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Abstract

The independent set reconfiguration problem asks whether one can transform
one given independent set of a graph into another, by changing vertices one by
one in such a way the intermediate sets remain independent. Extremal problems
on independent sets are widely studied: for example, it is well known that an n-
vertex graph has at most 3n/3 maximum independent sets (and this is tight). This
paper investigates the asymptotic behavior of maximum possible length of a shortest
reconfiguration sequence for independent sets of size k among all n-vertex graphs.

We give a tight bound for k = 2. We also provide a subquadratic upper bound
(using the hypergraph removal lemma) as well as an almost tight construction for
k = 3. We generalize our results for larger values of k by proving an n2bk/3c lower
bound.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

Many questions can be formalized as follows: given the description of a system state and
the description of a state we would “prefer” the system to be in, is it possible to transform
the system from its current state into the more desired one without “breaking” the system
in the process? And if yes, how many steps are needed? Such problems naturally arise in
the fields of mathematical puzzles, operational research, computational geometry, bioin-
formatics, and quantum computing for instance. These questions received a substantial
amount of attention under the so-called combinatorial reconfiguration framework in the
last few years from both structural and algorithmic point of views. We refer the reader
to the surveys [18, 14, 5] for more background on combinatorial reconfiguration.

Given a reconfiguration problem, one can naturally define the (re)configuration graph
where the vertices correspond to solutions and there is an edge between two vertices if
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one can transform one into the other in one step. Structural properties of configuration
graphs have been studied under various names in different fields, for instance by looking
for its connectivity (irreducibility of Markov chains) or hamiltonian paths (Gray codes for
hypercubes).

Independent set reconfiguration. Given a simple undirected graph G, a set of ver-
tices S ⊆ V (G) is an independent set if the vertices of S are pairwise non-adjacent. Finding
an independent set of maximum cardinality, i.e., the Independent Set problem, is a
fundamental problem in algorithmic graph theory and is known to be not only NP-hard,
but also W[1]-hard and not approximable within O(n1−ε), for any ε > 0, unless P =
NP [20].

We view an independent set as a collection of tokens placed on the vertices of a graph
such that no two tokens are adjacent. This gives rise to two natural adjacency relations
between independent sets, also called reconfiguration steps. In the Token Jumping (TJ)
problem, introduced by Kamiński et al. [11], a single reconfiguration step consists of first
removing a token on some vertex u and then immediately adding it back on any other
vertex v, as long as no two tokens become adjacent. The token is said to jump from
vertex u to vertex v. In the Token Sliding (TS) problem, introduced by Hearn and
Demaine [9], two independent sets are adjacent if one can be obtained from the other by
a token jump from vertex u to vertex v with the additional requirement of uv being an
edge of the graph. The token is then said to slide from vertex u to vertex v along the
edge uv. Note that, in both the TJ and TS problems, the size of independent sets is fixed.
Generally speaking, in the Token Jumping and Token Sliding problems, we are given
a graph G and two independent sets Is and It of G. The goal is to determine whether
there exists a sequence of reconfiguration steps (called a reconfiguration sequence) that
transforms Is into It (where the reconfiguration step depends on the problem).

We can reformulate the problem using configuration graphs. Given a graph G and an
integer k we can define its k-configuration graph (or configuration graph when k is clear
from the context) Rk(G) as the graph whose vertices correspond to independent sets of
size k and where we put an edge between I and J if one can transform I into J in one
step (under the token jumping variant). There exists a reconfiguration sequence from I
to J if and only if I and J belong to the same connected component of Rk(G).

Both problems have been extensively studied, albeit under different names. They
are PSPACE-complete, even restricted to bounded bandwidth (and hence pathwidth)
graphs [19] and planar graphs [9]. Their complexity is also known (respectively PSPACE-
complete and NP-complete) on bipartite graphs [13] and several polynomial algorithms
exist in simpler classes such as trees [6] and interval graphs [4].

All along the paper we mainly focus on the Token Jumping model but all our lower
bounds also hold for the Token Sliding version.

Diameter of the configuration graph and the (6, 3)-problem. In many cases,
the diameter of the configuration graph, even if connected, is not polynomial (and that
is one of the reasons why most of the reconfiguration problems are harder than NP).
An important line of research has focused on finding conditions that ensure that the
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configuration graph is connected. But the asymptotic behavior of the maximum possible
length of a shortest reconfiguration sequence has not been studied much, except for one
article reconfiguring shortest paths [10]. The problem of determining “which graphs
on n vertices have the largest amount of independent sets?” has received considerable
attention. On the contrary, the question “which graphs on n vertices have a configuration
graph of independent sets has the largest diameter?” has not, as far as we know, received
any attention.

The 3n-vertex graph with the largest number of maximum independent sets is a dis-
joint collection of triangles which admits 3n independent sets. In that case, one can easily
remark that we can easily transform any maximum independent set into any other in
O(n) steps by replacing a vertex of a triangle by another (which can be done without
conflict since the triangles are independent). So a graph whose configuration graph of
independent sets has maximum diameter must have a completely different behavior. In
this paper, we consider the following questions: what is the largest possible diameter of
(a connected component of) the configuration graph amongst all the graphs of size n?
What if we fix the size k of the independent set we want to consider?

Given a graph G, we denote by diam(G) the largest diameter of its connected compo-
nents. Let k, n be two integers. The k-reconfiguration diameter of G is diam(Rk(G)), and
D(n, k) is the maximum value k-reconfiguration diameter of a graph on n vertices. The
goal of this paper mainly focuses on finding lower and upper bounds on D(n, k). There
is a natural upper bound for D(n, k) which is the maximum number

(
n
k

)
of subsets of

vertices size k. We will prove in Section 2 that this bound cannot be reached and that the
D(n, k) is actually at most O(nk−1). More precisely, we will prove that D(n, k) 6

(
n

k−1

)
.

We can easily prove that the order of magnitude of this bound is tight since, for k = 2,
the following holds as we will prove in Section 3:

Theorem 1. D(n, 2) = n−2, and the complement of the n-vertex path is the unique tight
example.

One can naturally wonder if this bound is still tight for larger values of k. The answer
is negative since we can prove that this upper bound can actually be very slightly improved
for every k > 3. Namely, we will prove that:

Theorem 2. For k > 3, we have D(n, k) = o(nk−1).

The proof of Theorem 2 is inspired from the upper bound proof of the (6, 3)-problem
and is based on an application of the hypergraph removal lemma. A hypergraph H is
(s, t)-free if no set of s vertices of H contains at least t hyperedges. The (6, 3)-problem
(or Ruzsa-Szemerédi problem) asks for the maximum number of hyperedges in a (6, 3)-
free n-vertex 3-uniform hypergraph. The so-called (6, 3)-theorem of Ruzsa-Szemerédi [16]
ensures this value is o(n2).

This gain (o(nk−1) versus O(nk−1)) might appear marginal but we can prove that,
again, it cannot be widely improved. Namely we prove that the following holds:

Theorem 3.
D(n, 3) = Ω(n2/eO(

√
logn)).
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The value n/eO(
√
logn) corresponds to the largest known asymptotic size for a subset

of [1, n] without arithmetic progressions of length 3 [3]. Any improvement of this bound
would also imply an improvement of the bound of Theorem 3. Note that the best bound
for the (6, 3)-problem also has this order of magnitude [16].

The reconfiguration problem of independent sets of size 3 is actually very close to the
(6, 3)-problem. Indeed, if we consider a shortest path in the 3-configuration graph of G
and only consider even (resp. odd) vertices of that path, then we have a set of hyperedges
of size 3. And one can easily check that this set of hyperedges satisfy the (6, 3)-property.
So our result implies in particular that, given a set of size n, we can find two sets X1, X2

of n2/eO(
√
logn) 3-hyperedges such that both of them are (6, 3)-free but whose union is

“path-like”, meaning that for every hyperedge (but at most two which are the endpoints
of the path) there are two other hyperedges that intersect it on two vertices.

The idea of the proof of Theorem 3 consists in starting from a clique. We will then
remove edges to create almost linearly many paths in the configuration graph of linear
length. The involved part of the proof consists in showing that these paths remain in-
dependent of each other (i.e. there is no edge between them in the configuration graph)
using a set S of integers with no arithmetic progression of size 3. We finally use a last
trick to glue these paths together in order to obtain the claimed diameter. Note that
the classical construction giving n/eO(

√
logn) hyperedges [16] for the (6, 3)-problem cannot

be easily used in our construction since the construction is tripartite and then hard to
reconnect into a configuration graph.

We were not able to prove that the lower bounds and the upper bounds almost match
for larger values of k. In particular, it is open to determine if the 4-configuration graph
can have super-quadratic diameter (while the upper bound is o(n3)). We conjecture that
the following holds:

Conjecture 4.
D(n, 4) = n3−o(1).

A first step to prove super-quadratic diameter is to ensure that there exists a graph
with a lot of copies of K4 such that no two of them intersect on a triangle. This was
recently shown to be true for any value of k. Namely, Gower and Janzer proved in [7]
that, for every k and every n, there exists an n-vertex graph with nk−1−o(1) copies of Kk

such that every Kk−1 is contained in at most one Kk. This result might suggest that
D(n, k) = nk−1−o(1).

Our construction for k = 3 has to be drastically modified in order to work. Indeed, our
construction is heavily based on the fact that we can find a graph with an almost linear
number of linear paths in its 3-configuration graph. To get a super-quadratic bound,
we need to either increase the number of paths or their lengths. We failed trying both
options.

However, in general, we were able to show that the following holds:

Theorem 5. For every integer k we have

D(n, k) =
n2bk/3c

eOk(
√
logn)
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For k = 4, 5, we can also ensure that the lower bound is quadratic. Actually, what we
prove is slightly stronger but can be asymptotically summarized with Theorem 5.

The idea of the proof of Theorem 5 consists in successively adding a graph (inspired
by) the construction of Theorem 3 and connecting it in a clever way to the previous graph
to increase the diameter quadratically while increasing the size of the independent set by
3. Note that a super-quadratic lower bound for k = 4 might lead to an improvement of
this general lower bound as long as there is a clever gluing.

Observe that the asymptotic estimate in Theorem 5 depends on k, and hence may
not hold when k is not constant, for example when k is linear in n. Constructing graphs
that maximize the diameter of a connected component in their k-configuration graphs
(regardless of the value of k) is a question raised during the Core Challenge 2022 [17]
for graphs on 10, 50 and 100 vertices. Our team proposed a generic construction that
obtained the best results. Rewritten in the current formalism, our statement from [17]
becomes:

Lemma 6. For every integer n, there exists a graph G on 10n vertices such that its
R3n(G) is a path of length Θ(4n). In particular D(n, 3n

10
) = Ω(2n/5).

Note that we also give a construction showing that D(n, 2n
5

) = Ω(2n/5) (with a slightly
worse constant than in Lemma 6). Roughly speaking, these graphs are constructed by
adding edges between complements of paths on 10 and 5 vertices respectively, in a similar
fashion to the proof of the upcoming Lemma 18. In particular, those two constructions
can be combined and yield the following.

Theorem 7. For every n and every k such that 3n/10 6 k 6 2n/5, D(n, k) = Ω(2n/5).

We believe it is quite surprising that this lower bound holds for such a range of values
of k, and thus raise the following question.

Question 8. What is the asymptotic behavior of maxkD(n, k)?

2 Generic upper bounds

We start this section with a preliminary upper bound on D(n, k).

Lemma 9. D(n, k) 6
(

n
k−1

)
.

Proof. Consider a shortest path P in the k-configuration graph of an n-vertex graph G.
With each edge of P , we associate the k−1 vertices of the intersection of the independent
sets corresponding to its endpoints. This defines a mapping from E(P ) to sets of k − 1
vertices of G. Since there are nk−1 such sets, we simply have to show that this mapping is
injective. Assume that two distinct edges are mapped to the same set X of k−1 vertices.
Then X belongs to at least three distinct independent sets that are vertices of P . These
three independent sets are pairwise adjacent, which is impossible since P is a shortest
path.
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We will see that this bound is sharp for k = 2. However, when k increases this bound
can be slightly improved, as summarized in Theorem 2 that we recall below.

Theorem 2. For k > 3, we have D(n, k) = o(nk−1).

Proof. Consider a graph G on n vertices whose configuration graph has maximum diam-
eter d. Let P = Z1, Z2, . . . , Zd be a shortest path of length d in Rk(G). Let us partition
the nodes in P into two sets P1 and P2 where P1 (resp. P2) is the set of odd (resp. even)
nodes of P . Note that if we consider two subsets of Pi for i 6 2 then their intersection
has size at most k − 2 (otherwise P would not be induced).

For every i 6 2, let Hi be the (k− 1)-uniform hypergraph whose vertices are the same
as for G and whose hyperedges are the independent sets of size k − 1 contained in some
set of Pi. Moreover, denote by K the (k− 1)-uniform hyperclique on k vertices. Observe
that by construction, each Z ∈ Pi creates (exactly) one copy of K in Hi. Also note that
every subset of size k − 1 of such a Z belongs to exactly one independent set of Pi since
otherwise the two independent sets would be adjacent, contradicting the minimality of P .
We now distinguish two cases:

Case 1. Hi contains more than nk−1 copies of K.
Since by Lemma 9, at most nk−1 are created by some Z ∈ Pi, there exists a copy of K
in Hi such that V (K) /∈ Pi. Consider now three hyperedges e1, e2, e3 in K that pairwise
intersect on k − 2 vertices (note that this is possible since k > 3).

By construction, each of these hyperedges are contained in some element of Pi, so
there exist x1, x2, x3 ∈ V (G) such that ej ∪ {xj} ∈ Pi for j = 1, 2, 3. In particular, each
ej is an independent set of G, therefore e1 ∪ e2 ∪ e3 is also an independent set of G of size
k. Therefore all the ej ∪ {xj}’s are at distance at most 2 from each other in Rk(G) since
all of them are adjacent to e1 ∪ e2 ∪ e3. This is a contradiction since P is a shortest path
and P1 (resp. P2) only contains odd (resp. even) vertices of P and then two of the three
independent sets ej ∪ {xj} ∈ Pi for j 6 3 should be at distance at least 4.

Case 2. Hi contains at most nk−1 = o(nk) copies of K.
By the hypergraph removal lemma [15, 8], there exists a set S of hyperedges of H such
that |S| = o(nk−1) and H − S contains no copy of K. Recall that each hyperedge of S is
contained in exactly one element of P1, and each element of Pi creates a copy of K in H,
therefore we get |Pi| 6 |S| = o(nk−1).

To conclude, observe that d 6 2|Pi| = o(nk−1) for every i 6 2.

3 Lower bounds

3.1 Independent sets of size 2

In this section, our main goal is to prove Theorem 1 that we recall below.

Theorem 1. D(n, 2) = n−2, and the complement of the n-vertex path is the unique tight
example.
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We thus consider the independent sets of size 2 of a graph G. Note that these sets are
exactly the non-edges of G, i.e. the edges of G = (V,P2(V ) \ E). Therefore, we get the
following observation.

Observation 10. The configuration graph R2(G) is the line graph of G.

Note that for every graph G, any induced path on p vertices in L(G) corresponds to
a path on p edges in G. In particular, we derive two consequences.

Observation 11. Let A,B be two independent sets of G of size 2 and a ∈ A, b ∈ B.
There is a TJ-transformation from A to B if and only if a, b are in the same connected
component of G.

We can also obtain the following which ensures that the bound of Lemma 9 is tight:

Lemma 12. For every n-vertex graph G,

diam(R2(G)) = diam(L(G)) 6 diam(G)− 1 6 n− 2.

Note that the last bound is tight only when G is a path, which concludes the proof of
Theorem 1.

Since the diameter is linear, one might wonder if we can determine in linear time if
there exists such a transformation (and find it). Note that we cannot just compute the line
graph of the complement and run a BFS on it. Indeed, even if a BFS can be computed in
linear time with respect to the number of edges of its input, this number may be quadratic
with respect to the number of edges of the original graph. However, by complementing
only the graph induced by vertices of large degree, we obtain the following.

Theorem 13. Let A,B be two independent sets of G of size 2. We can decide if there
exists a TJ-transformation from A to B in time O(|V (G)|+ |E(G)|).

Proof. Let G be an n-vertex m-edge graph, and s, t two vertices of G. We start by
precomputing the degrees of the vertices of G in O(n + m) time. Let B be the set of
vertices of degree at least n−1

2
, and S = V (G)\B. Observe that by the pigeonhole principle,

any two vertices in S must have a common non-neighbor, hence are connected in G. Let
us denote by H the graph obtained by identifying all the vertices of S into a single vertex
x and where we put an edge between x and y /∈ S if y is adjacent to a vertex of S. It
is easy to check that there is a path between s and t in G if and only if there is such a
path in H (up to replacing s or t by x if they lie in S). Note moreover that one can easily
compute the graph H in O(n+m) time.

One can notice that the graph H might be sparse and then its complement can have
size Ω(|V (H)|2). However, observe that

(|V (H)| − 1)× n− 1

2
6
∑
v∈B

degG(v) 6 2m,

hence |V (H)| = O(m
n

). In particular, one can compute H and use a BFS in H in time

O(|V (H)|2) = O(m
2

n2 ) = O(m).

Note that the algorithm we provide can easily be adapted to return a (possibly non-
optimal) transformation when it exists.

the electronic journal of combinatorics 30(3) (2023), #P3.8 7



3.2 Almost quadratic construction for independent sets of size 3

The rest of this section is devoted to prove the following result:

Theorem 3.
D(n, 3) = Ω(n2/eO(

√
logn)).

The proof is based on two steps. First, we prove that there exists a graph whose
configuration graph is the disjoint union of n/eO(

√
logn) paths of linear length. We then

prove that, starting from a graph whose configuration graph is disconnected, we can (up
to adding few vertices), obtain a graph whose configuration graph is connected and whose
diameter is at least the sum of the diameter of the connected components of the initial
configuration graph. While the first step is specific to k = 3 and is based on the existence
of almost linear subsets of integers without arithmetic sequences of length 3, the gluing
process is general and holds for any possible value of k. Some variants have already been
used in the token sliding version, see [1, 2]. Let us first prove the gluing lemma.

Lemma 14. Let k > 3. Let G be a graph on n vertices whose k-configuration graph
contains r connected components C1, . . . , Cr of diameter respectively d1, . . . , dr. Then there
exists a graph on at most n + (3k − 2) · (r − 1) vertices whose configuration graph has
diameter at least (4k − 4)(r − 1) +

∑
i6r di.

xi1 xi2 xi3 xi4 xi5 xi6 xi7

bi1

bi2

bi3

Bi

ai+1
3

ai+1
2

ai+1
1

Ai+1

Figure 1: Construction for Lemma 14 with k = 3, where only non-edges are drawn.

Proof. For every i 6 r, let us denote by Ai and Bi two independent sets at distance di in
the component Ci of the k-configuration graph. For every i 6 r and 1 6 j 6 k, we denote
by aij (resp. bij) the j-th vertex of Ai (resp. Bi). We moreover assume that aik and bi1 are
respectively the first and last vertices modified in a shortest sequence Pi from Ai to Bi.
Note that the sets A1, . . . , Ar, B1, . . . , Br might intersect.

For every i 6 r− 1, we create 3k− 2 new vertices xi1, . . . , x
i
3k−2 in order to connect Bi

to Ai+1 in the configuration graph of the new graph (see Figure 1 for an illustration of the
construction). We first add all the edges between the new vertices and V (G) and, for every
i, j ∈ [1, r] with i 6= j, the vertices xip and xjq are adjacent regardless of p, q ∈ [1, 3k − 2].
Moreover, for every p < q 6 3k − 2, xip is adjacent to xiq if and only if q − p > k − 1.
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We finally remove the following edges: for every j we remove the edges between xij (resp.

xi3k−2−j) and bij′ (resp. ai+1
k−j′) with j′ > j. Let us denote by H the resulting graph.

Let Xi be the (ordered) set of vertices {bi1, . . . , bik, xi1, . . . , xi3k−2, ai+1
1 , . . . , ai+1

k }. Let us
first prove the following simple claim on the structure of independent sets:

Claim 15. Let i 6 r− 1. Every k-independent set containing a vertex in {xi1, . . . , xi3k−2}:

• consists of k consecutive vertices of Xi and,

• has degree 2 in Rk(H) if it contains a vertex in {xi2, . . . , xi3k−3}.

Proof. Let us first prove that if an independent set S contains a vertex in {xi1, . . . , xi3k−2}
then it contains consecutive vertices of Xi.

If S ⊆ {xi1, . . . , xi3k−2}, then let us denote by xia and xib the first and last vertices in S.
By construction, since S is an independent set, we must have b− a 6 k − 1. And then S
contains only non-neighbors of xia and xib, hence b − a = k − 1 and S = {xia, . . . , xib}. So
from now on we can assume that S contains a vertex of V (G).

Since xik−1, . . . , x
i
2k−2 are complete to G, the set S cannot contain one of these vertices.

And since {xi1, . . . , xik−2} is complete to {xi2k−1, . . . , xi3k−2}, we can assume by symmetry
that S contains vertices in {xi1, . . . , xik−2} but not in {xi2k−1, . . . , xi3k−2}. Let us denote by
a 6 k − 1 the largest index such that xia ∈ S. By construction, xia is non-adjacent to the
k − 1 vertices before it in the sequence and complete to all the other vertices of H \Xi.
So S = {bia+1, . . . , b

i
k, x

i
1, . . . , x

i
a}.

For the second item, observe that indeed, each set of k consecutive vertices in Xi is
independent, and is connected to the independent sets corresponding to the k vertices
just before and after them in the ordering. Moreover, each independent set S intersecting
{xi2, . . . , xi3k−3} contains at least two vertices in {xi1, . . . , xi3k−2}. Therefore S is only
adjacent to independent sets containing at least one vertex in {xi1, . . . , xi3k−2}. By the
first item, they consist of k consecutive vertices of Xi, hence S has exactly two neighbors
in Rk(H).

So the k-configuration graph of H restricted to Xi induces a path Pi from Bi to Ai+1 of
length 4k−2. Indeed, it takes k jumps to transform Bi to {xi1, . . . , xik}, then 2k−2 jumps
to obtain {xi2k−2, . . . , xi3k−2}, and k more jumps to finally get Ai+1. By concatenating
these paths with shortest reconfiguration sequences from the Ai to Bi for every i 6 r, we
get a reconfiguration sequence P from A1 to Br of length (4k − 2)(r − 1) +

∑
i6r di.

To complete the proof we have to prove that we can shorten the sequence P by exactly
2(r− 1) steps (and that no shorter transformation exists). Indeed, the token that arrives
on bi1 can jump directly on xi1 instead, and the one that leaves ai+1

1 could have left before
when it was on xi3k−2. More formally, for every i 6 r − 1, consider a reconfiguration
sequence from Ai to Bi of minimum size where ai1 is the vertex deleted from Ai at the
beginning of the sequence and bi1 is the last vertex to be moved on Bi at the end of the
sequence (this reconfiguration sequence exists by assumption). If we denote by B′i the
independent set before Bi, B

′
i contains Bi \ {bi1}. Then B′i is adjacent to (Bi ∪ xi1) \ bi1 in

the configuration graph and then we can remove Bi in the reconfiguration sequence from
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A1 to Br and still have a reconfiguration sequence. Similarly, we can find a shortcut of
the sequence on Ai for every 2 6 i 6 r. So we can shorten P by 2(r − 1) steps.

We claim that this transformation has shortest length. Let us briefly argue why it is
true. Consider an independent set of H containing exactly one vertex in {xij | i6 r−1, j 6
3k−2}. It should contain the vertex xi1 or xi3k−2 for some i by Claim 15 and k−1 vertices
of an independent set in Ci or in Ci+1. Thus it can only be adjacent to an independent
set of the component of Ci or Ci+1 or an independent set containing two vertices of Xi by
Claim 15.

Using Claim 15 again, it means that from an independent set only containing xi1 (resp.
xi3k−3) we can only reach an independent set of Ci+1 (resp. Ci) containing Bi−1 \bi−11 (resp.
Ai+1 \ ai+1

k ).

Before proving that it is possible to obtain an almost linear number of components of
almost linear size, we need some definitions and results of group theory.

Let S be a set of integers. We say that S is 3-AP-free if it does not contain an
arithmetic progression of length 3, i.e. there does not exist s1 < s2 < s3 in S such that
s2 − s1 = s3 − s2. Determining the size of the largest possible 3-AP-free subset of [1, n]
is a heavily studied problem whose exact answer is not known. It was shown that there
does not exist any 3-AP-free set of positive density in N [12]. However Behnrend proved
in [3] that there exist 3-AP-free subsets of {1, . . . , n} of size n/eO(

√
logn). Note that if S

is 3-AP-free, then the set 4S + 1 also is 3-AP-free. So, there exists a 3-AP-free sequence
of size n/eO(

√
logn) only containing integers whose value is 1 modulo 4. Such a set will be

called an odd 3-AP-free sequence in the rest of the paper.
Now let p be a prime number. It is well known that, for every α ∈ {1, . . . , p− 1}, the

sequence of the kα modulo p is a periodic sequence of period p. That is {0, α, . . . , (p −
1)α} = {0, . . . , p− 1} modulo p.

We claim that the following holds:

Lemma 16. Let n be a prime number. Let S be an odd 3-AP-free sequence where the
maximum integer is at most n/8. Then, there exists a graph on n − 1 vertices whose
3-configuration graph is the disjoint union of |S| paths of length n− 3.

Proof. Let G be the graph obtained from a clique on n vertices by removing the edges
(i, i+ s) and (i, i+ 2s) for s ∈ S and i 6 n, where all integers are understood modulo n.

We claim that R3(G) consists of |S| induced cycles of length n. First observe that for
each s ∈ S we have n independent sets, namely {ks, (k+ 1)s, (k+ 2)s} (0 6 k < n), which
induce a cycle. In particular, R3(G) contains |S| cycles of length n.

Let us now show that this union of cycles is induced. To this end, let I = {a, b, c}
and I ′ = {a′, b′, c′} be two independent sets such that c− b = b− a = s ∈ S and c′ − b′ =
b′ − a′ = s′ ∈ S with s 6= s′. If I ∩ I ′ contains two elements x and y, then observe that
x − y ∈ {±s,±2s} ∩ {±s′,±2s′}, which is impossible since s and s′ are distinct integers
below n/8 and are both 1 mod 4. Therefore I and I ′ are not adjacent.

Finally, we prove that R3(G) has no other vertex. Let {a, b, c} be an independent set
of G. If b − a ∈ S and c − b ∈ S, then c − a is even and lies in 2S, hence we can write
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b − a = s, c − b = s′ and c − a = 2s′′ = s′ − s. Since S is 3-AP-free, we have s = s′ = s′′

and then b− a = c− b (and then {a, b, c} is one of the sets described above). Otherwise,
b − a or c − b does not belong to S, thus c − a is equal to 0 or 3 modulo 4 and then
c− a /∈ S ∪ 2S, which is a contradiction.

So R3(G) is the disjoint union of cycles with no edges between them. Now if we
remove the vertex 0 from G, each of these cycles now becomes a path (we remove the
three independent sets containing it for every S), which completes the proof.

Let us combine Lemma 14 and 16 to prove Theorem 3. Let S be an odd 3-AP-free
sequence of size n/eO(

√
logn). By Lemma 14, there exists a graph G on n−1 vertices whose

3-configuration graph admits |S| connected components of diameter n − 3. By applying
Lemma 16 to G, we obtain a new graph on n− 1 + 7 · (|S| − 1) 6 8n vertices and whose
3-configuration graph has diameter at least 8 · (|S|−1)+ |S| · (n−3) = n2/eO(

√
logn), which

completes the proof.
We end this section with the following question which would extend Theorem 13 to

independent sets of size 3.

Question 17. Can we compute the diameter or the existence of a transformation between
two independent sets of size 3 in (sub)quadratic time?

3.3 General lower bound

The goal of this section is to generalize the construction of Section 3.2 to larger values of
k. Unfortunately, we were not able to obtain a lower bound that almost fits the upper
bound for larger values of k, but we still obtain the following.

Theorem 5. For every integer k we have

D(n, k) =
n2bk/3c

eOk(
√
logn)

Let us first give the flavour of the proof with an intermediate construction.

Lemma 18. Let G be a graph with independence number k such that Rk(G) has diameter
d. Then for every integer p, there exists a graph H on |V (G)|+ 6p+ 2 vertices such that
Rk+2(H) has diameter at least 2p(d+ 3).

Proof. Let A and B be two independent sets of size k at distance d in Rk(G).
Let us create 6p + 2 vertices X = {x1, x2, . . . , x6p+2}, inducing the complement of a

path. For every 1 6 ` 6 p, link the vertices x6`−3 and x6` to respectively V (G) \ B and
V (G) \ A. Let us denote by H the resulting graph (see Figure 2 for an illustration).
Let C,D be respectively the independent sets A ∪ {x1, x2} and A ∪ {x6p+1, x6p+2}. Since
k is the independence number of G and X is the complement of a path, the maximum
independent sets of H have size k+ 2 and all of them contain k vertices in V (G) and two
vertices in X.

First note that there is a transformation from C to D: first move the tokens from
A to B in G to obtain B ∪ {x1, x2} in d moves, then move the tokens from {x1, x2} to
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x1 x2 x3 · · · x6p x6p+1 x6p+2

B

AG

X

Figure 2: Construction of the proof of Lemma 18. For readability, we have only repre-
sented the non-edges incident with the vertices of X.

{x4, x5} in three moves to obtain B∪{x4, x5}. Now we again make d moves in G to obtain
A∪{x4, x5} and 3 moves in X to get A∪{x7, x8}. We may thus iterate this process p− 1
more times and obtain D after 2p(d+ 3) moves.

We now show that this transformation is optimal. First observe that in every transfor-
mation from C to D, two tokens are present at each time in X, hence we actually obtain
a (possibly non optimal) transformation from {x1, x2} to {x6p+1, x6p+2} in X. Such trans-
formation must encounter each {xi, xi+1} in order. Therefore, for each transformation
from C to D in H, we may define S1 = C and Si (i ∈ [1, 6p+ 2]) as be the first indepen-
dent set following Si−1 and containing {xi, xi+1}. Note that by definition, for every i = 3
mod 6 (resp. 0 mod 6), Si = B ∪ {xi, xi+1} (resp. Si = A ∪ {xi, xi+1}). So, for every
i = 0 or 3 mod 6, in order to transform Si into Si+3 we need at least d + 3 steps (since
we need to transform A into B plus three token moves on X).

Therefore, the length of the reconfiguration sequence from C to D is at least 2p(d+3),
which completes the proof.

Note that the graph H constructed in Lemma 18 has maximum independent sets of
size k+2. Therefore, taking p = n/3k and iterating the process bk/2c times starting from
the complement of a path yields a graph on at most n vertices witnessing the following.

Corollary 19. For any k > 2, D(n, k) = Ωk(nbk/2c).

In the proof of Lemma 18, we can see the vertices of indices 0 modulo 3 as toll booths
which enforces us to perform a lot of modifications in G in order to pass though these
vertices. To improve the bound of Corollary 19, we will generalize Lemma 18. Indeed
instead of gluing the complement of a path to G and increasing the size of the independent
sets by 2, we will copy a (slightly modified) copy of the graph of Theorem 3 and increase
the size of the independent sets by 3. Note that we cannot automatically, when we have
a graph with a large reconfiguration diameter, glue it with another graph and get a large
reconfiguration diameter since we need to be careful on where we put the toll booths.
(That is why the graph of Theorem 3 has to be slightly modified to work in our setting.)
The main ingredient for Theorem 5 is thus the following analogue of Lemma 18.

the electronic journal of combinatorics 30(3) (2023), #P3.8 12



Lemma 20. Let n, k be two integers. Let G be a graph with maximum independent sets
of size k such that the k-configuration graph of G has diameter d. Then there exists a
graph on at most |V (G)|+ 3kn vertices whose (k+ 3)-reconfiguration diameter is at least

dn2

eO(
√

logn) .

Proof. The construction is inspired from Section 3.2. Let S ′ be a largest 3-AP-free se-
quence in [1, n/64] and S be the set 8S ′+ 1. Recall that |S| = n

eO(
√
logn) . Denote by H the

graph obtained applying Lemma 16 to S. Recall that vertices of H can be labeled from
1 to n− 1 in such a way that:

1. the independent sets of size 3 have consecutive values modulo 8, and

2. if two such sets are adjacent in R3(H), then their symmetric difference contains two
elements whose difference is ±3 mod 8.

3. each vertex of H appears in at least one independent set in each connected compo-
nent of R3(H).

Let A and B two independent sets of G at distance d from each other in Rk(G).
Denote by G′ the graph obtained by taking a copy of G and H and adding all the edges:

• between V (G) \ A and vertices of H that are 0 mod 8.

• between V (G) \B and vertices of H that are 4 mod 8.

Note that since G has no independent set of size more than k, then any independent
set of G′ of size k + 3 decomposes as k vertices of G and 3 vertices of H. In particular,
any reconfiguration sequence from I to J in G′ yields a reconfiguration sequence from
I ∩ V (H) to J ∩ V (H) in H (and the same holds for G). Therefore Rk+3(G

′) contains at
least as many connected components as R3(H).

Let X1, . . . , Xr be a connected component of R3(H) which induces a path. By con-
struction, we may assume that X1 contains vertices that are 1,2, and 3 mod 8, and by (1)
and (2), each Xi contains vertices that are i, i+ 1 and i+ 2 mod 8. Up to reducing r by
at most 7, we may even assume that Xr also contains vertices that are 1, 2 and 3 mod 8.
Thus X1 ∪ A and Xr ∪ A are independent sets of G′.

Observe that if i = 1 mod 4, there is no edge between Xi and V (G), hence there is
a reconfiguration sequence of length d between Xi ∪ A and Xi ∪ B. Therefore, one can
reach Xr∪A from X1∪A going through the following steps: X1∪B,X2∪B,X3∪B,X4∪
B,X5 ∪B,X5 ∪ A, . . ..

Therefore, X1 ∪A and Xr ∪A are in the same connected component of Rk+3(G
′). Let

us now compute (a lower bound on) their distance. Consider a shortest reconfiguration
sequence between X1 ∪A and Xr ∪A. Recall that this yields a (non-necessarily shortest)
reconfiguration sequence from X1 to Xr in H. By (3), for every vertex of H which is 0 mod
8, we may choose a set Xi that contains it, and denote by Xi1 , . . . , Xin/8

the subsequence
they form (observe that this is well-defined since no Xi can contain two vertices that are
0 mod 8 by (1)).
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Now by (1) and (2), note that in the reconfiguration sequence between every Xij and
Xij+1

, there must exist some independent set Xi′j
containing a vertex that is 4 mod 8. By

construction, the only independent set of G′ containing each Xij (resp. Xi′j
) is Xij ∪ A

(resp. Xi′j
∪B). Therefore the distance between Xij ∪A and Xi′j

∪B is at least d, and so
is the distance between Xi′j

∪B and Xij+1
∪ A.

Therefore, the distance betweenX1∪A andXr∪A is at least 2d×(n
8
−1) = dn

4
−2d. Since

Rk+3(H) contains at least |S| components of diameter at least dn
4
−2d, applying Lemma 14

to G′ yields a graph on |V (G′)|+ (3k − 2)(|S| − 1) = |V (G)|+ n− 1 + (3k − 2)(|S| − 1)
vertices with diameter at least (4k− 4)(|S| − 1) + |S|dn/4− 2d|S|, which concludes since
|S| = n/eO(

√
logn).

As an immediate corollary, we obtain Theorem 5.

4 Conclusion

Let us start the conclusion with this simple remark:

Lemma 21. Let G be a graph. There exists a super-graph G′ of G with the same number of
vertices such that R3(G

′) is a path and the largest diameters of the connected components
of R3(G) and R3(G

′) are the same.

Proof. We start by adding arbitrarily edges toG while the largest diameter of a component
in R3(G) stays unchanged. To conclude, we show that R3(G) is a path. Let P be a
shortest path of maximal length in R3(G).

Assume that there is a node Z = {u, v, w} of R3(G) that is not in P . For each
x 6= y ∈ Z, adding the edge xy to G decreases the diameter of the component of P in
R3(G). Hence there must be an independent set of P that contains both x and y.

Therefore, we can assume that P contains three independent sets {u, v, a}, {u,w, b}
and {v, w, c}, which are all pairwise distinct since Z /∈ P . Since P is a shortest path
and these sets are all neighbors of Z, they must be consecutive in P . Therefore, we
have a = b = c. But then, {u, v, a}, {v, w, a} and {u,w, a} induces a triangle in R3(G), a
contradiction since P is induced.

Note that all the graphs obtained from our constructions also satisfy that their con-
figuration graphs are paths. We conjecture that the following is true in general:

Conjecture 22. For every k > 2 and every n, there exists a graph G on n vertices
maximizing D(n, k) and such that the Rk(G) is a path.

Note that this result holds for k = 2 (since complement of paths are tight) and for
k = 3 as proven in Lemma 21.

Another interesting question is the following. We have remarked that both lower and
upper bounds of the (6, 3)-problem correspond to the bounds obtained for the largest
possible diameter of R3(G). Are the two problems equivalent (up to a multiplicative
constant)? While the existence of a better diameter for some graph G would immediately
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imply a better bound for the (6, 3)-problem (by simply considering even vertices of a
shortest path), the converse is not immediate.
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figurability problems. Theoretical Computer Science, 439:9–15, 2012.

the electronic journal of combinatorics 30(3) (2023), #P3.8 15

https://core-challenge.github.io/2022/
https://arxiv.org/abs/2203.16861
https://arxiv.org/abs/2301.00317


[12] R. Klaus. Sur quelques ensembles d’entiers. CR Acad. Sci. Paris Ser. I Math,
234(388-390):19, 1952.

[13] D. Lokshtanov and A. E. Mouawad. The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1–7:19, 2019.

[14] N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.
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