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Abstract

An oriented graph is a digraph that does not contain a directed cycle of length
two. An (oriented) graph D is H-free if D does not contain H as an induced
sub(di)graph. The Gyárfás-Sumner conjecture is a widely-open conjecture on sim-
ple graphs, which states that for any forest F , there is some function f such that
every F -free graph G with clique number ω(G) has chromatic number at most
f(ω(G)). Aboulker, Charbit, and Naserasr [Extension of Gyárfás-Sumner Conjec-
ture to Digraphs, Electron. J. Comb., 2021] proposed an analog of this conjecture to
the dichromatic number of oriented graphs. The dichromatic number of a digraph
D is the minimum number of colors required to color the vertex set of D so that no
directed cycle in D is monochromatic.

Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture states that for
every oriented forest F , there is some function f such that every F -free oriented
graph D has dichromatic number at most f(ω(D)), where ω(D) is the size of a
maximum clique in the graph underlying D. In this paper, we perform the first step
towards proving Aboulker, Charbit, and Naserasr’s −→χ -boundedness conjecture by
showing that it holds when F is any orientation of a path on four vertices.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In a simple graph, the size of a maximum clique gives a lower bound on its chromatic
number. But if a graph contains no large cliques, does it necessarily have small chromatic
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the electronic journal of combinatorics 30(3) (2023), #P3.36 https://doi.org/10.37236/11538

https://doi.org/10.37236/11538


number? This question has been answered in the negative. In the mid-twentieth century,
Mycielski [21] and Zykov [27] gave constructions for triangle-free graphs with arbitrarily
large chromatic number. Hence, we may ask the following question instead: Given some
fixed graph H, do graphs with a bounded clique number that do not contain H as an
induced subgraph have bounded chromatic number? In 1959, Erdős showed that there exist
graphs with arbitrarily high girth and arbitrarily high chromatic number [12]. Hence, the
answer to the previous question is “no” whenever H contains a cycle, and thus we need
only consider the question when H is a forest. Around the 1980s, Gyárfás and Sumner
independently conjectured [14, 26] that for any forest H, all graphs with bounded clique
number and no induced copy of H have bounded chromatic number. The conjecture
has been proven for some specific classes of forests but remains largely open; see [24]
for a survey of related results. This paper concerns an analog of the Gyárfás-Sumner
conjecture to directed graphs proposed by Aboulker, Charbit, and Naserasr [5]. We will
state the Gyárfás-Sumner conjecture and its analog for directed graphs more formally
after introducing some necessary terminology.

Throughout the paper, for integers i, j, we let [i, j] = {i, . . . , j}. A directed graph, or
digraph, is a pair D = (V,E) where V is the vertex set and E is a set of ordered pairs of
vertices in V called the arc set. We call a digraph oriented if it has no digon (directed
cycle of length two). This paper will focus on finite, simple, oriented graphs.

For a digraph D = (V,E) we define the underlying graph of D to be the graph D∗ =
(V,E∗) where E∗ is the set obtained from E by replacing each arc e ∈ E by an undirected
edge between the same two vertices. We say two vertices in D are adjacent or neighbors
if they are adjacent in D∗. If (v, w) is an arc of D we say that v is an in-neighbor of w
and that w is an out-neighbor of v. We denote the set of neighbors of a vertex v ∈ V (D)
by N(v) and we denote N(v) ∪ {v} by N [v]. For a set of vertices S ⊆ V (D) we let N(S)
and N [S] denote the sets ∪v∈SN(v) \ S and ∪v∈SN [v]. We call N(S) the neighborhood of
S and N [S] the closed neighborhood of S. For a subdigraph H ⊆ D we let N(H) denote
the set N(V (H)).

We let Pt denote the path on t vertices. We say an oriented path is a directed path if

its vertices are p1, p2, . . . , pt, and its arcs are given by {(pi, pi+1), i ∈ [1, t− 1]}. We let
−→
Pt

denote the directed path on t vertices. We sometimes describe orientations of the path
using symbols ← and →, these should be seen as the arcs of the given orientation. The
arcs follow the order of the vertices in the underlying path, which we sometimes omit. For

example, we may refer to a directed path
−→
P4 on vertices p1, p2, p3, p4 as p1→ p2→ p3→ p4

or as→→→. We say a digraph D is strongly connected if for every v, w ∈ V (D) there is a
directed path starting at v and ending at w. An induced subdigraph H of a digraph D is a
strongly connected component of D if it is strongly connected and every induced subgraph
H ′ of D such that H ⊆ H ′ is not strongly connected. We call a strongly connected
component H a source (sink) component of D if every arc between V (H) and V (D \H)
begins (ends) in V (H).

A tournament is an orientation of a complete graph. A transitive tournament is an
acyclic tournament. Given a (di)graph G and S ⊆ V , we denote the sub(di)graph of G
induced by S as G[S]. We say that a (di)graph G contains a (di)graph H if G contains H
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as an induced sub(di)graph. If G does not contain a (di)graph H we say that G is H-free.
If G does not contain any of the (di)graphs H1, H2, . . . , Hk we say G is (H1, H2, . . . , Hk)-
free. The clique number and the chromatic number of a digraph are the chromatic number
and clique number of its underlying graph, respectively. We denote the clique number
and the chromatic number of a (di)graph G by ω(G) and χ(G), respectively. We say that
a graph H is χ-bounding if there exists a function f with the property that every H-free
graph G satisfies χ(G) 6 f(ω(G)). In this language, [12] implies all χ-bounding graphs
are forests. We are now ready to state the Gyárfás-Sumner conjecture more formally.

Conjecture 1 (The Gyárfás-Sumner conjecture [14, 26]). Every forest is χ-bounding.

Today, the conjecture is only known to hold for restricted classes of forests. For ex-
ample, Gyárfás showed that it holds for paths [15] via a short and elegant proof. Subse-
quently, the conjecture was proven for other classes of forests. For example, the following
classes of trees have been proven to be χ-bounding:

• Trees of radius two by Kierstead and Penrice in 1994 [18],

• Trees that can be obtained from a tree of radius two by subdividing every edge
incident to the root exactly once by Kierstead and Zhu in 2004 [20], and

• Trees that can be obtained from a tree of radius two by subdividing some of the
edges incident to the root exactly once by Scott and Seymour in 2020 [23].

Note that the class of trees described by the third bullet contains the classes described in
both the first and second bullet. See the survey of Scott and Seymour [24] for an overview
of the state of the conjecture from 2020.

How can the Gyárfás-Sumner conjecture be adapted to the directed setting? A first
idea is to call an oriented graph H χ-bounding if there exists a function f with the property
that every H-free oriented graph D satisfies χ(D) 6 f(ω(D)). Then, once again, by [12],
all χ-bounding oriented graphs are oriented forests. Note that if an oriented graph H is
χ-bounding, its underlying graph H∗ is also χ-bounding. However, the converse does not
hold, as, for instance, P4 is χ-bounding, but there exist orientations of P4 that are not
χ-bounding. There are four different orientations of P4, up to reversing the order of the
vertices on the whole path:

→→→,→←→,→←←,←←→

Only the last two oriented graphs in the list are χ-bounding:

• Recall, we denote the oriented P4 with orientation→→→ by
−→
P4. In 1991, Kierstead

and Trotter [19], showed that
−→
P4 is not χ-bounding. Their construction was inspired

by Zykov’s construction of triangle-free graphs with a high chromatic number [27],

and builds
−→
P4-free oriented graphs with arbitrarily large chromatic number and no

clique of size three.
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• Around 1990, Gyárfás pointed out that ←→← is not χ-bounding, as witnessed
by an orientation of the shift graphs on pairs [16]. We will denote the P4 with

orientation ←→← by
−→
A4.

• Chudnovsky, Scott and Seymour [10] showed that →←← and ←←→ are both χ-
bounding in 2019. In the same article, the authors show that orientations of stars
are also χ-bounding (stars are the class of complete bipartite graphs K1,t for any

t > 1). We will denote →←← and ←←→ by
−→
Q4 and

−→
Q4
′, respectively.

This attempt at adapting the Gyárfás-Sumner conjecture to oriented graphs does

not hold for oriented paths such as
−→
P4 and

−→
A4. Hence, we focus on a different approach

proposed by Aboulker, Charbit, and Naserasr [5] which uses a concept called “dichromatic
number”. Directed coloring, or dicoloring, is a weakening of coloring defined on digraphs
and was proposed by Neumann-Lara and subsequently developed by Erdős and Neumann-
Lara [13, 22]. A dicoloring of a digraphD is a partition of V (D) into classes, or colors, such
that each class induces an acyclic digraph (that is, there is no monochromatic directed
cycle). The dichromatic number of D, denoted as −→χ (D), is the minimum number of colors
needed for a dicoloring of D. Throughout the paper, given a digraph D, we sometimes
identify vertex set X ⊆ V (D) and the subgraph D[X]. In particular, for X ⊆ V (D), we let
ω(X) = ω(D[X]), χ(X) = χ(D[X]), and −→χ (X) = −→χ (D[X]). Notice that every coloring
of a directed graph D is also a dicoloring, thus −→χ (D) 6 χ(D).

Much prior research has been done to understand which induced subdigraphs must
exist in digraphs of large dichromatic number. Berger, Choromanski, Chudnovsky, Fox,
Loebl, Scott, Seymour and Thomassé gave an explicit description of all the tournaments
H for which the class of H-free tournaments has bounded dichromatic number [6]. Similar
questions for general digraphs remain open. A set F of digraphs is called heroic if the
class of F -free digraphs has bounded dichromatic number. It is easy to see that every
heroic set must forbid some digraph with a digon and that every heroic set must forbid
some oriented graph. However, we are far from a characterization such as the one in [6]
despite significant work towards better understanding heroic sets (such as [1, 3, 5, 9]).
It was shown in [5] that: For every oriented forest F , if the set consisting of a digon,
F , and a digraph H is heroic, then F is the disjoint union of oriented stars or H is a
transitive tournament. Motivated by this, Aboulker, Charbit, and Naserasr conjectured
that for every oriented forest F , and any transitive tournament K, the set consisting of the
digon, F and K is heroic in [5]. This conjecture, which we call the “ACN −→χ -boundedness
conjecture”, is the main subject of this paper.

In order to highlight how the ACN−→χ -boundedness is analogous to the Gyarfas-Sumner
conjecture, we will restate the ACN −→χ -boundedness in terms of “−→χ -boundedness”. We
say a class of digraphs D is −→χ -bounded if there exists a function f such that every D ∈ D
satisfies −→χ (D) 6 f(ω(D)), and we call such an f a −→χ -binding function for D. We say
a digraph H is −→χ -bounding if the class of H-free oriented graphs is −→χ -bounded. Note,
that every tournament of order 2k contains a transitive tournament of order k. Thus, if
a digraph H is −→χ -bounding, the set consisting of a digon, H, and K is heroic for any
choice of a transitive tournament K, so we can restate the conjecture as follows:
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Conjecture 2 (The ACN −→χ -boundedness conjecture [5]). Every oriented forest is −→χ -
bounding.

The converse of the ACN −→χ -boundedness conjecture holds; all −→χ -bounding digraphs
must be oriented forests. Indeed, Harutyunyan and Mohar proved that there exist oriented
graphs of arbitrarily large undirected girth and dichromatic number [17]. Oriented graphs
of sufficiently large undirected girth do not contain any fixed digraph that is not an
oriented forest. Hence, no digraph containing a digon or a cycle in its underlying graph
is −→χ -bounding. Moreover, for any finite list of digraphs D1, D2, . . . , Dk, if the class of
(D1, D2, . . . , Dk)-free oriented graphs is −→χ -bounded then one of D1, D2, . . . , Dk must be
a forest. One might ask whether the situation changes when we forbid an infinite list of
oriented graphs. We list some results related to this:

• In [8], Carbonero, Hompe, Moore, and Spirkl provided a construction for oriented
graphs with clique number at most three, arbitrarily high dichromatic number, and
no induced directed cycles of odd length at least 5. They use this to show that there
exist graphs G with arbitrarily large chromatic such that every induced triangle-
free subgraph of G has chromatic number at most four, disproving a well-known
conjecture.

• In [4], Aboulker, Bousquet, and de Verclos showed that the class of chordal oriented
graphs, that is, oriented graphs forbidding induced directed cycles of length greater
than three, is not −→χ -bounded, answering a question posed in [8].

• In [7], Carbonero, Hompe, Moore, and Spirkl extended the result of [8] to t-chordal
graphs. A digraph is t-chordal if it does not contain an induced directed cycle
of length other than t. In [7] the authors showed that t-chordal graphs are not
−→χ -bounded, but t-chordal

−→
Pt-free graphs are −→χ -bounded.

Note that Conjecture 2 only considers oriented graphs. This is the only sensible case.
Indeed, if F contains a digon, the class of F -free oriented graphs is the class of all oriented
graphs, which is not −→χ -bounded (because for example tournaments are oriented graphs).
If F contains no digons and at least one arc, then the class of F -free digraphs is not −→χ -
bounded; Any digraph obtained from a graph by replacing every edge with a digon does
not contain any oriented graph with at least one edge as an induced subgraph. Hence, by
[21, 27], for any choice of an oriented graph with at least one edge F , there exist F -free
digraphs (with digons) that have arbitrarily high dichromatic number and do not contain
a triangle in their underlying graph.

The ACN −→χ -boundedness conjecture is still widely open. It is not known whether the
conjecture holds for any orientation of any tree T on at least five vertices that is not a star.
In particular, it is not known whether the conjecture holds for oriented paths. In contrast,
Gyárfás showed that every path is χ-bounding in the 1980s [14, 15]. We will introduce
some terminology before discussing the status of the ACN −→χ -boundedness conjecture for
oriented paths in more detail. For t 6 3, Pt is −→χ -bounding. (This can be proven by, for
example, noting that for t 6 3, the graph Pt is a star and applying Chudnovsky, Scott,
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and Seymour’s result [10] that every orientation of a star is χ-bounding and therefore also
−→χ -bounding.) However, for t > 4, the picture gets more complicated:

• Let T be any fixed orientation of K3. In [5], Aboulker, Charbit and Naserasr showed

that class of (T ,
−→
P4)-free oriented graphs have bounded dichromatic number. The

authors also show that
−→
P4-free oriented graphs with clique number at most three

have bounded dichromatic number.

• Let
−→
Kt denote the transitive tournament on t vertices. In [25], Steiner showed that

the class of (
−→
K3,
−→
A4)-free oriented graphs has bounded dichromatic number. In

the same paper Steiner asked whether the class of (H,
−→
Kt)-free oriented graphs has

bounded dichromatic number for t > 4 and H ∈ {
−→
P4,
−→
A4}. We explain in the next

subsection that our main result answers this question in the affirmative.

1.1 Our contributions

In this paper, we show that every orientation of P4 is −→χ -bounding and thus the ACN
−→χ -boundedness conjecture holds for all orientations of P4. The ACN −→χ -boundedness

conjecture is open for any orientation of Pt for t > 5. Our main novel result is that
−→
P4

and
−→
A4 are both −→χ -bounding. Chudnovsky, Scott and Seymour showed that both

−→
Q4 and−→

Q4
′ are χ-bounding and thus also −→χ -bounding in [10]. We include in a new proof that

−→
Q4 and

−→
Q4
′ are both −→χ -bounding and improve the −→χ -binding function for the classes of−→

Q4-free oriented graphs and
−→
Q4
′-free oriented graphs. To summarize, our main result is

the following:

Theorem 3. Let H be an oriented P4. Then, the class of H-free oriented graphs is
−→χ -bounded. In particular, for any H-free oriented graph D,

−→χ (D) 6 (ω(D) + 7)(ω(D)+8.5).

Our result also answers the question of [25] in the affirmative, that is, for H ∈ {
−→
P4,
−→
A4}

and any k > 4 the class of H-free oriented graphs not containing a transitive tournament
of order k has bounded dichromatic number.

The ACN −→χ -boundedness conjecture and other questions raised in [5] are aimed at
characterizing heroic sets of cardinality three. If we ignore the degenerate cases where
heroic sets include the empty graph or the graph consisting of a single vertex, there are no
heroic sets consisting of only one element and the only heroic set of cardinality two consists
of an arc and a digon. Therefore, heroic sets of cardinality three are the first interesting

case. Then, Theorem 3 can be restated by saying every set {
←→
K2, H,K}, where

←→
K2 denotes

a digon, H is an orientation of P4, and K is a transitive tournament is heroic. Further
explanation of how the ACN −→χ -boundedness Conjecture is motivated by questions about
heroic sets is given in [5].
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Structure of the paper and proof overview. Let H be any orientation of P4. We
prove Theorem 3 by induction on the clique number. We fix an integer ω(D) > 2. We
define a function f and assume that H-free oriented graphs with clique number ω′ where
1 6 ω′ < ω have dichromatic number at most f(ω′). We then consider an oriented graph
with clique number ω and show that D can be dicolored using at most f(ω) colors.

Our strategy to bound −→χ (D) crucially relies on a tool we call dipolar sets which were
introduced by the name “nice sets” in [5]. Dipolar sets have the following useful property
[5]: In order to bound the dichromatic number of a class of oriented graphs closed under
taking induced subgraphs, it suffices to exhibit a dipolar set of bounded dichromatic
number for each of the members in the class. We give a few preliminary observations as
well as an introduction to dipolar sets in Section 2.

In Section 3, we show how to construct a dipolar set for any H-free oriented graph D
of clique number ω. Our goal is to obtain a bound for the dichromatic number of this set.
The backbone of our construction is an object we call a closed tournament.

Definition 4 (path-minimizing closed tournament). We say K and P form a closed
tournament C = K ∪ V (P ) if K is a tournament of order ω(D) and P is a directed path
from a sink component to a source component in K.

Given a digraph D, we say C = K ∪ P forms a path-minimizing closed tournament if
it is a closed tournament such that K is a maximum clique of D, and |P | is minimized
amongst all possible choices of K,P that form a closed tournament.

It follows from the definition of closed tournament that the graph induced by a closed
tournament is strongly connected and that every strongly connected oriented graph has
a path-minimizing closed tournament. We will define a set S consisting of the closed
neighborhood of a path-minimizing closed tournament C and a subset of the second
neighbors of C. We will show that if D is H-free, then S is a dipolar set. This proof will
rely heavily on the fact that C is strongly connected.

The strong connectivity of C is a powerful property in showing that S is a dipolar set.
However, ensuring C is strongly connected by adding P to K makes it harder to bound the
dichromatic number of N(C). We explain in Section 2 that we can easily bind the dichro-
matic number of the first neighborhood of any bounded cardinality set. Unfortunately,
we have no control over the cardinality of P in a path-minimum closed tournament. In
fact, P , and thus C, might be arbitrarily large with respect to ω. This makes the task of
bounding the dichromatic number of N(C) significantly harder. Fortunately, since D is
H-free and we may choose C to be a path-minimizing closed tournament, there are a lot
of restrictions on what arcs may exist between vertices of N(C). Ultimately, our goal is
to exploit these restrictions to bind the dichromatic number of N(C).

Interestingly, we can define S and prove that it is a dipolar set in the same way for
each possible choice of an oriented P4. We describe our construction of a dipolar set S in
Section 3. However, we used different (but similar) proofs to show that S has bounded

dichromatic number for H =
−→
P4,
−→
A4, and

−→
Q4. The proof that S has bounded dichromatic

number when H is
−→
Q4 implies the result when H is

−→
Q4
′.
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In Section 4, we bound the dichromatic number of C, the vertices of S in the second
neighborhood of C, and N(K) for H-free graphs where H is an arbitrary choice of an
orientated P4. In Section 5, we bound the dichromatic number of the vertices in S not
handled in Section 4. These remaining vertices are the set N(P ) \ N [K]. Here we use

separate (but similar) proofs for H =
−→
P4,
−→
A4,
−→
Q4. In Section 6, we put the pieces together

to obtain our main result that any orientation of P4 is −→χ -bounding. We discuss some
related open questions in Section 7.

2 Preliminaries

In this section, we lay the groundwork for our proof by making a few observations useful in
later sections and introducing dipolar sets. In the rest of the paper, we will only consider
strongly connected oriented graphs since the dichromatic number of an oriented graph is
equal to the maximum dichromatic number of one of its strongly connected components.
In particular, we will work with the following assumptions:

Scenario 5 (Inductive Hypothesis). Let H be an oriented P4 and let ω > 1 be an integer.
We let γ be the maximum of −→χ (D′) over every H-free oriented graph D′ satisfying ω(D′)<
ω, and assume γ is finite. We let D be an H-free oriented graph with clique number ω
and assume D is strongly connected.

We will aim to bound the −→χ (D) in terms of γ and ω. We begin with some easy
observations about the dichromatic number of the neighborhood of any sets of vertices in
D. For any vertex v ∈ V (D), by definition ω(N(v)) 6 ω−1 as otherwise D would contain
a tournament of size greater than ω. Hence, for any v ∈ V (D), −→χ (N(v)) 6 γ. This can
be directly extended to bounding the dichromatic number of the neighborhood of a set of
a given size as follows:

Observation 6. Let D be an oriented graph and let γ be the maximum value of −→χ (N(v))
for any v ∈ V (D). Then every X ⊆ V (D) satisfies:

−→χ (N(X)) 6 −→χ

(⋃
x∈X

N(x)

)
6 |X| · γ.

We now formally define dipolar sets, one of the main tools used in this paper. Note,
dipolar sets were first introduced in [4] as “nice sets”.

Definition 7 (dipolar set). A dipolar set of an oriented graph D is a nonempty subset
S ⊆ V (D) that can be partitioned into S+, S− such that no vertex in S+ has an out-
neighbor in V (D \ S) and no vertex in S− has an in-neighbor in V (D \ S).

We will use the following lemma from [5] which reduces the problem of bounding the
dichromatic number of D to bounding the dichromatic number of a dipolar set in every
induced oriented subgraph of D.

Lemma 8 (Lemma 17 in [5]). Let D be a family of oriented graphs closed under taking
induced subgraphs. Suppose there exists a constant c such that every D ∈ D has a dipolar
set S with −→χ (S) 6 c. Then every D ∈ D satisfies −→χ (D) 6 2c.
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3 Building a dipolar set

In this section we give a construction for a dipolar set in an H-free oriented graph D where
H is an oriented P4. We will then show that the dipolar set we construct has bounded
dichromatic number if D satisfies the properties given in Scenario 5.

3.1 Closed Tournaments

The simplest case for our construction is whenD contains a strongly connected tournament
J of order ω(D). Then, we can build a dipolar set consisting of the union of J and a
subset of vertices at distance at most two from K.

Let K be a tournament of order ω(D) contained in D. By definition every vertex
v ∈ N(K) has a non-neighbor in K. Hence, the graph underlying D[K ∪{v}] contains an
induced P3. Now, suppose K is strongly connected. Then we get an even more powerful
property: Since K is strongly connected there is both an arc from K \N(v) to N(v)∩K
and to K \ N(v) from N(v) ∩ K. This means that D[K ∪ {v}] contains an induced P3

starting at v whose last edge is oriented as → and an induced P3 starting at v whose last
edge is oriented as ←. This property will give us more power to build specific induced
orientations of P3 in N [K]. In particular, this restricts the way vertices at distance at
most two interact with the rest of the graph and allows us to exhibit a dipolar set.

To overcome the fact that D may not contain a strongly connected tournament of order
ω(D), we use closed tournaments. By definition of closed tournament every strongly
connected oriented graph has a path-minimizing closed tournament. We will base our
construction of a dipolar set on some path-minimizing tournament in order to gain some
additional structure that we can use to bound the dichromatic number of our dipolar set.
In the next subsection we formally give the definition of our dipolar set.

3.2 Extending a closed tournament into a dipolar set

In order to build a dipolar set from a closed tournament, we need to make some distinctions
between different types of neighbors of a set of vertices. For a set of vertices A and
v ∈ N(A) we say v is a strong neighbor of A if v has both an in-neighbor and an out-
neighbor in A. Then, the strong neighborhood of A is the set of strong neighbors of
A.

Given a closed tournament C, we let X denote the set of strong neighbors of C. The
following lemma proves that N [C ∪X] is a dipolar set.

Lemma 9. Let H be an orientation of P4 and D be an H-free oriented graph. Let C be a
closed tournament in D and let X denote the strong neighborhood of C. Then N [C ∪X]
is a dipolar set.

Proof. Let Z denote the neighbors of C that are not strong, and let Y = N(X)\N [C].
These sets satisfy N [C ∪X] = C ∪X ∪ Z ∪ Y and the graph on N [C ∪X] is illustrated
in Figure 1.
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Figure 1: An illustration of the extension of a closed tournament C into the dipolar set
N [C ∪X]. Highlighted in blue, Z consists of neighbors of C that are not strong, i.e., do
not have both an in-neighbor and an out-neighbor in C. The set X consists of the strong
neighborhood of C, while set Y contains all neighbors of X not in N [C]. Note that arcs
between Z and X or Y are not represented here. In Lemma 9, we prove that if there is
some vertex in N [C ∪X] with both an in-neighbor and an out-neighbor in the rest of the
oriented graph (drawn in dashed red), then N [C ∪X] ∪ {b1, b2} contains all orientations
of P4 as an induced oriented subgraph.

Then by definition, N [C ∪ X] = N [C] ∪ Y and the only vertices of N [C ∪ X] with
neighbors in V (D) \ N [C ∪ X] are in Y ∪ Z. Suppose for a contradiction that some
v ∈ Z ∪ Y has both an in-neighbor b1 and an out-neighbor b2 in V (D) \ (N [C] ∪ Y ). Let
us first deal with the case where v ∈ Y .

If v ∈ Y , then D[C ∪X ∪ Y ∪ {b1, b2}] contains H. (1)

Suppose v ∈ Y . Then, by definition, the following statements all hold:

• There is some x ∈ X such that x and v are adjacent.

• There are vertices c1, c2 ∈C where c1 is an in-neighbor of x and c2 is an out-neighbor
of x.

• b1, b2 are not adjacent to any of x, c1, c2.

Thus, for some choice of i, j ∈ {1, 2} the set {ci, x, v, bj} induces a copy of H. (See Fig-
ure 1.) This proves (1).
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Since D is an H-free oriented graph, it follows from (1) that v ∈ Z. Then by defini-
tion of Z, the neighbors of v in C are either all in-neighbors of v or all out-neighbors of
v.

There exist arcs (q1, p1), (p2, q2) ∈ E(C) such that v is adjacent to q1, q2 and
non-adjacent to p1, p2.

(2)

It follows from the fact that ω(C) = ω(D) that v has some non-neighbor in C. Since C
is strongly connected, N(v) ∩ C must have both an incoming arc and an outgoing arc
from C \ N(v). Let p1, p2 be vertices of C\N(v) witnessing this fact and let q1, q2 their
respective neighbors in N(v) ∩ C. This proves (2).

It follows that for some i, j ∈ {1, 2} the graph induced by {pi, qi, v, bj} is a copy of H, a
contradiction. (See Figure 1).

4 First steps towards bounding the dichromatic number
of N [C ∪X]

For brevity, we will fix the following variables for the remainder of the paper.

Definition 10. Let D,H, γ,K, P, C,X, Y be defined as follows:

• Let H be an oriented P4.

• Let D be a digraph satisfying the assumptions of Scenario 5 with respect to H. Let
γ be as in Scenario 5.

• We choose a tournament K of order ω(D) and a directed path P that form a path-
minimizing tournament C in D.

• Let X be the strong neighborhood of C and Y = N(X) \N [C].

In the previous section we showed that N [C ∪X] is a dipolar set. Thus, by Lemma 8
we can prove that all orientations of P4 are −→χ -bounding by proving that −→χ (N [C ∪X]) is
bounded in terms of ω(D) and γ, the maximum value of −→χ (D′) for any H-free D′ with
clique number less than ω(D).

Since N [C ∪ X] ⊆ N [K] ∪ V (P ) ∪ (N(P )\N [K]) ∪ Y , the following inequality holds
by definition of the dichromatic number:

−→χ (N [C ∪X]) 6 −→χ (N [K]) +−→χ (V (P )) +−→χ (N(P ) \N [K]) +−→χ (Y ) (3)

We will bound −→χ (N [C ∪ X]) by bounding each of the terms on the right-hand side of
the inequality. We bound the dichromatic number of N [K] and P in Subsection 4.1 and
we bound the dichromatic number of Y in Subsection 4.2. We are able to use the same
techniques for each choice of H when proving these bounds.
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As already hinted, bounding −→χ (N [C ∪X]) is non-trivial because we have no control
over the cardinality of P . Hence, we cannot obtain a useful bound on −→χ (N(P ) \ N [K])
by simply applying Observation 6. In the next section, we will show how to bound
−→χ (N(P ) \N [K]). We will require separate proofs for H =

−→
Q4,
−→
P4,
−→
A4.

4.1 Bounding the dichromatic number of V (P ) and N [K]

We bound the dichromatic number of V (P ) and N [K] by an easy observation about
“forward-induced” paths. We say a directed path p1 → p2 → · · · → pt is forward-induced
if no arc of the form (pi, pj) exists where j > i+ 1 and i, j ∈ [1, t].

Observation 11. Let P be a forward-induced directed path in some oriented graph. Then
−→χ (P ) 6 2.

Proof. Let the vertices of P be p1 → p2 → . . . → p`, in order. We assign colors to the
vertices of P by alternating the colors along P . Suppose there is some monochromatic
directed cycle Q in the oriented graph induced by V (P ). Then Q contains no arc of P .
Hence, Q must contain some arc (pi, pj) with i, j ∈ [1, `] and j > i+ 1, contradicting the
defintion of forwards-induced.

Now, we turn to bound the dichromatic number of our dipolar set, N [C ∪ X] by
bounding −→χ (N [K] ∪ V (P )).

Observation 12. It holds that

−→χ (N [K]) 6 ω · γ

Moreover,
−→χ (N [C]) 6 −→χ (N(P ) \N [K]) + ω · γ + 2.

Proof. Since |K|= ω(D)> 1, we have N [K] =
⋃
x∈K N(x), and hence −→χ (N [K]) 6 ω ·γ by

Observation 6. This proves the first statement. By definition, N [C] = (N(P ) \ N [K]) ∪
N [K]∪P . Since C is path-minimizing, P is forward-induced. Thus, we obtain the second
statement by Observation 11.

Thus, by inequality (3), it only remains to bound the dichromatic number of Y and
N(P ) \N [K] in order to bound the dichromatic number of our dipolar set N [C ∪X].

4.2 Bounding the dichromatic number of Y

In this subsection, we bound the dichromatic number of Y = N(X)\N [C]. We first state
a more general lemma, which gives the bound on −→χ (Y ) as a direct corollary.

Lemma 13. Let H be an oriented P4 and let D be an H-free oriented graph. Suppose
there is a partition of V (D) into sets Q,R, S such that there is no arc between Q and S,
every r ∈ R has both an in-neighbor and an out-neighbor in Q, and every s ∈ S has a
neighbor in R. Let γ be a positive integer such that for every r ∈R, we have −→χ (N(r)) 6 γ.
Then −→χ (S) 6 2γ.
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Figure 2: Vertex sets Q,R, S, such that no arc lies between Q and S, the vertices in R
are all strong neighbors of Q and S is a subset of neighbors of R. We illustrate the case of

graphs forbidding
−→
P4. Other orientations behave symmetrically. In green, a vertex r ∈ R

is depicted with an out-neighbor s ∈ S. Then if s has an out-neighbor s1 ∈ S \N(r) there

would be an induced
−→
P4, a contradiction. Symmetrically in blue, an in-neighbor s′ ∈ S of

r cannot admit an in-neighbor s′2 ∈ S\N(r).

Proof. Note that if an oriented graph D with partition of V (D) into Q,R, S satisfies the
conditions of the lemma, for every S ′ ⊆ S the oriented graph induced by Q ∪ R ∪ S ′
also satisfies the conditions of the lemma with partition Q,R, S ′. Hence, by Lemma 8 it
is enough to show that for every oriented graph D with partition Q,R, S satisfying the
conditions of the lemma and S 6= ∅, the oriented graph induced by S contains a dipolar
set with dichromatic number at most γ.

Let Q,R, S be as in the statement of the lemma and suppose S 6= ∅. Then, there
is some r ∈ R with a neighbor in S. By assumption, r has an in-neighbor q1 and an
out-neighbor q2 in Q. Suppose some s ∈ N(r) ∩ S has both an in-neighbor si and an
out-neighbor sj in S \N(r). Then there is a copy of H induced by {qi, r, s, sj} for some
choice of i, j ∈ {1, 2}, a contradiction. (See Figure 2.) Hence, N(r) ∩ S is a dipolar set.
Moreover, −→χ (N(r) ∩ S) 6 −→χ (N(r)) 6 γ by definition of γ.

Corollary 14. We have that that:

−→χ (Y ) 6 2γ.

Proof. By definition, we may apply Lemma 13 to the induced subgraph D[C ∪ X ∪ Y ]
with Q := C, R := X and S := Y (see Figure 1). Hence, −→χ (Y ) 6 2γ.

At this point, we only need to bound −→χ (N(P ) \N [K]) in order to bound the dichro-
matic number of our dipolar set N [C ∪X] by Corollary 14. This will be the purpose of
the next section.
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5 Completing the bound on the dichromatic number of our
dipolar set

Here, we keep the definitions of D,C,K, P,X, Y and H, γ as fixed in Definition 10. In this
section, we bound the dichromatic number of N(P ) \ N [K], thus completing the bound
on the terms of the right-hand side of inequality (3). By Corollary 14, this will imply that
every oriented graph which forbids some orientation of P4 has a dipolar set of bounded
dichromatic number. Thus, by Lemma 8, this will give us our main result.

By definition of path-minimizing closed tournament, P is a forward-induced directed
path. In Subsection 5.1, we start by giving some structural properties on properties of
the neighborhood of forwards-induced paths. Then, in Subsection 5.2, we show how to
use these properties to bound the dichromatic number of the first neighborhood of C

for
−→
Q4-free graphs. (Recall, the bound for

−→
Q4-free oriented graphs implies the bound for

−→
Q4
′-free oriented graphs.) When H is one of the other two orientations,

−→
P4 and

−→
A4, we

required a finer analysis of N(P ) in order to bound −→χ (N(P )). We handle this case in
Subsections 5.3.1–5.3.3.

5.1 Forbidden arcs amongst neighbors of a forward-induced directed path

We define two partitions of the first neighborhood of a directed path and show how to
forbid some of the arcs between classes of each partition in an H-free oriented graph. For
the rest of this paper we will refer to the vertex set of P as P = p1 → p2 → · · · → p`.
Many of the results in the following sections actually hold for arbitrary forward-induced
paths in D, but we state them for P as this suffices in our proof that orientations of P4

are −→χ -bounding.

Definition 15. For brevity, for any v ∈N(P ) and i, j ∈ [1, `] we say pi is the first neighbor
of v on P if v is adjacent to pi and non-adjacent to pi′ for each 1 6 i′ < i 6 `. Similarly,
pj is the last neighbor of v on P if v is adjacent to pj and non-adjacent to each pj′ for
each 1 6 j < j′ 6 `. We will define two partitions of N(P ) according to their first and
last neighbors in V (P ), respectively.

• For each i ∈ [1, `] we say v ∈ N(P ) is in Fi if pi is the first neighbor of v on P .
This yields partition (F1, F2, . . . , F`), which we call the partition of N(P ) by first
attachment (on P ).

• Symmetrically, for each j ∈ [1, `] we say v ∈ Lj if pj is the last neighbor of v on P .
This yields partition (L1, L2, . . . , L`), which we call the partition of N(P ) by last
attachment (on P ).

For each i ∈ [1, `] we refine each partition by dividing each Fi, Li into the in-neighbors and
out-neighbors of v. We define F+

i and L+
i to be the sets consisting of all the in-neighbors

of pi in Fi, Li, respectively. Similarly, we define F−i and L−i to be the sets consisting of
all the out-neighbors of pi in Fi, Li, respectively.
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Observation 16. Let 2 6 i < j 6 `− 1. Then the following statements all hold:

• If D is
−→
Q4-free, there are no arcs from Fj to Fi.

• If D is
−→
P4-free, there are no arcs from F−i to Fj, and no arcs from Li to L+

j .

• If D is
−→
A4-free, there are no arcs from F+

i to Fj, and no arcs from Li to L−j .

Proof. Let 2 6 i < j 6 `− 1. We prove each statement individually.

If D is
−→
Q4-free, there are no arcs from Fj to Fi. (4)

Suppose for some v ∈ Fj and w ∈ Fi that (v, w) ∈ E(D). Then the vertices pi−1, pi, w, v,
induce a P4 in D with orientation pi−1 → pi → w ← v or orientation pi−1 → pi ← w ← v

depending on whether w ∈ F+
i or w ∈ F−i . In either case we obtain an induced

−→
Q4 on

pi−1, pi, w, v. This proves (4).

If D is
−→
P4-free, there are no arcs from F−i to Fj, and no arcs from Li to L+

j . (5)

Suppose for some v ∈ F−i and w ∈ Fj that (v, w) ∈ E(D). Then pi−1→ pi→ v→ w is an

induced
−→
P4 (see the dark blue arcs in Figure 3). Hence, D is not

−→
P4-free. This proves the

first part of the statement (5). The argument that there are no arcs from Li to L+
j in a

−→
P4-free graph is symmetric. This proves (5).

If D is
−→
A4-free, there are no arcs from F+

i to Fj, and no arcs from Li to L−j . (6)

Figure 3: A depiction of P = p1→ · · · → p` along with the partition (F1, . . . , F`) of N(P )
by first attachment on P . Note that the setting is symmetric for the partition of N(P ) by
the last attachment. Each class of the partition Fi is represented as a circle and further
split into F+

i in yellow and F−i in orange, all possible arcs towards P are drawn in gray.

An arc from F−i to Fj with j > i would induce a
−→
P4 using (pi−1, pi), as highlighted in blue.

An arc from F+
i to Fj would induce a

−→
A4, represented in green.
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By symmetry, it is enough to show that if D is
−→
A4-free then there is no arc from F+

i to
Fj. Suppose for some v ∈ F+

i and w ∈ Fj that (v, w) ∈ E(D). Then pi−1 → pi ← v → w

is an induced
−→
A4 in D (see the dark green arcs in Figure 3). This proves (6).

In the Subsection 5.2 we use Observation 16 to bound the dichromatic number of
N(P ) \ N [K] in the

−→
Q4-free case. In the

−→
P4-free case and the

−→
A4-free case we need to

perform a more careful analysis of N(P )\N [K] in order to bound its dichromatic number
because the conditions guaranteed by Observation 16 are weaker in these two cases. In
Subsection 5.3.1, we use Observation 16 to bound the dichromatic number of the following
subsets of N(P ) \N [K]

W p =
(
F−2 ∪ F−3 ∪ · · · ∪ F−`−1

)
∪
(
L+
2 ∪ L+

3 ∪ · · · ∪ L+
`−1
)

(7)

when D is
−→
P4-free and

W a =
(
F+
2 ∪ F+

3 ∪ · · · ∪ F+
`−1
)
∪
(
L−2 ∪ L−3 ∪ · · · ∪ L−`−1

)
(8)

when D is
−→
A4-free. The vertices in N(P ) \ (N [K] ∪W p) and N(P ) \ (N [K] ∪W a) have

restrictions on how they may have neighbors in V (P ). We will use this to bound their
dichromatic number in Subsections 5.3.2 and 5.3.3, respectively.

5.2 The
−→
Q4-free case

In this section, we bound the dichromatic number of a path-minimizing closed tournament

in D when D is a
−→
Q4-free oriented graph satisfying the conditions of Scenario 5.

Lemma 17. If D is
−→
Q4-free, −→χ (N(P ) \N({p1, p`})) 6 γ.

Proof. Assume D is a
−→
Q4-free oriented graph. By definition N(P )\N({p1, p`})⊆ F2∪F3∪

· · · ∪F`−1. By Observation 16 every directed cycle in D[F2∪F3∪ · · · ∪F`−1] is completely
contained in D[Fi] for some i ∈ [2, `− 1]. By definition Fi ⊆ N(pi) so −→χ (Fi) 6 γ for each
i ∈ [1, `]. Hence, we may use the same set of γ colors for each of F2, F3, . . . , F`−1. Thus,
−→χ (N(P ) \N({p1, p`}) 6 γ.

Lemma 17 allows us to demonstrate a bound on our dipolar set N [C ∪X] as follows:

Lemma 18. Let D be
−→
Q4-free. Then D has a dipolar set with dichromatic number at

most (ω(D) + 3) · γ + 2

Proof. Recall C = K ∪ P is a path-minimizing closed tournament of D and p1, p` denote
the ends of P . By definition, p1, p` ∈ K. By Lemma 9, N [C ∪ X] is a dipolar set.
Then, by inequality (3), bounding the terms on the right-hand side by Observation 6,
Observation 11, Lemma 17, and Corollary 14 we obtain:

−→χ (N [C ∪X]) 6 +(ω(D) + 3) · γ + 2.
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5.3 The
−→
P4-free case and the

−→
A4-free case

In this subsection, we bound the dichromatic number of our dipolar set in the case where

D is
−→
P4-free or

−→
A4-free.

5.3.1 Bounding −→χ (W p) and −→χ (W a)

In this subsection, we bound the dichromatic number of W p and W a using Observation 16

in
−→
P4-free and

−→
A4-free oriented graphs, respectively.

Lemma 19. If D is
−→
P4-free, then −→χ (W p) 6 2γ. Similarly, if D is

−→
A4-free, then −→χ (W a) 6

2γ.

Proof. We begin by proving the first statement. Suppose D is
−→
P4-free. Then by Observa-

tion 16, every directed cycle in D[F−2 ∪F−3 ∪ · · · ∪F−`−1] is completely contained in D[F−i ]
for some i ∈ [2, `−1]. By assumption, −→χ (N(pi)) 6 γ for every pi ∈ P . Hence, we may use
the same set of γ colors for each of F−2 , F

−
3 , . . . , F

−
`−1. So −→χ (F−2 ∪ F−3 ∪ · · · ∪ F−`−1) 6 γ.

By symmetry, −→χ (L+
2 ∪ L+

2 ∪ · · · ∪ L+
`−1) 6 γ. Therefore, since W p is the union of these

two sets, we obtain −→χ (W p) 6 2γ.

The case is symmetric when D is
−→
A4-free. The third item of Observation 16 allows us to

use the same set of colors for each of F+
2 , F

+
3 , . . . , F

+
`−1, and the same set of colors for each

of L−2 , L
−
3 , . . . , L

−
`−1. Hence, −→χ (F+

2 ∪F+
3 ∪· · ·∪F+

`−1) 6 γ and −→χ (L−2 ∪L−3 ∪· · ·∪L−`−1) 6 γ.
Since W a is the union of these two sets, −→χ (W a) 6 2γ.

5.3.2 Completing the bound on the dichromatic number of our dipolar set

in the
−→
P4-free case

Recall, we keep the definitions of D,C,K, P,X, Y and H, γ as fixed in Definition 10. We

will assume H =
−→
P4 for the remainder Subsubsection 5.3.2. In this section, we will consider

the dichromatic number of the following set of vertices.

Definition 20. We let

Rp = N(P ) \ (N({p1, p2, p`}) ∪W p)

Then, N(P )\N [K]⊆W p∪Rp∪N(p2) and we can bound −→χ (W p) in terms of ω(D) and
γ. Since ω(D) = ω, it follows that ω(N(v))< ω for each v ∈ V (D). Hence, −→χ (N(p2)) 6 γ.
Thus, by Lemma 9 and Corollary 14, we only need to bound −→χ (Rp) in terms of ω and γ
in order to demonstrate that D is a dipolar set of bounded dichromatic number.

By definition, W p is the set of vertices in N(P ) \ N({p1, p`}) whose first neighbor
on P is an in-neighbor or whose last neighbor in V (P ) is an out-neighbor. Hence, Rp

consists exactly of the vertices in N(P ) \ N({p1, p2, p`}) whose first neighbor in V (P ) is
an out-neighbor and whose last neighbor in V (P ) is an in-neighbor.

We will show that since C = K ∪ V (P ) is a path-minimizing closed tournament there
is no tournament of order ω in Rp and thus −→χ (Rp) 6 γ. In particular, we will show that
for a contradiction, if Rp has a tournament J of order ω, then we can find a directed path
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Figure 4: On the bottom, P and an arc (b, a) between neighbors of P in Rp. Illustrated
here is the case where the last neighbor pβ of b on P appears just before the first neighbor
pα of a, all possible arcs are shown in gray. Then, path pβ−1, pβ, pα, pα+1 cannot induce a
−→
P4. Any arc possibly preventing this, shown in dash-dotted green, yields a path from a
to b of length at most five.

P ′ that is shorter than P such that J and P ′ form a closed tournament. In order to prove
this, we will need the following lemma, which will allow us to exhibit a relatively short
path between two adjacent vertices in Rp. Note that the following lemma does not use
any property of P other than that it is forward-induced.

Lemma 21. Let a, b ∈ Rp, if (b, a) ∈ E(D), there is a directed path from a to b on at
most max{6, `− 1} vertices.

Proof. Let α, β ∈ {1, 2, . . . , `} such that pα is the first neighbor of a in V (P ) and pβ is
the last neighbor of b in V (P ). Then, since a, b 6∈ ∪`i=1F

−
i ∪ L+

i , the corresponding arcs
are (a, pα), (pβ, b) ∈ E(D). By definition of Rp, we obtain that 3 6 α, β 6 ` − 1. Hence,
we may assume that β < α, for otherwise a→ pα → pα+1 → · · · → pβ → b is a directed
path from a to b with at most `− 1 vertices, as desired.

Since β < α the vertices a, b have no common neighbors in V (P ). Now, consider

the directed path pβ → b → a → pα. Since D is
−→
P4-free it cannot be induced. Thus,

(pβ, pα) ∈ E(D) or (pα, pβ) ∈ E(D).
Suppose that (pα, pβ) ∈ E(D). Then, v→ pα → pβ → b is a directed path from a to b

of length three, as desired. Hence, we may assume that (pβ, pα) ∈ E(D).
Since P is a forward-induced directed path and β < α, it follows that α = β + 1.

Consider the directed path pβ−1 → pβ → pα → pα+1. Since D is
−→
P4-free it cannot be

induced. Therefore, the vertices pβ−1 and pα, the vertices pβ and pα+1, or the vertices
pβ−1 and pα+1 are adjacent. Furthermore, since P is a shortest path, this means that at
least one of (pα+1, pβ−1), (pα+1, pβ),(pα, pβ−1) is an arc of D, see Figure 4. We consider
each case separately:
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• Suppose (pα, pβ−1) is an arc of D. Then a→ pα → pβ−1 → pβ → b is a path of D.

• Suppose (pα+1, pβ) is an arc of D. Then a→ pα → pα+1 → pβ → b is a path of D.

• Suppose (pα+1, pβ−1) is an arc of D. Then a→ pα → pα+1 → pβ−1 → pβ → b is a
path of D.

In every case, the oriented graph induced by {a, pα, pα+1, pβ−1, pβ, b} contains a directed
path from a to b on at most six vertices. Since one of the cases must hold, this completes
the proof.

With the last lemma in hand, we are ready to bind the dichromatic number of Rp.

Lemma 22. Suppose D is
−→
P4-free. Then D contains a dipolar set of dichromatic number

at most (ω + 6) · γ + 2.

Proof. Let K be a maximum tournament and P be a directed path in D such that K and
P form a path-minimizing closed tournament C in D. Then by Lemma 9, N [C ∪X] is a
dipolar set. We will use Lemma 21 to bound −→χ (Rp). Then we will combine this bound
with the results from the previous sections to bound −→χ (N [C ∪X]).

If P contains at least 7 vertices, then −→χ (Rp) 6 γ. (9)

Suppose ` > 7. If ω(Rp) < ω(D) then by assumption −→χ (Rp) 6 γ, so we may assume that
there is an ω(D)-tournament J ⊆ R. Since C is a minimum closed tournament and P
is non-empty, J is not strongly connected. Hence, there must be exactly one strongly
connected component of J that is a sink and exactly one strongly connected component
of J that is a source (and they are not equal). Let v be a vertex in the sink component of
J and w be a vertex in the source component of J . Therefore, (w, v) ∈ E(D). Thus, by
Lemma 21 there is a path Q from v to w of length less than that of P . Hence, J, P ′ form
a closed tournament. By definition since K,P were chosen to form a path-minimizing
closed tournament P ′ cannot be shorter than P , a contradiction. This proves (9).

−→χ (N(P ) \N [K]) 6 4γ (10)

Let the vertices of P be p1 → p2 → . . .→ p`, in order. By definition, p1, p` ∈ K. If ` 6 6,
then by Observation 6, −→χ (N(P ) \N [K]) 6 4γ, as desired. Hence, we may assume this is
not the case.

Let W p, Rp be defined with respect to P . Then,

−→χ (N(P ) \N [K]) 6 −→χ (W p) +−→χ (Rp) +−→χ (N(p2)).

Hence, by Lemma 19, Observation 6, and (9) we obtain −→χ (N(P ) \ N [K]) 6 4γ. This
proves (10).

Then, by inequality (3), bounding the terms on the right-hand side by Observation 6,
Observation 11, inequality (10), and Corollary 14, we have

−→χ (N [C ∪X]) 6 −→χ (N(P ) \N [K]) + (ω + 2) · γ + 2 6 (ω + 6) · γ + 2.

the electronic journal of combinatorics 30(3) (2023), #P3.36 19



5.3.3 Completing the bound on the dichromatic number of our dipolar set

in the
−→
A4-free case

In this section, we prove a bound on the remaining vertices of N(P ) \ N [K] and use
the results of the previous sections to show that D contains a dipolar set of bounded

dichromatic number in the
−→
A4-free case.

Definition 23. Let P be a shortest path with vertices p1 → p2 → · · · → p`, in order.
Then

Ra = N(P ) \ (N({p1, p`}) ∪W a).

Recall W a = ∪`−1i=2F
+
i ∪L−i , that is, vertices in N(P )\N({p1, p`}) whose first neighbor

on P is an out-neighbor or whose last neighbor in V (P ) is an in-neighbor. Hence, Ra

consists exactly of the vertices in N(P ) \N({p1, p`}) whose first neighbor in V (P ) is an
in-neighbor and whose last neighbor in V (P ) is an out-neighbor.

We bound −→χ (Ra) using a similar technique to the one we used to bound the dichro-
matic number of W a. Recall that we need to bound the dichromatic number of the union
of the sets Fi\W a. To this end, we prove that there are no arcs between these sets with
indices differing by more than three. We first make the following observation, holding for
any shortest directed path.

Observation 24. Let D be an
−→
A4-free oriented graph. Let P = p1 → p2 → . . .→ p` be

a shortest directed path from p1 to p` in D. Let i, j ∈ [1, `] with j > i + 3. Suppose
v, w ∈ N(P ) such that (pi, v), (w, pj) ∈ E(D). Then (v, w) 6∈ E(D).

Proof. If (v, w) ∈ E(D) then we may replace the path pi→ pi+1→ pi+2→ pi+3→ · · · → pj
with the path pi → v → w → pj in P to obtain a shorter directed path from p1 to p`, a
contradiction.

The previous observation allows us to prove that some arcs between vertices in Ra are
forbidden.

Observation 25. Let D be an
−→
A4-free oriented graph. Then, for any two integers in

i, j ∈ [2, `− 1] satisfying i+ 2 < j there is no arc from a vertex in Fi \W a to a vertex in
Fj \W a.

Proof. Let i, j be integers i, j ∈ [2, ` − 1] satisfying i + 2 < j. Suppose v ∈ Fi \W a and
w ∈ Fj \W a. By definition of W a, for every r ∈ N(P ) \W a, the first neighbor of r in
V (P ) is an in-neighbor of r and the last neighbor of r ∈ N(P ) is an out-neighbor of r.
Hence, there is some x ∈ [j+1, `−1] such that px is an out-neighbor of w. Thus, x > i+3
and by Observation 24, (v, w) 6∈ E(D), see Figure 5.

With the last observation in hand, we are ready to bound −→χ (Ra), which we do through
a similar argument to the case of W a. The main difference is that here, we use 3 disjoint
pallets of γ colors each and choose a color palette for Fi\W a according to the index of i
modulo 3 (where i ∈ [2, `− 1]).
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Figure 5: A depiction of P , along with v ∈ Fi \W a and w ∈ Fj \W a of Ra. Since vertex
w /∈W a, it must also belong to some L+

x with x > j, meaning its last neighbor on P is an
out-neighbor. Then, since x > j > i+ 2, an arc (v, w) would yield a shorter path from p1
to p`.

Lemma 26. If D is
−→
A4-free, then −→χ (Ra)) 6 3γ.

Proof. By definition −→χ (Fi) 6 γ for each i ∈ [1, `]. We fix three disjoint sets S0, S1, S2 of
γ colors and dicolor each Fj \W a for j ∈ [2, ` − 1] with set Si where i = j mod 3. By
Observation 25, D[F2∪F3∪· · ·∪F`−1 \W a] does not contain any monochromatic directed
cycle. Hence, −→χ (F2 ∪ F3 ∪ · · · ∪ F`−1 \W p) 6 3γ, as desired.

We combine the previous observation with the results of the previous sections to show

that
−→
A4-free oriented graphs have a dipolar set of bounded dichromatic number.

Lemma 27. Suppose D is an oriented graph satisfying Scenario 5 with H =
−→
A4. Then

D contains a dipolar set of dichromatic number at most (ω + 7) · γ + 2.

Proof. By Lemma 9, N [C ∪X] is a dipolar set. Now, N(P ) \N [K] ⊆W a ∪Ra. Thus, by
combining Lemmas 19 and 26, we obtain −→χ (N(P )\N [K]) 6 5γ. Then, by combining this
bound with inequality (3), Observation 6, Observation 11, and Corollary 14 we obtain:

−→χ (N [C ∪X]) 6 (ω(D) + 7) · γ + 2.

6 Orientations of P4 are −→χ -bounding

In this section, we consider an oriented graph D satisfying Scenario 5. The previous
sections show that D has a dipolar set of bounded dichromatic number. We will use this
result and Lemma 8 to show that oriented graphs not containing some orientation of P4

are −→χ -bounded.

6.1 D contains a dipolar set with bounded dichromatic number

In the previous sections, it is proved that ifD does not contain someH ∈{
−→
Q4,
−→
P4,
−→
A4}, then

D has a dipolar set of bounded dichromatic number. These results can be summarized in
the following lemma.
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Lemma 28. Let ω > 1 be an integer. Let H ∈ {
−→
Q4,
−→
P4,
−→
A4}. Let γ be the maximum value

of −→χ (D′) for any H-free oriented graph D′ with ω(D′)< ω. Let D be a strongly connected
H-free oriented graph with clique number ω. Then,

• If H =
−→
Q4, then D contains a dipolar set with dichromatic number at most (ω+ 3) ·

γ + 2.

• If H =
−→
P4, then D contains a dipolar set with dichromatic number at most (ω+ 6) ·

γ + 2.

• If H =
−→
A4, then D contains a dipolar set with dichromatic number at most (ω+ 7) ·

γ + 2.

Proof. The result for H =
−→
Q4,
−→
P4,
−→
A4 is given in Lemmas 18, 22 and 27, respectively.

6.2 Computing the −→χ -binding function

We will show that an element from the following family of functions is a −→χ -binding
function for any class of oriented graphs forbidding a particular orientation of P4.

Definition 29. For any integer c > 3 we let

fc(x) = 2x(x+ c)! +
x∑
i=0

2i+2(x+ c)!

(x+ c− i)!

for any non-negative integer x.

We will need that fc satisfies the following recursive properties in order to show that
for some c the function fc is χ-bounding for any class of oriented graph forbidding a
particular orientation of P4.

Observation 30. Let c > 3. Then:

• fc(x) = 2(x+ c)fc(x− 1) + 4 for any integer x > 2, and

• fc(1) > 1,

• fc(x) 6 (x+ c)x+c+1.5 for any integer x > 1.

Proof. By definition since c > 3 we obtain that fc(1) > 2c! > 1. Hence, the second bullet
holds, and we will now prove the first bullet. Let x > 2 be an integer. Then,

fc(x) = 2(x+ c)

(
2x−1(x+ c− 1)! +

1

2(x+ c)

x∑
i=0

2i+2(x+ c)!

(x+ c− i)!

)
.

By definition,

x∑
i=0

2i+2(x+ c)!

(x+ c− i)!
= 2(x+c)

(
x∑
i=1

2i+1(x+ c− 1)!

(x+ c− i)!

)
+4 = 2(x+c)

(
x−1∑
i=0

2i+2(x+ c− 1)!

(x+ c− i− 1)!

)
+4.
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Thus, by combining the previous two equations we obtain that fc(x) = 2(x+c)fc(x−1)+4.
This proves the first bullet.

We will complete the proof by showing the third bullet holds. Let x> 1. By definition,

x∑
i=0

2i+2(x+ c)!

(x+ c− i)!
= 22 + 23(x+ c) + 24(x+ c)(x+ c− 1) + · · ·+ 2x+2 (x+ c)!

c!
.

Since c! > 4 every i ∈ [0, x] satisfies 2i+2(x+c)!
(x+c−i)! 6 2x(x+ c)!. Hence, we obtain

x∑
i=0

2i+2(x+ c)!

(x+ c− i)!
6 2x(x+ 1)(x+ c)!.

fc(x) < 2x(x+ c)! + 2x(x+ 1)(x+ c)! 6 (x+ 2)2x(x+ c)!. (11)

We will use the following well-known equation called Stirling’s Formula to complete the
proof.

Every n > 1 satisfies (
n! <

√
2πn

(n
e

)n
e

1
12n

)
. (12)

Since c > 3 we obtain the following by combining (11) and (12).

(x+ 2)2x(x+ c)! <(x+ 2)2x
√

2π(x+ c)

(
(x+ c)

e

)x+c
e

1
12(x+c) < (x+ c)x+c+1.5.

This proves the third bullet.

6.3 −→χ -boundedness

We are now ready to prove the following more precise version of our main result, Theo-
rem 3.

Theorem 31. Let H be an orientation of P4, then H-free graphs are −→χ -bounded. Specif-
ically,

• If D is
−→
Q4-free or

−→
Q′4-free, then −→χ (D) 6 (ω(D) + 3)ω(D)+4.5,

• If D is
−→
P4-free, then −→χ (D) 6 (ω(D) + 6)ω(D)+7.5, and

• If D is
−→
A4-free, then −→χ (D) 6 (ω(D) + 7)ω(D)+8.5.
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Proof. Let H be an orientation of P4 Note
−→
Q4 can be obtained from

−→
Q4
′ by reversing the

orientation of every edge. Hence, the theorem holds for
−→
Q4 if and only if it holds for

−→
Q′4.

Thus, may assume H ∈ {
−→
Q4,
−→
P4,
−→
A4}.

We let c = 3 if H =
−→
Q4, c = 6 if H =

−→
P4 and c = 7 if H =

−→
A4. Then by the third

bullet of Observation 30, it is enough to show that the class of H-free oriented graphs is
−→χ -bounded by fc.

We have fc(1) > 1 by the first bullet of Observation 30, so the statement holds for
oriented graphs with no arcs. We complete the proof by induction on the clique number.
Let ω > 1 be an integer. Suppose every H-free oriented graph D′ with clique number
less than ω satisfies −→χ (D′) 6 f(ω(D′)). Let D be an H-free oriented graph with clique
number equal to ω. We will show −→χ (D) 6 fc(ω). We may assume by induction on the
number of vertices that D is strongly connected.

By Lemma 28, D has a dipolar set S with −→χ (S) 6 (ω + c) · fc(ω − 1) + 2. Then by
Lemma 8,

−→χ (D) 6 2 · −→χ (S) 6 2(ω + c) · fc(ω − 1) + 4.

Since ω > 2 this implies −→χ (D) 6 fc(ω) by the second bullet of Observation 30. This
completes the proof.

7 Conclusion

Our result is an initial step towards resolving the ACN −→χ -boundedness conjecture for
orientation of paths in general. However, we think we are still far from this result. Our
construction of a dipolar set with bounded chromatic number relies heavily on the length
of P4, and we do not expect that our techniques can be directly extended to show that
any oriented Pt for t > 5 is −→χ -bounding. It would already be interesting to hear the
answer to the easier question: Does there exists an integer t > 5 and an orientation H of
Pt such that the class of oriented graphs forbidding H and all tournaments of size 3 has
unbounded dichromatic number? (Note in print: Since submitting our paper, Aboulker,

Aubian, Charbit, and Thomassé showed that
−→
P6-free oriented graphs with clique number

at most two have bounded dichromatic number [2].)

Recall that the classes of
−→
Q4-free oriented graphs and

−→
Q4
′-free oriented graphs were

already shown to be χ-bounded in [10]. The χ-binding function f ′ for these two classes
from [10] is defined using recurrence

f ′(x) := 2(3f ′(x− 1))5

which leads to a double-exponential bound on χ, and cannot guarantee a better bound
on −→χ . In this paper, Theorem 3 provides an improved −→χ -binding function when any
orientation of P4 is forbidden. It would interest us to know of any improvements to
the −→χ function. In particular, we would like to know whether any orientation of P4 is
polynomially −→χ -bounding. In other words, is there some oriented P4 so that the class of
oriented graphs forbidding it has a polynomial −→χ -binding function?
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