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Abstract

Let ψ be a sentence in the counting monadic second-order logic of matroids
and let F be a finite field. Hliněný’s Theorem says that we can test whether F-
representable matroids satisfy ψ using an algorithm that is fixed-parameter tractable
with respect to branch-width. In a previous paper we proved there is a similar
fixed-parameter tractable algorithm that can test the members of any efficiently
pigeonhole class. In this sequel we apply results from the first paper and thereby
extend Hliněný’s Theorem to the classes of fundamental transversal matroids, lattice
path matroids, bicircular matroids, and H-gain-graphic matroids, when H is a finite
group. As a consequence, we can obtain a new proof of Courcelle’s Theorem.

Mathematics Subject Classifications: 05B35, 68Q27, 68Q45, 68R99

1 Introduction

In the first paper of the series [8], we proved an extension of Hliněný’s Theorem [10].
This theorem concerns the counting monadic second-order logic for matroids, CMS 0. In
this language we have variables X1, X2, X3, . . . representing subsets of the ground set
of a matroid. We have a binary predicate Xi ⊆ Xj, which allows us to say when one
subset is contained in another. We also have a unary independence predicate Ind(Xi),
which returns the value true when the input is an independent subset. We further have
predicates that allow us to say that a set has cardinality p modulo q, where p and q are
positive integers. Let ψ be a sentence in CMS 0. Hliněný’s Theorem says that there is
a fixed-parameter tractable algorithm for testing whether matroids satisfy ψ, as long as
the input class consists of matroids representable over a finite field F. A fixed-parameter
tractable algorithm typically includes a numerical parameter, λ, and the running time is
bounded by O(f(λ)nc), where n is the size of the input, c is a constant, and f(λ) is a
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value that depends only on λ. In the case of Hliněný’s Theorem, the parameter is the
branch-width of the input matroid. Thus the theorem provides us with a polynomial-
time algorithm when the input class is restricted to F-representable matroids of bounded
branch-width. The main result of [8] extends Hliněný’s Theorem.

Theorem 1. Let M be an efficiently pigeonhole class of matroids. Let ψ be a sentence
in CMS 0. We can test whether matroids in M satisfy ψ using an algorithm that is fixed-
parameter tractable with respect to branch-width.

This sequel paper exploits Theorem 1 and related ideas to show that there are fixed-
parameter tractable algorithms for testing CMS 0 sentences in other natural classes of
matroids, beyond finite-field representable matroids. In particular, our main theorem
shows that Hliněný’s Theorem can be extended as follows.

Theorem 2. Let M be any of the following:

(i) the class of fundamental transversal matroids,

(ii) the class of lattice path matroids,

(iii) the class of bicircular matroids, or

(iv) the class of H-gain-graphic matroids, where H is a finite group.

Let ψ be a sentence in CMS 0. We can test whether matroids in M satisfy ψ using an
algorithm that is fixed-parameter tractable with respect to branch-width.

We now explain efficiently pigeonhole matroid classes, along with some other associ-
ated concepts. Formal definitions are reserved for Section 3. Imagine that M is a matroid,
and that U is a subset of E(M). We define an equivalence relation on the subsets of U .
Let X and X ′ be subsets of U . Assume that X ∪ Z is independent if and only if X ′ ∪ Z
is independent, for any subset Z ⊆ E(M) − U . We think of this as indicating that no
subset of E(M)− U can distinguish between X and X ′. In this case we write X ∼U X ′.
We put the elements of E(M) into correspondence with the leaves of an appropriately
chosen subcubic tree. If there are at most q equivalence classes under ∼U whenever U
is a set displayed by an edge of the tree, then the decomposition-width of M is at most
q. This notion of decomposition-width is equivalent to that used by Král [14] and by
Strozecki [18, 19], in the sense that the decomposition-width of a class is bounded under
one definition if and only if it is bounded under the other.

A class of matroids with bounded decomposition-width must have bounded branch-
width [8, Corollary 2.8]. The converse does not hold (Lemma 16). Let M be a class
of matroids, and assume that every subclass of M with bounded branch-width also has
bounded decomposition-width. Then we say that M is a pigeonhole class of matroids.
This is the case if and only if the dual class is pigeonhole ([8, Corollary 5.3]). The class
of F-representable matroids forms a pigeonhole class if and only if F is finite (Theorem 18
and Proposition 19). Fundamental transversal matroids (Theorem 22) and lattice path
matroids also form pigeonhole classes (Corollary 31).
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A stronger property arises quite naturally. Imagine that M is a class of matroids
and that M is an arbitrary matroid in M. Assume that whenever U ⊆ E(M) and
λM(U) 󰃑 k, then there are at most π(k) equivalence classes under ∼U , where π(k) is
a value depending only on k. (Recall that λM(U) is the connectivity value of U and is
defined to be rM(U) + rM(V )− r(M).) In this case we say that M is strongly pigeonhole
(Definition 9). Every strongly pigeonhole class is pigeonhole [8, Proposition 2.11], but the
converse does not hold [8, Remark 2.12]. The class of fundamental transversal matroids
is strongly pigeonhole, and so is the class of F-representable matroids when F is finite
(Theorem 18). We do not know if any of the other classes in Theorem 2 are strongly
pigeonhole, but we certainly believe this to be the case (Conjectures 39 and 41). In
fact, we make the broad conjecture that the class of matroids that are transversal and
cotransversal is a strongly pigeonhole class (Conjecture 40).

Theorem 1 relies on tree automata to test the sentence ψ, as does Hliněný’s Theorem.
These machines are described in Section 2. In order to construct a parse tree for the
machine to process, we require a further strengthening of the pigeonhole property. It
is not enough that there is a bound on the number of classes under ∼U : we must be
able to compute this equivalence relation efficiently. In fact, we are happy to compute a
refinement of ∼U , as long as this refinement does not have too many classes. If we are
able to do this, then we say that the class is efficiently pigeonhole (see Definition 14 for
the formal statement). Any efficiently pigeonhole class is also strongly pigeonhole. The
class of matroids representable over a finite field (Theorem 18) is efficiently pigeonhole,
and this leads to a proof of Hliněný’s Theorem. The class of fundamental transversal
matroids is also efficiently pigeonhole (Theorem 22).

In [8, Theorem 6.11] we also proved that there is a fixed-parameter-tractable algorithm
for testing ψ in members of M as long as the 3-connected members of M form an
efficiently pigeonhole class and we can efficiently construct descriptions of minors. This
result was motivated by the fact that we do not know if bicircular matroids or H-gain-
graphic matroids (H finite) form efficiently pigeonhole classes. (We conjecture this is
the case in Conjecture 41.) We have been able to show that the 3-connected bicircular
matroids and the 3-connected H-gain-graphic matroids form efficiently pigeonhole classes
(Theorem 34). This is then enough to establish cases (iii) and (iv) in Theorem 2.

Knowing that we have efficient model-checking for bicircular matroids gives us a new,
and quite simple, proof of Courcelle’s Theorem (Remark 36), which states that there is a
fixed-parameter tractable algorithm for testing monadic second-order sentences in graphs,
relative to the parameter of tree-width.

As well as proving positive results, we establish some negative propositions. Any class
of matroids that contains the rank-3 uniform matroids and is closed under principal exten-
sions is not pigeonhole (Corollary 17). Thus matroids representable over a given infinite
field form a non-pigeonhole class (Proposition 19). The class of transversal matroids is not
pigeonhole, (Proposition 20) and nor is the class of gammoids (Remark 21). A different
argument shows that the class of H-gain-graphic matroids is not pigeonhole when H is
infinite (Proposition 38).

For an introduction to monadic second-order logic and its application to finite struc-
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tures, see [6] or [7, Chapter 13]. Oxley provides our reference for the basic concepts of
matroid theory [16]. We have noted that if M is a matroid and (U, V ) is a partition of
E(M), then the connectivity value of U is λM(U) = rM(U) + rM(V ) − r(M). A k-sepa-
ration is a partition, (U, V ), of the ground set such that |U |, |V | 󰃍 k, and λM(U) < k. A
matroid is n-connected if it has no k-separations with k < n. A cyclic flat of the matroid
M is a flat F such that the restriction M |F has no coloops. When E is a finite set and
I is a collection of subsets of E, we refer to the pair (E, I) as a set-system. We say that
the members of I are independent sets.

2 Tree automata

Definition 3. Let T be a tree with a distinguished root vertex, t. Assume that every
vertex of T other than t has degree one or three, and that if T has more than one vertex,
then t has degree two (so that T cannot have exactly two vertices). The leaves of T are
the degree-one vertices. In the case that t is the only vertex, we also consider t to be
a leaf. Let L(T ) be the set of leaves of T . If T has more than one vertex, and v is a
non-leaf, then v is adjacent with two vertices that are not contained in the path from v
to t. These two vertices are the children of v. We distinguish the left child and the right
child of v. Now let Σ be a finite alphabet of characters. Let σ be a function from V (T )
to Σ. Under these circumstances we say that (T, σ) is a Σ-tree.

Definition 4. A tree automaton is a tuple (Σ, Q, F, δ0, δ2), where Σ is a finite alphabet,
and Q is a finite set of states. The set of accepting states is a subset F ⊆ Q. The transition
rules, δ0 and δ2, are partial functions from Σ and Σ × Q × Q respectively, into 2Q, the
power set of Q.

Let A = (Σ, Q, F, δ0, δ2) be an automaton and let (T, σ) be a Σ-tree with root t. We
let r : V (T ) → 2Q be the function recursively defined as follows:

(i) if v is a leaf of T , then r(v) is δ0(σ(v)) if this is defined, and is otherwise the empty
set.

(ii) if v has left child vL and right child vR, then

r(v) =
󰁞

(qL,qR)∈r(vL)×r(vR)

δ2(σ(v), qL, qR),

as long as the images in this union are all defined: if they are not then we set r(v)
to be empty.

We say that r is the run of the automaton A on (T, σ). Note that we define a union over
an empty collection to be the empty set. We say that A accepts (T, σ) if r(t) contains an
accepting state.

Let Σ be a finite alphabet, and let (T, σ) be a Σ-tree. Let ϕ be a bijection from the
finite set E into L(T ), and let Y be a subset of E. We construct a Σ ∪ (Σ× {0, 1})-tree
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which we denote enc(T, σ,ϕ, Y ). The characters applied to the leaves of this tree will
encode the subset Y . If v is a non-leaf vertex of T , then it receives the label σ(v) in
enc(T, σ,ϕ, Y ). However, if v is a leaf, then it receives a label (σ(v), s), where s = 1 if
ϕ−1(v) is in Y and otherwise s = 0.

Definition 5. Let Σ be a finite set and let A be a tree automaton with Σ ∪ (Σ× {0, 1})
as its alphabet. Let (T, σ) be a Σ-tree, and let ϕ be a bijection from the finite set E into
L(T ). We define the set-system M(A, T, σ,ϕ) as follows:

M(A, T, σ,ϕ) = (E, {Y ⊆ E : A accepts enc(T, σ,ϕ, Y )}).

So M(A, T, σ,ϕ) is the set-system consisting of all subsets of the leaves that are ac-
cepted by the automaton.

Now let Σ be a finite set, and let A be a tree automaton with alphabet Σ∪(Σ×{0, 1}).
Let M = (E, I) be a set-system. Assume there is a Σ-tree (TM , σM), and a bijection
ϕM : E → L(TM) having the property that M = M(A, TM , σM ,ϕM). In this case we say
that (TM , σM ,ϕM) is a parse tree for M (relative to the automaton A).

Note that if (TM , σM ,ϕM) is a parse tree for M , then we can simulate an independence
oracle for M by running A. We simply label each leaf v with (σM(v), 1) if ϕ−1

M (v) is in Y
and with (σM(v), 0) otherwise. By then running A on the resulting tree, and testing to
see if it accepts, we can check whether or not Y is in I. This idea is central to the proofs
of Hliněný’s Theorem and of Theorem 1.

3 Pigeonhole classes

This section states our central definitions: decomposition-width, pigeonhole classes,
strongly pigeonhole classes, and efficiently pigeonhole classes.

Definition 6. Let (E, I) be a set-system, and let U be a subset of E. Let X and X ′ be
subsets of U . We say X and X ′ are equivalent (relative to U), written X ∼U X ′, if for
every subset Z ⊆ E − U , the set X ∪ Z is in I if and only if X ′ ∪ Z is in I.

Clearly ∼U is an equivalence relation on the subsets of U . No member of I is equivalent
to a subset not in I. When I is the set of independent sets of a matroid (more generally,
when I is closed under subset containment), all dependent subsets of U are equivalent.

A subcubic tree is one in which every vertex has degree three or one. A degree-one
vertex is a leaf. Let M = (E, I) be a set-system. A decomposition of M is a pair (T,ϕ),
where T is a subcubic tree, and ϕ is a bijection from E into the set of leaves of T . Let
e be an edge joining vertices u and v in T . Then e partitions E into sets (Ue, Ve) in the
following way: an element x ∈ E belongs to Ue if and only if the path in T from ϕ(x) to u
does not contain v. We say that the partition (Ue, Ve) and the sets Ue and Ve are displayed
by the edge e. Define dw(M ;T,ϕ) to be the maximum number of equivalence classes in
∼U , where the maximum is taken over all subsets, U , displayed by an edge in T . Define
dw(M) to be the minimum value of dw(M ;T,ϕ), where the minimum is taken over all
decompositions (T,ϕ) of M . This value is then said to be the decomposition-width of M .
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If M is a matroid, then dw(M) is defined to be dw(E(M), I). Král [14] and Strozecki
[18, 19] used an equivalent notion of decomposition-width.

Let M be a matroid. If (T,ϕ) is a decomposition of M = (E(M), I(M)), then
bw(M ;T,ϕ) is the maximum value of

λM(Ue) + 1 = rM(Ue) + rM(Ve)− r(M) + 1,

where the maximum is taken over all partitions (Ue, Ve) displayed by edges of T . Now
the branch-width of M (written bw(M)) is the minimum value of bw(M ;T,ϕ), where the
minimum is taken over all decompositions of M . A class of matroids with bounded rank
also has bounded branch-width. In [8, Corollary 2.8] we show that a class of matroids
with bounded decomposition-width also has bounded branch-width. The converse is not
true (see Lemma 16). This motivates the following definition.

Definition 7. Let M be a class of matroids. Then M is pigeonhole if, for every positive
integer, λ, there is an integer ρ(λ) such that bw(M) 󰃑 λ implies dw(M) 󰃑 ρ(λ), for every
M ∈ M.

So a class of matroids is pigeonhole if every subclass with bounded branch-width also
has bounded decomposition-width. The next result is [8, Corollary 5.3].

Proposition 8. Let M be a class of matroids. Then M is pigeonhole if and only if
{M∗ : M ∈ M} is pigeonhole.

We often find that natural classes of matroids with the pigeonhole property also possess
a stronger property.

Definition 9. Let M be a class of matroids. Assume that for every positive integer λ,
there is a positive integer π(λ), such that whenever M ∈ M and U ⊆ E(M) satisfies
λM(U) 󰃑 λ, there are at most π(λ) equivalence classes under ∼U . In this case we say
that M is strongly pigeonhole.

In [8, Proposition 2.11], we give the easy proof that any class with the strong pigeonhole
property also has the pigeonhole property. On the other hand, the class of rank-2 matroids
is pigeonhole without being strongly pigeonhole (see [8, Remark 2.12].)

Proposition 10. The class of uniform matroids is strongly pigeonhole.

Proof. Let M be a rank-r uniform matroid, and let U be a subset of E(M) such that
λM(U) 󰃑 λ, for some positive integer λ. Declare subsets X,X ′ ⊆ U to be equivalent if:

(i) |X|, |X ′| > rM(U),

(ii) rM(U)− λ < |X| = |X ′| 󰃑 rM(U), or

(iii) |X|, |X ′| 󰃑 rM(U)− λ.
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Thus there are at most λ + 2 equivalence classes, and we will be done if we can show
that this equivalence relation refines ∼U . If |X|, |X ′| > rM(U) then both X and X ′ are
dependent, and hence they are equivalent under ∼U . Since M is uniform, any subsets of
U with the same cardinality will be equivalent under ∼U . Therefore we now need only
consider the case that |X|, |X ′| 󰃑 rM(U) − λ. Assume that Z ⊆ E(M) − U , and X ∪ Z
is independent while X ′ ∪ Z is dependent. Since X ′ ∪ Z is dependent, it follows that
|X ′ ∪Z| > r(M). As X ∪Z is independent, we see that |Z| 󰃑 rM(E(M)−U). Therefore

r(M) < |X ′ ∪ Z| = |X ′|+ |Z| 󰃑 rM(U)− λ+ rM(E(M)− U).

Hence rM(U)+rM(E(M)−U)−r(M) > λ, and we have a contradiction to λM(U) 󰃑 λ.

Theorem 1 is concerned with matroid algorithms. For the purposes of measuring the
efficiency of these algorithms, we restrict our attention to matroid classes where there is
a succinct representation, such as graphic matroids or finite-field-representable matroids.

Definition 11. Let M be a class of matroids. A succinct representation of M is a
relation, ∆, from M into the set of finite binary strings, along with a polynomial-time
Turing Machine. We write ∆(M) to indicate any string in the image of M ∈ M. The
Turing machine must, when given any input (∆(M), X) where M ∈ M and X is a subset
of E(M), correctly answer the question “Is X independent in M?”.

If the Turing Machine operates in time bounded by at most p(n) on any input of length
n, where p is some polynomial, then it follows that the length of the string ∆(M) is no
more than p(|E(M)|). A graph provides a succinct representation of a graphic matroid,
and a matrix provides a succinct representation of a finite-field-representable matroid.

Proposition 12. Let ∆ be a succinct representation of M, a class of matroids. For each
positive integer λ let Mλ be {M ∈ M : bw(M) 󰃑 λ}. Let f be a function from positive
integers to positive integers. Assume there is an algorithm which when given a positive
integer λ will produce a tree automaton Aλ in time bounded by f(λ). Assume also there
is an algorithm which when given (∆(M),λ) for M ∈ Mλ will produce a parse tree for
M relative to Aλ in time bounded by f(λ)|∆(M)|c, where c is a constant. Let ψ be a
sentence in CMS 0. We can test whether matroids in M satisfy ψ using an algorithm that
is fixed-parameter tractable with respect to branch-width. Furthermore, M is pigeonhole.

Proof. Assume we are given the input (∆(M),λ), where M is in Mλ. We first construct
Aλ in time bounded by f(λ). Assume that (TM , σM ,ϕM) is the parse tree that we construct
for M ∈ Mλ relative to Aλ. This takes time bounded by f(λ)|∆(M)|c. Now [8, Lemma
4.7] tells us that there is a tree automaton Aλ,ψ such that Aλ,ψ accepts (TM , σM ,ϕM) if
and only M satisfies ψ. Moreover, the proof of this lemma is constructive, and it tells us
how to build Aλ,ψ, given Aλ. The time taken to build Aλ,ψ depends only λ and ψ (which
we regard as fixed). Let this time be equal to gψ(λ).

Applying Aλ,ψ to (TM , σM ,ϕM) takes time bounded by hψ(λ)|∆(M)|, for some value
hψ(λ) that depends only on ψ and λ. Now the total process of testing M to see if it
satisfies ψ takes time bounded by

f(λ)(|∆(M)|c + 1) + gψ(λ) + hψ(λ)|∆(M)|.
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This establishes the existence of the fixed-parameter tractable algorithm.
The existence of Aλ and (TM , σM ,ϕM) for any M ∈ Mλ means that Mλ is automatic

(using the language of [8]). Because it is automatic, it has bounded decomposition-width
([8, Lemma 5.1]). So for any positive integer λ, the class Mλ has bounded decomposition-
width. This is exactly what it means for M to be pigeonhole.

Definition 13. Let ∆ be a succinct representation of M, a class of matroids. We say
that ∆ is minor-compatible if there is a polynomial-time algorithm which will accept any
tuple (∆(M), X, Y ) when M ∈ M and X and Y are disjoint subsets of E(M), and return
a string of the form ∆(M/X\Y ).

In order to construct parse trees for automata to process, we need to be able to
efficiently compute the equivalence classes of ∼U . In fact, we are happy to compute an
equivalence relation that refines ∼U , as long as it does not have too many classes.

Definition 14. Let M be a class of matroids with a succinct representation ∆. Assume
there is a Turing Machine, a constant c, and a function π from positive integers to positive
integers such that the machine takes as input any tuple (∆(M), U,X,X ′,λ), where M is
in M, U ⊆ E(M) satisfies λM(U) 󰃑 λ, and X and X ′ are subsets of U . Assume also
that in time bounded by O(π(λ)|E(M)|c), the machine computes an equivalence relation,
≈U , on the subsets of U , so that it accepts (∆(M), U,X,X ′,λ) if and only if X ≈U X ′.
Furthermore we assume that

(i) X ≈U X ′ implies X ∼U X ′, and

(ii) the number of equivalence classes under ≈U is at most π(λ).

Under these circumstances, we say that M is efficiently pigeonhole (relative to ∆).

Remark 15. The proof of Theorem 1 essentially follows from Proposition 12 and the ob-
servation that given ∆(M) we can construct a branch-decomposition for M in polynomial
time ([8, Proposition 6.3]). We can then convert this decomposition tree into a parse tree.
The automaton which processes this tree can also be constructed in time bounded by
O(λc). Theorem 1 follows1.

Clearly an efficiently pigeonhole class of matroids is also strongly pigeonhole. In
Theorem 22, we will prove that the class of fundamental transversal matroids is efficiently
pigeonhole. Statement (i) of Theorem 2 will then immediately follow, by an application
of Theorem 1.

4 Non-pigeonhole classes

Next we develop some tools for proving negative results. We want to certify that certain
classes are not pigeonhole. Recall that a matroid with rank r is sparse paving if every

1Note that the proof of Theorem 1 requires a definition of efficiently pigeonhole classes that is very
slightly stronger than the one presented in [8].
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circuit has cardinality either r or r + 1 and when C and C ′ are distinct circuits of size r
then |C ∩C ′| < r− 1. Let G be a simple graph with edge set {e1, . . . , em} and vertex set
{v1, . . . , vn}, where n 󰃍 3. We define m(G) to be the rank-3 sparse paving matroid with
ground set {v1, . . . , vn} ∪ {e1, . . . , em}. The only non-spanning circuits of m(G) are the
sets {vi, ek, vj}, where ek is an edge of G joining the vertices vi and vj.

Lemma 16. Let M be a class of matroids. Assume there are arbitrarily large integers,
N , such that M contains a matroid isomorphic to m(KN). Then M contains rank-3
matroids with arbitrarily high decomposition-width. Hence M is not pigeonhole.

Proof. Observe that rank-3 matroids have branch-width at most four, so if
{M ∈ M : r(M) = 3} has unbounded decomposition-width, then M is certainly not pi-
geonhole. Assume for a contradiction that every rank-3 matroid in M has decomposition-
width at most K.

Let k be an arbitrary integer greater than K, and let N be an integer such that

1

3

󰀕
N +

󰀕
N

2

󰀖󰀖
󰃍 7k2 + 2k.

and M contains a matroid, M , isomorphic to m(KN). By relabelling, we assume that
the ground set of M is {v1, . . . , vN} ∪ {eij : 1 󰃑 i < j 󰃑 N} and the only non-spanning
circuits are of the form {vi, eij, vj}. Let (T,ϕ) be a decomposition of M with the property
that if U is any displayed set, then ∼U has at most K classes. Using [16, Lemma 14.2.2],
we choose an edge e in T such that each of the displayed sets, Ue and Ve, contains at least

1

3
|E(M)| = 1

3

󰀕
N +

󰀕
N

2

󰀖󰀖
󰃍 7k2 + 2k

elements. Let G be a complete graph with vertex set {v1, . . . , vN} and edge set {eij : 1 󰃑
i < j 󰃑 N}, where eij joins vi to vj. We colour a vertex or edge red if it belongs to Ue,
and blue if it belongs to Ve.

Assume that there are at least 2k red vertices and at least 2k blue vertices. Then
we can assume without loss of generality that there is a matching in G consisting of k
red edges, each of which joins a red vertex to a blue vertex. Thus we can find elements
vi1 , . . . , vik in Ue and elements vj1 , . . . , vjk in Ve such that eipjp is in Ue for each p. If p and
q are distinct, then {vip , eipjp , vjp} is a circuit of M while {viq , eiqjq , vjp} is a basis. Hence
{vip , eipjp} and {viq , eiqjq} are inequivalent under ∼Ue . This means that ∼Ue has at least
k equivalence classes. As k > K, this is a contradiction, so we assume without loss of
generality that there are fewer than 2k red vertices.

Assume some red vertex is joined to at least k blue vertices by red edges. Then
there is an element vi ∈ Ue and elements vj1 , . . . , vjk ∈ Ve such that eijp is in Ue for
each p. For distinct p and q, we see that {vi, eijp , vjp} is a circuit while {vi, eijq , vjp} is a
basis. Therefore {vi, eijp} and {vi, eijq} are inequivalent under ∼Ue . We again reach the
contradiction that there are at least k equivalence classes under ∼Ue . Now we can deduce
that there are fewer than 2k2 red edges that join a red vertex to a blue vertex.
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There are fewer than 2k red vertices and fewer than
󰀕
2k

2

󰀖
< 4k2

red edges that join two red vertices. Since the number of red edges and vertices is at least
one third of N +

󰀃
N
2

󰀄
, we see that the number of red edges joining two blue vertices is at

least
1

3

󰀕
N +

󰀕
N

2

󰀖󰀖
− (2k + 2k2 + 4k2) 󰃍 k2.

A result of Abbott, Hanson, and Sauer [1] implies that the subgraph induced by red edges
that join two blue vertices contains either a vertex of degree at least k, or a matching
containing at least k edges. In the former case, there are elements vi, vj1 , . . . , vjk ∈ Ve

such that eijp is in Ue for each p. Then {vi, eijp , vjp} is a circuit, and {vi, eijp , vjq} is a basis
for distinct p and q, so {vi, vjp} and {vi, vjq} are inequivalent under ∼Ve . This leads to a
contradiction, so there is a matching of at least k edges. Therefore we can find elements
vi1 , . . . , vik , vj1 , . . . , vjk in Ve such that each eipjp is in Ue. For distinct p and q, we see that
{vip , eipjp , vjp} is a circuit and {viq , eipjp , vjq} is a basis. Therefore {vip , vjp} and {viq , vjq}
are inequivalent under ∼Ve , so we reach a final contradiction that completes the proof.

Let F be a flat of the matroid M . Let M ′ be a single-element extension of M , and
let e be the element in E(M ′) − E(M). We say that M ′ is a principal extension of M
(relative to F ) if F ∪ e is a flat of M ′ and whenever X ⊆ E(M) spans e in M ′, it spans
F ∪ e.

Corollary 17. Let M be a class of matroids. If M contains all rank-3 uniform matroids,
and is closed under principal extensions, then it is not pigeonhole.

Proof. We note that m(KN) can be constructed by starting with a rank-3 uniform ma-
troid, the elements of which represent the vertices ofKN . The elements representing edges
are then added via principal extensions. The result now follows from Lemma 16.

5 Representable matroids

The next result is not surprising, and is implicitly utilised in the work of Hliněný [10] and
Král [14].

Theorem 18. Let F be a finite field. The class of F-representable matroids is efficiently
pigeonhole.

Proof. Assume that |F| = q. Let M be the class of F-representable matroids. We consider
the succinct representation ∆ that sends each matroid in M to an F-matrix representing
it. Let M be a rank-r matroid in M, and let U be a subset of M . We use V to
denote E(M) − U . We identify M with a multiset of points in the projective geometry
P = PG(r− 1, q) (we lose no generality in assuming that M is loopless). If X is a subset
of E(M), then 〈X〉 will denote its closure in P .
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Assume that λM(U) 󰃑 λ. Grassman’s identity tells us that the rank of 〈U〉 ∩ 〈V 〉 is
equal to r(U) + r(V ) − r(M) 󰃑 λ. We define the equivalence relation ≈U so that if X
and X ′ are subsets of U , then X ≈U X ′ if both X and X ′ are dependent, or both are
independent and 〈X〉 ∩ 〈V 〉 = 〈X ′〉 ∩ 〈V 〉. Deciding whether X ≈U X ′ is true requires
only elementary linear algebra, and it can certainly be accomplished in time bounded by
O(|E(M)|c) for some constant c. Since 〈U〉∩〈V 〉 is a subspace of P with affine dimension
at most λ− 1, it contains at most (qλ − 1)/(q − 1) points. Therefore 2q

λ−1+qλ−2+···+1 + 1
is a crude upper bound on the number of (≈U)-classes. It remains only to show that ≈U

refines ∼U .
Assume that X ≈U X ′, and yet X ∪ Z is independent while X ′ ∪ Z is dependent,

where Z is a subset of V . Then X is independent, so X ′ is independent also. Let C be a
circuit contained in X ′∪Z. As both X ′ and Z are independent, neither X ′∩C nor Z ∩C
is empty. Now the rank of 〈X ′ ∩ C〉 ∩ 〈Z ∩ C〉 is

r(X ′ ∩ C) + r(Z ∩ C)− r(C) = |X ′ ∩ C|+ |Z ∩ C|− (|C|− 1) = 1.

Let c be the point of P that is in 〈X ′ ∩ C〉 ∩ 〈Z ∩ C〉. Since c is in 〈X ′〉 ∩ 〈V 〉, our
assumption tells us it is also in 〈X〉 ∩ 〈V 〉.

Assume c is not in X. Since it is in 〈X〉, we can let CX be a circuit contained in
X ∪ c that contains c. If c is in Z, then X ∪Z contains CX , and we have a contradiction,
so c is not in Z. We let CZ be a circuit contained in Z ∪ c that contains c. Circuit
elimination between CX and CZ shows that X ∪ Z contains a circuit, and again we have
a contradiction. Therefore c is in X. If c is not in Z, then Z ∪ c ⊆ X ∪ Z contains a
circuit. Therefore c is in Z. As X and Z are disjoint subsets of E(M), but c is identified
with elements of both, we conclude that M contains a parallel pair, with one element in
X, and the other in Z. Again X ∪Z is dependent, and we have a final contradiction.

Hliněný’s Theorem [10] follows immediately from Theorems 1 and 18. We note that
proofs of Hliněný’s Theorem can also be derived from the works by Král [14] and Strozecki
[19].

Proposition 19. Let K be an infinite field. Then the class of K-representable matroids
is not pigeonhole.

Proof. This follows almost immediately from Corollary 17 and [15, Lemma 2.1].

6 Fundamental transversal matroids

Transversal matroids can be thought of geometrically as those obtained by placing points
freely on the faces of a simplex. A transversal matroid is fundamental if there is a point
placed on each vertex of that simplex. More formally, a transversal matroid is fundamental
if it has a basis, B, such that r(B ∩ Z) = r(Z), for every cyclic flat Z (see [3]). In this
case B is a basis consisting of points located at the vertices of the simplex. From this
characterisation it is easy to see that the dual of a fundamental transversal matroid is
also fundamental.
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In this, and subsequent sections, we will show that three subclasses of transversal
matroids are pigeonhole: fundamental transversal matroids (Theorem 22), lattice path
matroids (Theorem 30), and bicircular matroids (Theorem 34). To start with, we prove
that we cannot extend these results to the entire class of transversal matroids.

Proposition 20. The class of transversal matroids is not pigeonhole.

Proof. By Proposition 8, we can prove that the class of transversal matroids is not pigeon-
hole by proving the same statement for the class of cotransversal matroids. Certainly this
class contains all rank-3 uniform matroids. Recall that the matroid M is cotransversal if
and only if it is a strict gammoid [11]. This means that there is a directed graph G with
vertex set E(M), and a distinguished set, T , of vertices, where X ⊆ E(M) is independent
in M if and only if there are |X| vertex-disjoint directed paths, each of them starting
with a vertex in X and terminating with a vertex in T . Assume that G is such a directed
graph, and that F is a flat of M . Create the graph G′ by adding the new vertex e, and
arcs directed from e to each of the vertices in F . It is an easy exercise to verify that if
M ′ is the strict gammoid corresponding to G′, then M ′ is a principal extension of M by
F . This demonstrates that the class of cotransversal matroids is closed under principal
extensions, so the proposition follows by Corollary 17.

Remark 21. From Proposition 20 we see that any class of matroids containing transversal
matroids is not pigeonhole. In particular, the class of gammoids is not pigeonhole.

Let G be a bipartite graph, with bipartition A∪B. There is a fundamental transversal
matroid, M [G], with A ∪ B as its ground set, where X ⊆ A ∪ B is independent if and
only if there is a matching, W , of G such that |W | = |X ∩ A| and each edge in W joins
a vertex in X ∩ A to a vertex in B − X. In this case we say that W certifies X to be
independent. This definition implies that B is a basis of M [G], and r(B ∩ Z) = r(Z)
for any cyclic flat Z. Moreover, any fundamental transversal matroid can be represented
in this way. Note that we can represent M [G] with a standard bipartite presentation by
adding an auxiliary vertex, b′, for each vertex b ∈ B, and making b′ adjacent only to b.
We then swap the labels on b and b′. The transversal matroid on the ground set A ∪ B
represented by this bipartite graph is equal to M [G].

Theorem 22. The class of fundamental transversal matroids is efficiently pigeonhole.

Proof. We consider the succinct representation of fundamental transversal matroids that
involves representing such a matroid with a bipartite graph. Let M = M [G] be a funda-
mental transversal matroid, where A∪B is a bipartition of the bipartite graph G, and B
is a basis of M . Let (U, V ) be a partition of A∪B, and assume that λM(U) 󰃑 λ. Our goal
will be to construct an equivalence relation ≈ on the subsets of U such that ≈ satisfies
the conditions in Definition 14.

Let H be the subgraph of G induced by edges that join vertices in A ∩ U to vertices
in B ∩ V , and vertices in A ∩ V to vertices in B ∩ U .

Claim 23. Any matching of H contains at most λ edges.
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Proof. Let W be a matching in H. Let AU and AV , respectively, be the set of vertices in
A∩U (respectively A∩V ) that are incident with an edge in W . Therefore |AU |+ |AV | =
|W |. If we restrict W to edges incident with vertices in A ∩ U , then it certifies that
(B ∩ U) ∪ AU is an independent subset of U . Similarly, (B ∩ V ) ∪ AV is an independent
subset of V . Therefore

λ 󰃍 r(U) + r(V )− r(M) 󰃍 |B ∩ U |+ |AU |+ |B ∩ V |+ |AV |− |B| = |W |.

We can find a maximum matching of H, using one of a number of polynomial-time
algorithms. It follows from Kőnig’s Theorem [13] that H contains a vertex cover, S, such
that |S| 󰃑 λ. Furthermore, Kőnig’s Theorem is constructive: given a maximum matching
of H, we can find S in polynomial time. From this point onwards, we regard S as being
fixed.

Let X be an independent subset of U , and let W be a matching that certifies its
independence. We will construct a signature, C(X,W ). Signatures of subsets of V will be
defined symmetrically at the same time, so in fact we let {P,Q} be {U, V }, and we let
X be an independent subset of P , with W a matching certifying the independence of X.
Recall that this means that |W | = |X ∩ A| and each edge of W joins a vertex in X ∩ A
to a vertex in B −X.

The signature C(X,W ) is a sequence (S1,S2, S3, S4), where S1, S3, and S4 are subsets
of B ∩ P ∩ S, A ∩ P ∩ S, and B ∩Q ∩ S, respectively, and S2 is a collection of subsets of
A ∩Q ∩ S. We define C(X,W ) as follows.

(i) S1 is the set of vertices in B ∩ P ∩ S that are either in X or incident with an edge
in W .

(ii) A subset Z ⊆ A ∩ Q ∩ S is in S2 if and only if there is a matching W ′ satisfying
W ⊆ W ′ and |W ′ −W | = |Z|, where each edge in W ′ −W joins a vertex in Z to a
vertex in (B ∩ P )− (S ∪X). Note that S2 is closed under subset inclusion.

(iii) S3 is the set of vertices in A∩P ∩ S that are joined by an edge of W to a vertex in
(B ∩Q)− S. Note that any vertex in S3 is in X, since it is in A and incident with
an edge of W .

(iv) S4 is the set of vertices in B ∩Q ∩ S that are incident with an edge in W .

We illustrate these definitions in Figure 1. This shows a graph, G, with bipartition A∪B,
and a partition, (P,Q), of A ∪ B. The edges not in H cross the diagram diagonally, and
are drawn with dashed lines, while the unbroken edges are the edges of H. In this example
the vertex cover, S, contains nine vertices, which are marked with squares. Observe that
every edge of H is incident with a vertex in S. The set X ⊆ P is marked by filled vertices.
Its independence is certified by the matchingW , which is drawn with heavy lines. Vertices
in the sets S1, S3, and S4 are marked. The sets in the family S2 are the empty set and
the singleton set containing the vertex marked S2.

For any independent subset X ⊆ U , let C(X) be the set

{C(X,W ) : W is a matching certifying that X is independent}.
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S3

S4

S2

Figure 1: Defining a signature.

Now we define the equivalence relation ≈U . If X and X ′ are subsets of U , then say that
X ≈U X ′ if both X and X ′ are dependent, or both are independent and C(X) = C(X ′).
Thus independent sets X and X ′ are equivalent under ≈U if they have exactly the same
signatures.

We can choose a signature by choosing three subsets of S, and a family of subsets of S.
Recalling that |S| 󰃑 λ, we see that the number of signatures is at most (2λ)3 ·22λ = 23λ+2λ .
Therefore the number of (≈U)-classes is no more than

π(λ) = 22
3λ+2λ

+ 1. (1)

Now we have established that condition (ii) in Definition 14 holds, where the function
π(λ) is defined by (1). To complete the proof that the class of fundamental transversal
matroids is efficiently pigeonhole, we must establish that we can compute the equivalence
relation in time bounded by O(π(λ)|E(M)|c) and that ≈U refines ∼U . Let us first consider
the task of computing ≈U . Recall that {P,Q} = {U, V }.
Claim 24. Let X be an independent subset of P . Let (S1, Z, S3, S4) be a sequence of sets
from B ∩ P ∩ S, A ∩Q ∩ S, A ∩ P ∩ S, and B ∩Q ∩ S. We can test in polynomial time
whether there is a matching W , certifying the independence of X, such that C(X,W ) =
(S1,S2, S3, S4) where Z is in S2.

Proof. To start with, we check that S1 contains X ∩ B ∩ P ∩ S and that S3 is contained
in X. If this is not the case, then we halt and return the answer NO, so now we assume
that X ∩B ∩ P ∩ S ⊆ S1 and S3 ⊆ X.

Our strategy involves constructing an auxiliary graph, G′, by deleting vertices and
edges from G. The construction of G′ is best described by the diagram in Figure 2. Any
vertex not shown in this diagram is deleted in the construction of G′. Thus from B ∩ P
we delete any vertex in X and any vertex in S − S1. From A ∩ Q we delete any vertex
not in Z. From A∩P we delete those vertices not in X. Note that the assumption in the
first paragraph of this proof means that we have not deleted any vertex in S3. In B ∩Q,
we delete those vertices in S − S4.
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B \ P B \Q

A \Q A \ P

Z

S1 �Xnot in S [X S4 not in S

S3X � S (X \ S)� S3

Figure 2: The construction of G′.

Next we delete any edge of G that is not represented by an edge in Figure 2. For
example, we delete any edge joining a vertex in S3 to a vertex outside of (B ∩ Q) − S.
Obviously G′ can be constructed in time bounded by O(|E(M)|c), for some constant c.

24.1 The following statements are equivalent:

(i) There is a matching, W , of G, such that W certifies the independence of X and
C(X,W ) = (S1,S2, S3, S4) with Z ∈ S2.

(ii) G′ has a matching incident with every vertex in (X ∪ Z) ∩ A and (S1 −X) ∪ S4.

Proof. Assume (i) holds. Then |W | = |X ∩A|, and every vertex in X ∩A is incident with
an edge of W . Furthermore, every edge of W joins a vertex in X∩A to a vertex in B−X.
Since Z is in S2, we can let W ′ be a matching such that W ⊆ W ′, |W ′ −W | = |Z|, and
each edge of W ′ −W joins a vertex in Z to a vertex in (B ∩ P )− (S ∪X). We will show
that every edge of W ′ is in G′, and hence W ′ is a matching of G′.

Let ab ∈ W ′ be an edge joining a ∈ A to b ∈ B. Certainly every edge of W ′ −W is
an edge of G′. Therefore we will assume that ab is in W . Then a is in X, and hence in
P . Note that b is not in X, for no edge of W joins two vertices in X. Assume that a is
in X − S. If b is in P , then it is either in (B ∩ P )− (S ∪X), or it is in S. In the latter
case, b is in S1 by the definition of S1. In either case, ab is an edge of G′. Now assume b
is in Q. Then b must be in S, or else ab is an edge of H not incident with a vertex in S.
In this case b is in S4 by definition, so ab is an edge of G′.

Next assume a is in (X∩S)−S3. Assume b is in P . Then either b is in (B∩P )−(S∪X),
or it is in S1 − X. In either case ab is an edge of G′. Now assume b is in Q. If b is not
in S, then the definition of S3 implies a ∈ S3, since a is in S. But this contradicts the
assumption a ∈ (X ∩ S)− S3. Therefore b is in S. This means b is in S4, so ab is an edge
of G′.

Finally, we assume that a is in S3. Then the definition of S3 means that b is in
(B ∩Q)−S, and again ab is an edge of G′. Now we have shown that W ′ is a matching of
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G′. Every vertex in (X ∪ Z) ∩A is incident with an edge in W ′, and the same statement
is true for vertices in (S1 −X)∪ S4, by the definitions of S1 and S4. Therefore (ii) holds.

Now assume (ii) holds. LetW ′ be a matching of G′ such that each vertex in (X∪Z)∩A
or (S1−X)∪S4 is incident with an edge of W ′. Let W be the set of edges in W ′ incident
with vertices in X ∩ A. There is no vertex in X ∩ B contained in G′, so it immediately
follows that in G, the matching W certifies the independence of X. Every vertex in S1−X
is incident with an edge of W , and no vertex of (B∩P ∩S)−S1 is (since these vertices are
not in G). Therefore in C(X,W ), the first entry is S1, as desired. Every edge of W ′ −W
joins a vertex in Z to a vertex in (B ∩ P ) − (S ∪ X), so W ′ certifies that Z belongs to
the second entry of C(X,W ). Because S3 is a subset of X we see that any vertex in S3 is
matched by W to a vertex in (B ∩Q)−S. Furthermore no vertex in (X ∩S ∩A)−S3 is,
by the construction of G′. Therefore the third entry of C(X,W ) is equal to S3. Finally,
every vertex in S4 is incident with an edge in W , and no vertex of (B ∩ Q ∩ S) − S4 is
(since these vertices are not in G′). Therefore C(X,W ) = (S1,S2, S3, S4), where Z is in
S2, so (i) holds.

Now we complete the proof of Claim 24. To test whetherW exists, we find a maximum-
sized matching of G′, using standard methods. If this matching is incident with all the
vertices in (X ∪ Z) ∩ A (and is thus complete), then we continue, otherwise we return
NO. It is easy to see that we can use alternating-path methods to test whether there is
a complete matching that matches all the vertices in (S1 − X) ∪ S4 as well as those in
(X ∪ Z) ∩ A. We return YES if such a complete matching exists, and NO otherwise,
observing that 24.1 justifies the correctness of this algorithm.

To test whether X ≈U X ′, we first test whether X and X ′ are independent. We can
certainly test this in polynomial-time via a standard matching algorithm. Assuming both
X and X ′ are independent, we simply go through each possible certificate, and check that
each certificate belongs to C(X) if and only if it belongs to C(X ′). By using Claim 24,
we can accomplish this in time bounded by O(π(λ)|E(M)|c), for some constant c, where
π(λ) is the function in (1).

Now our final task in the proof of Theorem 22 is to show that ≈U refines ∼U . To
this end, we assume that X ⊆ U and Y ⊆ V are independent subsets of M . Let SX =
(S1,S2, S3, S4) be a signature in C(X), and let TY = (T1, T2, T3, T4) be a member of C(Y ).
Note that S1, T4 ⊆ B ∩ U and S4, T1 ⊆ B ∩ V , while S2 is a family of subsets of A ∩ V
and T2 is a family of subsets of A ∩ U . We also have S3 ⊆ A ∩ U and T3 ⊆ A ∩ V . We
declare SX and TY to be compatible if the following conditions hold:

(i) S1 ∩ T4 = ∅,

(ii) T3 ∈ S2,

(iii) S3 ∈ T2, and

(iv) S4 ∩ T1 = ∅.
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We will prove that X ∪ Y is independent in M if and only if we can find signatures in
C(X) and C(Y ) that are compatible. This task is completed in Claim 25, and its converse
(Claim 26). From this it will easily follow that ≈U refines ∼U , and that therefore the
class of fundamental transversal matroids is efficiently pigeonhole.

Claim 25. Let X ⊆ U and Y ⊆ V be independent subsets of M . If X ∪Y is independent
in M then there are signatures SX ∈ C(X) and TY ∈ C(Y ) such that SX and TY are
compatible.

Proof. Let W be a matching certifying that X ∪ Y is independent. Thus |W | = |X ∪ Y |,
and every edge of W joins a vertex in (X ∪ Y ) ∩ A to a vertex in B − (X ∪ Y ). Let WX

and WY be the subsets of W consisting of edges incident with vertices in X (respectively
Y ). Then WX certifies the independence of X, and WY certifies the independence of Y .
We assert that the signatures C(X,WX) and C(Y,WY ) are compatible.

Let C(X,WX) be (S1,S2, S3, S4) and let C(Y,WY ) be (T1, T2, T3, T4). Then S1 is the
set of vertices in B ∩ U ∩ S that are either in X or incident with an edge of WX . On
other hand, T4 is the set of vertices in B ∩ U ∩ S incident with an edge of WY . No edge
in WY is incident with an edge in WX , or with a vertex in B ∩ X, so it is clear that S1

and T4 are disjoint. Similarly, S4 is the set of vertices in B ∩V ∩S that are incident with
an edge of WX and T1 is the set of vertices in B ∩ V ∩ S that are either in Y , or incident
with a vertex in WY . This implies that S4 ∩ T1 = ∅.

Note that T3 is the set of vertices in A ∩ V ∩ S that are joined by an edge of WY to
a vertex in (B ∩ U) − S. Let W ′ be the union of WX along with the set of edges in WY

that are incident with a vertex in T3. Clearly W ′ is a matching as it is a subset of W .
Also, WX ⊆ W ′ and |W ′ −WX | = |T3|. Each edge in W ′ −WX is incident with a vertex
in T3, and with a vertex in (B ∩ U) − S. Furthermore, no such edge is incident with a
vertex in X, since edges of W join vertices in (X ∪ Y ) ∩ A to vertices in B − (X ∪ Y ).
Therefore each edge in W ′ −WX joins a vertex of T3 to one in (B ∩ U) − (S ∪ X). We
have established that T3 is contained in S2. The symmetrical argument shows that S3 is
in T2. Therefore C(X,WX) and C(Y,WY ) are compatible, as we claimed.

Claim 26. Let X ⊆ U and Y ⊆ V be independent subsets of M . If there are signatures
SX ∈ C(X) and TY ∈ C(Y ) such that SX and TY are compatible, then X∪Y is independent
in M .

Proof. We assume that C(X,WX) = (S1,S2, S3, S4) and C(Y,WY ) = (T1, T2, T3, T4) are
compatible signatures. Recall that S1 and T4 are subsets of B ∩ U and that S4 and T1

are subsets of B ∩ V . Furthermore T3 is a subset of A ∩ V and S2 is a family of subsets
of A∩ V . Finally, S3 is a subset of A∩ U and T2 is a family of subsets of A∩ U . We will
construct a matching that certifies the independence of X ∪ Y .

Recall that S3 is the subset of A ∩ U ∩ S containing vertices that are joined by edges
of WX to vertices in (B ∩ V )−S. Let W ′′

X be the subset of WX containing edges that are
incident with vertices in S3. The compatibility of the signatures means that S3 is in T2.
Hence there is a matching, W ′

Y , such that WY ⊆ W ′
Y , |W ′

Y −WY | = |S3|, and each edge
of W ′

Y −WY joins a vertex in S3 to one in (B ∩ V )− (S ∪ Y ).
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Similarly, we let W ′′
Y be the subset of WY containing edges that are incident with

vertices in T3. Thus each edge in W ′′
Y joins a vertex in T3 to a vertex in (B ∩ U)− S. As

T3 is in S2, we can let W ′
X be a matching such that WX ⊆ W ′

X , |W ′
X −WX | = |T3|, and

each edge of W ′
X −WX joins a vertex in T3 to a vertex in (B ∩ U) − (S ∪ X). We now

make the definition
W = (W ′

X −W ′′
X) ∪ (W ′

Y −W ′′
Y ).

We will prove that W is a matching certifying the independence of X ∪ Y .

26.1 W is a matching.

Proof. Note thatW ′
X−W ′′

X andW ′
Y −W ′′

Y are certainly matchings. So ifW is not matching
then there is a vertex w, and distinct edges wx ∈ W ′

X −W ′′
X and wy ∈ W ′

Y −W ′′
Y .

We first assume that w is in A. Assume also that w is in U . Because Y is a subset of
V , no edge of WY is incident with a vertex in A ∩ U . Therefore wy is in W ′

Y −WY . This
means that wy joins a vertex of S3 to a vertex in (B ∩ V ) − (S ∪ Y ). In particular this
means that w is in S3. No edge in W ′

X −WX is incident with a vertex in A ∩ U , so wx is
not in W ′

X −WX . Therefore it is in WX , so wx is an edge of WX that is incident with a
vertex in S3. But this means that wx is in W ′′

X , contradicting wx ∈ W ′
X −W ′′

X . If w is
in V , then we reach the similar contradiction that wy is in W ′′

Y . Therefore we must now
assume that w is in B.

We assume that w is in B ∩ U . No edge of W ′
Y − WY is incident with a vertex in

B ∩ U . Therefore wy is in WY , and it follows that y belongs to A ∩ V .
If w is not in S, then y is in S, for otherwise wy is an edge of H that is not incident

with the vertex cover S. But in this case, wy joins an edge of A ∩ V ∩ S to a vertex
in (B ∩ U) − S. This implies that y is in T3. Now wy belongs to W ′′

Y , and we have a
contradiction to wy ∈ W ′

Y −W ′′
Y . Thus w is in S.

If wx is in W ′
X −WX , then wx joins a vertex in T3 to a vertex in (B ∩ U)− (S ∪X).

This is impossible, as we have already confirmed that w is in S. Hence wx is in WX . Now
w is in S and is incident with an edge of WX , meaning that it is in S1. Furthermore,
the edge wy is in WY , and this means that w is in T4. Thus S1 ∩ T4 ∕= ∅, and we have a
contradiction to the fact that C(X,WX) and C(Y,WY ) are compatible.

If w is in V , then we reach the symmetric contradiction that either wx is in W ′′
X , or

w is in S4 ∩ T1. This completes the proof that W is a matching.

Now we must demonstrate that the matching W certifies the independence of X ∪ Y .
First we show that every edge ofW joins a vertex in (X∪Y )∩A to a vertex in B−(X∪Y ).
To this end, we let ab be an edge of W , where a is in A and b is in B. Without loss of
generality we can assume that ab is in W ′

X −W ′′
X . Then a is either in X or in T3, which

is a subset of Y . Therefore a is in (X ∪ Y ) ∩ A.
We demonstrate that b is not in X ∪ Y . If ab is in W ′

X −WX , then ab joins a vertex
in T3 to a vertex in (B ∩ U) − (S ∪ X). In this case, b is certainly not in X. Since b is
in B ∩ U , and Y ⊆ V , it follows that b is also not in Y . Therefore we will now assume
that ab is not in W ′

X −WX , so it is in WX . Each edge of WX joins a vertex of A ∩X to
a vertex of B −X, so b is not in X. Assume that b is in Y , so that it belongs to B ∩ V .
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Since X ⊆ U , it follows that a is in A ∩ U . If b is not in S, then a is in S, for otherwise
ab is an edge of H that is not incident with the vertex cover S. In this case ab is an edge
of WX joining a vertex in A ∩ U ∩ S to a vertex in (B ∩ V ) − S, so a is in S3, and ab is
in W ′′

X , a contradiction. Therefore b is in S. As b is in B ∩ Y ∩ S, it follows that it is in
T1. But the edge ab also certifies that b is in S4. Therefore S4 ∩ T1 ∕= ∅, and we have a
contradiction to the fact that C(X,WX) and C(Y,WY ) are compatible. We have shown
that b is not in X ∪ Y . Hence every edge of W joins a vertex of A ∩ (X ∪ Y ) to a vertex
in B − (X ∪ Y ).

In the final step we must show that every vertex of (X ∪ Y ) ∩ A is incident with an
edge in W . Let a be a vertex in (X ∪ Y ) ∩A. Without loss of generality, we will assume
that a is in A ∩X. Then a is certainly incident with an edge of WX . If it is not incident
with an edge of W , then it is not incident with an edge in W ′

X −W ′′
X . It follows that in

this case, a is incident with an edge of W ′′
X . This implies a is in S3. But in this case w

is incident with an edge of W ′
Y −WY , and hence with an edge of W . Thus any vertex of

A ∩ (X ∪ Y ) is incident with an edge in W , so W certifies the independence of X ∪ Y ,
exactly as we desired.

Let X and X ′ be two independent subsets of U such that X ≈U X ′. Then C(X) =
C(X ′). Let Y ⊆ V be an independent set such that X ∪ Y is independent. Claim 25
shows that there are compatible signatures SX ∈ C(X) and TY ∈ C(Y ). As SX is also in
C(X ′) it follows from Claim 26 that X ′ ∪ Y is independent. This implies that X ∼U X ′,
so ≈U refines ∼U , as desired. Now the proof of Theorem 22 is complete.

Case (i) in Theorem 2 follows immediately from Theorem 22 and Theorem 1.

Remark 27. Theorem 22 shows that although a class of matroids may be strongly pigeon-
hole, its minor-closure may not even be pigeonhole. We can deduce this from Remark 21
because the smallest minor-closed class containing the fundamental transversal matroids
is the class of gammoids.

7 Lattice path matroids

The class of lattice path matroids was introduced by Bonin, de Mier, and Noy [2]. It is
closed under duality and minors [2, Theorems 3.1 and 3.5]. Every lattice path matroid is
transversal. We describe an algorithm that constructs a parse tree for a given lattice path
matroid (Theorem 30). When combined with Proposition 12 this shows that there is a
fixed-parameter tractable algorithm for testing CMS 0 sentences in lattice path matroids.
It also shows that the class is pigeonhole.

A lattice path matroid is represented by a pair of strings made from the alphabet
{E,N}. Let P be such a string, so that P = p1p2 · · · ps, where each pi is equal to either
E or N . When i is in {1, . . . , s}, we let ni(P ) stand for the number of N -characters in
{p1, . . . , pi}. We also let N(P ) stand for {i ∈ {1, . . . , s} : pi = N}. Thus ns(P ) = |N(P )|.
If P and Q are strings of s characters from the alphabet {E,N} then we write P 󰃙 Q to
mean that ni(P ) 󰃑 ni(Q) for each i ∈ {1, . . . , s}.
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Now assume that P and Q each contain r copies of N and m copies of E. Any such
string can be identified with a path in the integer lattice from (0, 0) to (m, r) that uses
only North and East steps. If P 󰃙 Q then the path P never goes above Q. In this case,
an intermediate string, L, is composed of r copies of N and m copies of E and satisfies
P 󰃙 L 󰃙 Q. Note that P and Q are both intermediate strings.

Let P and Q be strings composed of r copies of N and m copies of E such that P 󰃙 Q.
The lattice path matroid M [P,Q] has {1, . . . ,m+r} as its ground set. The family of bases
of M [P,Q] is {N(L) : L is an intermediate string}.

As we have mentioned, every minor of a lattice path matroid is a lattice path matroid.
We now give an explicit description of such minors, following [4, p. 707]. Imagine that
M = M [P,Q] is a lattice path matroid, where P and Q contain r copies of N and m
copies of E. Let P be p1p2 · · · pm+r and let Q be q1q2 · · · qm+r. Let i be in {1, . . . ,m+ r}.
Assume that ni(P ) = ni(Q). Then i is a coloop of M if pi = qi = N and i is a loop if
pi = qi = E. In either of these cases, both M\i and M/i are equal to

M [p1p2 · · · pi−1pi+1 · · · pm+r, q1q2 · · · qi−1qi+1 · · · qm+r]

after we relabel the elements i+1, i+2, . . . ,m+r in M\i or M/i as i, i+1, . . . ,m+r−1.
Now we assume that neither of these scenarios applies. Let j be the largest integer

in {1, . . . , i} such that pj = E, and let k be the least integer in {i, . . . ,m + r} such that
qk = E. Then

M\i = M [p1p2 · · · pj−1pj+1 · · · pm+r, q1q2 · · · qk−1qk+1 · · · qm+r],

where we apply exactly the same relabelling as before. Next let j be the least integer in
{i, . . . ,m + r} such that pj = N , and let k be the largest integer in {1, . . . , i} such that
qk = N . In this case

M/i = M [p1p2 · · · pj−1pj+1 · · · pm+r, q1q2 · · · qk−1qk+1 · · · qm+r].

Proposition 28. Let M = M [P,Q] be a lattice path matroid, where P and Q contain r
copies of N and m copies of E. If ni(Q) − ni(P ) 󰃍 t for some i ∈ {1, . . . ,m + r}, then
M contains a minor isomorphic to Ut,2t.

Proof. Let P be p1 · · · pm+r and let Q be q1 · · · qm+r. Assume that the result fails, so that
M has no Ut,2t-minor. Furthermore assume that M has been chosen subject to this failure
so that m+ r is as small as possible.

If p1 = N , then q1 = N because otherwise P 󰃙 Q fails. In this case M/1 is isomorphic
to M [p2 · · · pm+r, q2 · · · qm+r]. But now q2, . . . , qi contains at least t more copies of N than
p2, . . . , pi. Since M/1 has no Ut,2t-minor, the minimality of M has been contradicted.
Therefore p1 = E. Symmetrically, if qm+r = N , then pm+r = N or else nm+r−1(P ) >
nm+r−1(Q). In this case M/(m+r) is isomorphic to M [p1 · · · pm+r−1, q1 · · · qm+r−1]. But if
i < m+r then the first i characters of p1 · · · pm+r−1 are the same as the first i characters of
p1 · · · pm+r, and the same applies to q1 · · · qm+r−1. If i = m+ r, then q1 · · · qm+r−1 contains
at least t more N -characters than p1 · · · pm+r−1. In either case we see that M/(m+ r) is
a smaller counterexample, so qm+r = E.
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Let k ∈ {1, . . . ,m + r} be the least integer such that qk = E, and let
Q′ = q1 · · · qk−1qk+1 · · · qm+r. Let P

′ be p2 · · · pm+r. Thus M\1 is isomorphic to M [P ′, Q′].
Now ni−1(P

′) = ni(P ). If k 󰃑 i, then ni−1(Q
′) = ni(Q), and in this case

ni−1(Q
′) − ni−1(P

′) 󰃍 t, so M\1 provides a smaller counterexample. Therefore k > i,
which means that q1, . . . , qi are all equal to N .

Assume there is at least one N -character in p1, . . . , pi. Let j ∈ {1, . . . , i} be the least
integer such that pj = N . Let Q′′ = q2 · · · qm+r and let P ′′ be p1 · · · pj−1pj+1 · · · pm+r.
Thus M/1 is isomorphic to M [P ′′, Q′′]. In this case

ni−1(Q
′′)− ni−1(P

′′) = (i− 1)− (ni(P )− 1) = i− ni(P ) = ni(Q)− ni(P ) 󰃍 t

so M/1 is a smaller counterexample. Hence p1, . . . , pi are all equal to E.
Note that i 󰃍 t. Assume that i > t. Then

ni−1(Q
′)− ni−1(P

′) = (i− 1)− 0 󰃍 t,

which implies that M\1 is a smaller counterexample. We conclude that i = t.
Assume that there is an integer j ∈ {i + 1, . . . ,m + r} such that pj = E, and let

j be the largest such integer. We have noted that qm+r = E. Now we define P ′ to
be p1 · · · pj−1pj+1 · · · pm+r and Q′ to be q1 · · · qm+r−1. Thus M\(m + r) is isomorphic to
M [P ′, Q′]. But ni(Q

′) = ni(Q) = t and ni(P
′) = ni(P ) = 0, so we have a smaller

counterexample. Therefore pi+1, . . . , pm+r are all equal to N .
Note that m+ r 󰃍 2t. Assume that m+ r > 2t. Since p1, . . . , pi are E-characters and

pi+1, . . . , pm+r are N -characters, and i = t, this means that P and Q contain more than t
copies of N . Let k be the largest integer such that qk = N . Since Q contains more than
i = t copies of N , we see that k > i. Define Q′′ to be q1 · · · qk−1qk+1 · · · qm+r and define
P ′′ to be p1 · · · pm+r−1. Then M/(m + r) is isomorphic to M [P ′′, Q′′]. Again we see that
ni(Q

′′) = ni(Q) = t and ni(P
′′) = ni(P ) = 0. Now we have a smaller counterexample, so

m+ r = 2t.
We have shown that P consists of t copies of E followed by t copies of N . The first

t characters in Q are N , so the following t characters must be E. It is now very easy to
see that M is isomorphic to Ut,2t, so we have a final contradiction.

Corollary 29. Let M = M [P,Q] be a lattice path matroid, where P and Q contain r
copies of N and m copies of E. Assume that bw(M) 󰃑 λ. Then ni(Q)−ni(P ) 󰃑 1

2
(3λ−3)

for each i ∈ {1, . . . ,m+ r}.

Proof. Let t be equal to ni(Q)−ni(P ) for an arbitrary choice of i in {1, . . . ,m+r}. Then
Proposition 28 implies that M has an Ut,2t-minor. The branch-width of this minor is
⌈2t/3⌉+1 by [16, Exercise 14.2.5]. Now [16, Proposition 14.2.3] implies that ⌈2t/3⌉+1 󰃑
bw(M) 󰃑 λ. The result follows.

In the next result, we aim to apply Proposition 12 to the class of lattice path matroids.
Lattice path matroids are represented succinctly by pairs of strings.
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Theorem 30. For each positive integer λ there is a tree automaton Aλ that can be con-
structed in time bounded by f(λ), for some function f on the positive integers, so that
when we are given (P,Q,λ), where M = M [P,Q] is a lattice path matroid with branch-
width at most λ, we can construct a parse tree for M relative to Aλ in time bounded by
f(λ)|E(M)|c, where c is a constant.

Proof. Let p be ⌊1
2
(3λ − 3)⌋. Let P be the power set of {1, 2, . . . , p}. Let Σ be the

set that contains the empty function 󰂃, as well as all functions from P × {0, 1} or from
{0, 1}× {0, 1} into P . Then Aλ has Σ∪ {(󰂃, 0), (󰂃, 1)} as its alphabet. The state space of
Aλ is P , and all states are accepting except for the empty set.

Assume that P and Q contain r copies of N and m copies of E. Thus the ground set
of M is {1, . . . ,m + r}. Let P = p1p2 · · · pm+r and let Q = q1q2 · · · qm+r. Assume that
bw(M) 󰃑 λ. We construct the tree TM as shown in Figure 3. The bijection ϕM takes the
element i ∈ {1, . . . ,m+ r} to the leaf vi.

v1 v2

v3

t = um+r

vm+r

vm+r�1
u2

u3

um+r�1

Figure 3: The parse tree for a lattice path matroid.

We imagine that Y is a subset of {1, 2, . . . ,m+r}. The idea behind the operation of Aλ

is that it will apply a member of P to each of the internal nodes of TM . The set applied to
ui will contain all possible values |N(Li)|−|N(p1p2 · · · pi)|, where Li ranges over all strings
of i characters satisfying p1p2 · · · pi 󰃙 Li 󰃙 q1q2 · · · qi and Y ∩ {1, 2, . . . , i} ⊆ N(Li). Note
that Corollary 29 implies that such a value can be at most p and that Y is independent
in M if and only if the set applied to the root t is non-empty.

To implement this idea, we describe σM , which applies a function to each node of
TM . We say that σM applies the empty function 󰂃 to any leaf. Next we let g ∈ Σ be the
function applied by σM to u2. The domain of g is {0, 1}×{0, 1}. The output of g depends
on the characters in p1p2 and q1q2. In the following table, the columns are labelled by the
array

q1q2
p1p2

and each row shows the output of g on the members of {0, 1}× {0, 1}.
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(0, 0) (0, 1) (1, 0) (1, 1)

EE {0} ∅ ∅ ∅
EE
EN {0, 1} {1} ∅ ∅
EE
NE {0, 1} {1} {1} ∅
EE
NN {0, 1, 2} {1, 2} {1, 2} {2}
EE
EN {0} {0} ∅ ∅
EN
NE {0} {0} {0} ∅
EN
NN {0, 1} {0, 1} {0, 1} {1}
EN
NE {0} ∅ {0} ∅
NE
NN {0, 1} {1} {0, 1} {1}
NE
NN {0} {0} {0} {0}
NN

Next we let g be the function applied to ui by σM , where i is in

{3, . . . ,m+ r}.

The domain of g will be P × {0, 1} and the output of g will be in P . Assume that the
input to g is (A, s). First consider the case that pi = N . Then

g(A, 0) = (A ∪ {a− 1: a ∈ A}) ∩ {0, 1, . . . , ni(Q)− ni(P )}

and
g(A, 1) = A ∩ {0, 1, . . . , ni(Q)− ni(P )}.

On the other hand, if pi = E then

g(A, 0) = (A ∪ {a+ 1: a ∈ A}) ∩ {0, 1, . . . , ni(Q)− ni(P )}

and
g(A, 1) = {a+ 1: a ∈ A} ∩ {0, 1, . . . , ni(Q)− ni(P )}.

Next we must describe the transition functions δ0 and δ2. The former takes each pair
(󰂃, s) to {s}, where s is 0 or 1. If g is a function from {0, 1}×{0, 1} or P×{0, 1} to P then
δ2(g, j, k) is g(j, k) whenever (j, k) is in the domain of g. This completes the description
of the automaton

Aλ = (Σ ∪ {(󰂃, 0), (󰂃, 1)},P ,P − {∅}, δ0, δ2).
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Clearly Aλ can be constructed in time bounded by f(λ), where f is some function from
the positive integers to the positive integers.

To complete the proof of Theorem 30, we must show that (TM , σM ,ϕM) is a parse
tree relative to the automaton Aλ. We can accomplish this by proving our claim that
the set applied to ui by Aλ during its run on enc(TM , σM ,ϕM , Y ) is the set {|N(Li)| −
|N(p1p2 · · · pi)|}, where Li ranges over {E,N}i subject to p1p2 · · · pi 󰃙 Li 󰃙 q1q2 · · · qi
and Y ∩ {1, 2, . . . , i} ⊆ N(Li). When i = 2, this is simply a matter of checking the table
above, so we inductively assume the claim is true for i − 1. Let A be the set applied to
ui−1. If pi = N and i is in Y , then the final character in Li must be N , so the set applied
to ui should be exactly the numbers in A, as long as those numbers are not greater than
ni(Q) − ni(P ). But this set is exactly g(A, 1), where g is the function applied to ui by
the labelling σM . So in this case, the set applied to ui is exactly as we claimed.

If i is not in Y , then the final character in Li could be either E or N , as long as
the constraint p1p2 · · · pi 󰃙 Li 󰃙 q1q2 · · · qi is satisfied. Thus the set applied to ui should
contain all numbers of the form a−1 or a, where a ranges over the members of A, as long
as these numbers are in {0, 1, . . . , ni(Q)− ni(P )}. But this is exactly the output g(A, 0).
The case when pi = E yields to exactly the same sort of analysis, so (TM , σM ,ϕM) is
a parse tree relative to Aλ. It is clear that (TM , σM ,ϕM) can be constructed in time
bounded by f(λ)(m+ r)c for some constant c, so the proof is complete.

By applying Proposition 12 to the previous result, we see that case (ii) in Theorem 2
is proved. Furthermore, we can deduce the following result.

Corollary 31. The class of lattice path matroids is pigeonhole.

8 Frame matroids

Let G be a graph with edge set E. We allow G to contain loops and parallel edges. If X
is a subset of E, we use G[X] to denote the subgraph with edge set X containing exactly
those vertices that are incident with an edge in X. Similarly, if N is a set of vertices, then
G[N ] is the induced subgraph of G with N as its vertex set. A theta subgraph consists of
two distinct vertices joined by three internally-disjoint paths. A linear class of cycles in
G is a family, B, of cycles such that no theta subgraph of G contains exactly two cycles
in B. Let B be a linear class of cycles in G. A cycle in B is balanced, and a cycle not in
B is unbalanced. A subgraph of G is unbalanced if it contains an unbalanced cycle, and is
otherwise balanced.

Frame matroids were introduced by Zaslavsky [21]. The frame matroid, M(G,B), has
E as its ground set. The circuits of M(G,B) are the edge sets of balanced cycles, and
the edge sets of minimal connected subgraphs containing at least two unbalanced cycles,
and no balanced cycles. Such a subgraph is either a theta subgraph or a handcuff. A
tight handcuff contains two edge-disjoint cycles that have exactly one vertex in common.
A loose handcuff consists of two vertex-disjoint cycles and a minimal path that joins the
two cycles. Note that if B contains every cycle, then M(G,B) is a graphic matroid. The
set X ⊆ E is independent in M(G,B) if and only if G[X] contains no balanced cycle,
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and each connected component of G[X] contains at most one cycle. The rank of X in
M(G,B) is the number of vertices in G[X], minus the number of balanced components of
G[X].

Proposition 32. Let M = M(G,B) be a 3-connected frame matroid, and let (U, V ) be a
partition of the edge set of G such that λM(U) 󰃑 λ. There are at most 14λ− 12 vertices
that are incident with edges in both U and V .

Proof. Let n be the number of vertices in G. We can assume that G has no isolated
vertices. It then follows from the 3-connectivity of M that G is connected. Let nU and
nV be the number of vertices in G[U ] and G[V ], respectively. Let N be the set of vertices
that are in both G[U ] and G[V ], so n + |N | = nU + nV . Each vertex in N is incident
with a connected component of G[U ] and with a connected component of G[V ]. Since G
is connected, each component of G[U ] or G[V ] contains at least one vertex of N . Thus
the connected components of G[U ] induce a partition of N . There are no coloops in M ,
and it follows that if a component of G[U ] contains only a single, non-loop, edge, then
that edge joins two vertices of N . Let a be the number of such components. Next we
claim that if X is a connected component of G[U ] such that X is balanced and contains
at least two edges, then X contains at least three vertices of N . If this is not true, then
we can easily verify that M has a 1- or 2-separation, contradicting the hypotheses of the
theorem. Assume that there are b balanced components of G[U ] with more than one
edge, and let αi, . . . ,αb be the numbers of vertices these components share with N . Our
claim shows that αi 󰃍 3 for each i. Finally, assume there are c unbalanced components
in G[U ], and these components intersect N in β1, . . . , βc vertices, respectively. Thus
|N | = 2a+

󰁓
αi +

󰁓
βi, and rM(U) = nU − (a+ b).

Let x be the number of components of G[V ] consisting of a single non-loop edge.
Assume there are y balanced components of G[V ] with more than one edge, and that
these intersect N in γ1, . . . , γy vertices. Let z be the number of unbalanced components
of G[V ], and assume that they intersect N in δ1, . . . , δz vertices, respectively. So we have
|γi| 󰃍 3, |N | = 2x +

󰁓
γi +

󰁓
δi, and rM(V ) = nV − (x + y). Because G is connected,

r(M) 󰃍 n− 1, and r(M) = n− 1 if and only if G is balanced. Now we observe that

λ 󰃍 rM(U) + rM(V )− r(M) 󰃍 nU + nV − (a+ b+ x+ y)− (n− 1)

= |N |− (a+ b+ x+ y) + 1.

This last quantity is equal to a+
󰁓

αi +
󰁓

βi − (b+ x+ y) + 1, and also to x+
󰁓

γi +󰁓
δi − (a + b + y) + 1, so both are at most λ. By adding the two inequalities together,

we obtain
2λ 󰃍

󰁛
αi +

󰁛
βi +

󰁛
γi +

󰁛
δi − 2(b+ y) + 2.

But because each αi is at least three, we also have b 󰃑 1
3

󰁓
αi, and symmetrically y 󰃑

1
3

󰁓
γi. Therefore

6(λ− 1) 󰃍
󰁛

αi + 3
󰁛

βi +
󰁛

γi + 3
󰁛

δi. (2)
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The edges counted by a form a matching. Therefore they are an independent set in
M . As rM(U)+rM(V )−r(M) 󰃑 λ, submodularity tells us that the intersection of clM(U)
and clM(V ) has rank at most λ. Thus there are at least a − λ components of G[U ] that
consist of a single, non-loop, edge that is not in clM(V ). No such edge can be incident
with one of the components of G[V ] counted by x, for this would mean that a vertex of G
has degree equal to two, implying that M contains a series pair. This is impossible, since
M is 3-connected (and we can obviously assume that it has more than three elements).
Nor can such an edge join two vertices counted by the variables δ1, . . . , δz, for then the
edge joins two components of G[V ] that contain unbalanced cycles. This means that the
edge is in a handcuff, and hence in clM(V ). Now we conclude that each of the (at least)
a−λ edges is incident with at least one vertex counted by the variables γ1, . . . , γy. As the
edges counted by a form a matching, we now see that a− λ 󰃑

󰁓
γi. We conclude that

|N | = 2a+
󰁛

αi +
󰁛

βi 󰃑 2
󰁛

γi + 2λ+
󰁛

αi +
󰁛

βi

󰃑 2
󰁛

αi + 6
󰁛

βi + 2
󰁛

γi + 2λ.

But (2) implies that 2
󰁓

αi + 6
󰁓

βi + 2
󰁓

γi 󰃑 12λ− 12, and the result follows.

Remark 33. If we remove the constraint of 3-connectivity from Proposition 32, then no
bound on the number of vertices in both G[U ] and G[V ] is possible. To see this, let
c0, . . . , c2n−1 be vertices in a cycle of the 2-connected graph G. Assume that G− {ci, cj}
is disconnected for any i ∕= j. Define B to be the family of cycles that contain all of the
vertices c0, . . . , c2n−1. It is easy to verify that B is a linear class. For any i (modulo 2n)
let Ci be the set of edges contained in a path from ci to ci+1 containing no other vertex
in c0, . . . , c2n−1. Then

(C0 ∪ C2 ∪ · · · ∪ C2n−2, C1 ∪ C3 ∪ · · · ∪ C2n−1)

is a 1-separation of M(G,B), but obviously there is no bound on the number of vertices
incident with edges in both sides of this separation.

We will concentrate on two subclasses of frame matroids. Bicircular matroids are
those frame matroids arising from linear classes that contain only loops. Thus every cycle
with more than one edge is unbalanced. For any graph, G, we define B(G) to be the
bicircular matroid M(G, ∅). Thus every bicircular matroid is equal to B(G) ⊕ U0,t for
some graph G and some integer t. Bicircular matroids can also be characterised as the
transversal matroids represented by systems of the form (A1, . . . , Ar), where each element
of the ground set is in at most two of the sets A1, . . . , Ar.

Next we define gain-graphic matroids. Again, we let G be an undirected graph with
edge set E and (possibly) loops and multiple edges. Define A(G) to be

{(e, u, v) : e is a non-loop edge joining vertices u and v}
∪ {(e, u, u) : e is a loop incident with the vertex u}.
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A gain function, σ, takes A(G) to a group H and satisfies σ(e, u, v) = σ(e, v, u)−1 for
any non-loop edge e with end-vertices u and v. If W = v0e0v1e1 · · · etvt+1 is a walk
of G, then the gain-value of W is σ(W ) = σ(e0, v0, v1) · · · σ(et, vt, vt+1). Now let C =
v0e0v1e1 · · · etvt+1 be a cycle of G, where v0 = vt+1, and the other vertices are pairwise
distinct. Note that σ(C) may depend on the choice of orientation of C and if H is
nonabelian, it may also depend on the choice of starting vertex. However, if σ(C) is
equal to the identity, then this equality will hold no matter which starting vertex and
orientation we choose. We declare a cycle to be balanced exactly when σ(C) is equal to
the identity, and this gives rise to a linear class. If B is such a linear class, then M(G,B)
is an H-gain-graphic matroid. Gain-graphic matroids play an important role in the works
by Kahn and Kung [12], and Geelen, Gerards, and Whittle [9].

Let u be a vertex of G, and let α be an element of H. The gain function σu,α is
defined to be identical to σ on any loop and on any edge not incident with u. Furthermore
σu,α(e, u, v) = ασ(e, u, v) when e is a non-loop edge joining u to a vertex v, and in this
case σu,α(e, v, u) is defined to be σ(e, v, u)α−1. The operation that produces σu,α from σ is
called switching. Two gain functions that are related by switching have exactly the same
balanced cycles [20, Lemma 5.2].

The next theorem treats bicircular matroids and gain-graphic matroids simultaneously,
since the arguments are essentially identical.

Theorem 34. The class of 3-connected bicircular matroids is efficiently pigeonhole. If
H is a finite group, then the class of 3-connected H-gain-graphic matroids is efficiently
pigeonhole.

Proof. Let M be a 3-connected matroid that is either bicircular or H-gain-graphic. If M
is bicircular then it is succinctly represented by a description of a graph and a list of the
balanced loops. An H-gain-graphic matroid is described via a graph and a labelling that
assigns an element of H to each orientation of an edge. Let G be the graph that represents
M , so that G is unlabelled if M is bicircular, and labelled if M is H-gain-graphic. We
can assume that G has no isolated vertices.

Let (U, V ) be a partition of E such that λM(U) 󰃑 λ for some positive integer λ. Let
N be the set of vertices that are in both G[U ] and G[V ], so that |N | 󰃑 14λ − 12 by
Proposition 32. We will describe an equivalence relation ≈U on the subsets of U and then
show that ≈U can be computed in time bounded by O(π(λ)|E(M)|c) for some function π
and some constant c. Moreover, we will prove that ≈U satisfies conditions (i) and (ii) of
Definition 14.

Let X be a subset of U . If M is H-gain-graphic then we can choose a maximal forest
of G[X] and then perform switching operations so that every edge in the forest is labelled
with the identity of H [20, Lemma 5.3]. If M is bicircular, we choose the maximal forest
but we do not need to perform any switchings. Now X is dependent in M if and only if
there is an edge not in the spanning forest that receives an identity label, or if there are
two distinct edges not in the maximal forest that are in the same component of G[X].
Thus we can test the independence of X in polynomial time.

Let X and X ′ be subsets of U . We consider the circumstances under which we declare
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X and X ′ to be equivalent under ≈U . Firstly, if X and X ′ are both dependent, then
X ≈U X ′. If exactly one of X and X ′ is dependent, then X ∕≈U X ′. Now assume that
both X and X ′ are independent. In this case, any component of G[X] or G[X ′] contains
at most one cycle. Let u and v be vertices in a component of G[X] or G[X ′]. Let Γ be
this component. We claim there are at most two paths of Γ that join u to v. This is clear
if Γ is a tree, so assume that Γ contains exactly one cycle. Let e be an edge of Γ such
that Γ\e is a tree. If there are three distinct paths from u to v in Γ, then two of them
use e. Now there must be two distinct paths of Γ\e from either u or v to an end-vertex
of e. This is impossible so our claim is proved.

Let X and X ′ be the sets of connected components in G[X] and G[X ′], respectively,
that have non-empty intersection withN . In the case thatX andX ′ are both independent,
we declare that X ≈U X ′ if there is a bijection θ : X → X ′ such that the following
statements hold for every Γ ∈ X ,

(i) Γ ∩N = θ(Γ) ∩N ,

(ii) Γ contains a cycle if and only if θ(Γ) contains a cycle, and

(iii) in the case that M is H-gain-graphic and u and v are vertices of Γ ∩N , there is a
path of Γ from u to v with gain-value h if and only if there is a path of θ(Γ) from
u to v with gain-value h.

It is clear that ≈U is an equivalence relation. Next we count the equivalence classes.
Let τ(|N |) be the number of partitions of N where at most one block of the partition is
allowed to be empty. We will think of the non-empty blocks in this partition as being the
intersections of components of G[X] with N . Thus τ(|N |) counts the number of possible
such intersections. Note that τ is a non-decreasing function on the integers.

To choose an equivalence class of ≈U , we first choose a non-empty collection of pairwise
disjoint subsets of N . Since the size of N is at most 14λ− 12, we can do this in at most
τ(14λ− 12) ways. Next we choose whether each of these components has a cycle or not.
The number of components that intersect N is at most 14λ − 12, so we can make this
choice in at most 214λ−12 ways. Finally, for each pair (u, v) ∈ N ×N , we choose at most
two gain-values in H for paths from u to v. The number of ways we can make this choice
is at most |H|2(14λ−12)2 . Thus the number of equivalence classes under ≈ is at most

τ(14λ− 12)214λ−12|H|2(14λ−12)2 .

Let this number be denoted by π(λ). Since H is fixed, π(λ) depends only on λ. It is clear
that we can test the equivalence X ≈U X ′ in time bounded by π(λ)|E(M)|c for some
constant c. Now we can complete the proof of Theorem 34 by showing that ≈U refines
∼U .

To this end, assume that X and X ′ are independent subsets of U and that X ≈U X ′.
Assume that X ∪Z is dependent for some Z ⊆ V , and let C be a circuit of M contained
in X ∪ Z. We will prove that X ′ ∪ Z is also dependent in M and this will complete the
proof.
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First assume that C is a balanced cycle. If C is a balanced loop, then it is contained
in Z, since X is independent. In this case X ′∪Z is dependent and we have nothing left to
prove. Therefore we assume that C is a balanced cycle with more than one edge, so M is
an H-gain-graphic matroid. Now each component of G[X ∩C] is a path, P , between two
vertices of N . We can replace each such P with a path P ′ of G[X ′] running between the
same vertices. Moreover, since X ≈ X ′ holds, we can choose P ′ so that σ(P ′) = σ(P ).
When we perform all these substitutions on C we obtain a walk W in G[X ′ ∪ Z], where
σ(W ) is the identity of H. It is now easy to prove that G[W ] contains either a balanced
cycle, or two distinct cycles. In either case G[X ′ ∪ Z] is dependent in M so we are done.

Now we assume that C is a theta subgraph or a handcuff. Let Γ1, . . . ,Γn be the
connected components of G[X] that contain edges of C. For each i let Di be the set
of edges of C contained in Γi. Note that D1, . . . , Dn are pairwise disjoint sets of edges.
Because X ≈ X ′ we can make a choice of D′

i, a minimal set of edges in X ′ for each i such
that the following conditions hold.

(i) G[D′
i] is connected,

(ii) every vertex of G[Di] ∩N is in G[D′
i], and

(iii) G[D′
i] contains a cycle if and only if G[Di] contains a cycle.

Let C0 be C. For each i let Ci be the subgraph obtained from Ci−1 by replacing the edges
of Di with D′

i. Thus Cn is a subgraph of G[X ′ ∪Z]. It is clear that each Ci is connected.
We will show that Cn contains at least two cycles, and then we will be done.

For any graph, Γ, let ν(Γ) be |E(Γ)| − |V (Γ)|. If Γ is connected, then ν(Γ) 󰃍 −1. If
Γ is connected and contains exactly one cycle, then ν(Γ) = 0. Let (L,R) be a partition
of E(Γ), and assume that γ vertices are incident with edges in both L and R. It is easy
to confirm that

ν(Γ) = ν(Γ[L]) + ν(Γ[R]) + γ. (3)

Note that ν(C0) = 1. We assume inductively that ν(Ci−1) 󰃍 1. Note that G[Di] may
not be connected, but G[D′

i] is connected. Our choice of D′
i means that ν(D′

i) 󰃍 ν(Di).
Furthermore, G[D′

i] has at least as many vertices in common with G[Ci−1 −Di] as G[Di]
does. It now follows from (3) that ν(Ci) 󰃍 ν(Ci−1) 󰃍 1. Thus ν(Cn) 󰃍 1, and since Cn is
connected, it follows that Cn contains at least two cycles, as required.

Corollary 35. Let M be the class of bicircular or H-gain-graphic matroids (with H a
finite group). Let ψ be any sentence in CMS 0. We can test whether matroids in M satisfy
ψ using an algorithm that is fixed-parameter tractable with respect to branch-width.

Proof. This will follow immediately from [8, Theorem 6.7] and Theorem 34 if we show
that the succinct representations of bicircular and H-gain-graphic matroids are minor-
compatible. We rely on [20, Corollary 5.5] and [21, Theorem 2.5]. Let M be a bicircular
or H-gain-graphic matroid corresponding to the graph G, and let e be an edge of G.
Then M\e is bicircular or H-gain-graphic, and corresponds to G\e. (In the case that M
is H-gain-graphic, the edge-labels in G\e are inherited from G.)
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Contraction is somewhat more technical. If e is a non-loop, then we first perform a
switching (in the H-gain-graphic case) so that the gain-value on e is the identity. We then
simply contract e from G. The resulting labelled graph represents M/e. Now assume e is
a loop of G incident with the vertex u. If e is a balanced loop, we simply delete e, so now
assume that e is an unbalanced loop. In the H-gain-graphic case, this implies that H is
non-trivial. We obtain the graph G′ by deleting u and replacing each non-loop edge, e′,
incident with u with a loop incident with the other end-vertex of e′. In the H-gain-graphic
case, the loop e′ is labelled with any non-identity element. Any other loops of G that are
incident with u are added as balanced loops after contracting e.

It is clear that the operations of deletion and contraction can be performed in polyno-
mial time, so the classes of bicircular and H-gain-graphic matroids have minor-compatible
succinct representations as desired.

Corollary 35 completes the proof of Theorem 2.

Remark 36. Hliněný has shown [10, p. 348] that his work provides an alternative proof of
Courcelle’s Theorem. We can provide a simple new proof by relying on Corollary 35 and
using bicircular matroids as models for graphs. We now briefly explain this strategy.

Let ψ be a sentence in the counting monadic second-order logic, CMS 2 of graphs. This
means that we can quantify over variables representing vertices, edges, sets of vertices
and set of edges. We have binary predicates for set membership, and also an incidence
predicate, which allows us to express that an edge is incident with a vertex. Furthermore,
we have predicates which allow us to assert that a set has cardinality p modulo q, for any
appropriate choice of p and q. We need to show that there is a fixed-parameter tractable
algorithm for testing ψ in graphs, with respect to the parameter of tree-width.

Let G be a graph, and let G◦ be the graph obtained from G by adding two loops
at every vertex. We need to interpret ψ as a sentence about bicircular matroids of the
form B(G◦). We let Vert(Xi) be the CMS 0 formula stating that Xi is a 2-element circuit.
Similarly, we let Edge(Xi) be a formula expressing that Xi is a singleton set not contained
in a 2-element circuit. Now we make the following interpretations in ψ: if v is a vertex
variable, we replace ∃v with ∃Xv Vert(Xv) ∧, and we replace ∀v with ∀Xv Vert(Xv) →.
We perform a similar replacement for variables representing edges. If V is a variable
representing a set of vertices, we replace ∃V with

∃X∀X1(Sing(X1) ∧X1 ⊆ X) → ∃X2(X1 ⊆ X2 ∧X2 ⊆ X ∧ Vert(X2))∧

where Sing(X1) is a predicate expressing that X1 contains exactly one element. There are
similar replacements for variables representing sets of edges and for universal quantifiers.
Finally, we replace any occurrence of the predicate stating that e is incident with v with
a CMS 0 formula saying that there is a 3-element circuit that contains Xe and one of the
elements in Xv. We let ψ′ be the sentence we obtain by making these substitutions. It is
clear that a graph, G, satisfies ψ if and only if B(G◦) satisfies ψ′. Therefore Corollary 35
implies that there is a fixed-parameter tractable algorithm for testing whether ψ′ holds
in matroids of the form B(G◦), with respect to the parameter of branch-width.
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To find the branch-width of a graph with edge set E, we consider a subcubic tree,
T , and a bijection from E to the leaves of T . If (U, V ) is a partition of E displayed by
an edge, e, of T , then we count the vertices incident with edges in both U and V . This
gives us the width of e, and the maximum width of an edge of T is the width of the
decomposition. The lowest width across all such decompositions is the branch-width of
the graph. It is not difficult to see that the branch-width of the matroid B(G◦) is bounded
by a function of the branch-width of the graph G, and similarly the branch-width of G is
bounded by a function of the branch-width of B(G◦). But exactly the same relation holds
between the branch-width and the tree-width of G [17, (5.1)]. Now it follows that there
is a fixed-parameter tractable algorithm for testing whether ψ holds in graphs, where the
parameter is tree-width. This proves Courcelle’s Theorem [5].

When H is not finite, the class of H-gain-graphic matroids is not even pigeonhole, as
we now show. First we require the following proposition.

Proposition 37. Let H be an infinite group, and let m and n be positive integers. There
are disjoint subsets A,B ⊆ H such that |A| = m, |B| = n, and {ab : a ∈ A, b ∈ B} is
disjoint from A ∪B and has cardinality mn.

Proof. Assume that m = 1. Choose B, an arbitrary subset of n elements that does not
include the identity. The cancellation rule implies the result if we let A be a singleton
set containing an element not in B ∪ {b1b−1

2 : b1, b2 ∈ B}. The result similarly holds if
n = 1. Now we let m and n be chosen so that m+ n is as small as possible with respect
to the proposition failing. Let A′ and B be disjoint subsets such that |A′| = m − 1,
|B| = n, and {ab : (a, b) ∈ A′ × B} has cardinality (m − 1)n and is disjoint from A′ and
B. We choose an element x not in A′ ∪ B that does not belong to {ab−1 : a ∈ A, b ∈ B},
nor to {b1b−1

2 : b1, b2 ∈ B}, nor to {ab1b−1
2 : a ∈ A, b1, b2 ∈ B}. Now we simply let A be

A ∪ {x}.

Proposition 38. Let H be an infinite group. There are rank-3 H-gain-graphic matroids
with arbitrarily high decomposition-width. Hence the class of H-gain-graphic matroids is
not pigeonhole.

Proof. Assume otherwise, and let K be an integer such that dw(M) 󰃑 K whenever M is
a rank-3 H-gain-graphic matroid.

Znám proved that if a bipartite graph with n vertices in each side of its bipartition
has more than (d− 1)1/dn2−1/d + n(d− 1)/2 edges, then it has a subgraph isomorphic to
Kd,d [22]. Choose an integer d such that d2 > K. Choose the integer p so that

1

2
p2 > (d− 1)1/dp2−1/d +

1

2
p(d− 1).

Finally, choose the integer q such that q − p 󰃍 q/2 󰃍 p and

1

3
(q2 + 2q)− p(2q − p+ 2) > (d− 1)1/d(q − p)2−1/d +

1

2
(q − p)(d− 1).
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Using Proposition 37, we choose disjoint subsets A = {a1, . . . , aq} and B = {b1, . . . , bq}
of H such that aibj ∕= apbq whenever (i, j) ∕= (p, q). Let AB be {aibj : 1 󰃑 i, j 󰃑 q}. We
can also assume that AB is disjoint from A∪B. Let G be a graph on vertex set {v1, v2, v3},
where there are q parallel edges between v1 and v2 and between v2 and v3, and q2 parallel
edges between v1 and v3. We let σ be the gain function applying the elements in A to the
q arcs from v1 to v2, the elements in B to the arcs from v2 to v3, and the elements in AB
to those arcs from v1 to v3. We identify these group elements with the ground set of the
H-gain-graphic matroid M = M(G, σ). Therefore M is a rank-3 matroid with ground set
A ∪ B ∪ AB. Its non-spanning circuits are the 3-element subsets of A, B, or AB, along
with any set of the form {ai, bj, aibj}.

Let (T,ϕ) be a decomposition of M with the property that if U is any displayed
set, then ∼U has at most K equivalence classes. As in the proof of Lemma 16, we let
e be an edge of T such that each of the displayed sets, Ue and Ve, contains at least
|E(M)|/3 = (q2 + 2q)/3 elements. We construct a complete bipartite graph with vertex
set A ∪ B and edge set AB, where aibj joins ai to bj. We colour a vertex or edge red if
it belongs to Ue, and blue otherwise. Without loss of generality, we will assume that at
least q/2 󰃍 p vertices in A are red.

Assume that B contains at least p blue vertices. We choose p such vertices, and p
red vertices from A, and let G′ be the graph induced by these 2p vertices. There are p2

edges in G′. Assume that at least p2/2 of them are red (the case that at least p2/2 of
them are blue is almost identical). Our choice of p means that G′ contains a subgraph
isomorphic to Kd,d consisting of red edges. Thus there are elements ai1 , . . . , aid ∈ A ∩ Ue

and bj1 , . . . , bjd ∈ B ∩ Ve such that every element aipbjq is in Ue. For (l, k) ∕= (p, q), we
see that {ail , ailbjk} is not equivalent to {aip , aipbjq}, since {ail , ailbjk , bjk} is a circuit of
M , and {aip , aipbjq , bjk} is a basis. Therefore ∼Ue has at least d

2 > K equivalence classes,
and we have a contradiction. We must now assume that B contains fewer than p blue
vertices, and hence at least q−p 󰃍 q/2 red vertices. Thus a symmetrical argument shows
that A contains fewer than p blue vertices.

We choose q − p red vertices from each of A and B, and let G′′ be the subgraph
induced by these vertices. Let g stand for the number of blue edges in G′′. The number
of edges not in G′′ is equal to q2 − (q − p)2 = 2pq − p2. As there are g blue edges in G′′,
at most 2pq − p2 blue edges not in G′′, and fewer than 2p blue vertices, it follows that
|Ve| < g + 2pq − p2 + 2p. Since (q2 + 2q)/3 󰃑 |Ve|, we deduce that

1

3
(q2 + 2q)− p(2q − p+ 2) < g.

Our choice of q now means that G′′ has a subgraph isomorphic to Kd,d consisting of blue
edges. Thus we have elements ai1 , . . . , aid ∈ A ∩ Ue and bj1 , . . . , bjd ∈ B ∩ Ue such that
aipbjq is in Ve for each p and q. For (l, k) ∕= (p, q), we see that {ail , bjk , ailbjk} is a circuit of
M , while {aip , bjq , ailbjk} is a basis. This implies there are at least d2 equivalence classes
under ∼Ue , so we again have a contradiction.
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9 Open problems

We have proved that the class of lattice path matroids is pigeonhole, but we have not yet
proved that it is strongly pigeonhole. Nevertheless, we believe this to be the case.

Conjecture 39. The class of lattice path matroids is efficiently pigeonhole.

The classes of fundamental transversal matroids and lattice path matroids are both
closed under duality ([16, Proposition 11.2.28] and [2, Theorem 3.5]). Thus they belong to
the intersection of transversal and cotransversal matroids. We suspect that Theorem 22
(and Conjecture 39) exemplify a more general result.

Conjecture 40. The class of matroids that are both transversal and cotransversal is
strongly pigeonhole.

Despite the existence of examples as in Remark 33, we firmly believe the next conjec-
ture.

Conjecture 41. The class of bicircular matroids is efficiently pigeonhole. Let H be a
finite group. The class of H-gain-graphic matroids is efficiently pigeonhole.
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