, . . . , an)q K̃n−1(a1, . . . , an−1)q

qKn−1(a2, . . . , an)q K̃n−2(a2, . . . , an−1)q


(15)

where the notation K̃ stands for the mirror polynomial, i.e. the one with reversed
sequence of coefficients, and

M(c1, . . . , ck)q :=

(
[c1]q −qc1−1

1 0

)(
[c2]q −qc2−1

1 0

)
· · ·

(
[ck]q −qck−1

1 0

)

=

(
Ek(c1, . . . , ck)q −qck−1Ek−1(c1, . . . , ck−1)q

Ek−1(c2, . . . , ck)q −qck−1Ek−2(c2, . . . , ck−1)q

) . (16)

3.2 q-rationals

Every rational r
s
> 1 has canonical continued fraction expansions of the form [a1, a2 . . . , a2m]

and Jc1, c2, . . . , ckK with integer coefficients ai > 1 and ci > 2.

Theorem 6 ([26]). If r
s

= [a1, . . . , a2m] = Jc1, c2, . . . , ckK are the canonical expansions of
the rational r

s
> 1 then [r

s

]
q

= [a1, . . . , a2m]q = Jc1, c2, . . . , ckKq.
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The fact that the two q-continued fractions (13) and (14) are the same whenever they
coincide at q = 1 is not obvious at first sight and was first proved in [26]. It turns out
that this result can be extended to fractions with arbitrary integer coefficients, not only
positive, see [20, Thm 7].

3.3 Farey tessellation revisited

Let r
s

be a rational greater than 1. The positive integer coefficients appearing in the
canonical expansions r

s
= [a1, . . . , a2m] = Jc1, c2, . . . , ckK have combinatorial interpreta-

tions in the Farey tessellation coming from [36] and [8]. We refer to [25] for a more
detailed overview on the subject.

We will illustrate the statement with the running example of 7
5

= [1, 2, 1, 1] = J2, 2, 3K.

1
0

1
1

0
1

2
1

3
2

4
3

7
5

(17)

One draws a vertical line passing through r
s
. This line crosses finitely many triangles

in the Farey tessellation. Keeping these triangles and removing the other ones one obtains
a finite tessellation denoted by T r

s
.

Interpretation of ai. From top to bottom the vertical line starts crossing a1 adjacent
triangles with the base at the left (in pink on the picture), then a2 adjacent triangles with
the base at the right (in blue on the picture), then a3 triangles with the base at the left,
and so on. There is an ambiguity for the last triangle (the one with median vertex r

s
).

We attach the last triangle in such a way that we have an even number of coefficients ai.
In the example of r

s
= 7

5
, one counts (a1, a2, a3, a4) = (1, 2, 1, 1), which coincide with

the coefficients in the regular continued fraction expansion 7
5

= [1, 2, 1, 1].
Interpretation of ci. These coefficients count the numbers of triangles in T r

s
incident

to each vertex located at the right of r
s

and enumerated in decreasing order. In the
example of T 7

5
one counts c1 = 2 triangles incident to vertex 1

0
, c2 = 2 triangles incident

to 2
1

and c3 = 3 triangles incident to 3
2
, which coincide with the coefficients in the negative

continued fraction expansion 7
5

= J2, 2, 3K.
We will now simplify the picture and draw triangulations of convex (non strictly con-

vex) polygons instead of triangulations in the Farey tessellation. For example, the Farey
triangulation T 7

5
in (17) will be depicted as the following triangulated convex heptagon:
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0
1

1
1

4
3

7
5

1
0

2
1

3
2

(18)

The edges in the triangulated polygon will inherit the orientation of the edges from the
Farey tessellation defined in §2.3, see also the next paragraph for nore details.

3.4 Triangulated polygons

Consider the triangulation T of a convex (non strictly convex) n-gon of the following form,
sometimes called fan triangulation:

a2 a2m−2 a2m

a1 a3 a2m−1

0 n−1 n−2 k+2

1 2 k k+1

(19)

We associate two sequences of integers

1. The integers (a1, a2, . . . , a2m), with ai > 1, count the number of adjacent triangles
according to their position “base down” or “base up” i.e. the triangulation consists
of a1 adjacent triangles base down at the left, followed by a2 triangles base up and
so on:

2. The integers (c0, c1, . . . , cn−1) count the number of triangles attached to each vertex,
i.e., the integer ci is the number of triangles incident to the vertex i. One has
c0 = ck+1 = 1, and ci > 2 otherwise.

In addition the triangulation T of (19) comes with an orientation of the edges:

• an edge adjacent to a triangle base up at its right and a triangle base down at its
left is oriented upward;

• an edge adjacent to a triangle base up at its left and a triangle base down at its
right is oriented downward;

• an edge adjacent to two triangles base up is oriented downward;
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• an edge adjacent to two triangles base down is oriented upward;

• a base edge is oriented leftward;

• the rightmost edge is oriented downward;

• the leftmost edge has no orientation.

Note that we also have the following immediate relations:

n := #{vertices} = #{triangles}+ 2 =
( ∑
16i62m

ai
)

+ 2 =
∑
16i6k

(ci − 1) + 3.

Remark 7. 1. The sequence (c0, c1, . . . , cn−1) is called the quiddity of the triangulated
polygon in reference of the theory of Conway-Coxeter friezes [8]. The quiddity
sequence determines a unique triangulation of a polygon. In our situation exactly
two coefficients are equal to 1, namely c0 = ck+1 = 1. In this case each subsequence
(c1, . . . , ck) or (ck+2, . . . , cn−1) uniquely determines the triangulation of the polygon.

Alternatively the sequence (a1, a2, . . . , a2m) also determines uniquely the triangula-
tion.

2. One has the relationship

(c1, . . . , ck) =
(
a1 + 2, 2, . . . , 2︸ ︷︷ ︸

a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2, 2, . . . , 2︸ ︷︷ ︸
a2m−1

)
which is the exact conversion formula of Hirzebruch for the continued fractions ex-
pansions. In other words, the sequences of integers (c1, . . . , ck) and (a1, a2, . . . , a2m)
provided by the triangulation lead to the same rational computed by the two types
of continued fractions :

r

s
= [a1, . . . , a2m] = Jc1, c2, . . . , ckK.

3. The Farey triangulation T r
s

described in §3.3 correspond to the triangulated poly-
gon (19) with parameters (c1, . . . , ck) and (a1, a2, . . . , a2m), where these sequences
respectively encode the negative and regular continued fraction expansions; see [25]
for details.

3.5 Combinatorial interpretations of the q-continuants

We reformulate the result of Theorem 3 in terms of q-continuants. We use the model of
triangulated polygons instead of the Farey tessellation.

Starting from a sequence (a1, a2, . . . , a2m) of positive integers, or from a sequence
(c1, . . . , ck) of integers greater than 1, denote by T the corresponding fan triangulated
n-gon (19). We consider paths that follow the oriented edges of T. If π is a path from
vertex k1 to vertex k2 we write π : k1 → k2.
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In the triangulation T, one defines the top path

τ : k + 1→ k → · · · → 2→ 1

and the bottom path
β : k + 1→ k + 3→ · · · → n− 1→ 1.

The area and coarea of a path π in T are defined as

ar(π) := #{triangles enclosed between π and top path τ} (20)

coar(π) := #{triangles enclosed between π and the bottom path of β } (21)

Note that the rightmost triangle t0 − {0, 1, n − 1} is never taken into account in the
count for the area and the coarea. The area, resp. coarea, corresponds to the number of
triangles with three oriented edges above the path, resp. under the path.

Example 8. Starting from the sequence (a1, . . . , a2m) = (1, 2, 1, 1) or from (c1, . . . , ck) =
(2, 2, 3) one obtains the following triangulated heptagon. The top path is colored in blue
and the bottom path in orange.

0 6 5

41 2 3

Examples of paths and of coareas of paths are given in Figure 4 and 5. Note that all
the displayed examples in the fan triangulation model correspond to Example 1 and to
Figures 2 and 3 in the model of Farey tesselation.

Proposition 9. With the above notation, one has

K2m(a1, . . . , a2m)q = Ek(c1, . . . , ck)q =
∑

π : k+1→1

qcoar(π) ,

K2m−1(a2, . . . , a2m)q = Ek−1(c2, . . . , ck)q =
∑

π : k+1→0

qcoar(π),

where the sums run over all the paths π in T starting at vertex k+ 1 and ending at vertex
1 or vertex 0 respectively.

Proof. Consider the corresponding rational number defined by

r

s
:= [a1, . . . , a2m] = Jc1, c2, . . . , ckK.

As explained in §3.3 (see also [25] for more details) the Farey triangulation T r
s

contains
the sequence (a1, . . . , a2m) in the distribution of triangles according to the position of the
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q0 q1 q2

q2 q3

Figure 4: The 5 paths starting at vertex 4 and ending at vertex 0. The triangles shaded
in gray correspond to the triangles contributing to the coarea of the path. The coarea-
generating polynomial 1 + q + 2q2 + q3 corresponds to the denominator of

[
7
5

]
q
.

q0 q1 q2 q2

q3 q3 q4

Figure 5: The 7 paths starting at vertex 4 and ending at vertex 1. The triangles shaded
in gray correspond to the triangles contributing to the coarea of the path. The coarea-
generating polynomial 1 + q + 2q2 + 2q3 + q4 corresponds to the numerator of

[
7
5

]
q
.

bases at the left or right of the vertical line drawn from r
s
. The triangulation T with

parameters (a1, . . . , a2m) is a redrawing of T r
s

using Euclidean triangles. The vertical line
can be thought in T as the diagonal joining the vertices 0 and k + 1 and the position left
or right of the base of a Farey triangle becomes position under or above this diagonal.
Since

R
S

=
[r
s

]
q

=
Kn(a1, . . . , an)q
Kn−1(a2, . . . , an)q

=
Ek(c1, . . . , ck)q
Ek−1(c2, . . . , ck)q

the proposition is a simple reformulation of Theorem 3.

Remark 10. When q = 1 the proposition states that the numerator r = K2m(a1, . . . , a2m)
is the total number of paths from vertex k + 1 to vertex 1 and the denominator s =
K2m−1(a2, . . . , a2m) is the total number of paths from vertex k+1 to vertex 0. This result
can be found in [13, Prop. 5.21] in the language of lotuses. It is also equivalent to the
results of [35] and [6] in terms of paths or matchings in snake graphs.
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Remark 11. The Farey triangulation T r
s

contains the two rationals defined by r̃
s

:=

[a1, . . . , a2m−1] and r
s

:= Jc1, c2, . . . , ck−1K. These rationals are called convergents of
r
s

= [a1, . . . , a2m] = Jc1, c2, . . . , ckK. The convergents appear in the second column of
the matrices (4). In the fan triangulation T these convergents correspond to vertex k+ 2
and vertex k respectively. The fan triangulations corresponding to the convergents are
included in T. They are obtained by removing all the triangles but one incident to the
vertex k or k + 2. Therefore changing the initial vertex in the paths we obtain similar
formula for the convergents:

K̃2m−1(a1, . . . , a2m−1)q =
∑

π : k+2→1

qcoar(π) , K̃2m−2(a2, . . . , a2m−1)q =
∑

π : k+2→0

qcoar(π),

Ek−1(c1, . . . , ck−1)q =
∑

π : k→1

qcoar(π) , Ek−2(c2, . . . , ck−1)q =
∑

π : k→1

qcoar(π) ,

where the sums run over paths π in T.

4 q-rotundus and triangulations of annuli

In this section we define the quantum rotundi and give interpretations using triangulation
of annuli.

4.1 Definition

The quantum rotundi are the q-analogues of (5) defined by

R+(a1, . . . , an)q := qKn(a1, . . . , an)q + K̃n−2(a2, . . . , an−1)q = TrM+(a1, . . . , an)q

R(c1, . . . , ck)q := Ek(c1, . . . , ck)q − qck−1Ek−2(c2, . . . , ck−1)q = TrM(c1, . . . , ck)q ,

(22)

where n is even and ai and ci are positive integers. The q-rotundi are polynomials in q.
Traces of q-deformed matrices of SL(2,Z) were studied in [20] and in particular one has
the following property.

Theorem 12 ([20]). The q-rotundi are palindromic polynomials in q with positive integer
coefficients.

The above theorem is based on the equalities obtained by reversing the sequences of
parameters

TrM(c1, . . . , ck)q = TrM(ck, . . . , c1)q, and TrM+(a1, . . . , an)q = TrM+(an, . . . , a1)q

which are not as immediate to establish as in the case q = 1, see [20, Lemma 3.8].
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Example 13. The rotundi associated with the continued fraction expansions of 7
5

are

R+(1, 2, 1, 1)q := Tr

(
q + q2 + 2q3 + 2q4 + q5 1 + q + q2 + q3

q + q2 + 2q3 + q4 1 + q + q2

)
= 1 + 2q + 2q2 + 2q3 + 2q4 + q5

R(2, 2, 3)q := Tr

(
1 + q + 2q2 + 2q3 + q4 −(q2 + q3 + q4)

1 + q + 2q2 + q3 −(q2 + q3)

)
= 1 + q + q2 + q3 + q4.

4.2 Triangulations of annuli

We use the terminology of [12] for general triangulated surfaces, and the notation of [2]
in the case of triangulated annuli. An annulus is the region bounded by two concentric
circles. We denote by C`,k an annulus with ` marked points on the outer circle and k
marked points on the inner circle. The marked points may be connected with (oriented)
arcs. There are boundary arcs which connect two consecutive marked points along the
boundary circles. There are bridging arcs which connect two marked points on different
boundary circles. And there are peripheral arcs which connect two marked points on
the same boundary. A triangulation of an annulus is a maximal collection of arcs (up
to homotopy) that do not intersect in the interior of the annulus. Boundary arcs always
belong to a triangulation. In our situation, the triangulations will not involve peripheral
arcs and all arcs will be oriented. A triangle is a closed region in the annulus bounded by
three connected arcs.

We define triangulations of annuli associated to the sequences (a1, a2, . . . , a2m) of pos-
itive integers and (c1, . . . , ck) of integers greater than 1.

• Let T−(c1, . . . , ck) be the oriented triangulation of Cn−k−3,k obtained from the fan
triangulation T by gluing the triangle {0, 1, n−1} with the triangle {k, k+1, k+2},
the latter imposes the orientation. More precisely, vertices 0, 1, n−1 are respectively
glued on vertices k, k + 1, k + 2. In the resulting triangulated annulus, the inner
boundary has marked points numbered from 1 to k anticlockwise, and the outer
boundary has marked points numbered from k + 2 to n− 1 clockwise.

• Let T+(a1, a2, . . . , a2m) be the oriented triangulation of Cn−k−2,k obtained from the
fan triangulation T by gluing the edge joining 1 and 0 with the edge joining k + 1
and k + 2 so that 1 is glued on k + 1 and 0 on k + 2 without flipping. The inner
boundary has marked points labeled 1, . . . , k anticlockwise, and the outer boundary
has marked points labeled k + 2, . . . , n clockwise.

Example 14. For the sequences (a1, a2, . . . , a2m) = (1, 2, 1, 1) and (c1, . . . , ck) = (2, 2, 3)
one obtains the following triangulations of annuli:
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Remark 15. In T−(c1, . . . , ck) one recovers the sequence (c1, . . . , ck), up to cyclic per-
mutation, as the quiddity sequence attached to the points of the inner boundary. In
T+(a1, a2, . . . , a2m) one recovers the sequence (a1, a2, . . . , a2m) by the alternating sequences
of consecutive triangles with base on the outer/inner boundaries. One has the relation
T+(a1, a2, . . . , a2m) = T−(c1 + 1, c2, . . . , ck).

In the triangulations we consider oriented closed loops with no self-crossing. They are
loops obtained by concatenation of oriented connected arcs given in the triangulation.
For a closed loop γ in the triangulated annulus we define the area and the coarea by

ar(γ) := #{triangles enclosed between γ and the inner boundary} (23)

coar(γ) := #{triangles enclosed between γ and the outer boundary } (24)

We are now ready to state the main result concerning enumerative interpretations of
the q-rotundi. The proof is postponed to section 4.3.

Theorem 16. Let (a1, a2, . . . , a2m) be a sequence of positive integers and let (c1, . . . , ck)
be a sequence of integers greater than 1. One has

(i) R+
2m(a1, . . . , a2m)q =

∑
γ in T+

qar(γ) =
∑

γ in T+

qcoar(γ) ,

(ii) Rk(c1, . . . , ck)q =
∑

γ in T−
qar(γ) =

∑
γ in T−

qcoar(γ) ,

where the sums run over all oriented closed loops in the triangulations T+ = T+(a1, a2, . . . , a2m)
and T− = T−(c1, . . . , ck), respectively.

Note that the sums involving the area and coarea coincide due to the palindromicity
property mentioned in Theorem 12.

In the case q = 1 one immediately gets the following corollary.
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Corollary 17. Let (a1, a2, . . . , a2m) be a sequence of positive integers and let (c1, . . . , ck) be
a sequence of integers greater than 1. The rotundus R+

2m(a1, . . . , a2m) is the total number
of closed loops in T+(a1, a2, . . . , a2m) and the rotundus Rk(c1, . . . , ck) is the total number
of closed loops in T−(c1, . . . , ck).

Example 18. Going back to the example of (a1, a2, . . . , a2m) = (1, 2, 1, 1) and (c1, . . . , ck) =
(2, 2, 3), we obtain 10 closed loops in T+:

The generating function for the area (or coarea) of these loops is 1 + 2q + 2q2 + 2q3 +
2q4 + q5 which coincides with the q-rotundus R+

n (1, 2, 1, 1)q.
We obtain 5 closed loops in T−:

The generating function for the area (or coarea) of theses loops is 1 + q + q2 + q3 + q4

which coincides with the q-rotundus Rk(2, 2, 3)q.

4.3 Proof of Theorem 16

By Theorem 12 a formula with the area function is equivalent to the formula with the
coarea function. We will use the coarea.

Let us start by proving part (i) of the theorem. By definition and by Proposition 9
and Remark 11 one has

R+
2m(a1, . . . , a2m)q = qK2m(a1, . . . , a2m)q + K̃2m−2(a2, . . . , a2m−1)q

= q
∑

π : k+1→1

qcoar(π) +
∑

π : k+2→0

qcoar(π),

where the paths π lie in the fan triangulation T associated with the sequences (a1, . . . , a2m).
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Each oriented closed loop γ in T+ gives rise to a path πγ in the fan triangulation T,
see Figure 6 at the end of the proof for an illustration. The coareas coar(γ) and coar(πγ)
either agree or differ by one. The triangle t0 over the vertices {0, 1, n−1} is never enclosed
by a path in T but in can be enclosed or not by a loop in T+. There are two types of
oriented closed loops:

{ loops in T+} = { loops passing through vertex 1 } t
{

loops passing through vertex k + 2
and not passing through vertex 1

}
l l

{ paths k + 1→ 1 in T} { paths k + 2→ 0 in T}

If γ passes through vertex 1, then the corresponding path πγ in T goes from vertex k+ 1
to vertex 1. The loop γ as well as path πγ do not use the boundary arc or edge connecting
vertices n− 1 and 0. All the triangles contributing in coar(πγ) will contribute in coar(γ)
but in addition the triangle t0 will also contributes in coar(γ). Hence, one has

qcoar(γ) = qcoar(πγ)+1,

for all loops γ passing through vertex 1.
If γ does not passes through the vertex 1 then it necessarily passes through the vertex

k + 2. The corresponding path πγ in T goes from vertex k + 2 to vertex 0. The triangle
t0 will be enclosed by the loop γ and will not contribute in coar(γ). Hence, one has

qcoar(γ) = qcoar(πγ),

for all loops γ not passing through vertex 1.
Finally we deduce∑

γ in T+

qcoar(γ) =
∑

γ through 1

qcoar(γ) +
∑

γ not through 1

qcoar(γ)

= q
∑

π : k+1→1

qcoar(π) +
∑

π : k+2→0

qcoar(π)

= R+
2m(a1, . . . , a2m)q

Part (i) is proved.
To prove Part (ii) we use the following matrix relation taken from [26, Prop 4.9]

M+
2m(a1, . . . , a2m)q = Mk(c1, . . . , ck)qRq,

where Rq =

(
q 1
0 1

)
. Taking the traces one gets

TrM+
2m(a1, . . . , a2m)q = TrRqMk(c1, . . . , ck)q = TrMk(c1 + 1, c2, . . . , ck)q,

and the result follows from T+(a1, a2, . . . , a2m) = T−(c1 + 1, c2, . . . , ck), see Remark 15.
Theorem 16 is proved.
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Figure 6: Examples of closed loops in a triangulated annulus T+ with the corresponding
paths in the associated triangulated polygon T. The coarea of the curve and of the path
are shaded in gray.

5 Miscellaneous

In this section we give extra formulas for the rotundi related to other combinatorial models
or generalizing previous results.

5.1 Matchings

In the triangulated annulus T−(c1, . . . , ck) the vertices on the inner boundary are num-
bered from 1 to k. A matching in T−(c1, . . . , ck) is a k-tuple (t1, t2, . . . , tk) of distinct
triangles in T−(c1, . . . , ck) such that the triangle ti is incident to vertex i. In [5] a formula
for the continuant Ek(c1, . . . , ck) is given in terms of matchings, see also [4]. This formula
implies the following formula for the rotundus

Rk(c1, . . . , ck) = #{matchings in T−(c1, . . . , ck)}.

This result does not involve the orientation of the triangulation unlike the result of Corol-
lary 17.
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Example 19. In T−(2, 2, 3) there are three points in the inner boundary and four triangles
denoted a, b, c, d as in the picture. One finds 5 matchings. This number coincides with
R(2, 2, 3) = 5.

matchings:

(a, b, c)
(a, b, d)
(d, a, b)
(d, a, c)
(d, b, c)

5.2 Dual graphs

The dual graph associated with a triangulated polygon or triangulated annulus is defined
in the following way. Each triangle is represented by a vertex and two vertices are linked
by an edge if the corresponding triangles are adjacent. In our situation the dual graphs
are oriented according to the orientation in the triangulations. The cyclic graph is not a
full cycle, it has at least one source and at least one sink. Cyclic graphs from quiddity
sequences have already appear in [2, §3.2].

For instance, in the case of T+(1, 2, 1, 1), we get the following dual graphs

The q-continuants have interpretations using the closures of the graph associated with the
triangulated polygon, see [26, §3]. In particular Theorem 4 in [26, §3] implies a similar
statement for the q-rotundus using the closures of the cyclic graph associated with the
triangulated annulus:

R+(a1, a2, . . . , a2m)q =
∑
C∈G

q#C ,

where the sum runs over all the closures C of the cyclic dual graph G of T+(a1, a2, . . . , a2m).
This can be also formulated in terms of ranks of ideals in some posets (fence posets

and circular posets), see [23], [31], [30].

5.3 Pfaffians

Recall that the determinant of a skew-symmetric matrix can always be written as the
square of a polynomial expression in the entries of the skew-symmetric matrix. This
polynomial expression is called the Pfaffian of the matrix. It is proved in [7] that the
rotundus is the Pfaffian of a bigger skew-symmetric matrix. This can be generalized.
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The q-rotundus is the Pfaffian of a 2k × 2k skew-symmetric matrix:

Rk(c1, . . . , ck)
2
q =

det



1 [c1]q 1

qc1−1 [c2]q 1

qc2−1
. . . . . .

. . . . . . 1

−1
. . . [ck]q

−[c1]q −qc1−1 qck−1

−1
. . . . . .

. . . . . .

−qck−1−1

−1 −[ck]q −qck−1


This is a q-analogue of Theorem 1 in [7] and this can be established using the same proof.

The q-rotundus also appears in the determinant of a 2k × 2k symmetric matrix:

Rk(c1, . . . , ck)
2
q − 4q

∑
i(ci−1) =

(−1)k det



1 [c1]q 1

qc1−1 [c2]q 1

qc2−1
. . . . . .

. . . . . . 1

1
. . . [ck]q

[c1]q qc1−1 qck−1

1 [c2]q qc2−1

. . . . . .
. . .

1 [ck]q qck−1


This identity has been checked experimentally with computer assistance for values of
k 6 5 and various tuples of ci’s. We conjecture that the formula holds in general. This
would be a q-analogue of the formula in the remark following Theorem 1 in [7]. We
also remark that the quantity Rk(c1, . . . , ck)

2
q − 4q

∑
i(ci−1) already appears in a formula of

Proposition 4.3 of [20].
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5.4 Euler-Minding algorithm

The Euler-Minding formula gives the terms in the continuants by removing successively
pairs cici+1 in the product c1c2 · · · ck see e.g [34, p.9]. Conley-Ovsienko introduced a cyclic
variant of this algorithm to compute the rotundus, see [7, p46].

We adapt these algorithms in the case of q-continuant and q-rotundus.
The q-continuant Ek(c1, . . . , ck)q can be calculated as the sum of all terms obtained

from the product [c1]q[c2]q · · · [ck]q by replacing all the adjacent pairs [ci]q[ci+1]q by −qci−1.
It is possible to remove from 0 to bk/2c pairs at once. For example,

E3(c1, c2, c3)q = [c1]q[c2]q[c3]q − qc1−1�����[c1]q[c2]q [c3]q − qc2−1[c1]q�����[c2]q[c3]q

= [c1]q[c2]q[c3]q − qc1−1[c3]q − qc2−1[c1]q

E4(c1, c2, c3, c4)q = [c1]q[c2]q[c3]q[c4]q − qc1−1�����[c1]q[c2]q [c3]q[c4]q − qc2−1[c1]q�����[c2]q[c3]q [c4]q
−qc3−1[c1]q[c2]q�����[c3]q[c4]q + qc1+c3−2�����[c1]q[c2]q�����[c3]q[c4]q

= [c1]q[c2]q[c3]q[c4]q − qc1−1[c3]q[c4]q − qc2−1[c1]q[c4]q − qc3−1[c1]q[c2]q
+qc1+c3−2

This algorithm can be deduced from the standard formula expressing the determinant of a
n× n-matrix: det(ai,j) =

∑
σ∈Sn sgn(σ)a1,σ(1) . . . an,σ(n). In the case of the three-diagonal

determinant (12) the formula reduces to the set of permutations σ in the symmetric group
Sn that are product of elementary transpositions (i, i + 1) with disjoint supports. This
explains the algorithm.

Using (22) we derive a similar algorithm for the q-rotundus. The rotundusRk(c1, . . . , ck)q
can be calculated as the sum of all terms obtained from the product [c1]q[c2]q · · · [ck]q by
replacing all the cyclically adjacent pairs [ci]q[ci+1]q by −qci−1. Here [ck]q[c1]q is considered
as an adjacent pair and is replaced by −qck−1. It is possible to remove from 0 to bk/2c
pairs at once. For example,

R3(c1, c2, c3)q = [c1]q[c2]q[c3]q − qc1−1�����[c1]q[c2]q [c3]q − qc2−1[c1]q�����[c2]q[c3]q
−qc3−1���[c1]q [c2]q���[c3]q

= [c1]q[c2]q[c3]q − qc1−1[c3]q − qc2−1[c1]q − qc3−1[c2]q

R4(c1, c2, c3, c4)q = [c1]q[c2]q[c3]q[c4]q − qc1−1�����[c1]q[c2]q [c3]q[c4]q − qc2−1[c1]q�����[c2]q[c3]q [c4]q
−qc3−1[c1]q[c2]q�����[c3]q[c4]q − qc4−1���[c1]q [c2]q[c3]q���[c4]q
+qc1+c3−2�����[c1]q[c2]q�����[c3]q[c4]q + qc2+c4−2���[c1]q�����[c2]q[c3]q���[c4]q

= [c1]q[c2]q[c3]q[c4]q − qc1−1[c3]q[c4]q − qc2−1[c1]q[c4]q − qc3−1[c1]q[c2]q
−qc4−1[c2]q[c3]q + qc1+c3−2 + qc2+c4−2

Note that applying this algorithm to Rk(ck, . . . , c1)q would lead to other formulas that
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should simplify to the same polynomials in q. For instance for k = 3 one can check

[c1]q[c2]q[c3]q − qc1−1[c3]q − qc2−1[c1]q − qc3−1[c2]q = [c3]q[c2]q[c1]q − qc3−1[c1]q − qc2−1[c3]q − qc1−1[c2]q.
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