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Abstract

The binomial random bipartite graph G(n, n, p) is the random graph formed
by taking two partition classes of size n and including each edge between them
independently with probability p. It is known that this model exhibits a similar
phase transition as that of the binomial random graph G(n, p) as p passes the
critical point of 1

n . We study the component structure of this model near to the
critical point. We show that, as with G(n, p), for an appropriate range of p there is
a unique ‘giant’ component and we determine asymptotically its order and excess.
We also give more precise results for the distribution of the number of components
of a fixed order in this range of p. These results rely on new bounds for the number
of bipartite graphs with a fixed number of vertices and edges, which we also derive.

Mathematics Subject Classifications: 05A16, 05C75, 05C80

1 Introduction

1.1 Background and motivation

It was shown by Erdős and Rényi [10] that a ‘phase transition’ occurs in the uniform
random graph modelG(n,m) whenm is around n

2
. Standard arguments on the asymptotic

equivalence of the two models imply that a similar phenomenon occurs in the binomial
random graph model G(n, p) when p is around 1

n
. More precisely, when p = 1−

n
for a fixed

 > 0, with high probability1 (whp for short) every component of G(n, p) has order at

most O(log n); when p = 1
n
, whp the order of the largest component is Θ


n

2
3


; and when

p = 1+
n
, whp G(n, p) contains a unique ‘giant component’ L1 (G(n, p)) of order Ω(n).

Institute of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria.
({do,erde,kang,missethan}@math.tugraz.at).
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1With probability tending to one as n → ∞.
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Whilst it may seem at first that the component behaviour of the model G(n, p) exhibits
quite a sharp ‘jump’ at this point, subsequent investigations, notably by Bollobás [3] and
Luczak [16], showed that in fact, if one chooses the correct parameterisation for p, this
change can be seen to happen quite smoothly. In particular, Luczak’s work implies the
following result in the weakly supercritical regime. Throughout the paper let Li(G) denote
the ith largest component of a graph G for i ∈ N. We use the standard Landau notation
for asymptotic orders.

Theorem 1 ([16]). Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

Then whp

|L1 (G(n, p))| = (1 + o(1))2n and |L2 (G(n, p))|  n
2
3 .

Furthermore, Luczak’s work allowed him to give a precise estimate for the excess of
L1 (G(n, p)) (the excess of a connected graph is the difference between the number of
edges and vertices). The excess is in some way a broad measure of the complexity of the
giant component, determining its density, which has important consequences, for example
in terms of the length of the longest cycle in (see for example [17]), or the genus of the
giant component (see for example [9]).

Theorem 2 ([16]). Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

Then whp

excess (L1 (G(n, p))) = (1 + o(1))
2

3
3n.

Luczak also gave a finer picture of the distribution of the components in G(n, p) in
the weakly subcritical and weakly supercritical regimes. In what follows, a tree, unicyclic,
and complex component is a component which has no, exactly one and more than one
cycle, respectively.

Theorem 3 ([16]). Let  = (n) be such that ||3n → ∞ and  = o(1), let p = 1+
n
, let

δ = − log(1+ ), and let α = α(n) > 0 be an arbitrary function. Then the following hold
in G(n, p)

(i) With probability 1− e−Ω(α) there are no tree components of order larger than

1

δ


log


||3n


− 5

2
log log


||3n


+ α


.

(ii) With probability 1 − e−Ω(α) there are no unicyclic components of order larger than
α
δ
.

(iii) If  < 0, then whp there are no complex components.

(iv) If  > 0, then with probability 1− O

(3n)

−1

there are no complex components of

order smaller than n
2
3 .

the electronic journal of combinatorics 30(3) (2023), #P3.7 2



In this paper we investigate similar questions about the component structure of a
different random graph model, the binomial random bipartite graph G(n, n, p), near to
its critical point. The binomial random bipartite graph G(n1, n2, p) is the random graph
given by taking two partition classes N1 and N2 of sizes n1 and n2, respectively, and
including each edge between N1 and N2 independently with probability p. For simplicity,
we restrict our attention to the case where n1 = n2. It is possible that similar techniques
will work as long as the ratio n1

n2
= Θ(1) is a fixed constant.

As in the case of G(n, p), it is known, see for example [14], that when p = 1−
n

for a
fixed  > 0, whp every component of G(n, n, p) has order at most O(log n), and when
p = 1+

n
, whp G(n, n, p) contains a unique ‘giant component’ L1 (G(n, n, p)) of order Ω(n).

Hence, a phase transition occurs at p = 1
n
, as in G(n, p).

There has been some interest in this model recently: Johannson [14] determined the
critical point as described above in the general G(n1, n2, p) model, Jing and Mohar [13]
determined the genus of G(n1, n2, p) in the dense regime, and Do, Erde and Kang [8]
determined the genus of G(n1, n2, p) in the sparse regime.

This model can also be considered as a special case of the inhomogeneous random
graphs studied by Bollobás, Janson and Riordan [6], who studied the phase transition in
this much broader model. Whilst their results do not apply in the weakly supercritical
regime, this regime was studied for a particular model of inhomogeneous random graphs,
which again generalises the bipartite binomial random graph, namely the multi-type bino-
mial random graph, by Kang, Koch and Pachón [15]. In particular, it follows from their
work that in the weakly supercritical regime there is a unique giant component, and they
determine asymptotically its order.

Theorem 4 ([15]). Let  = (n) > 0 be such that 3n → ∞ and  = o(1), let p = 1+
n
,

and let Li = Li (G(n, n, p)) for i = 1, 2. Then whp

|L1 ∩N1| = (1 + o(1))2n and |L1 ∩N2| = (1 + o(1))2n.

Furthermore, whp |L2| = o(n).

In this paper we extend and strengthen the work in [14, 15] on the component structure
of G(n, n, p) in the weakly supercritical regime.

1.2 Main results

In this paper we prove the following analogues of Theorems 1–3 in the binomial random
bipartite graph model.

Our first main result determines the existence and asymptotic order of the ‘giant’
component in G(n, n, p) near to the critical point.

Theorem 5. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), let ′ be defined as the
unique positive solution to (1− ′)e

′
= (1+ )e−, let p = 1+

n
, and let Li = Li (G(n, n, p))

for i = 1, 2. Then with probability 1−O

(3n)

− 1
6


we have

|L1|−
2(+ ′)

1 + 
n

 <
1

50
n

2
3 and |L2|  n

2
3 .
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Furthermore, with probability 1−O

(3n)

− 1
6


we have that

|L1 ∩N1| =

1± 2

√


|L1 ∩N2|.

Note that ′ = − 2
3
2 + O(3). Hence, Theorem 5 gives a more precise bound on the

order of L1 than Theorem 4, as well as determining more precisely the distribution of the
vertices of L1 between the partition classes, and giving a better bound on the order of
the second largest component. Moreover, with the help of this increased accuracy, we are
able to determine asymptotically the excess of the giant component L1.

Theorem 6. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
. Then

whp

excess (L1 (G(n, n, p))) = (1 + o(1))
4

3
3n.

In addition, we can give a much more precise picture of the component structure of
G(n, n, p) near to the critical point in both the weakly subcritical and weakly supercritical
regime. In what follows, let us write

δ = − log(1 + ). (1)

Firstly, for the tree components, we show that whp there are no tree components of
order significantly larger than 1

δ


log (||3n)− 5

2
log log (||3n)


. Moreover, we show that

the number of tree components of order around this tends to a Poisson distribution.

Theorem 7. Let  = (n) be such that ||3n → ∞ and  = o(1), and let p = 1+
n
.

(i) Given r1, r2 ∈ R+ with r1 < r2 let Yr1,r2 denote the number of tree components in
G(n, n, p) of orders between

1

δ


log


||3n


− 5

2
log log


||3n


+ r1


and

1

δ


log


||3n


− 5

2
log log


||3n


+ r2


,

where δ is as in (1) and let λ = λ(r1, r2) :=
1√
π
(e−r1 − e−r2) . Then Yr1,r2 converges

in distribution to Po(λ).

(ii) With probability 1 − e−Ω(α), G(n, n, p) contains no tree components of order larger
than

1

δ


log


||3n


− 5

2
log log


||3n


+ α



for any function α = α(n) > 0.

Secondly, for the unicyclic components, we show that whp there are no unicyclic com-
ponents of order significantly larger than 1

δ
, and moreover, that the number of unicyclic

components of order around this again tends to a Poisson distribution.

Theorem 8. Let  = (n) be such that ||3n → ∞ and  = o(1), and let p = 1+
n
.

the electronic journal of combinatorics 30(3) (2023), #P3.7 4



(i) Given u1, u2 ∈ R+ with u1 < u2 let Zu1,u2 denote the number of unicyclic components
in G(n, n, p) of orders between

u1

δ
and

u2

δ
,

where δ is as in (1) and let ν = ν(u1, u2) :=
1
2

 u2

u1

exp(−t)
t

dt. Then Zu1,u2 converges
in distribution to Po(ν).

(ii) With probability 1 − e−Ω(α), G(n, n, p) contains no unicyclic components of order
larger than α

δ
for any function α = α(n) > 1.

Finally, we show that there are whp no complex components of order at most n
2
3 , and

in fact no complex components at all in the weakly subcritical regime.

Theorem 9. Let  = (n) be such that ||3n → ∞ and  = o(1), and let p = 1+
n
.

(i) If  < 0, then with probability 1 − O

(||3n)−1


, G(n, n, p) contains no complex

components.

(ii) If  > 0, then with probability 1 − O

(3n)

−1

, G(n, n, p) contains no complex

components of order at most n
2
3 .

1.3 Key proof ideas

As opposed to previous results concerning the phase transition in the binomial random
bipartite graph, such as [14], [15] and [6], which analyse this model by comparison to
branching processes, our approach is at heart based on enumerative methods, following
the work of Bollobás [3] and Luczak [16]. That is, we first derive estimates for the number
of connected bipartite graphs with a fixed number of vertices and edges, and use these
to bound the expectation, and higher order moments, of the number of components of
various types in G(n, n, p). This will allow us to describe the distribution of the small
components in G(n, n, p), and in particular Theorems 7–9 will follow from such consider-
ations. Furthermore, we can also bound quite precisely the number of vertices contained
in large components in G(n, n, p), those of order at least n

2
3 . It can then be shown using a

standard sprinkling argument that whp there is a unique large component L1 containing
all these vertices. Given the order of L1, we can again use these enumerative estimates
to give a weak bound on its excess, which we can then bootstrap to an asymptotically
tight bound via a multi-round exposure argument. This turns out to be quite a delicate
argument, and in particular we make use of a correlation inequality of Harris. The main
difficulties here, as opposed to the case of G(n, p), come from the fact that the components
of a fixed order can be split in various different ways across the partition classes, making
the combinatorial expressions for the expected number of such components much harder
to estimate or evaluate.

In order to derive these estimates for the number of connected bipartite graphs with a
fixed number of vertices and edges we will use some standard enumerative tools, as well as

the electronic journal of combinatorics 30(3) (2023), #P3.7 5



the so-called core and kernel method used by Bollobás [4] and Luczak [16]. We will find
that it is much easier to count the bipartite graphs whose partition classes have relatively
equal sizes, which we call balanced, and in this case we obtain effective bounds. Since
these enumerative results translate directly into bounds on the moments of the number
of components with a fixed number of vertices and edges in G(n, n, p), we will often have
to split such calculations into two parts depending on whether these components are
balanced or not. In the latter case it is then necessary to obtain tighter probabilistic
bounds to account for the weaker enumerative bounds.

The benefit in working directly with these enumerative results is in the increased
accuracy, allowing for much finer control over the structure of G(n, n, p) in the weakly
supercritical regime. For this reason, these estimates may be useful in order to apply
similar methods to study the structure of G(n, n, p) in this regime in more detail. For
example, in the case of G(n, p), Luczak [17] used similar ideas to describe the distribution
of cycles in G(n, p) in this regime, and more recently, using some of these ideas, Dowden,
Kang and Krivelevich [9] were able to determine asymptotically the genus of G(n, p) in
this regime. It is possible that similar ideas could be applied to G(n, n, p), for example
to study the distribution of cycles, the length of the longest cycle, or the genus in this
model.

1.4 Overview of the paper

The rest of the article is organised as follows. In Section 2, we collect some preliminary
results which are used later in the paper. In Section 3 we derive bounds for the expected
number of components of G(n, n, p) with a fixed order and excess, which form the founda-
tion of many of the calculations in this paper. These bounds depend on good estimates for
the number of bipartite graphs with a fixed number of vertices and edges, whose proofs
we give in Section 5. In Section 4.1, we use these estimates to study the distribution
of components in G(n, n, p) and prove Theorems 7–9. Then, in Section 4.2, using the
previous results, we investigate the size of the largest components and prove Theorem 5.
Using this, we then determine the excess of the giant component and prove Theorem 6 in
Section 4.3. Finally, in Section 6, we discuss possible extensions of our results, formulate
a conjecture, and give some open problems.

2 Preliminaries

Unless stated otherwise, all the asymptotics in this paper are taken as n → ∞. In
particular, we write

f(n) ≈ g(n) if f = (1 + o(1))g;

f(n) ≲ g(n) if f  (1 + o(1))g;

f(n) ≳ g(n) if f  (1 + o(1))g.

Furthermore, we write that f(n) ≫ g(n) if f(n)  Cg(n) for an implicit large constant
C. We write N for the set of positive integers, so that in particular 0 ∕∈ N.
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We will often need the following elementary estimates on the size of the falling factorial,
which hold for any i, n ∈ N with i  n

(n)i :=
i−1

j=0

(n− j) = ni exp


− i(i− 1)

2n
− i(i− 1)(2i− 1)

12n2
+O


i4

n3


, (2)

and also

(n)i  ni exp


−(i− 1)2

2n
− i(i− 1)(2i− 1)

12n2


 ni exp


−(i− 1)2

2n


. (3)

The following result of Spencer [20] is a useful tool for relating integrals and sums.

Lemma 10 ([20, Theorem 4.3]). Let a < b be integers, let f(x) be an integrable function

in [a−1, b+1], and let S :=
b

i=a f(i) and I :=
 b

a
f(x)dx. Let M be such that |f(x)|  M

for all x ∈ [a−1, b+1] and suppose that [a−1, b+1] can be broken into at most r intervals
such that f(x) is monotone on each. Then

|S − I|  6rM.

Often, when calculating certain expected values, we will need an asymptotic expression
for sums of the following form, whose proof we relegate to Appendix A.

Lemma 11. Let m  0 be constant and let L = L(n) and k = k(n) be such that
L+ 1  k  n, L = ω(1) and k = o(n). Then

S :=
L

d=−L

1

(k2 − d2)m


k − d

k + d

d

exp


− d2

2n


≈


π

2
k

1
2
−2m.

We will use the following Chernoff type bounds on the tail probabilities of the binomial
distribution, see e.g., [2, Appendix A].

Lemma 12. Let n ∈ N, let p ∈ [0, 1], and let X ∼ Bin(n, p). Then for every positive a
with a  np

2
,

P (|X − np| > a) < 2 exp


− a2

4np


.

We will also need to use the following correlation inequality, which follows from an
inequality of Harris [11], which is itself a special case of the FKG-inequality, see for
example [2, Section, 6].

Lemma 13. If A is an increasing event and B is a decreasing event of bipartite graphs,
then in G(n, n, p)

P(A|B)  P(A).

Finally, we will also need the following lemma, which gives a useful criterion for when
a sequence of random variables converges in distribution to a Poisson distribution.

Lemma 14 ([12]). If X1, X2, · · · are random variables with finite moments such that
E ((Xn)k) → λk as n → ∞ for every positive integer k, where (Xn)k is the kth factorial
moment of Xn and λ  0 is a constant, then Xn converges in distribution to Po(λ).
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3 Component structure of G(n, n, p)

One of the main ways in which we derive information about the distribution of the com-
ponents in G(n, n, p) is by calculating various moments of the number of components with
particular properties, and in particular the expected value.

Given i, j ∈ N and ℓ ∈ Z, let X(i, j, ℓ) denote the number of components in G(n, n, p)
with i vertices in N1, j vertices in N2, and i+ j + ℓ edges. Letting i+ j = k, we have

E (X(i, j, ℓ)) =


n

i


n

j


C(i, j, ℓ)pk+ℓ(1− p)kn−ij−k−ℓ, (4)

where C(i, j, ℓ) is the number of connected bipartite graphs with i vertices in one partition
class, j in the second, and i+j+ℓmany edges. Hence, in order to understand the quantities
E (X(i, j, ℓ)), it is important to know how the quantities C(i, j, ℓ) behave.

In this section we state some bounds for C(i, j, ℓ), which we will prove later in Section
5, and derive some consequences of these bounds, using (4), for the expected number of
tree, unicyclic and complex components in G(n, n, p).

The following estimates are useful to this end. Using the fact that 1 + x = ex+O(x2)

for any x = o(1), we see that for any i+ j = k  n, c > 0, and  = o(1),


1− 1 + 

n

kn−cij+O(k)

= exp


−(1 + )k +

(1 + )cij

n
+O


k

n


. (5)

Throughout this section, unless stated otherwise, we let  = (n) be such that ||3n →
∞ and  = o(1), and let p = 1+

n
. We will also refer to δ as defined in (1), i.e.,

δ = − log(1 + ) ≈ 2

2
.

3.1 Tree components

Let us write Ĉ(i, ℓ) for the number of (not-necessarily bipartite) connected graphs with
i vertices and i + ℓ many edges. It is a classic result of Cayley that the number of trees
on i vertices, in other words Ĉ(i,−1), is ii−2. The following result of Scoins [19] gives an
analogue for bipartite trees.

Theorem 15 ([19]). For any i, j ∈ N we have C(i, j,−1) = ij−1ji−1.

As a consequence, we can derive an asymptotic formula for the expected number of
tree components in G(n, n, p).

Theorem 16. For any i = i(n), j = j(n) ∈ N satisfying k := i+ j  n, we have

E (X(i, j,−1)) ≈ n

2π(ij)
3
2

e−δk


i

j

j−i

· exp

−(i− j)2

2n
− i3 + j3

6n2
+

ij

n
+O


k

n


+O


i4 + j4

n3


.

(6)
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Proof. By Theorem 15 and (4), together with Stirling’s formula, we have

E (X(i, j,−1)) =


n

i


n

j


C(i, j,−1)pk−1(1− p)kn−ij−k+1

=
(n)i
i!

(n)j
j!

ij−1ji−1pk−1(1− p)kn−ij−k+1 (7)

≈ ek

2π(ij)
3
2


i

j

j−i
(n)i(n)j
nk−1

(1 + )k

1− 1 + 

n

kn−ij−k+1

. (8)

Hence, by (8), (2) and (5), we obtain

E (X(i, j,−1)) ≈ n

2π(ij)
3
2

e−δk


i

j

j−i

· exp

−(i− j)2

2n
− i3 + j3

6n2
+

ij

n
+O


k

n


+O


i4 + j4

n3


.

3.2 Unicyclic components

We will derive in Section 5 the following expression for the number of unicyclic connected
bipartite graphs.

Theorem 17. For any i, j ∈ N we have

C(i, j, 0) =
1

2
ij−1ji−1

min{i,j}

r=2

(i)r(j)r
irjr

(i+ j − r) ,

and so in particular, for any i = i(n), j = j(n) ∈ N satisfying i, j → ∞ and 1
2
 i

j
 2

we have

C(i, j, 0) ≈


π

8


i+ jij−

1
2 ji−

1
2 .

We note for comparison that it is known that

Ĉ(i, 0) ≈


π

8
ii−

1
2 ,

see [5, Corollary 5.19]. We can derive as a consequence an asymptotic formula for the
expected number of unicyclic components in G(n, n, p) which are appropriately balanced
across the partition classes.
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Theorem 18. For any i = i(n), j = j(n) ∈ N satisfying i, j → ∞, k := i + j  n, and
1
2
 i

j
 2, we have

E (X(i, j, 0)) ≈
√
k

4
√
2πij

e−δk


i

j

j−i

· exp

−(i− j)2

2n
− i3 + j3

6n2
+

ij

n
+O


k

n


+O


i4 + j4

n3


.

(9)

Proof. By Theorem 17 and (4), together with Stirling’s formula, if 1
2
 i

j
 2, then

E (X(i, j, 0)) =


n

i


n

j


C(i, j, 0)pk(1− p)kn−ij−k

≈ (n)i
i!

(n)j
j!


π

8

√
kij−

1
2 ji−

1
2pk(1− p)kn−ij−k

≈ ek
√
k

4
√
2πij


i

j

j−i
(n)i(n)j

nk
(1 + )k


1− 1 + 

n

kn−ij−k

. (10)

Hence, by (10), (2) and (5), we get

E (X(i, j, 0)) ≈
√
k

4
√
2πij

e−δk


i

j

j−i

· exp

−(i− j)2

2n
− i3 + j3

6n2
+

ij

n
+O


k

n


+O


i4 + j4

n3


.

3.3 Complex components

In Section 5 we will also prove the following upper bound on the number of connected
bipartite graphs with a fixed excess which are appropriately balanced across the partition
classes.

Theorem 19. There is a constant c > 0 such that for any i, j, ℓ ∈ N with ℓ  ij − i− j
and 1

2
 i

j
 2,

C(i, j, ℓ)  ijji(i+ j)
3ℓ−1

2

c
ℓ

 ℓ
2
.

We note for comparison that it is known that there is an absolute constant c such that

Ĉ(i, ℓ)  cℓ−
ℓ
2 ii+

3ℓ−1
2 , (11)

see [5, Corollary 5.21].
As before, using these bounds we can give an upper bound on the expected number

of components with a fixed excess which are appropriately balanced across the partition
classes.
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Theorem 20. There is a constant c > 0 such that for any i = i(n), j = j(n), ℓ = ℓ(n) ∈ N
satisfying ℓ  ij − i− j, k := i+ j  n, and 1

2
 i

j
 2, we have

E (X(i, j, ℓ))  1√
ijk


i

j

j−i 
ck3

ℓn2

 ℓ
2

· exp

−δk +

k2

4n
− (i− j)2

2n
+O


k

n


+ ℓ log(1 + ) +

ℓ(1 + )

n


. (12)

Proof. By Theorem 19 and (4), together with Stirling’s formula, if 1
2
 i

j
 2 and ℓ 

ij − i− j, then there is an absolute constant c such that,

E (X(i, j, ℓ)) =


n

i


n

j


C(i, j, ℓ)pk+ℓ(1− p)kn−ij−k−ℓ

 (n)i
i!

(n)j
j!

ijji(i+ j)
3ℓ−1

2

c
ℓ

 ℓ
2
pk+ℓ(1− p)kn−ij−k−ℓ

 ek√
ijk


i

j

j−i 
ck3

ℓn2

 ℓ
2 (n)i(n)j

nk
(1 + )k+ℓ


1− 1 + 

n

kn−ij−k−ℓ

. (13)

Hence, by (13), (3) and (5), we see that

E (X(i, j, ℓ))  1√
ijk


i

j

j−i 
ck3

ℓn2

 ℓ
2

· exp

−δk +

ij

n
− (i− j)2

2n
+O


k

n


+ ℓ log(1 + ) +

ℓ(1 + )

n



 1√
ijk


i

j

j−i 
ck3

ℓn2

 ℓ
2

· exp

−δk +

k2

4n
− (i− j)2

2n
+O


k

n


+ ℓ log(1 + ) +

ℓ(1 + )

n


.

3.4 More about components

Since we only have good estimates for C(i, j, ℓ) when i and j are comparable in size, it will
be useful to show that the expected number of components of a given excess and order is
dominated by the contribution from those which are ‘evenly spread’ across the partition
classes, and we should perhaps expect by the symmetry in the model that this is the
case for most components. For the most part, we are able to get away with considering a
relatively weak notion of ‘evenly spread’.

We say a component C of G(n, n, p) is balanced if |C ∩N1|  2|C ∩N2| and |C ∩N2| 
2|C ∩N1|, and unbalanced otherwise. The following lemma will be useful for simplifying
certain calculations, which roughly says that we do not expect there to be any large
unbalanced components in G(n, n, p).
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N1 N2

S

Figure 1: A substructure S (in the proof of Lemma 21) with i = 2 vertices in N1 and
j = 4 vertices in N2 containing a spanning tree (whose edges are drawn with thin edges)
and ℓ = 2 excess edges (which are drawn with thick edges), where none of the kn − 2ij
edges from V (S) to the rest of the graph are in G(n, n, p).

Lemma 21. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), let p = 1+
n
, and let

α = α(n) → ∞ be an increasing function.

(i) With probability 1−O (n−1), G(n, n, p) contains no unbalanced components of order
 2000 log n.

(ii) With probability 1− e−Ω(α), G(n, n, p) contains no unbalanced non-tree components
of order  α.

(iii) With probability 1−O (n−1), G(n, n, p) contains no unbalanced complex components.

Proof. Every unbalanced component of order k with excess at least ℓ must contain a
spanning tree (of order k) together with ℓ+1 extra edges which is otherwise disconnected
from the rest of the graph. Hence, G(n, n, p) contains a component of order k and excess
at least ℓ if and only if G(n, n, p) contains such a substructure. Let us denote by Y (k, ℓ)
the number of such substructures. It follows that if Y (k, ℓ) = 0, then G(n, n, p) contains
no components of order k with excess at least ℓ.

In order to count the expected size of Y (k, ℓ), we note that we can specify such a
substructure S by choosing i vertices in the first partition class and j vertices in the
second, such that that i+ j = k and either j  2i or i  2j, choosing one of the ij−1ji−1

possible bipartite spanning trees on these vertices, and then choosing one of the at most
ij
ℓ+1


possible sets of ℓ+ 1 extra edges. Note that the number of non-edges from these k

vertices to the other vertices in G(n, n, p) is i(n− j) + j(n− i) = kn− 2ij (see Figure 1).
It follows that we can bound

E (Y (k, ℓ)) 


(i,j)∈Uk


n

i


n

j


ij−1ji−1


ij

ℓ+ 1


pk+ℓ(1− p)kn−2ij,

where Uk = {(i, j) ∈ N2 : i+ j = k and i  2j or j  2i}, and we note that |Uk|  k.
Therefore, using (3), (5) and Stirling’s approximation, we can bound the expected

number by
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E(Y (k, ℓ))  n−ℓe−δk


(i,j)∈Uk

(ij)ℓ−
1
2

2π


i

j

j−i

exp


− i2 + j2

2n
+

(1 + )2ij

n
+O


k

n



 n−ℓ


(i,j)∈Uk

(ij)ℓ−
1
2


i

j

j−i

exp


ij(1 + 2)

n
+O(1)


,

since ex < 1 for x < 0, −i2 − j2 + 2ij < 0 and i, j  k  n.
However, if j  2i and i + j = k, then j  2k

3
and so j − i  j

2
 k

3
, and ij  2k2

9
.

It follows that


i
j

j−i



1
2

 k
3 . A similar calculation holds if i  2j. Hence the expected

number of such substructures is at most

E(Y (k, ℓ))  n−ℓ exp


2(1 + 2)k2

9n
− k log 2

3
+O(1)

 

(i,j)∈Uk

(ij)ℓ−
1
2

 n−ℓe−
k

1000



(i,j)∈Uk

(ij)ℓ−
1
2 ,

since 2(1+2)k2

9n
− k log 2

3
+ O(1)  k


2(1+2)

9
− log 2

3


+ O(1)  − k

1000
when  is sufficiently

small.
Hence, if we let Yr(ℓ) =


kr Y (k, ℓ), then with r = 2000 log n

E (Yr(−1))  n


kr

e−
k

1000



(i,j)∈Uk

(ij)−
3
2  n



kr

e−
k

1000 = O


1

n


.

Hence, by Markov’s inequality, with probability 1−O (n−1), Yr(−1) = 0 and in particular
there are no unbalanced components of order at least 2000 log n.

Similarly, if α = α(n) → ∞ is an increasing function, then

E (Yα(0)) 


kα

e−
k

1000



(i,j)∈Uk

(ij)−
1
2 



kα

√
ke−

k
1000 = O


e−

α
2000


,

and so, again by Markov’s inequality, with probability 1−e−Ω(α), there are no unbalanced
components of order at least α with excess greater than zero, and so in particular no
unicyclic components of order at least α.

Finally, we see that

E(Y1(1)) 
1

n



k1

e−
k

1000



(i,j)∈Uk

(ij)
1
2  1

n



k1

k2e−
k

1000 = O


1

n


,

and so as before with probability 1−O (n−1) there are no unbalanced complex components.
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For most applications the rather coarse notion of balanced is enough for our purposes,
but in one case we will need to restrict our attention to components which are much
more evenly distributed over the partition classes. We say a component C of G(n, n, p) is

-uniform if
|C ∩N1|− |C ∩N2|

 < 
1
4
√
n.

Lemma 22. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

Then with probability 1 − o (n−1), G(n, n, p) contains no non--uniform tree components

of order at most n
2
3 .

Proof. As in the previous lemma, let us write

Uk =

(i, j) ∈ N2 : i+ j = k, |i− j|  

1
4
√
n


for the pairs (i, j) representing non--uniform components. Note that, if (i, j) ∈ Uk and

k  n
2
3 , then


i

j

j−i



1− 

1
4
√
n

n
2
3


1
4
√
n

 e−
√
n

1
3 .

Then, using (6), we can bound the expected number of non--uniform tree components

of order at most n
2
3 by

n
2
3

k=1



(i,j)∈Uk

E (X(i, j,−1)) 
n

2
3

k=1



(i,j)∈Uk

n

2π(ij)
3
2


i

j

j−i

exp


ij

n
+ o(1)




n

2
3

k=1

ne
k2

4n
−
√
n

1
3



(i,j)∈Uk

1

(ij)
3
2


n

2
3

k=1

n

k
1
2

e
k2

4n
−
√
n

1
3 .

However, since k  n
2
3 and 3n → ∞, it follows that

k2

4n
−

√
n

1
3 = −Ω

√
n

1
3


 −n

1
6 .

It follows that the expected number of non--uniform tree components of order at most
n

2
3 is at most

ne−n
1
6

n
2
3

k=1

1

k
1
2

 n
4
3 e−n

1
6 = o


n−1


.

Hence, the result follows by Markov’s inequality.

It will also be useful to have a bound on the variance of the number of vertices in
−uniform tree components with small order, which is given by the following lemma,
whose proof is given in Appendix B.

Lemma 23. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
. Given

k̃, a ∈ N, set Za =
k̃

k=1 k
aZ(k) where Z(k) is the number of -uniform tree components

of order k in G(n, n, p). If k̃  n
2
3 and 3k̃2

n
 1, then Var(Z1) = O


n



.
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4 A finer look at component structure of G(n, n, p)

Using the bounds from Section 3 on the expected number of components with a fixed
order and excess, we can describe more precisely the component structure of G(n, n, p).

4.1 Distribution of the number of components: proof of Theorems 7–9

Firstly, as indicated in Theorem 7, we show that whp there are no tree components in
G(n, n, p) whose order is significantly larger than 1

δ


log (||3n)− 5

2
log log (||3n)


. More-

over, we show that the number of tree components of order around this tends to a Poisson
distribution.

Proof of Theorem 7.
Part (i): Let us write ki =

1
δ


log (||3n)− 5

2
log log (||3n) + ri


for i ∈ {1, 2}. Then for

all k1  k  k2, we have that k
n
, k3

n2 ,
k4

n3 and k2

n
are all o(1). Therefore, it follows from (6)

that

E(Yr1,r2) ≈
n

2π

k2

k=k1

e−δk


i+j=k

1

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n



=
4n

π

k2

k=k1

e−δk

k−1

d=−k+1

1

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n


,

where the last equality holds by reparameterising over d = j − i. Hence, by Lemma 11,
we have

E(Yr1,r2) ≈
2
√
2n√
π

k2

k=k1

e−δk

k
5
2

. (14)

Now, for any r1
δ
 a  r2

δ
and

k =
1

δ


log


||3n


− 5

2
log log


||3n


+ a,

we have that
k

5
2 ≈ 4

√
2||−5


log


||3n

 5
2 ,

since δ ≈ 2

2
, and hence in this range

e−δk

k
5
2

=
(log (||3n))

5
2 e−δa

|3|nk 5
2

≈ |2|e−δa

4
√
2n

≈ δe−δa

2
√
2n

. (15)

Hence, substituting (15) into (14) we obtain

E(Yr1,r2) ≈
1√
π

r2
δ

a=
r1
δ

δe−δa ≈ 1√
π

 r2

r1

e−tdt =
1√
π


e−r1 − e−r2


=: λ.
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Next, we calculate the expected value of (Yr1,r2)2, i.e., the second factorial moment of
Yr1,r2 , which is the expected number of ordered pairs of tree components whose orders lie
between r1 and r2. We see that E ((Yr1,r2)2) can be calculated as

k2

k=k1



i+j=k


n

i


n

j


ij−1ji−1pk−1(1− p)kn−ij−k+1

·
k2

k′=k1



r+s=k′


n− i

r


n− j

s


rs−1sr−1pk

′−1(1− p)k
′n−rs−is−rj−k′+1,

and we note that the inner sum is the expected number of tree components of order
between k1 and k2 in G(n1, n2, p), where n1 = n − i, n2 = n − j. However, since i, j 
k2 = o(n) the same argument as before shows that this inner sum is asymptotically equal
to E(Yr1,r2), and hence

E ((Yr1,r2)2) ≈ (E(Yr1,r2))
2 ≈ λ2.

A similar argument shows that the ith factorial moment E ((Yr1,r2)i) ≈ λi for each
i ∈ N, and hence Yr1,r2 converges in distribution to Po(λ) by Lemma 14.

Part (ii): Let us write k3 = 1
δ


log (||3n)− 5

2
log log (||3n) + α


and Yα for the

number of tree components of order at least k3. From (8), but using (3) instead of (2) to
bound the falling factorial term, we can bound the expected value of Yα from above as

E(Yα)  n
n

k=k3

e−δk


i+j=k

1

2π(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n
− i3 + j3

6n2
+

ij

n
+O


k

n


.

For any k  n and i+ j = k, we have that ij
n

 k2

4n
and also i3+j3

6n2  k3

24n2 , and so

E(Yα)  O


n

n

k=k3

exp


−δk +

k2

4n
− k3

24n2

 

i+j=k

1

2π(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n


.

Then, reparameterising with d = j − i and applying Lemma 11 as before gives us that,

E(Yα) = O


n

n

k=k3

1

k
5
2

exp


−δk − k3

24n2
+

k2

4n


. (16)

Let s = n, then we are interested in the function

−δk +
k2

4n
− k3

24n2
=

k

n2


−δs2

2
+

sk

4
− k2

24


.

Now, since − δs2

2
+ sk

4
− k2

24
as a function of k is a parabola, whose maximum comes at

k = 3s, we can bound

k

n2


−δs2

2
+

sk

4
− k2

24


 k


−δ +

32

4
− 92

24


 −δk

5
. (17)
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Hence, by (16) and (17), we have

E(Yα) = O


n

n

k=k3

1

k
5
2

exp


−δk

5


.

Hence, if α  10 log (||3n), then

E(Yα) = O


n

n

k=k3

1

k
5
2

exp


−δk

5


= O



n


kα/δ

1

k
5
2

exp


−δk

5





= O



e−
α
10n



kα/δ

1

k
5
2

exp


−δk

10



 = O



e−
α
10

n

(α
δ
)
5
2



kα/δ

exp


−δk

10





= O



e−
α
10

nδ
5
2 e−

α
10

(log (||3n))
5
2


1− e−

δ
10





 = O


e−

α
10

nδ
5
2

δ (log (||3n))
5
2 ||3n



= O


e−

α
10

1

(log (||3n))
5
2


 e−Ω(α).

Finally, if α  10 log (||3n) := α̂, let k4 = 1
δ


log (||3n)− 5

2
log log (||3n) + α̂


. We

can argue as in the first part that

E(Yα,α̂) = e−Ω(α),

since as in (15), as long as k = 1
δ


log (||3n)− 5

2
log log (||3n) + α


= Θ


log(||3n)

δ


we

have that e−δkk− 5
2 = Θ


δe−δαn−1


. It follows that,

E(Yα) = E(Yα,α̂) + E(Yα̂) = e−Ω(α) + e−Ω(α̂) = e−Ω(α),

and so the result follows from Markov’s inequality.

Secondly, as indicated in Theorem 8, we show that whp there are no unicyclic compo-
nents in G(n, n, p) of order significantly larger than 1

δ
, and moreover, that the number of

unicyclic components of order around this tends to a Poisson distribution.

Proof of Theorem 8.
Part (i): Let us write si =

ui

δ
for i ∈ {1, 2}. We first note that, by Lemma 21, G(n, n, p)

contains no unbalanced non-tree components of order s1 with probability 1−e−Ω(s1), and
hence whp Zu1,u2 = Z ′

u1,u2
where Z ′

u1,u2
is the number of unicyclic balanced components

with order between s1 and s2.

Let us write Bk =

(i, j) ∈ N2 : i+ j = k and 1

2
 i

j
 2


. Since for s1  k  s2 we

have that k
n
, k3

n2 ,
k2

n2 and k4

n3 are all o(1), it follows from (9) and Lemma 11 that
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E(Z ′
u1,u2

) =

s2

k=s1



(i,j)∈Bk

E (X(i, j, 0))

≈ 1

4
√
2π

s2

k=s1

√
ke−δk



(i,j)∈Bk

1

ij


i

j

j−i

exp


−(i− j)2

2n



≈ 1

2

s2

k=s1

1

k
e−δk ≈ 1

2

 u2

u1

e−t

t
dt := ν. (18)

As in Theorem 7 (i) a similar argument shows that E

(Z ′

u1,u2
)i

≈ νi for all i ∈ N and

hence Z ′
u1,u2

, and so also Zu1,u2 , converges in distribution to Po(ν).
Part (ii): Let s3 = α

δ
and let Zα and Z ′

α be the number of unicyclic components
and balanced unicyclic components respectively of order at least s3. Note that, as before,
Zα = Z ′

α with probability 1− e−Ω(s3) = 1− e−Ω(α).
A similar argument as in Theorem 7 (ii) shows that for any i+ j = k  n

E

Z ′

α


= O


n

k=s3

√
k exp


−δk − k3

24n2
+

k2

4n

 

i+j=k

1

ij


i

j

j−i

exp


−(i− j)2

2n



= O


n

k=s3

1

k
e−

δk
5


. (19)

On the other hand, it can be shown, see for example [1, Formulas 5.1.1 and 5.1.20], that

E1(x) :=

 ∞

x

e−t

t
dt  e−x log


1 +

1

x



and hence

n

k=s3

1

k
e−

δk
5 ≈

 n

s3

1

u
e−

δu
5 du =

 δn
5

α
5

e−t

t
dt  e−

α
5 log


1 +

5

α


= e−Ω(α) (20)

for α  5.
By (19) and (20), it follows that E


Z ′

α


= e−Ω(α). In the case where 1 < α  5 we

can use (18) to see

E

Z ′

α


= E


Z ′

α,5


+ E


Z ′

5


 1

2
E1(α) + e−Ω(1)  e−Ω(1).

Finally, as indicated in Theorem 9, we show that whp there are no large complex
components in G(n, n, p), and in fact no complex components at all in the subcritical
regime.
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Proof of Theorem 9.
Part (i): To show the first part, recalling that  < 0, we use the observation that, since
each complex component must contain a connected subgraph of excess precisely two, it
is sufficient to show that whp G(n, n, p) contains no such subgraphs.

In fact, it is sufficient to show that whp G(n, n, p) contains no subgraph which is
minimal with respect to the properties of being connected and having excess two, and we
note that any such graph consists of a pair of cycles, which are either joined by a path or
whose intersection is a path. Let us denote the number of such subgraphs by Q. The key
observation is that any such graph of order k can be built by taking a path on k vertices
and adding an edge from each of its endpoints to another vertex in the path. Hence, we
can choose such a subgraph on k vertices by first choosing the i =


k
2


vertices of the

path lying in one partition class and the j =

k
2


vertices of the path lying in the other

partition class, choosing the order which the vertices appear in the path in at most i!j!
many ways and then choosing for each endpoint of the path one of the at most k many
edges from this endpoint to another vertex in the path. It follows that

E(Q)  2
n

k=3


n

k


n

k


(k!)2k2p2k+1 + 2

k0

k=2


n

k


n

k + 1


(k + 1)!k!k2p2k+2

 2
n

k=3

nk

k!

nk

k!
(k!)2k2


1 + 

n

2k+1

+ 2

k0

k=2

nk

k!

nk+1

(k + 1)!
(k + 1)!k!k2


1 + 

n

2k+2

 4
n

k=2

k2

n
e2k  4

n

 ∞

0

x2e2xdx =
1

||3n.

Therefore, by Markov’s inequality, with probability at least 1− 1
||3n there are no complex

components.
Part (ii) : Recall that  > 0. As in Theorem 8 (i), let A(k, ℓ) and A′(k, ℓ) be the

number of components and balanced components respectively of order k with excess ℓ  1.

If we write A =
n

2
3

k=1


ℓ1 A(k, ℓ) and A′ =

n
2
3

k=1


ℓ1 A

′(k, ℓ), then by Lemma 21 with

probability 1−O (n−1) = 1−O

(3n)

−1

, A = A′.

Since k
n
= o(1) for k  n

2
3 , we see by (12) in Theorem 20 that

E(A′) =
n

2
3

k=1



(i,j)∈Bk

ij−i−j

ℓ=1

E (X(i, j, ℓ))

≲
n

2
3

k=1

1√
k
exp


−δk +

k2

4n

 

(i,j)∈Bk

1√
ij


i

j

j−i

· exp

−(i− j)2

2n

 ij−i−j

ℓ=1


ck3

ℓn2

 ℓ
2

exp


ℓ log(1 + ) +

ℓ(1 + )

n


. (21)
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Let us first deal with the innermost sum of (21)

ij−i−j

ℓ=1


ck3

ℓn2

 ℓ
2

exp


ℓ log(1 + ) +

ℓ(1 + )

n


.

The ratio of consecutive terms in the sum is


ck3

n2

ℓ
ℓ
2

(ℓ+ 1)
ℓ+1
2

exp


log(1 + ) +

1 + 

n


,

which is strictly less than 1 when ℓ is large enough compared to c. However, for any
constant ℓ  1 the individual terms can be seen to have order

O


k3

n2

 ℓ
2

= O


k

3
2

n



since k  n
2
3 . It follows that

ij−i−j

ℓ=1


ck3

ℓn2

 ℓ
2

exp


ℓ log(1 + ) +

ℓ(1 + )

n


= O


k

3
2

n


. (22)

Next, we see that the second sum can be evaluated using Lemma 11 to give



(i,j)∈Bk

1√
ij


i

j

j−i

exp


−(i− j)2

2n


= O


k− 1

2


. (23)

Hence, by (22) and (23), and using that, since k  n
2
3 = o(n) we have k2

4n
= o(δk), we

see that

E(A′) = O



 1

n

n
2
3

k=1

√
ke−

δk
2



 = O


1

n

 ∞

0

√
xe−

δx
2


= O


1

δ
3
2n


= O


1

3n


.

Hence, the result follows by Markov’s inequality.

4.2 Largest and second largest components: proof of Theorem 5

In order to show that there is in fact a unique giant component in G(n, n, p) for an
appropriate range of , we follow a relatively standard approach. First, we estimate quite
precisely the number of vertices which are contained in small tree or unicyclic components,
noting that by the lemmas in the previous section there are whp no large tree or unicyclic
components and no small complex components. It follows that whp all the remaining
vertices are contained in large complex components, and by a sprinkling argument we are
able to show that whp these vertices are in fact all contained in a single component.
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Throughout this section, let us consider two quantities related to  = (n) > 0 satis-
fying  = o(1): firstly δ as defined in (1), i.e.,

δ = − log(1 + ) ≈ 2

2
,

and secondly ′ as in Theorem 5, which is defined implicitly as the unique positive solution
to

(1− ′)e
′
= (1 + )e−. (24)

We note that ′ =  − 2
3
2 + O(3). We also note that ′ has the following natural

interpretation in terms of branching processes: If we consider a Po(1 + ) branching
process and condition on the event that it does not survive, then it can be shown that
this model is distributed as a Po(1− ′) branching process. Whenever we use the terms ′

and δ they refer to these quantities for a fixed , which should be clear from the context.
As indicated in Theorem 9, in the weakly subcritical regime whp there are no complex

components. However, for our proof it will be necessary to know more, namely that in
this regime we do not expect to have many vertices contained in ‘large’ components. The
proof of this fact can be deduced from a standard comparison to a branching process and
we defer the details to Appendix C.

Theorem 24. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1−
n
.

Then the expected number of vertices in G(n, n, p) in components of order at least


n
3

is

o


n



.

Let us begin then, by estimating the number of vertices contained in small tree or
unicyclic components.

Lemma 25. Let  = (n) > 0 be such that 3n ≫ ω → ∞ and  = o(1), and let p = 1+
n
.

Let Y (−1) and Y (0) denote the number of vertices in tree and unicyclic components of

order at most n
2
3 in G(n, n, p) respectively. Then with probability 1−O (ω−1), we have

Y (0)  4ω

δ
,

and Y (−1)− 2(1− ′)

1 + 
n

 
ω
√
n√

.

Proof. First, we bound Y (0). As before, we let

Bk =


(i, j) ∈ N2 : i+ j = k and

1

2
 i

j
 2


and Uk =


(i, j) ∈ N2 : i+ j = k


\Bk.

Then we can split the calculation of E(Y (0)) into two parts

E(Y (0)) =


kn
2
3

k


(i,j)∈Bk

E (X(i, j, 0))) +


kn
2
3

k


(i,j)∈Uk

E (X(i, j, 0)) := S1 + S2.
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Since if i + j = k, then ij
n

 k2

4n
= o(δk) for k  n

2
3 , it follows from (9) and Lemma

11 that

S1 ≲
1

4
√
2π



kn
2
3

k
3
2 e−δk



(i,j)∈Bk

1

ij


i

j

j−i

exp


−(i− j)2

2n
+

ij

n



 1

2



kn
2
3

e−
δk
2  1

2

 ∞

0

e−
δx
2 dx  1

δ
.

Furthermore, using the very naive bound that C(i, j, 0)  ijC(i, j − 1)  ijji, we can
calculate as in (9)

S2 


kn
2
3

k


(i,j)∈Uk

E(X(i, j, 0)) 


kn
2
3

k


(i,j)∈Uk


n

i


n

j


ijjipk(1− p)kn−ij−k

≈ 1

2π



kn
2
3

ke−δk


(i,j)∈Uk

1

(ij)
1
2


i

j

j−i

exp


−(i− j)2

2n
+

ij

n






kn
2
3

ke−
δk
2


1

2

 k
3 

(i,j)∈Uk

1

(ij)
1
2




kn
2
3

k
3
2


1

2

 k
3

= O(1).

The first part of the lemma then follows by Markov’s inequality.
So, let us consider the bound on Y (−1). Firstly, we note that by part (ii) of Theorem

7 with α(n) =


3n
16
, with probability 1 − o


e−


3n
16


= 1 − O (ω−1) there are no tree

components in G(n, n, p) of order at least


n
3
, and by Lemma 22 with probability 1 −

o (n−1) = 1 − O (ω−1) there are no non--uniform tree components in G(n, n, p) of order

at most n
2
3 . Hence, with probability 1−O (ω−1), Y (−1) = Z1 where Z1 is, as in Lemma

23, the number of vertices in -uniform tree components in G(n, n, p) of order at most
k̃ =


n
3
.

Next, following a technique of Bollobás [5, Theorem 6.6], we consider the model
G(n, n, p′) where p′ = 1−′

n
. Let us write Y ′(−1) and Y ′(0) for the number of vertices

in tree and unicyclic components in G(n, n, p′) of order at most n
2
3 respectively, and sim-

ilarly Z ′
1 for the number of vertices in -uniform tree components in G(n, n, p′) of order

at most


n
3
.

We will show that almost every vertex in G(n, n, p′) lies in -uniform tree components
of order at most


n
3
, and we are able to calculate the ratio E(Z1)/E(Z ′

1) quite precisely.
Combining this with the bound on the variance of Z1 from Lemma 23 we are able to
deduce the second part of the lemma.

Indeed, by Theorem 24 the expected number of vertices in components of order greater
than


n
3

in G(n, n, p′) is o


n



. Furthermore, as we demonstrate below, similar calcu-

lations to the first part of the lemma will prove that the expected number of vertices in
unicyclic and complex components of order at most n

2
3 in G(n, n, p′) is o


n



.

the electronic journal of combinatorics 30(3) (2023), #P3.7 22



Indeed, if we let Y ′( 1) be the number of vertices in complex components of order

at most n
2
3 in G(n, n, p′), then

E (Y ′( 1)) =


kn
2
3

k


(i,j)∈Bk

ij−i−j

ℓ=1

E (X ′(i, j, ℓ)) +


kn
2
3

k


(i,j)∈Uk

ij−i−j

ℓ=1

E (X ′(i, j, ℓ))

:= S ′
1 + S ′

2,

where X ′(i, j, ℓ) is the number of components in G(n, n, p′) with i vertices in N1, j vertices
in N2, i+ j + ℓ edges.

One can bound S ′
2 in a similar fashion as with S2, since the exponentially small term

i
j

j−i

is the dominating term. For S ′
1 we use (13), and as in Theorem 9 we can argue

S ′
1 



kn
2
3

k


(i,j)∈Bk

ij−i−j

ℓ=1

√
ke−k


i

j

j−i 
ck3

ℓn2

 ℓ
2

· (n)i(n)j
nk

(1− ′)k+ℓ


1− 1− ′

n

kn−ij−k−ℓ




kn
2
3

k
3
2 (1− ′)k



(i,j)∈Bk

ij−i−j

ℓ=1


ck3

ℓn2

 ℓ
2

= O



 1

n



kn
2
3

k4e−′k



 = O


1

5n


= o


n




,

as long as 3n → ∞. Furthermore, arguments similar to those used to bound E(Y (0))
immediately imply that the expected number of vertices in small unicyclic components is
at most O ((′)−2) = o


n



. Finally, the expected number of vertices in non--uniform

components of order at most n
2
3 in G(n, n, p′) is o(1), as follows from the proof of Lemma

22. It follows that

E (Z ′
1) = 2n− o


n




.

Let us write Z1(k) and Z ′
1(k) for the number of vertices in -uniform tree components

of order k 


n
3

in G(n, n, p) and G(n, n, p′) respectively, and let us consider the ratio

E (Z1(k))

E (Z ′
1(k))

=


i+j=k


n
i


n
j


ij−1ji−1


1+
n

k−1 
1− 1+

n

kn−ij−k+1


i+j=k


n
i


n
j


ij−1ji−1


1−′

n

k−1 
1− 1−′

n

kn−ij−k+1
,

where the sums run over the -uniform pairs (i, j).
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Note that,


1− 1 + 

n

kn−ij−k+1

=


n− 1

n

kn−ij−k+1 
1− 

n− 1

kn−ij−k+1

=


n− 1

n

kn−ij−k+1

exp


−k +

ij

n
+ o(1)


,

and similarly


1− 1− ′

n

kn−ij−k+1

=


n− 1

n

kn−ij−k+1

exp


′k − ′ij

n
+ o(1)


.

Hence, we have

E(Z(k))
E(Z ′(k))

=
1− ′

1 + 


(1 + )e−

(1− ′)e′

k
e
O


k2

n



e
−O


′k2
n




i+j=k


n
i


n
j


ij−1ji−1


n−1
n

kn−ij−k+1


i+j=k


n
i


n
j


ij−1ji−1


n−1
n

kn−ij−k+1

=
1− ′

1 + 
e
O


k2

n



,

since the second factor is equal to 1 by the definition of ′ in (24).
So, we see that

E (Z1(k))

E (Z ′
1(k))

=
1− ′

1 + 
+O


k2

n


,

or, in other words,

E (Z1(k)) =
1− ′

1 + 
E (Z ′

1(k)) +O


k2

n


E (Z ′

1(k)) .

Hence, by writing E (Z ′(k)) = kE

Ŷ (k)


where Ŷ (k) is the number of -uniform tree

components of order k in G(n, n, p′) we see that

E(Z1) =

√
n
3

k=1

E(Z1(k))

=
1− ′

1 + 

√
n
3

k=1

E (Z ′
1(k)) +O

 

n


√

n
3

k=1

k3E

Ŷ (k)



=
1− ′

1 + 
E (Z ′

1) +O
 

n


√

n
3

k=1

k3E

Ŷ (k)



=
1− ′

1 + 


2n− o


n




+O

 

n


√

n
3

k=1

k3E

Ŷ (k)


. (25)
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The final sum can be bounded by the corresponding sum over all possible tree compo-
nents, -uniform or not. That is, writing X ′(i, j,−1) for the number of tree components
with i vertices in one partition class and j vertices in the other in G(n, n, p′) and noting
that δ = − log(1 + ) = log(1− ′)− ′, we can bound in a similar manner to (6)

√
n
3

k=1

k3E

Ŷ (k))




√
n
3

k=1

k3


i+j=k

E (X ′(i, j,−1))



√
n
3

k=1

k3


i+j=k


n

i


n

j


ij−1ji−1p′k−1(1− p′)kn−ij−k+1

≲

√
n
3

k=1

k3ne−δk


i+j=k

1

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n


:= S.

To bound S, we split into two cases. Let us take s such that s = δ−
3
7 , and first consider

the case when k  s, where

S1 := n
s

k=1

k3e−δk


i+j=k

1

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n


 n

s

k=1

k3


i+j=k

1

k
3
2

 n
s

k=1

k
5
2  ns

7
2 = O


n

δ
3
2


= o

n


 3
2


.

Conversely, when k  s, we see that, by Lemma 11

S2 := n

√
n
3

k=s

k3e−δk


i+j=k

1

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n


= O



n

√
n
3

k=s

√
ke−δk





= O


n

 ∞

0

√
xe−δxdx


= O


n

δ
3
2


= o

n


 3
2


.

Hence, S = S1 + S2 = o


n


 3
2


and so by (25)

E(Z1) =
1− ′

1 + 


2n− o


n




+O

 

n


o

n


 3
2


=

2(1− ′)

1 + 
n+ o


n




.

Finally, by Lemma 23 with k̃ =


n
3
, which can be seen to satisfy 3k̃2

n
 1, we conclude

that Var(Z1) = O

n



. Hence, by Chebyshev’s inequality,

Z1 − 2(1−′)
1+

n
  ωn

1
2 −

1
2 with

probability 1−O (ω−1). Thus, with probability 1−O (ω−1),
Y (−1)− 2(1− ′)

1 + 
n

  ωn
1
2 −

1
2 .
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Using Lemma 25, we can give a good bound on the number of vertices which are
contained in components of order at least n

2
3 in G(n, n, p). Then, using a sprinkling

argument we can deduce that whp all these vertices are contained in a unique ‘giant’
component, and determine asymptotically its order.

Proof of Theorem 5. Let L (G) denote the set of vertices lying in components of G of

order larger than n
2
3 , which we call large. We first estimate quite precisely the size of

L (G(n, n, p)) and then show that there is only one large component in G(n, n, p).

Indeed, if we let ω =
(3n)

1
6

100
, then by part (ii) of Theorem 9, with probability 1 −

O

(3n)

−1

 1−O (ω−1) there are no small complex components in G(n, n, p).

Now, by Lemma 25, with probability 1−O (ω−1) the number of vertices in small uni-

cyclic components is at most ω
δ
≪ n

2
3 and the number of vertices in small tree components

Y (−1) is such that

2(1− ′)

1 + 
n− n

2
3

100
=

2(1− ′)

1 + 
n− ω

√
n√


 Y (−1)  2(1− ′)

1 + 
n+

ω
√
n√


=
2(1− ′)

1 + 
n+

n
2
3

100
.

It follows that with probability 1−O (ω−1)

|L (G(n, n, p))|− 2n


1− 1− ′

1 + 

 
n

2
3

50
.

Note that ′ = +O(2), and so |L (G(n, n, p))| ≈ 4n.
In order to show the existence of a unique large component, we use a sprinkling

argument. Let

p1 = p− n− 4
3

10
and p2 =

p− p1
1− p1

 n− 4
3

20
,

and let us write p1 =
1+1
n

, where 1 = − 1

10n
1
3
. A standard argument allows us to couple an

independent pair (G(n, n, p1), G(n, n, p2)) withG(n, n, p) so thatG(n, n, p1)∪G(n, n, p2) =
G(n, n, p).

It is clear that ω =
(3n)

1
6

100
≈ (31n)

1
6

100
. Hence, the same argument as before shows that

with probability 1−O (ω−1)

|L (G(n, n, p1))|− 2n


1− 1− ′1

1 + 1

 
n

2
3

50
,

where ′1 is defined as the solution to (1− ′1)e
′1 = (1 + 1)e

−1 .
Next, we show that these bounds for |L (G(n, n, p))| and |L (G(n, n, p1))| are not far

apart. More precisely, we claim that

1− ′1
1 + 1

− 1− ′

1 + 
 2

5n
1
3

.
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Indeed, consider the function y(x) where y is given as the unique positive solution to
(1− y)ey = (1 + x)e−x. Then, by the derivative of implicit functions formula,

dy

dx
=

x

y
e−x−y =

x(1− y)

y(1 + x)
, (26)

where the last equality follows from the fact that (1− y)ey = (1 + x)e−x.
Thus, by the mean value theorem there is a ψ ∈ [1, ] such that

′ − ′1 = y()− y(1) = y′(ψ)(− 1) < 2(− 1),

since

y′(ψ) =
ψ(1− y(ψ))

y(ψ)(1 + ψ)
<

ψ

y(ψ)
=

ψ

ψ +O(ψ2)
 2.

Hence, it follows that

1− ′1
1 + 1

− 1− ′

1 + 
=

− 1 + ′ − ′1 − ′1+ ′1
(1 + )(1 + 1)

 3(− 1) + ′1 − ′1

 3(− 1) + (′ − ′1)

 (3 + 2)(− 1)

 4

10n
1
3

.

Hence, with probability 1−O (ω−1)

|L (G(n, n, p))|− |L (G(n, n, p1))| 
1− ′1
1 + 1

2n− 1− ′

1 + 
2n+

n
2
3

25
 4

5
n

2
3 +

n
2
3

25
< n

2
3 .

Since, by our coupling, G(n, n, p1) ⊆ G(n, n, p), it follows that in this event every
large component of G(n, n, p) contains a large component of G(n, n, p1). Hence, in order
to show that there is a unique large component in G(n, n, p) it is sufficient to show that
all the large components in G(n, n, p1) are contained in a single component in G(n, n, p).

By Lemma 21, with probability 1 − O (n−1)  1 − O (ω−1), each component of or-

der larger than n
2
3 in G(n, n, p1) is balanced, and so we can partition the vertices in

L (G(n, n, p1)) into subsets V1,W1, V2,W2, . . . Vm,Wm such that n
2
3

3
 |Vi|, |Wi|  n

2
3 and

Vi and Wi lie in the same component in G(n, n, p1) for each i, say in a greedy manner.
Now, let us consider the edges in G(n, n, p2). Either all vertices in L (G(n, n, p1))

are contained in one component of G(n, n, p1) ∪ G(n, n, p2), or there is a family A =
{(Vi1 ,Wi1), (Vi2 ,Wi2), . . . , (Vir ,Wir)}, where 1  r  m

2
such that there is no edge in

G(n, n, p2) with one end point in (Vi,Wi) ∈ A and the other in (Vj,Wj) /∈ A (see Figure

2). Note that, for any such familyA, there are at least 2
9
r(m−r)n

4
3 non-edges inG(n, n, p2)

with one end point in (Vi,Wi) ∈ A and the other in (Vj,Wj) /∈ A.
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Hence, the probability that such a family A exists is bounded by

m
2

r=1


m

r


(1− p2)

2
9
r(m−r)n

4
3 

m
2

r=1

em
r

r

1− n− 4

3

20

 2
9
r(m−r)n

4
3


m
2

r=1

em
r
e−

m−r
100

r


m
2

r=1

em
r
e−

m
200

r

.

However, since |L (G(n, n, p1))| ≈ 4n, it follows that m = Θ

n

1
3


= Θ(ω2), and hence

m
2

r=1

em
r
e−

m
200

r

= e−Ω(m) = O

ω−1


.

It follows that, with probability 1−O (ω−1), L (G(n, n, p)) consists of just the vertices in
the largest component L1 (G(n, n, p)), and so the claim follows.

For the last part, since with probability 1−O (ω−1),

|L1| ≈
2(+ ′)

1 + 
n ≈ 4n,

and by Theorems 7 and 8, with probability 1 − O (ω−1), there are no large tree or
unicyclic components, it suffices to show that with sufficiently small probability there
are no complex components in G(n, n, p) of order around 4n which are very unbal-
anced. We shall bound from above the expected number of complex components C of
G(n, n, p) with order in the interval [3n, 5n], which have |C∩N1|  (1+2

√
)|C∩N2| or

|C∩N2|  (1+2
√
)|C∩N1|. As in Lemma 21 we can bound the expected number of such

components by the expected number of trees with 2 extra edges, otherwise disconnected
from the rest of the graph, which can be bounded as in Lemma 21

5n

k=3n

2


i+j=k,
j(1+2

√
)i


n

i


n

j


ij+1ji+1pk+1(1− p)kn−2ij

 2

n

5n

k=3n



i+j=k,
j(1+2

√
)i

(ij)
1
2


i

j

j−i

exp


(1 + 2)ij

n
+O


k

n



≲ 2

n

5n

k=3n


1

1 + 2
√


 √


1+
√

k

exp


(1 + 2)k2

4n

 

i+j=k,
j(1+2

√
)i

(ij)
1
2

 2

n

5n

k=3n

k2 exp


− 2

(1 + 2
√
)(1 +

√
)
k +

5(1 + 2)

4
k



 2

n

5n

k=3n

k2e−Ω(k) = O


1

3n


= O


1

ω


,
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Vi1

Vir

Wi1

Wir

Vir+1

Vim Wim

Wir+1

N1 N2
U1

A

Ac

Figure 2: A partition of the vertices in L (G(n, n, p1)) into A and Ac with no edges
between Vis ∈ A and Wit ∈ Ac or between Vis ∈ Ac and Wit ∈ A.

where we used that i
j
 1

1+2
√

and j− i 

√


1+
√

k. Hence, the result follows from Markov’s

inequality.

4.3 The excess of the giant component: proof of Theorem 6

Using Theorem 5, we can quite easily give a bound on the excess of the giant component
which is of the correct asymptotic order. Indeed, we can bound the order of the giant
component in quite a small interval, and then using Theorem 19 we can bound the prob-
ability that any component of this order has too large an excess. This is enough to show
that whp the excess of the giant component is O (3n). We formalise this in Lemma 26.

Note that, this can be seen to be of the correct order by a simple sprinkling argument:

If we take p1 =
1+ 

2

n
and p2 = p−p1

1−p1
 

2n
then our previous results imply that, for an

appropriate range of , whp there is a giant component of order Θ(n) in G(n, n, p1)
which is equally distributed across the partition classes. However, then whp there are
Θ ((n)2p2) = Θ (3n) many edges of G(n, n, p2) on the vertex set of the giant component.

In order to find the correct leading constant, we follow an argument of Luczak [16] and
use a multi-round exposure argument, starting with a supercritical p′ which is significantly
smaller than p. By our weaker bound on the excess we can show that at the start of our
process the excess of the giant component in G(n, n, p′) is o (3n), and we can also estimate
quite precisely the change in the excess of the giant component between each stage of the
multi-round exposure as we increase p′ to p, giving us an asymptotically tight bound on
the excess of the giant component.

So, let us begin by deriving our weak upper bound on the excess of the giant compo-
nent.
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Lemma 26. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

Then with probability 1−O

(3n)−

1
6


the excess of the largest component in G(n, n, p) is

O (3n).

Proof. We first note that, by Theorem 5, with probability 1 − O

(3n)

− 1
6


, the largest

component L1 of G(n, n, p) is balanced and satisfies
L1 −

2(+ ′)

1 + 
n

 <
n

2
3

50
.

Let X be the number of balanced components in G(n, n, p) of order between

2(+ ′)

1 + 
n− n

2
3

50
=: k1 and k2 :=

2(+ ′)

1 + 
n+

n
2
3

50
,

which have excess at least C3n, where we will choose C sufficiently large later. Then
E(X) can be bounded above using Theorem 20 as

E(X) ≲
k2

k=k1

1√
k
exp


−δk +

k2

4n



·


(i,j)∈Bk

1√
ij


i

j

j−i

exp


−(i− j)2

2n

 ij−k

ℓ=C3n


ck3(1 + )2e

2(1+)
n

ℓn2

 ℓ
2

,

where Bk is as before the set of balanced pairs (i, j), since for k1  k  k2 we have
k
n
= o(1).
Let us first deal with the innermost sum. Since k = Θ(n), for large enough C we can

bound
ij−k

ℓ=C3n


ck3(1 + )2e

2(1+)
n

ℓn2

 ℓ
2


ij−k

ℓ=C3n


1

e2

 ℓ
2

= O

e−C3n


.

The middle sum can be dealt with by Lemma 11 as usual to see that



(i,j)∈Bk

1√
ij


i

j

j−i

exp


−(i− j)2

2n


= O


k− 1

2


.

Therefore, we can bound

E(X) = O


k2

k=k1

1

k
exp


−δk +

k2

4n
− C3n


.

However, since k = Θ(n), and so both δk and k2

n
are O(3n), for C large enough

E(X) = O


k2 − k1

n
e−Ω(3n)


= O


1

n
1
3

e−Ω(3n)


= o(1).
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Using Lemma 26, we can then determine asymptotically the excess of the giant com-
ponent. As previously mentioned, we will argue via a multi-round exposure argument,
taking a sequence p0  p1  . . .  ps of probabilities such that p0 is supercritical, but
significantly smaller than p, and ps = p. Via a standard coupling argument, we can think
of sampling G(n, n, p0) and then sampling an independent sequence of bipartite random
graphs G(n, n, p′i) where p′i =

pi+1−pi
1−pi

so that for each 1  i  s

G(n, n, p0) ∪


i−1

j=0

G(n, n, p′j)


∼ G(n, n, pi).

This gives the inclusions G(n, n, p0) ⊆ G(n, n, p1) ⊆ . . . ⊆ G(n, n, ps).
Our choice of p0, together with Theorem 6, guarantees that the excess of

L1 (G(n, n, p0)) is significantly smaller than 3n. We then estimate precisely the change
in the excess of the giant component in each of the sprinkling steps. To do so, we bound
whp from above and below the number ∆i of extra excess edges in the giant component
when adding each G(n, n, p′i). Here, it is essential that the probability of failure in each
step is small enough that the sum of these probabilities over all 0  i  s − 1 is still
small. Using that the excess of L1 (G(n, n, p0)) is significantly smaller than 3n, we can
then asymptotically determine the excess of L1 (G(n, n, ps)) as a sum of the ∆i, which we
can approximate by an integral.

Theorem 27. Let  = (n) > 0 be such that 3n ≫ ω → ∞ and   1
ω
, and let p = 1+

n
.

Then with probability 1−O (ω−0.05)

excess (L1 (G(n, n, p))) ≈ 4

3
3n.

Proof. For each i ∈ N ∪ {0}, let

i = ω0.3n− 1
3


1 + ω−0.1

i
and pi =

1 + i
n

.

Throughout the proof we work under the assumption that i is small enough so that
i = o(1).

By a standard coupling argument, we can move from G(n, n, pi) to G(n, n, pi+1) via
sprinkling. That is, we choose independently for each i a random graph G(n, n, p′i) where

p′i =
pi+1 − pi
1− pi

=
i+1 − i
n− 1− i

,

in such a way that G(n, n, pi+1) = G(n, n, pi) ∪G(n, n, p′i) for each i. We note that, if we
write L1,i for the largest component of G(n, n, pi) for each i, then by Theorem 5,

|L1,i ∩N1| ≈
i + ′i
1 + i

n and |L1,i ∩N2| ≈
i + ′i
1 + i

n, (27)
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L1,i

u

v L1,i

L1,i+1

v

u

step i+ 1step i

Figure 3: In step i+1 every edge uv in G(n, n, p′i)\E(L1,i) with u, v ∈ V (L1,i) contributes
to ∆i.

with probability 1 − O

(3in)

− 1
6


. Furthermore, by Lemma 26 with probability 1 −

O

(3in)

− 1
6


,

ai := excess (L1,i) = O

3in


. (28)

Note that, by (28), with probability 1−O

(30n)

− 1
6


= 1−O (ω−0.05), a0 = O (ω0.9) =

o (3n), and so to begin with we may assume that the excess is much smaller than 3n.
We show that we can control quite precisely how the excess of the giant component

changes in each sprinkling step. More precisely, we claim that for each i, with probability

1−O

(3in)

− 1
6



∆i := ai+1 − ai ≈
(i + ′i)

2

(1 + i)2
n(i+1 − i). (29)

In order to show (29) we bound from above and below the number of new excess edges
added in step i+ 1.

Claim 28. With probability 1−O

(3in)

− 1
6


,

∆i ≳
(i + ′i)

2

(1 + i)2
n(i+1 − i).

Proof of Claim 28. We note that every edge in G(n, n, p′i)\E(L1,i) which has both ends in
L1,i adds one to the quantity ∆i (see Figure 3). Hence, by (27) and (28) with probability

1−O

(3in)

− 1
6


, ∆i stochastically dominates a binomial random variable Y ∼ Bin(m, q)

with parameters

m ≈

i + ′i
1 + i

n

2

− 2
i + ′i
1 + i

n−O(3in) and q = p′i.

Now, we see that

E(Y ) ≳ (i + ′i)
2

(1 + i)2
n2 i+1 − i

n− 1− i
≈ (i + ′i)

2

(1 + i)2
n(i+1 − i),
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y
u

v

L1,iL1,i

L1,i+1

x x

y
u

v

step i step i+ 1

Figure 4: In step i+1 the only contribution to ∆i comes from edges uv in G(n, n, p′i) with
u, v ∈ V (L1,i+1) or excess edges xy in components of G(n, n, pi) joined to L1,i by such an
edge.

and so E(Y ) = Ω(3in). Hence, by Lemma 12 we obtain

P


|E(Y )− Y |  E(Y )

(3in)
1
4


 exp


−Ω


E(Y )

(3in)
1
2



 exp

−Ω


3in

 1
2


= O


3in

− 1
6


.

Hence, with probability 1−O

(3in)

− 1
6


, we get

Y ≳ E(Y ) ≳ (i + ′i)
2

(1 + i)2
n(i+1 − i),

and so with at least this probability

∆i ≳
(i + ′i)

2

(1 + i)2
n(i+1 − i).

Claim 29. With probability 1−O

(3in)

− 1
6



∆i ≲
(i + ′i)

2

(1 + i)2
n(i+1 − i).

Proof of Claim 29. For an upper bound, we need to be slightly more careful. We note
that there are two ways that edges in G(n, n, p′i) can contribute to ∆i. Firstly, edges in
G(n, n, p′i) which have both endpoints in L1,i+1 can add one to this quantity. However,
there are some other edges, specifically excess edges in non-giant components of G(n, n, pi)
which are joined to L1,i+1 by an edge of G(n, n, p′i), which also add to this quantity (see
Figure 4).

We first show that the contribution from the former of these is approximately what
we expect, and then show that the contribution from the latter is negligible.
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For the first of these, let A be the event that

max {|C ∩Nj| : C a component of G(n, n, pi+1)} for j = 1, 2} ≲ i + ′i
1 + i

n.

Note that,
i + ′i
1 + i

n ≈
i+1 + ′i+1

1 + i+1

n.

Then, by (27), P(A)  1−O


3i+1n
− 1

6


andA is a decreasing property. Thus, by Harris’

inequality (Lemma 13), given any set of edges F the probability that F ⊆ G(n, n, p′i)
conditioned on A is strictly less than the probability that F ⊆ G(n, n, p′i). Hence, with

probability 1−O

(3in)

− 1
6


the number of edges added to the vertex set of the new giant

component is stochastically dominated by a binomial random variable Bin(m′, q′) := Z
with parameters

m′ ≈

i + ′i
1 + i

n

2

and q′ = p′i.

As before, we have

E(Z) ≲ (i + ′i)
2

(1 + i)2
n2.

i+1 − i
n− 1− i

≈ (i + ′i)
2

(1 + i)2
n(i+1 − i),

and so again by Lemma 12 with probability 1−O

(3in)

− 1
6


,

Z ≲ E(Z) ≲ (i + ′i)
2

(1 + i)2
n(i+1 − i).

Now, let us bound the contribution to ∆i from excess edges in non-giant components

of G(n, n, pi). By Theorem 9 with probability 1 − O

(3in)

− 1
6


there are no complex

components of order at most n
2
3 and by Theorem 5 with probability 1−O


(3in)

− 1
6


there

are no components apart from the giant component of order greater than n
2
3 . Hence, it

follows that with at least this probability every non-tree component in G(n, n, pi) except
L1,i is unicyclic, and so the contribution to ∆i from excess edges in non-giant components
of G(n, n, pi) is equal to the number of unicyclic components in G(n, n, pi) which are
joined to L1,i by G(n, n, p′i). We can bound this from above by the number of edges in
G(n, n, p′i) which join such components to L1,i.

Then, by Lemma 25, with probability 1 − O

(3in)

− 1
6


the number of vertices in

unicyclic components of G(n, n, pi) is at most

O


(3in)

1
6

2i


= o


n

2
3


.
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Hence, since rather crudely |V (L1,i)|  5in, the expected number of edges in G(n, n, p′i)
which connect unicyclic components in G(n, n, pi) to L1,i is less than

5inn
2
3p′i = O


i(i+1 − i)n

2
3


.

Then, by Markov’s inequality, with probability 1−O

(3in)

− 1
6


the number of such edges

is at most

O

i(i+1 − i)n

2
3


3in

 1
6


= o


(i + ′i)

2

(1 + i)2
n(i+1 − i)


.

It follows that, with probability 1−O

(3in)

− 1
6



∆i ≲
(i + ′i)

2

(1 + i)2
n(i+1 − i).

Hence, by Claims 28 and 29, (29) holds with probability 1−O

(3in)

− 1
6


. Therefore,

by a union bound, (29) holds for all i ∈ N such that i = o(1) with probability

1−O

 ∞

i=0


3in

− 1
6


 1−O


ω−0.05


,

which can be seen by noting that the sum is a geometric series.
Let s ∈ N be such that s−1    s. Then

as − a0 =
s−1

i=0

∆i ≈
s−1

i=0

(i + ′i)
2

(1 + i)2
n(i+1 − i) ≈ n

 s

0

(x+ y)2

(1 + x)2
dx, (30)

where y = y(x) is implicitly given by (1− y)ey = (1+x)e−x, and we can approximate the
sum by the integral since i+1 − i = o(1).

Note that, by (26), dy
dx

= x(1−y)
y(1+x)

and so we can calculate d
dx


x2−y2

1+x


= (x+y)2

(1+x)2
. Using

this, and the fundamental theorem of calculus, we can conclude from (30) that with
probability 1−O (ω−0.05)

as − a0 ≈ n


2s − ′2s
1 + s

− 20 − ′20
1 + 0


≈ n


1

1 + s


4

3
3s +O


4s


− 20 − ′20
1 + 0


≈ 4

3
3sn,

where we used that ′s = s − 2
3
2s +O (3s). Since, as previously mentioned, a0 = o(3n) it

follows that as ≈ 4
3
3sn. A similar argument shows that as−1 ≈ 4

3
3s−1n.

Then, since

s−1    (1 + ω−0.1)s−1 and
s

1 + ω−0.1
   s,
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Figure 5: Every connected unicyclic bipartite graph contains an even cycle C whose dele-
tion (i.e., when we delete its edges) leaves a bipartite forest with |V (C)|many components.

and we can couple the three random bipartite graphs such that

G(n, n, ps−1) ⊆ G(n, n, p) ⊆ G(n, n, ps),

it follows that

excess (L1 (G(n, n, p))) ≈ 4

3
3n.

Proof of Theorem 6. The theorem follows directly from Theorem 27.

5 Counting bipartite graphs: proofs of Theorems 17 and 19

5.1 Unicyclic bipartite graphs: proof of Theorem 17

Since a connected unicyclic graph is the union of a cycle and a forest, we are able to
deduce Theorem 17 from the following formula for the number of bipartite forests, due to
Moon [18].

Lemma 30 ([18]). Given i, j, s, t ∈ N satisfying s  i and t  j, let F (i, j, s, t) denote
the number of bipartite forests with partition classes I = {x1, . . . , xi} and J = {y1, . . . , yj}
with s+t components where the vertices x1, . . . , xs, y1, . . . , yt belong to distinct components.
Then

F (i, j, s, t) = ij−t−1ji−s−1 (sj + ti− st) . (31)

Using Lemma 30, we can prove Theorem 17.

Proof of Theorem 17. We note that every connected unicyclic bipartite graph with i ver-
tices in one partition class and j in the other contains a unique cycle, which has length
2r for some r  min{i, j}, and if we delete the edges of this cycle, then what remains is
a forest with 2r components, each meeting one vertex of the cycle (see Figure 5).

Hence, we can count C(i, j, 0) by first choosing a cycle of length 2r, of which there

are (i)r(j)r
2r

many possibilities, and then choosing from the F (i, j, r, r) many possibilities
for the forest left by the deletion of this cycle.
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Hence, it follows from (31) that

C(i, j, 0) =

min{i,j}

r=2

(i)r(j)r
2r

F (i, j, r, r) =
1

2
ij−1ji−1

min{i,j}

r=2

(i)r(j)r
irjr

(i+ j − r) , (32)

proving the first part of Theorem 17.
So let us suppose further that i, j = ω(1) and 1

2
 i

j
 2. By (3) we can conclude that

(i)r(j)r
irjr

 exp


−(r − 1)2

2i
− (r − 1)2

2j


,

and furthermore by (2) it follows that if r = o

i
2
3


and r = o


j

2
3


, then

(i)r(j)r
irjr

≈ exp


−r2

2i
− r2

2j


.

We split (32) into two parts. Firstly, when r  i
5
9 we note that r = o


i
2
3


and

r = o

j

2
3


, and hence

i
5
9

r=2

(i)r(j)r
irjr

(i+ j − r) ≈ (i+ j)
i
5
9

r=2

exp


−r2

2i
− r2

2j


≈ (i+ j)


πij

2(i+ j)
,

where the final line follows from a standard estimate that

∞

r=1

e−
r2

2n ≈
 ∞

0

e−
x2

2ndx =


πn

2
.

Conversely, when r > i
5
9 we can naively bound

min{i,j}

r=i
5
9+1

(i)r(j)r
irjr

(i+ j − r)  (i+ j) i exp


−(i

5
9 − 1)2

2i
− (i

5
9 − 1)2

2j



 (i+ j) i exp

−Ω


i
1
9


= o (i+ j) .

It follows that

C(i, j, 0) ≈


πij

8(i+ j)
(i+ j) ij−1ji−1 =


π

8


i+ jij−

1
2 ji−

1
2 .
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5.2 Bipartite graphs with positive excess: proof of Theorem 19

We use similar counting arguments as Bollobás [5] in his proof of (11). The case where
ℓ > i+ j will be significantly easier, so let us first assume that ℓ  i+ j.

Given a graphH, let the core C(H) ofH be the maximal subgraph ofH with minimum
degree at least two. Furthermore, we call a path in C(H) maximal bare if all its internal
vertices are of degree two and its endvertices have degree at least three. We obtain the
kernel K(H) of H by replacing each maximal bare path in C(H) by an edge, i.e., we
delete all edges and internal vertices of the path and add a new edge between the two
endpoints. Using the kernel and core of a graph, we can construct all connected bipartite
graphs with partition classes I = {x1, . . . , xi} and J = {y1, . . . , yj} and i+ j + ℓ edges as
follows:

(C1) Choose the vertex set V (K) of the kernel. We set t1 := |I∩V (K)|, t2 := |J∩V (K)|,
and t = t1 + t2. As K has minimum degree at least three, we have t  2ℓ.

(C2) Choose for the kernelK a connected (not necessarily bipartite) multigraph on vertex
set V (K) having t+ ℓ edges;

(C3) Choose the vertex set V (C) of the core C. As V (K) is already fixed, we have to pick
only the vertices in (V (C) \ V (K)). We define u1 and u2 such that |V (C) ∩ I| =
t1 + u1 and |V (C) ∩ J | = t2 + u2, respectively. Furthermore, let u = u1 + u2.

(C4) Subdivide the edges ofK by the vertices from (V (C) \ V (K)) such that the resulting
core has no loops or multiple edges and is bipartite with respect to the vertex
bipartition (I, J). (The requirement of being bipartite can only be fulfilled for
appropriate choices of the set V (C) \ V (K) in step (C3));

(C5) Choose a forest F on vertex set I ∪ J having u1 + u2 + t1 + t2 tree components such
that all vertices from V (C) lie in different components and that there is no edge
between a vertex in I and a vertex in J (F is a ‘rooted bipartite forest’). We obtain
the graph by replacing each vertex v in C by the tree of F rooted at v.

To show the claimed bound on C(i, j, ℓ), we estimate the number of choices we have in
each construction step. For fixed t1 and t2 the number of options for V (K) in step (C1)
is


i

t1


j

t2


. (33)

The kernel K in step (C2) is determined by choosing for each pair v, w ∈ V (K) the
number of edges between v and w and for each x ∈ V (K) the number of loops at x.
Hence, we have to ‘partition’ the t + ℓ many edges into


t
2


+ t many (possible empty)

groups, each of them corresponding to a pair of vertices or a single vertex. Hence, the
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number of choices in step (C2) is at most

t+ ℓ+


t
2


+ t− 1

t
2


+ t− 1


=


t+ ℓ+


t
2


+ t− 1

t+ ℓ





e

t+ ℓ+


t
2


+ t− 1



t+ ℓ

t+ℓ

= O(1)ℓℓt+ℓ, (34)

where we used in the last inequality that t  2ℓ.
In step (C3) we have for fixed u1 and u2


i− t1
u1


j − t2
u2


(35)

choices for the set V (C) \V (K). When constructing C from K, the number of vertices in
I that are placed on some fixed edge differs at most by one from the number of vertices
in J that are placed on the same edge. As there are at most 3ℓ edges in K, we obtain
|u1 − u2|  3ℓ.

To bound the possible choices in (C4), we fix an ordering v1w1, . . . , vt+ℓwt+ℓ of the
edges in K and an orientation for each of these edges (say from vs to ws). We can
construct each possible core C by choosing permutations α1, . . . ,αu1 and β1, . . . , βu2 of
the vertices in (V (C) \ V (K))∩ I and (V (C) \ V (K))∩ J , respectively, and non-negative
integers r1, . . . , rt+ℓ with r1+ . . .+rt+ℓ = u. Then we consider the edges v1w1, . . . , vt+ℓwt+ℓ

one after another and subdivide each edge vsws with rs many vertices. If vs ∈ I, we start
with the vertex in β1, . . . , βu2 with smallest index which has not been used for a previous
edge and then place alternatingly the first unused vertex from α1, . . . ,αu1 and β1, . . . , βu2

on the edge vsws. We proceed similarly in the case vs ∈ J . Using this construction, we
obtain the following upper bound for the number of different ways of performing (C4)

(u1)!(u2)! ·

u+ t+ ℓ− 1

t+ ℓ− 1


. (36)

We note that only certain choices of r1, . . . , rt+ℓ lead to bipartite graphs.
Due to Lemma 30 the number of choices for F in step (C5) is

ij−t2−u2−1ji−t1−u1−1 ((t1 + u1)j + (t2 + u2)i− (t1 + u1)(t2 + u2))

 ij−t2−u2ji−t1−u1


t1 + u1

i
+

t2 + u2

j


. (37)

Combining (33), (34), (35), (36), and (37) we get

C(i, j, ℓ) 


t1,t2,u1,u2


i

t1


j

t2


O(1)ℓℓt+ℓ


i− t1
u1


j − t2
u2


(u1)!(u2)!


u+ t+ ℓ− 1

t+ ℓ− 1



· ij−t2−u2ji−t1−u1


t1 + u1

i
+

t2 + u2

j


, (38)
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where the sum is over all non-negative integers t1, t2, u1, u2 satisfying t1 + t2  2ℓ, u1 
i− t1, u2  j − t2, and |u1 − u2|  3ℓ.

Due to (3) we get


i

t1


i− t1
u1


(u1)! =

(i)t1+u1

(t1)!
 it1+u1

(t1)!
exp


−(t1 + u1)

2

2i


O(1),

where we used in the last inequality that t1 + u1  i. Similarly, we have


j

t2


j − t2
u2


(u2)! 

jt2+u2

(t2)!
exp


−(t2 + u2)

2

2j


O(1).

Hence, we get in (38)

C(i, j, ℓ)  ijjiO(1)ℓℓℓ


t1,t2,u1,u2

ℓt

(t1)!(t2)!


i

j

t1+u1−t2−u2

u+ t+ ℓ− 1

t+ ℓ− 1



· exp

−(t1 + u1)

2

2i
− (t2 + u2)

2

2j


t1 + u1

i
+

t2 + u2

j


. (39)

Using 1
2
 i

j
 2, |u1 − u2|  3ℓ, and t1, t2  2ℓ, we have


i

j

t1+u1−t2−u2

= O(1)ℓ.

Thus, we obtain in (39)

C(i, j, ℓ)  ijjiO(1)ℓℓℓ


t1,t2,u1,u2

S(t1, t2, u1, u2), (40)

where

S(t1, t2, u1, u2) :=
ℓt

(t1)!(t2)!
exp


−(t1 + u1)

2

2i
− (t2 + u2)

2

2j



·

u+ t+ ℓ− 1

t+ ℓ− 1


t1 + u1

i
+

t2 + u2

j


.

To analyse (40), we distinguish two cases depending how large u is. First, we consider
the case u  4ℓ. Then we have


u+ t+ ℓ− 1

t+ ℓ− 1


 2u+t+ℓ−1  24ℓ+2ℓ+ℓ−1 = O(1)ℓ. (41)

Similarly, we have


t1 + u1

i
+

t2 + u2

j


=

O(ℓ)√
ij

. (42)

the electronic journal of combinatorics 30(3) (2023), #P3.7 40



Furthermore, using Lemma 10 we get



u1

exp


−(t1 + u1)

2

2i




∞

k=1

exp


−k2

2i




 ∞

0

exp


−x2

2i


dx+O(1) = O

√
i

.

(43)

Analogously, we obtain



u2

exp


−(t2 + u2)

2

2j


= O


j

. (44)

Combining (41), (42), (43), and (44) we get



t1,t2



u1+u24ℓ

S(t1, t2, u1, u2)  O(1)ℓ


t1,t2

ℓt

(t1)!(t2)!
. (45)

Furthermore, we have



t1,t2

ℓt

(t1)!(t2)!
=



t1

ℓt1

(t1)!



t2

ℓt2

(t2)!
 exp(2ℓ) = O(1)ℓ.

Hence, we get



t1,t2



u1+u24ℓ

S(t1, t2, u1, u2)  O(1)ℓ. (46)

Now we consider the case u > 4ℓ. Due to |u1 − u2|  3ℓ, we have u1, u2 > ℓ/2.
Combining that with t1, t2  2ℓ and 1

2
 i

j
 2, we obtain


t1 + u1

i
+

t2 + u2

j


= Θ(1)

u

i+ j
. (47)

Furthermore, we have


u+ t+ ℓ− 1

t+ ℓ− 1


 (u+ t+ ℓ− 1)t+ℓ−1

(t+ ℓ− 1)!
=

O(1)ℓut+ℓ−1

(t+ ℓ− 1)!
. (48)

Using the inequality x2

r
+ y2

s
 (x+y)2

r+s
for r, s, x, y ∈ R>0 we have

exp


−(t1 + u1)

2

2i
− (t2 + u2)

2

2j


 exp


−(t+ u)2

2(i+ j)


. (49)
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Combining (47), (48), and (49) we have



t1,t2



u1+u2>4ℓ

S(t1, t2, u1, u2)




t1,t2



u1+u2>4ℓ

ℓt

(t1)!(t2)!
exp


−(t+ u)2

2(i+ j)


O(1)ℓut+ℓ−1

(t+ ℓ− 1)!

u

i+ j

=


t1,t2

O(1)ℓℓt

(t+ ℓ− 1)!(i+ j)(t1)!(t2)!



u1+u2>4ℓ

exp


−(t+ u)2

2(i+ j)


ut+ℓ. (50)

Due to |u1 − u2|  3ℓ, there are for each fixed value of u at most 3ℓ + 1 different pairs
(u1, u2) with u1 + u2 = u. Hence, we have



u1+u2>4ℓ

exp


−(t+ u)2

2(i+ j)


ut+ℓ

= O(1)ℓ
i+j

u=4ℓ+1

exp


−(t+ u)2

2(i+ j)


ut+ℓ  O(1)ℓ

 ∞

0

xt+ℓ exp


− x2

2(i+ j)


dx

= O(1)ℓ (i+ j)
(t+ℓ+1)

2

 ∞

0

yt+ℓ exp


−y2

2


dy  O(1)ℓ (i+ j)

t+ℓ+1
2


(t+ ℓ)!,

where we used in the last inequality that
∞
0

yn exp


−y2

2


dy 

√
n!, which can be shown

by repeatedly applying integration by parts (see e.g., [5, Exercise 9 of Chapter 1]). Plug-
ging this into (50) we obtain



t1,t2



u1+u2>4ℓ

S(t1, t2, u1, u2) 


t1,t2

O(1)ℓℓt(i+ j)
t+ℓ−1

2


(t+ ℓ)!

(t+ ℓ− 1)!(t1)!(t2)!

= O(1)ℓ(i+ j)
ℓ−1
2



t1,t2

ℓt(i+ j)
t
2


(t+ ℓ)!(t1)!(t2)!

. (51)

Using (t+ ℓ)! 

t+ℓ
e

t+ℓ
= O(1)ℓℓt+ℓ, we obtain in (51)



t1,t2



u1+u2>4ℓ

S(t1, t2, u1, u2)  O(1)ℓ(i+ j)
ℓ−1
2 ℓ−

ℓ
2



t1,t2

ℓ
t
2 (i+ j)

t
2

(t1)!(t2)!
. (52)

Furthermore, we have

1

(t1)!(t2)!
 1

t!


t
t
2




 1

t!


et
t
2


⌊ t

2⌋
=

O(1)ℓ

t!
. (53)
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As t1, t2  2ℓ, there are for every fixed value of t at most 2ℓ + 1 many pairs (t1, t2) with
t1 + t2 = t. Using that and (53) in (52) we get



t1,t2



u1+u2>4ℓ

S(t1, t2, u1, u2)  O(1)ℓ(i+ j)
ℓ−1
2 ℓ−

ℓ
2

2ℓ

t=1

ℓ
t
2 (i+ j)

t
2

t!
. (54)

For consecutive terms in the sum in (54) we have

ℓ
t+1
2 (i+ j)

t+1
2

(t+ 1)!
:
ℓ

t
2 (i+ j)

t
2

t!
=


ℓ(i+ j)

t+ 1



ℓ(i+ j)

3ℓ
 1

3
,

where we used in the last inequality that ℓ  i+ j. Hence, we have for all t  2ℓ

ℓ
t
2 (i+ j)

t
2

t!
 32ℓ−t ℓ

ℓ(i+ j)ℓ

(2ℓ)!
 O(1)ℓ

ℓℓ(i+ j)ℓ

2ℓ
e

2ℓ = O(1)ℓ
(i+ j)ℓ

ℓℓ
.

This yields in (54)



t1,t2



u1+u2>4ℓ

S(t1, t2, u1, u2)  O(1)ℓ(i+ j)
3ℓ−1

2 ℓ−
3ℓ
2 . (55)

This concludes the case u > 4ℓ. Combining (40), (46), and (55) we obtain

C(i, j, ℓ)  ijjiO(1)ℓℓℓ

O(1)ℓ +O(1)ℓ(i+ j)

3ℓ−1
2 ℓ−

3ℓ
2



= ijjiO(1)ℓℓℓ(i+ j)
3ℓ−1

2 ℓ−
3ℓ
2

 ijji(i+ j)
3ℓ−1

2

c
ℓ

 ℓ
2
,

for a suitable c > 0.
In the case that ℓ > i+j := k we can argue more directly. Indeed, we can naively bound

C(i, j, ℓ) by looking at the total number of bipartite graphs, connected or disconnected,
with partitions classes of size i and j and k + ℓ edges, which is clearly


ij
k+ℓ


.

Using the elementary bound

n
r





en
r

r
for all r  n, it follows that

C(i, j, ℓ) 


ij

k + ℓ





eij

k + ℓ

k+ℓ

=
√
kek+ℓijjik

3ℓ−1
2 ℓ−

ℓ
2


i

k

i+ℓ 
j

k

j+ℓ 
k

k + ℓ

k+ ℓ
2


ℓ

k + ℓ

 ℓ
2

= O(1)ℓijjik
3ℓ−1

2 ℓ−
ℓ
2 , (56)

where we used in the last equality that
√
kek+ℓ = O(1)ℓ since ℓ > k. We note that with

a more careful calculation it can be shown that the O(1)ℓ term in (56) is in fact at most
one.
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6 Discussion

We have presented some initial results about the structure of G(n, n, p) in the weakly su-
percritical regime, however many interesting questions still remain. For example, Luczak
[17] described in more detail the distribution of cycles in G(n, p) in this regime. In partic-
ular, if we let the girth of a graph be the length of the shortest cycle and the circumference
be the length of the longest cycle, then Luczak determined asymptotically the girth and
circumference of the giant component of G(n, p) and the length of the longest cycle outside
of the giant component.

Question 31. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

What is the girth and circumference of the giant component in G(n, n, p)? What is the
length of the longest cycle outside of the giant component?

Using some of the results of Luczak [17] on the distribution of cycles in the weakly
supercritical regime in G(n, p), together with Euler’s formula, Dowden, Kang and Kriv-
elevich [9] were able to determine asymptotically the genus of G(n, p) in this regime, in
particular showing that whp the genus is asymptotically given by half of the excess of the
giant component. It is natural to ask if a similar statement holds in the bipartite model.

Question 32. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
. Is

it true that whp the genus g of G(n, n, p) is such that

g ≈ 1

2
excess (L1 (G(n, n, p))) ≈ 2

3
3n?

Theorems 7-9 suggest an interesting relationship between the component structure of
G

n, n, 1+

n


and that of G


n, n, 1−

n


in the weakly super- and subcritical regimes. In

the case of the binomial random graph model, a much more precise relationship can be
given. Given a graph G, let us write GL for the graph obtained by deleting a compo-
nent of G of maximum order, say L. Roughly speaking, it is known that GL


n, 1+

n



and G

n− |L|, 1−

n−|L|


have approximately the same distribution. For a more detailed

discussion of this phenomenon, known as the symmetry rule, see for example [12, Section
5.6]. Using similar techniques as in [16], which uses bounds on the excess of the giant
component to prove a symmetry rule, we expect that Theorem 6 can be used to show a
similar statement in the bipartite binomial random graph model.

Conjecture 33. Let  = (n) > 0 be such that 3n → ∞ and  = o(1), and let p = 1+
n
.

If we let

n± = (1− 2± o())n and p± =
1− ± o()

n± ,

then we can couple GL(n, n, p) with G(n−, n−, p−) and G(n+, n+, p+) such that whp

G(n−, n−, p−) ⊆ GL(n, n, p) ⊆ G(n+, n+, p+).
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A Proof of Lemma 11

Let us write

g(y) :=
1

(k2 − y2)m


k − y

k + y

y

exp


− y2

2n


.

If we let h(y) := log (g(y)) = −m log(k2 − y2) + y log


k−y
k+y


− y2

2n
, then

h′(y) =
2my

k2 − y2
+ log


k − y

k + y


− 2ky

k2 − y2
− y

n
,

h′′(y) =
2mk2 − 4k3 + 2my2

(k2 − y2)2
− 1

n
,

h′′′(y) =
2y(6mk4 − 4mk2y2 − 2my4 − 8k5 + 8k3y2)

(k2 − y2)4
.

Note that 0 is a solution of h′(y) = 0 and, since m is fixed and h′′(y) < 0 on [−L−1, L+1],
0 is the unique solution on [−L− 1, L + 1]. Hence, h(y) is increasing on [−L− 1, 0] and
deceasing on [0, L+ 1], and this is also true for g(y).

Therefore, by Lemma 10 we can bound the difference between

I :=

 L

−L

g(y)dy,

and S as |S − I|  12g(0). We will later show that I = ω (g(0)), and hence S ≈ I.
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In order to estimate I, we approximate g by a Gaussian function. By the mean value
form of the remainder in Taylor’s theorem, for any y ∈ [−L,L] there is a real number z
between 0 and y such that

h(y) = h(0) +
h′′(0)

2
y2 +

h′′′(z)

6
y3.

Note that, if |z| = o(k), then |h′′′(z)| = o


1
k2


. Therefore, for any |y|  k

3
5 we have

h(y) = h(0) +
h′′(0)

2
y2 + o


y3

k2


= h(0) +

h′′(0)

2
y2 + o(1).

Hence, if we let R = min{k 3
5 , L} then

I =

 R

−R

exp


h(0) +

h′′(0)

2
y2 + o(1)


dy +



L|y|R

eh(y)dy.

The first integral we can evaluate in a standard manner as

 R

−R

exp


h(0) +

h′′(0)

2
y2 + o(1)


dy ≈

 R

−R

exp


h(0) +

h′′(0)

2
y2

dy

≈ eh(0)
 ∞

−∞
exp


h′′(0)

2
y2

dy

≈


2π

|h′′(0)|e
h(0) =


π

2
k

1
2
−2m,

where we used that h′′(0) = 2m
k2

− 4
k
− 1

n
≈ − 4

k
and also that R = ω(1).

If R = L, then the second integral is 0, and so we may assume that R = k
3
5 . In

order to bound the second integral we note that all the terms in h(y) are negative, and
in particular if |y|  L  k

log


k − y

k + y


= log


1− 2y

k + y


 − 2y

k + y
.

Hence, if L  |y|  R, then

h(y)  y log


k − y

k + y


 − y2

k + y
 −k

1
5

2
.

It follows that



L|y|R

eh(y)dy  2

 ∞

k
3
5

exp


−y

1
5

2


dy = O


e−

1
2
k

3
25 k

12
25


= o


k

1
2
−2m


.

Hence, I ≈


π
2
k

1
2
−2m and, noting that g(0) = k−2m = o(I), the result follows.
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B Proof of Lemma 23

Recall that we write X(i, j,−1) for the number of tree components with i vertices in N1

and j vertices in N2, and let

Λk =

(i, j) ∈ N2 : i+ j = k and |i− j| < 

1
4
√
n

.

Then,

Za =
k̃

k=1

ka


(i,j)∈Λk

X(i, j,−1),

and so

E

Z2

1


=

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

E (X(i, j,−1)X(s, t,−1)) .

Let us write µi,j = E (X(i, j,−1)). Then, when (i, j) ∕= (s, t) we have, by comparison
with (7),

E (X(i, j,−1)X(s, t,−1)) =


n

i


n

j


n− i

s


n− j

t


C(i, j,−1)C(s, t,−1)

· pk1+k2−2(1− p)n(k1+k2)−ij−st−sj−ti−k1−k2+2

= µi,jµs,t
(n)i+s

(n)i(n)s

(n)j+t

(n)j(n)t
(1− p)−it−sj,

and when (i, j) = (s, t) we have

E

X(i, j,−1)2


= µi,j + µ2

i,j

(n)2i
(n)2i

(n)2j
(n)2j

(1− p)−2ij.

Now, it can be seen that if 0  x  y  1, then

1− y  (1− x)ex−y,

and so

(n)i+s

(n)i(n)s
=

i−1

m=0

1− s+m
n

1− m
n

 exp


i−1

m=0

m

n
− s+m

n


= exp


− is

n


, (57)

and a similar bound holds for
(n)j+t

(n)j(n)t
. Hence, using (57) and the fact that (1− p)x  e−px
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for any positive p and x, we have

E

Z2

1


=

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

E (X(i, j,−1)X(s, t,−1))

= E(Z2) +
k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t
(n)i+s

(n)i(n)s

(n)j+t

(n)j(n)t
(1− p)−it−sj

 E(Z2) +
k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t exp


− is

n
− jt

n
+ (it+ sj)


1 + 

n



= E(Z2) +
k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t exp


(i− j)(t− s)

n
+ (it+ sj)



n



 E(Z2) +
k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t exp


(i− j)(t− s)

n
+

2k1k2
n


. (58)

Now, since we are only looking at -uniform components, if (i, j) ∈ Λk1 and (s, t) ∈ Λk2 ,
then

(i− j)(t− s)

n


√
 = o(1).

Hence, since 0  2k1k2
n

 2
3
, ex  1 + x+ x2 for |x|  1 and ex  1 + 2x for 0  x  1 it

follows that

exp


(i− j)(t− s)

n
+

2k1k2
n





1 +

4k1k2
n


1 +

(i− j)(t− s)

n
+

(i− j)2(t− s)2

n2



 1 +
4k1k2

n
+

(i− j)(t− s)

n


1 +

4k1k2
n


+

(i− j)2(t− s)2

n2


1 +

4k1k2
n



 1 +
4k1k2

n
+

(i− j)(t− s)

n


1 +

4k1k2
n


+

3(i− j)2(t− s)2

n2
. (59)

So, from (58) and (59) we can conclude that

E

Z2

1


 E(Z2) +

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t

·

1 +

4k1k2
n

+
(i− j)(t− s)

n


1 +

4k1k2
n


+

3(i− j)2(t− s)2

n2


.

(60)

We split the sum in (60) into four terms and consider them separately. The first three
terms are relatively easy to bound.
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Firstly, we have that

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t = E(Z1)
2. (61)

The second term can be seen to be

4

n

k̃

k1=1

k̃

k2=1

k2
1k

2
2



(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t =
4

n
E(Z2)

2. (62)

Thirdly, since µi,j is symmetric in i and j and µs,t is symmetric in s and t and (i− j) and
(s− t) are antisymmetric, it follows that

k̃

k1=1

k̃

k2=1

k1k2


1 +

4k1k2
n

 

(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t
(i− j)(t− s)

n
= 0. (63)

For the fourth term, we have to be a bit more careful. Let us consider

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t
(i− j)2(t− s)2

n2

=




k̃

k1=1

k1


(i,j)∈Λk1

µi,j
(i− j)2

n








k̃

k2=1

k2


(s,t)∈Λk2

µs,t
(t− s)2

n





=S2,

where

S :=
k̃

k=1

k


(i,j)∈Λk

µi,j
(i− j)2

n
.

Using (6), we see that, since k̃  n
2
3 , then

S = O




k̃

k=1

ke−
δk
2



(i,j)∈Λk

(i− j)2

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n





= O




k̃

k=1

ke−
δk
2



i+j=k

(i− j)2

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n





= O




k̃

k=1

ke−
δk
2

k

d=−k

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n



 . (64)
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Firstly, we note that for small k the sum is negligible. Indeed,

−
2
5

k=1

ke−
δk
2

k

d=−k

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n




−
2
5

k=1

k

k

d=−k

d2  −2 = O


n




.

(65)

For k  −
2
5 , we split the inner sum up further into two ranges

T1 :=


|d|k
3
5

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n



and

T2 :=


k|d|k
3
5

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n


.

By the same argument as in Lemma 11, we see that, since k = ω(1),

T2 ≲
 ∞

k
3
5

y2 exp


−y

1
5

2


dy = O


e−

1
2
k

3
25 k

42
25


= o


k− 5

4


. (66)

Furthermore, we can bound T1 naively, using Hölder’s inequality and Lemma 11, to
obtain

T1 =


|d|k
3
5

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n








|d|k
3
5

d4




|d|k
3
5

1

(k2 − d2)3


k − d

k + d

2d

exp


− d2

2n








|d|k
3
5

d4




|d|k
3
5

1

(k2 − d2)3


k − d

k + d

d

exp


− d2

2n



= O
√

k3


k− 11

2


= O


k− 5

4


. (67)

Therefore, by (66) and (67), we have

k̃

k=−
2
5

ke−
δk
2

k

d=−k

d2

(k2 − d2)
3
2


k − d

k + d

d

exp


− d2

2n



= O




k̃

k=−
2
5

k− 1
4 e−

δk
2



 = O

 ∞

y=1

y−
1
4 e−

δy
2 dy



= O


−

3
2

 ∞

x= 2

4

x− 1
4 e−xdx


= O


−

3
2


. (68)
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Hence, by (64), (65), and (68) we see that

S = O


n


+ −

3
2


= O


n




,

and so

k̃

k1=1

k̃

k2=1

k1k2


(i,j)∈Λk1



(s,t)∈Λk2

µi,jµs,t
(i− j)2(t− s)2

n2
= S2 = O

n



. (69)

Hence, by (60), (61), (62), (63) and (69) we can conclude that

Var(Z1)  E(Z2) +
4

n
E(Z2)

2 +O
n



. (70)

Using (6) and Lemma 11, we can bound

E(Z2) 
n

2
3

k=1

k2


(i,j)∈Λk

µi,j = O



n

n
2
3

k=1

k2e−
δk
2



(i,j)∈Λk

1

(ij)
3
2


i

j

j−i

exp


−(i− j)2

2n





= O



n
n

2
3

k=1

1√
k
e−

δk
2



 = O


n

 ∞

y=1

1
√
y
e−

δy
2 dy


= O


n√
δ

 ∞

x= δ
2

1√
x
e−xdx



= O
n



.

Finally, putting this together with (70), we can conclude that

Var(Z1)  O
n



+

4

n
O


n2

2


+O

n



= O

n



.

C Proof of Theorem 24

A standard argument tells us that, for a fixed vertex v the order of the component in
G(n, n, p) containing v is stochastically dominated by the order of the component of the
root in a random subgraph of Tn, the infinite (n+1)-regular rooted tree, where we include
each edge independently with probability p.

It is shown in [7, Corollary 3] that if we let t(k, n) be the number of subtrees of Tn

that contain the root and have order k and k = ω(1), then

t(k, n) ≈ 1
√
2πk

3
2

nk−1


n

n− 1

k(n−1)+2

.

Hence, the probability that the component of the root in a random subgraph of Tn has
order k is given by

Pk(n, p) = t(k, n)pk−1(1− p)k(n−1)+2 ≈ (pn)k−1

√
2πk1.5


n(1− p)

n− 1

k(n−1)+2

.
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It follows that, if we let p = 1−
n
, then

Pk(n, p) ≈
1√

2πk1.5
(1− )k−1


1 +



n− 1

k(n−1)+2

 1√
2πk1.5

(1− )k−1exp

k +O

 

n



≲ 1√
2πk1.5

((1− )e)k−1 .

Furthermore, it is clear by comparison with a branching process that with probability
1 the component of the root is finite, and hence


k Pk(n, p) = 1. It follows that the

probability that a vertex in G(n, n, p) belongs to a component of order larger than k0 ∈ N
is equal to 

kk0

Pk(n, p).

Hence, if we let Yk0 be the number of vertices in G(n, n, p) which belong to a component
of order larger than k0, then we have that

E(Yk0) = n


kk0

Pk(n, p) ≲ n


kk0

1√
2πk1.5

((1− )e)k−1 ≲ nk
− 3

2
0

((1− )e)k0

1− (1− )e
.

However, (1− )e = 1− 2

2
+O(3) and so

E(Yk0) ≲ nk
− 3

2
0

4

2
.

Taking k0 =


n
3
, we see that

E

Y

√
n
3


= O


n

1
4


5
4


= o


n




.
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