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Abstract

This paper offers a systematic study of a family of graphs called amoebas. Amoe-
bas recently emerged from the study of forced patterns in 2-colorings of the edges of
the complete graph in the context of Ramsey-Turan theory and played an important
role in extremal zero-sum problems. Amoebas are graphs defined by means of the
following operation: Let G be a graph and let e ∈ E(G) and e′ ∈ E(G). If the graph
G′ = G− e+ e′ is isomorphic to G, we say G′ is obtained from G by performing a
feasible edge-replacement. We call G a local amoeba if, for any two copies G1, G2

of G on the same vertex set, G1 can be transformed into G2 by a chain of feasible
edge-replacements. On the other hand, G is called global amoeba if there is an inte-
ger t0 > 0 such that G∪ tK1 is a local amoeba for all t > t0. To model the dynamics
of the feasible edge-replacements of G, we define a group Fer(G) that satisfies that
G is a local amoeba if and only if Fer(G) ∼= Sn, where n is the order of G. Via
this algebraic setting, a deeper understanding of the structure of amoebas and their
intrinsic properties comes into light. Moreover, we present different constructions
that prove the richness of these graph families showing, among other things, that
any connected graph can be a connected component of a global amoeba, that global
amoebas can be very dense and that they can have, in proportion to their order,
large clique and chromatic numbers. Also, a family of global amoeba trees with a
Fibonacci-like structure and with arbitrary large maximum degree is constructed.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Graphs called amoebas first appeared in [12] where certain Ramsey-Turán extremal prob-
lems were considered, which dealt with the existence of a given graph with a prescribed
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color pattern in 2-edge-colorings of the complete graph. More precisely, amoebas arose
from the search of a graph family with certain interpolation properties that could be
suitable to show balanceability or omnitonal properties [12] (see also [11]). The graphs
named just “amoebas” in [12] are called in this paper, with their rich, Matroid resembling
properties, “global amoebas”, as we will distinguish them from a similar family that we
call “local amoebas”. For the interested reader, we refer to [6, 22, 23, 32, 36, 37, 44] for
more literature related to interpolation techniques in graphs.

The feature that makes amoebas work are one-by-one replacements of edges, where,
at each step, some edge is substituted by another such that an isomorphic copy of the
graph is created. We call such edge substitutions feasible edge-replacements. Similar
edge-operations have been studied, for instance, in [13, 18, 19, 28, 37, 39]. As introduced
in [11], a family F of graphs, all of them having the same number of edges, is called closed
in a graph H if, for every two copies F, F ′ of members of F contained in H, there is a
chain of graphs H1, H2, . . . , Hk in H such that H1

∼= F , Hk
∼= F ′, and, for 2 6 i 6 k, Hi

is isomorphic to a member of F and Hi is obtained from Hi−1 by interchanging one edge
with another (an edge-replacement that is not necessarily feasible). Perhaps the most
well-known closed family is the family of all spanning trees of a connected graph H, and
the edge-replacement operation given above is in fact the basic operation in the exchange
of bases in the cycle matroid M(H) of H. A graph G is a global amoeba precisely when
{G} is a closed family in Kn (for n large enough), and it is a local amoeba if {G} is a
closed family in Kn(G). Exactly this global amoeba property is the key to the usefulness of
amoebas in interpolation theorems in Graph Theory and in zero-sum extremal problems
[11], and in problems about forced patterns in 2-colorings of the edges of Kn [12]. We
note at this point, once again, that the amoebas defined in [12] correspond to the class of
global amoebas.

A first encounter with amoebas gives the impression that such graphs are very rare
and have a very simple structure. This, however, is not the case and amoebas may have
quite a complicated structure. Indeed, we will consider here different constructions with
which we will show that any connected graph can be a connected component of a global
amoeba (Theorem 24), that global amoebas can be very dense (in fact, with as many as
n2/4 edges, being n the order of the graph) and, that they can have very large chromatic
number and cliques, too (as large as roughly half the order of the graph) (Theorem 30).
Also, we introduce an interesting family of global amoeba trees with a Fibonacci-like
structure and with arbitrary large maximum degree (Theorem 29).

Most concepts and definitions concerning amoebas can be stated in graph theoretical
language. However, a group theoretical setting with which the dynamics of the edge
replacements are modeled – and which involve graph isomorphisms – will be necessary for
proving several results. In particular, the proof of Theorem 3.8, which is a key element
for many other results, employs tools of permutation groups, which via graph theoretical
language would be too intricate. This is the reason why we will develop an algebraic
theoretical setting so that we can then formalize all concepts and definitions by means of
the permutation language, and we will proceed further on with the theory this way. The
research on amoebas is related to problems like switching in graphs [5, 25], reconfiguration

the electronic journal of combinatorics 30(3) (2023), #P3.9 2



problems [27, 35], token graphs [9, 17, 31] and, with respect to aspects of group action
language, to reconstruction problems in graphs [15, 24, 30]. Similar approaches that deal
with graph isomorphisms can be found in [1, 38, 40]. For group theoretical concepts, we
refer to [26].

The paper is organized as follows. In Section 2, we define local and global amoebas
formally by means of graph theoretical language, and present some basic results achievable
by graph theoretical tools. In Section 3, we introduce the group theoretical tools that
will let us model how the so-called feasible edge-replacements work via permutations.
By means of this algebraic setting, we will reformulate the definitions of global amoeba
and local amoeba (Definition 9). Section 4 contains our main result (Theorem 15) which
displays different characterizations of global amoebas by which the relation between global
and local amoebas is very clearly established. Moreover, it is shown, using non-trivial
examples, how the characterization is very handy. In Section 5, we will present some
interesting constructions of both local and global amoebas that will exhibit the richness
of this family of graphs.

Theorem 4.1

Proposition 5.2

Proposition 5.5

Lemma 8.3

Proposition 2.6

Proposition 2.3

Proposition 5.4

Theorem 5.7

Proposition 6.2

Lemma 8.2

Proposition 2.4

Example 2.5
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Theorem 5.12
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Theorem 6.1
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Remark 5.1
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Corollary 4.2

Example 5.9 Example 5.11

Example 3.6

Example 3.7

Definition 3.2

Example 3.1

Figure 1: Results dependence scheme.

For many of these results, Theorem 15 is a crucial tool. In Section 6, we exhibit
extremal global amoebas with respect to size, chromatic number and clique number. In
order to show the purpose of the results, we will illustrate with abundant examples. In
the final section, we provide the reader with several open problems which could bring
more light to understanding this very interesting family of graphs called amoebas. Figure
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1 depicts a scheme that captures the structure and the dependence between the results
of this paper. The scheme includes Definition 9 to emphasize that the developed theory
in Section 2 is needed to be able to establish the definition of local and global amoebas
via the algebraic approach. It is important to note that all subsequent results depend on
this definition and its group theoretical setting.

2 Amoebas: graph theoretical approach

As it was said in the introduction, the graph class of amoebas arose from the search of
a family with nice interpolation properties that work in solving certain Ramsey-Turán
extremal problems in 2-edge-colorings of the complete graph, see [12]. In order to define
amoebas, we need to formally establish what a feasible edge-replacement is.

Let G be a nonempty and non-complete graph. Given e ∈ E(G) and e′ ∈ E(G), we
say that the graph G′ = G − e + e′ is obtained from G by replacing the edge e with
e′. If G′ is a graph isomorphic to G, we say that the edge-replacement is feasible and
that G′ is obtained from G by a feasible edge-replacement. We also need to consider the
neutral edge-replacement as a feasible edge-replacement, which is given when no edge is
replaced at all. Note that every graph has at least one feasible edge replacement, namely
the neutral edge-replacement.

The following observation is a direct consequence of the definition of feasible edge-
replacement.

Observation 1. Let G be a nonempty and non-complete graph. Let uv ∈ E(G) and
u′v′ ∈ E(G). Suppose that G′ = G − uv + u′v′ ∼= G. Then we have, for any vertex
w ∈ V (G),

degG′(w) =


degG(w)− 1, if w ∈ {u, v} \ {u′, v′}
degG(w) + 1, if w ∈ {u′, v′} \ {u, v}
degG(w), else.

(1)

Thus, for a graph that is nonempty and non-complete, there are two types of non-
neutral feasible edge-replacements (if any), according to how many vertices (0 or 1) share
the edge we remove and the edge we insert. Now we will define global and local amoebas.

Definition 2. A graph G is called a local amoeba if, for any two isomorphic copies of G on
the same vertex set V = V (G), say F and H, there is a chain F = G0, G1, G2, . . . , G` = H
such that, for every 1 6 i 6 `, Gi

∼= G and Gi is obtained from Gi−1 by a feasible edge-
replacement. Moreover, G is called global amoeba if there is an integer t0 > 0 such that
G ∪ tK1 is a local amoeba for every t > t0.

By means of this innocent technical definition of global amoeba, one can imagine how
it is possible to move from any copy of a global amoeba G in Kn to any other copy of G
in Kn, if n is large enough. We shall see later on that n = n(G) + 1 (i.e. t0 = 1) suffices.
The following is a simple but very useful result.
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Proposition 3. Let G be a graph with minimum degree δ and maximum degree ∆. If G
is a local amoeba then, for every integer r with δ 6 r 6 ∆, there is a vertex v ∈ V (G)
with degG(v) = r. If G is a global amoeba the same is true and, moreover, δ 6 1.

Proof. Let G be a local amoeba embedded in Kn, and let v ∈ V (G) with degG(v) = δ.
Let H be an isomorphic copy of G embedded in Kn with degH(v) = ∆. Since G is a
local amoeba we know there is a chain G = G0, G1, G2, . . . , G` = H such that, for every
1 6 i 6 `, Gi

∼= G and Gi is obtained from Gi−1 by a feasible edge-replacement. Then, by
setting di = degGi(v), we have a sequence of integers d0, d1, . . . , d` where d0 = δ, d` = ∆
and, by Observation 1, for every 0 6 i 6 `− 1, we have di− 1 6 di+1 6 di + 1. Now, fix r
with δ + 1 6 r 6 ∆− 1, and let m = max{i : di 6 r}. We claim that dm = r, otherwise,
if dm < r then dm+1 6 dm + 1 < r + 1, thus dm+1 6 r which is a contradiction (by the
definition of m). Hence, we find a vertex of degree r in Gm which is graph isomorphic to
G.

If G is a global amoeba, let G be embedded in KN for some N > n. Let v ∈
V (KN) \ V (G) and recall that we set degG(v) = 0. To complete the proof, we proceed as
in the previous paragraph to find vertices of degree r for every 1 6 r 6 ∆− 1.

By Observation 1, regular graphs have the neutral edge-replacement as its only feasible
edge-replacement. Hence, no regular graph, except for the complete or the empty graph,
can be a local amoeba. Similarly, no regular graph, except for n

2
K2, for even n, or Kn can

be a global amoeba. We use Proposition 3 to formalize the above concerning not only
regular graphs but also graphs that have the neutral edge-replacement as its only feasible
edge-replacement.

Proposition 4. Let G be a graph of order n > 1 having the neutral edge-replacement as
its only feasible edge-replacement. Then

(i) G is a local amoeba if and only if either G = Kn, or G = Kn;

(ii) G is a global amoeba if and only if either G = n
2
K2, for even n, or G = Kn.

Proof. (i) Supposing that G is a local amoeba, the fact of G having the neutral edge-
replacement as its only feasible edge-replacement means that every isomorphic copy G′ of
G on the same vertex set V (G) has the same set of edges as G, that is, E(G′) = E(G).
This can only happen when G = Kn, or G = Kn, which are clearly local amoebas.

(ii) The fact that G = Kn is a global amoeba having only the neutral edge-replacement as
a feasible edge-replacement is obvious. Since G = n

2
K2 is a 1-regular graph, then its only

feasible edge-replacement is the neutral one. To see that G = n
2
K2 is a global amoeba

is not hard if we consider enough extra isolated vertices. We leave it as an exercise to
argue that n

2
K2 ∪ tK1 is a local amoeba for every t > n+ 4 (in any case, we will provide

a general argument to prove this in Section 3).
Suppose now that G is a global amoeba having the neutral edge-replacements as its

only feasible edge-replacement. By Proposition 3, G has minimum degree δ(G) 6 1. If
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δ(G) = 0, then G = Kn (otherwise, G would have vertices of positive degree and, by
Proposition 3, there would be a vertex x of degree 1, which would imply the existence
of a feasible edge replacement in G involving the edge incident to x and the isolated
vertex). If δ(G) = 1, we will prove that G = n

2
K2 by showing that ∆(G) = 1. Suppose

to the contrary that ∆(G) > 2. By definition, there is an integer t0 > 0 such that
G ∪ tK1 is a local amoeba for every t > t0. Since G has a vertex of degree at least 2,
there must be two copies H and H ′ of G ∪ tK1 such that H ′ is obtained from H by a
feasible edge-replacement and such that a vertex v of H with degH(v) > 2 gets its degree
reduced by one. By Observation 1, this can only happen if there are vertices u, u′, v′ such
that H ′ = H − uv + u′v′ and v /∈ {u′, v′}. Now, the fact that G has no feasible edge-
replacement different from the neutral one implies that all feasible edge-replacements of
H have to involve isolated vertices. Thus, some of u′ or v′ is an isolated vertex, say
degH(u′) = 0. This forces that degH(u) = 1 and, since H and H ′ are isomorphic graphs,
it follows that degH(v′) = degH(v). But, in such a situation, replacing the edge uv by
uv′ would represent a feasible non-neutral edge-replacement of G, which does not exist.
Hence, ∆(G) = 1 and we are done.

In the following example, we exhibit simple graphs concerning all possibilities of being,
or not, a local or a global amoeba. Items (i), (ii), and (iii) follow easily or directly from
Propositions 3 and 4. We leave the formal proof of item (iv) as an exercise for the reader.
Later on, we will provide other arguments by which this can be proven quite smoothly
(see Example 13).

Example 5.

(i) Stars K1,n−1, with n > 4, are neither local nor global amoebas. Also, graphs of
order n that are r-regular, for 2 6 r 6 n− 2, are neither local nor global amoebas.

(ii) For every n > 3, the complete graph Kn is a local but not a global amoeba.

(iii) For every even n > 4, the graph n
2
K2 is a global but not a local amoeba.

(iv) For every n > 2, the path Pn on n vertices is both, a local amoeba and a global
amoeba.

With the aim of showing the richness of both classes of local and global amoebas, we
will see more examples throughout the paper. The following proposition gives us useful
information about graphs with minimum degree 0 or 1.

Proposition 6. Let G be a graph of order n. If G is a local amoeba with δ(G) ∈ {0, 1},
then G ∪K1 is a local amoeba, and so G is a global amoeba.

Proof. Let G be a local amoeba of order n with δ(G) ∈ {0, 1}. First of all note that, if
G = Kn, we are done. Hence, δ(G) 6 1 6 ∆(G), which, in view of Proposition 3, implies
that G has a vertex of degree 1.

Define G′ = G ∪ K1. We need to prove that for any two isomorphic copies of G′ on
the vertex set V ′ = V (G′), say F ′ and H ′, there is a chain of feasible edge-replacements
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that takes F ′ to H ′. Since both F ′ and H ′ are isomorphic to G′, we know that there are
vertices u and w such that degF ′(u) = 0 and degH′(w) = 0. We consider two cases: either
u = w, or u 6= w. In the first case, we are done, since F ′−u ∼= H ′−w ∼= G and G is a local
amoeba. In the second case, we will make use of two auxiliary copies of G, J ′ and K ′,
such that, by means of feasible edge-replacements, we will be able to transform F ′ into
J ′, J ′ into K ′, and finally K ′ into H ′. To this aim, consider a vertex v of degree 1 in F ′.
Note that both v and w belong to V (F ′)\{u}. Since F ′−u ∼= G and G is a local amoeba,
we know there is a chain of feasible edge-replacements that takes F ′ − u into a graph J ,
isomorphic to G, where degJ(w) = 1. But this chain of feasible edge-replacements is also
a chain of feasible edge-replacements that takes F ′ to a graph J ′, where u is an isolated
vertex of J ′ (that is, J = J ′ − u), and degJ ′(w) = 1. Let y be the neighbor of w in J ′.
Consider now the graph K ′ = J ′ − yw + yu ∼= G′. Since K = K ′ − w ∼= H ′ − w ∼= G and
G is a local amoeba, there is a chain of feasible edge-replacements that transforms K into
H ′−w. Clearly, this chain of feasible edge-replacements can be also used to transform K
into H.

In view of Proposition 6 we conclude that, if one knows that a graph G ∪ t0K1 is a
local amoeba for some integer t0 > 0, then G∪ tK1 is a local amoeba for all t > t0. Hence,
to prove that a graph G is a global amoeba, one has only to find a t > 1 for which G∪ tK1

is a local amoeba. This means that the definition of global amoeba can be established as:
G is a global amoeba if there is an integer t > 1 such that G ∪ tK1 is a local amoeba.

A natural question that arises at this point is the following.

Question 7. Let G be a global amoeba. What is the minimum t for which G ∪ tK1 is a
local amoeba? Does the value of such minimum t depend on the structure of G?

Interestingly, it turns out that we just need t = 1, and that occurs for any global
amoeba. This is shown in Theorem 15, which is a major achievement of this paper.

3 Amoebas: algebraic approach

For positive integers m and n with m < n we use the standard notation [n] = {1, 2, . . . , n}
and [m,n] = {m,m+ 1,m+ 2, . . . , n}. For a finite set X, let SX be the symmetric group,
whose elements are permutations of X, and let Sn = S[n]. We will use the standard cycle
notation when referring to particular permutations. The group of automorphisms of a
graph G is denoted by Aut(G). Throughout this paper, every graph G we consider will
be equipped with a labeling on its vertex set λ : V (G) → X, which will be always a
bijection. We define vx = λ−1(x), for each x ∈ X. Let LG = {ij | vivj ∈ E(G)} be the
set of labels of the edges of G, where we do not distinguish between ij and ji. For a
permutation σ ∈ SX , we define Gσ as the copy of G on the vertex set V (Gσ) = V (G) and
edge set

E(Gσ) = {vivj | σ(i)σ(j) ∈ LG}.
Observe that, for every graph G′ on V (G) isomorphic to G there are |Aut(G)| different

copies Gσ that correspond to G′. That is, the set {σ ∈ SX |Gσ = G′} has |Aut(G)|
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elements. Moreover, {σ ∈ SX |Gσ = G} ∼= Aut(G). We will set

AG = {σ ∈ SX |Gσ = G}.

Example 8. Let G ∼= P4 with V (G) = {v1, v2, v3, v4} and E(G) = {v1v2, v2v3, v3v4}.
Given the labeling λ : V (G) → [4] with λ(vi) = i, i ∈ [4], we have LG = {12, 23, 34}
and {σ ∈ S4 |Gσ = G} = {id, (14)(23)} ∼= Aut(P4). For G′, the isomorphic copy of G
defined by E(G′) = {v1v3, v2v3, v2v4}, we have two permutations, namely (23) and (14),
that satisfy G(23) = G(14) = G′. See Figure 2 to visualize the corresponding labelings and
observe that, in all cases, E(Gσ) = {vivj | σ(i)σ(j) ∈ LG}. For example, E(G(23)) =
{vivj | σ(i)σ(j) ∈ LG} = {v1v3, v3v2, v2v4}.

v2
<latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit>
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<latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit>

v3
<latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit>

v4
<latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit>
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v2

<latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit>

v1
<latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit>

v3
<latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit>

v4
<latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit>
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3
v2

<latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit>

v1
<latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit>

v3
<latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit>

v4
<latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit>

1

42

3

G = G(14)(23)
<latexit sha1_base64="NSlMDFE3abJAVjowzvChk6KM8ZA=">AAAB83icbZDLTsJAFIZPvSLeqi7dNIIJbEiLJLoxIXGBS0zkkkDTTIcDTJheMjMlIQ1Poiuj7nwTX8C3ccAuFPxX35z/n+Sc3485k8q2v4yNza3tnd3cXn7/4PDo2Dw5bcsoERRbNOKR6PpEImchthRTHLuxQBL4HDv+5G7hd6YoJIvCRzWL0Q3IKGRDRonSI880i43bhpeWnFq5VL0qz4ueWbAr9lLWOjgZFCBT0zM/+4OIJgGGinIiZc+xY+WmRChGOc7z/URiTOiEjLCnMSQBSjddbj63LoeRsNQYreX7dzYlgZSzwNeZgKixXPUWw/+8XqKGN27KwjhRGFId0d4w4ZaKrEUB1oAJpIrPNBAqmN7SomMiCFW6prw+31k9dh3a1YpjV5yHaqFey4rIwTlcQAkcuIY63EMTWkBhCs/wBu9GYjwZL8brT3TDyP6cwR8ZH9+bpY6m</latexit><latexit sha1_base64="NSlMDFE3abJAVjowzvChk6KM8ZA=">AAAB83icbZDLTsJAFIZPvSLeqi7dNIIJbEiLJLoxIXGBS0zkkkDTTIcDTJheMjMlIQ1Poiuj7nwTX8C3ccAuFPxX35z/n+Sc3485k8q2v4yNza3tnd3cXn7/4PDo2Dw5bcsoERRbNOKR6PpEImchthRTHLuxQBL4HDv+5G7hd6YoJIvCRzWL0Q3IKGRDRonSI880i43bhpeWnFq5VL0qz4ueWbAr9lLWOjgZFCBT0zM/+4OIJgGGinIiZc+xY+WmRChGOc7z/URiTOiEjLCnMSQBSjddbj63LoeRsNQYreX7dzYlgZSzwNeZgKixXPUWw/+8XqKGN27KwjhRGFId0d4w4ZaKrEUB1oAJpIrPNBAqmN7SomMiCFW6prw+31k9dh3a1YpjV5yHaqFey4rIwTlcQAkcuIY63EMTWkBhCs/wBu9GYjwZL8brT3TDyP6cwR8ZH9+bpY6m</latexit><latexit sha1_base64="NSlMDFE3abJAVjowzvChk6KM8ZA=">AAAB83icbZDLTsJAFIZPvSLeqi7dNIIJbEiLJLoxIXGBS0zkkkDTTIcDTJheMjMlIQ1Poiuj7nwTX8C3ccAuFPxX35z/n+Sc3485k8q2v4yNza3tnd3cXn7/4PDo2Dw5bcsoERRbNOKR6PpEImchthRTHLuxQBL4HDv+5G7hd6YoJIvCRzWL0Q3IKGRDRonSI880i43bhpeWnFq5VL0qz4ueWbAr9lLWOjgZFCBT0zM/+4OIJgGGinIiZc+xY+WmRChGOc7z/URiTOiEjLCnMSQBSjddbj63LoeRsNQYreX7dzYlgZSzwNeZgKixXPUWw/+8XqKGN27KwjhRGFId0d4w4ZaKrEUB1oAJpIrPNBAqmN7SomMiCFW6prw+31k9dh3a1YpjV5yHaqFey4rIwTlcQAkcuIY63EMTWkBhCs/wBu9GYjwZL8brT3TDyP6cwR8ZH9+bpY6m</latexit><latexit sha1_base64="NSlMDFE3abJAVjowzvChk6KM8ZA=">AAAB83icbZDLTsJAFIZPvSLeqi7dNIIJbEiLJLoxIXGBS0zkkkDTTIcDTJheMjMlIQ1Poiuj7nwTX8C3ccAuFPxX35z/n+Sc3485k8q2v4yNza3tnd3cXn7/4PDo2Dw5bcsoERRbNOKR6PpEImchthRTHLuxQBL4HDv+5G7hd6YoJIvCRzWL0Q3IKGRDRonSI880i43bhpeWnFq5VL0qz4ueWbAr9lLWOjgZFCBT0zM/+4OIJgGGinIiZc+xY+WmRChGOc7z/URiTOiEjLCnMSQBSjddbj63LoeRsNQYreX7dzYlgZSzwNeZgKixXPUWw/+8XqKGN27KwjhRGFId0d4w4ZaKrEUB1oAJpIrPNBAqmN7SomMiCFW6prw+31k9dh3a1YpjV5yHaqFey4rIwTlcQAkcuIY63EMTWkBhCs/wBu9GYjwZL8brT3TDyP6cwR8ZH9+bpY6m</latexit>

v2
<latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit><latexit sha1_base64="wtNZ9oSJfWnLD5GhYCZ2fAjl7uw=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph836+NqzW7Ya5FtcAqoQaHuuPo5miQsizDWTFClho6dai+nUnMmcFkZZQpTymZ0ikODMY1Qefl62SW5CRJJdIhk/f6dzWmk1CLyTSaiOlSb3mr4nzfMdND2ch6nmcaYmYjxgkwQnZBVZzLhEpkWCwOUSW62JCykkjJtLlMx9Z3NstvQazYcu+E8NGuddnGIMlzBNdyCAy3owD10wQUGHJ7hDd6t0HqyXqzXn2jJKv5cwh9ZH9+u7YuE</latexit>

v1
<latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit><latexit sha1_base64="5p65JHMab/0nXm4r0n6sOHAyf7c=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItG1iSuHGJiQUSaMh0uKUTpj+ZmZKQhlfQlVF3PpAv4Ns4YBcKntU395xJ7rl+KrjStv1llXZ29/YPyoeVo+OT07Pq+UVPJZlk6LJEJHLgU4WCx+hqrgUOUok08gX2/dndyu/PUSqexI96kaIX0WnMA86oNiO3Ph879XG1Zjfstcg2OAXUoFB3XP0cTRKWRRhrJqhSQ8dOtZdTqTkTuKyMMoUpZTM6xaHBmEaovHy97JLcBIkkOkSyfv/O5jRSahH5JhNRHapNbzX8zxtmOmh7OY/TTGPMTMR4QSaITsiqM5lwiUyLhQHKJDdbEhZSSZk2l6mY+s5m2W3oNRuO3XAemrVOuzhEGa7gGm7BgRZ04B664AIDDs/wBu9WaD1ZL9brT7RkFX8u4Y+sj2+tbouD</latexit>

v3
<latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit><latexit sha1_base64="WR2xPiXDe5znNEcUGCWDtjNoonU=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItLmRJ4sYlJhZIoCHT4ZZOmP5kZkpCGl5BV0bd+UC+gG/jgF0oeFbf3HMmuef6qeBK2/aXVdra3tndK+9XDg6Pjk+qp2ddlWSSocsSkci+TxUKHqOruRbYTyXSyBfY86d3S783Q6l4Ej/qeYpeRCcxDzij2ozc+mx0Ux9Va3bDXolsglNADQp1RtXP4ThhWYSxZoIqNXDsVHs5lZozgYvKMFOYUjalExwYjGmEystXyy7IVZBIokMkq/fvbE4jpeaRbzIR1aFa95bD/7xBpoOWl/M4zTTGzESMF2SC6IQsO5Mxl8i0mBugTHKzJWEhlZRpc5mKqe+sl92EbrPh2A3noVlrt4pDlOECLuEaHLiFNtxDB1xgwOEZ3uDdCq0n68V6/YmWrOLPOfyR9fENsGyLhQ==</latexit>

v4
<latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit><latexit sha1_base64="iZ1GZKSv+9Do9ZH43D6Rr91Tt0Y=">AAAB5nicbZDNTsJAFIVv8Q/xD3XpZiKYuCItMZEliRuXmFgggYZMh1s6YfqTmSkJaXgFXRl15wP5Ar6NA3ah4Fl9c8+Z5J7rp4IrbdtfVmlre2d3r7xfOTg8Oj6pnp51VZJJhi5LRCL7PlUoeIyu5lpgP5VII19gz5/eLf3eDKXiSfyo5yl6EZ3EPOCMajNy67PRTX1UrdkNeyWyCU4BNSjUGVU/h+OEZRHGmgmq1MCxU+3lVGrOBC4qw0xhStmUTnBgMKYRKi9fLbsgV0EiiQ6RrN6/szmNlJpHvslEVIdq3VsO//MGmQ5aXs7jNNMYMxMxXpAJohOy7EzGXCLTYm6AMsnNloSFVFKmzWUqpr6zXnYTus2GYzech2at3SoOUYYLuIRrcOAW2nAPHXCBAYdneIN3K7SerBfr9Sdasoo/5/BH1sc3seuLhg==</latexit>

4
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2

G = Gid
<latexit sha1_base64="Z+xZM3ssbbTTxgjjoPSQgx04+10=">AAAB63icbZDNTgIxFIXv4B/iH+rSTSOYuCIzxEQ3JiQucImJ/ESYkE65QEM7M2k7JmTCU+jKqDvfxhfwbSw4CwXP6us9p8k9N4gF18Z1v5zc2vrG5lZ+u7Czu7d/UDw8aukoUQybLBKR6gRUo+AhNg03AjuxQioDge1gcjP324+oNI/CezON0Zd0FPIhZ9TY0UO5fl3vp3wwK/eLJbfiLkRWwcugBJka/eJnbxCxRGJomKBadz03Nn5KleFM4KzQSzTGlE3oCLsWQypR++li4xk5G0aKmDGSxft3NqVS66kMbEZSM9bL3nz4n9dNzPDKT3kYJwZDZiPWGyaCmIjMi5MBV8iMmFqgTHG7JWFjqigz9jwFW99bLrsKrWrFcyveXbVUu8gOkYcTOIVz8OASanALDWgCgxCe4Q3eHek8OS/O608052R/juGPnI9vSO2Nmg==</latexit><latexit sha1_base64="Z+xZM3ssbbTTxgjjoPSQgx04+10=">AAAB63icbZDNTgIxFIXv4B/iH+rSTSOYuCIzxEQ3JiQucImJ/ESYkE65QEM7M2k7JmTCU+jKqDvfxhfwbSw4CwXP6us9p8k9N4gF18Z1v5zc2vrG5lZ+u7Czu7d/UDw8aukoUQybLBKR6gRUo+AhNg03AjuxQioDge1gcjP324+oNI/CezON0Zd0FPIhZ9TY0UO5fl3vp3wwK/eLJbfiLkRWwcugBJka/eJnbxCxRGJomKBadz03Nn5KleFM4KzQSzTGlE3oCLsWQypR++li4xk5G0aKmDGSxft3NqVS66kMbEZSM9bL3nz4n9dNzPDKT3kYJwZDZiPWGyaCmIjMi5MBV8iMmFqgTHG7JWFjqigz9jwFW99bLrsKrWrFcyveXbVUu8gOkYcTOIVz8OASanALDWgCgxCe4Q3eHek8OS/O608052R/juGPnI9vSO2Nmg==</latexit><latexit sha1_base64="Z+xZM3ssbbTTxgjjoPSQgx04+10=">AAAB63icbZDNTgIxFIXv4B/iH+rSTSOYuCIzxEQ3JiQucImJ/ESYkE65QEM7M2k7JmTCU+jKqDvfxhfwbSw4CwXP6us9p8k9N4gF18Z1v5zc2vrG5lZ+u7Czu7d/UDw8aukoUQybLBKR6gRUo+AhNg03AjuxQioDge1gcjP324+oNI/CezON0Zd0FPIhZ9TY0UO5fl3vp3wwK/eLJbfiLkRWwcugBJka/eJnbxCxRGJomKBadz03Nn5KleFM4KzQSzTGlE3oCLsWQypR++li4xk5G0aKmDGSxft3NqVS66kMbEZSM9bL3nz4n9dNzPDKT3kYJwZDZiPWGyaCmIjMi5MBV8iMmFqgTHG7JWFjqigz9jwFW99bLrsKrWrFcyveXbVUu8gOkYcTOIVz8OASanALDWgCgxCe4Q3eHek8OS/O608052R/juGPnI9vSO2Nmg==</latexit><latexit sha1_base64="Z+xZM3ssbbTTxgjjoPSQgx04+10=">AAAB63icbZDNTgIxFIXv4B/iH+rSTSOYuCIzxEQ3JiQucImJ/ESYkE65QEM7M2k7JmTCU+jKqDvfxhfwbSw4CwXP6us9p8k9N4gF18Z1v5zc2vrG5lZ+u7Czu7d/UDw8aukoUQybLBKR6gRUo+AhNg03AjuxQioDge1gcjP324+oNI/CezON0Zd0FPIhZ9TY0UO5fl3vp3wwK/eLJbfiLkRWwcugBJka/eJnbxCxRGJomKBadz03Nn5KleFM4KzQSzTGlE3oCLsWQypR++li4xk5G0aKmDGSxft3NqVS66kMbEZSM9bL3nz4n9dNzPDKT3kYJwZDZiPWGyaCmIjMi5MBV8iMmFqgTHG7JWFjqigz9jwFW99bLrsKrWrFcyveXbVUu8gOkYcTOIVz8OASanALDWgCgxCe4Q3eHek8OS/O608052R/juGPnI9vSO2Nmg==</latexit> G0 = G(14)

<latexit sha1_base64="f0k3YIjcLNgdj2J8TMB2sOtDk08=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZQqIbExIXuMRELglMSKccoKFzse2YkAmvoSuj7nwYX8C3seAsFPxXX8//Nzn/8SLBlbbtLyuztr6xuZXdzu3s7u0f5A+PWiqMJcMmC0UoOx5VKHiATc21wE4kkfqewLY3uZn77UeUiofBvZ5G6Pp0FPAhZ1SbkVusn1/X+0nJqV7Miv18wS7bC5FVcFIoQKpGP//ZG4Qs9jHQTFCluo4daTehUnMmcJbrxQojyiZ0hF2DAfVRucli6Rk5G4aS6DGSxft3NqG+UlPfMxmf6rFa9ubD/7xurIdXbsKDKNYYMBMx3jAWRIdk3p0MuESmxdQAZZKbLQkbU0mZNhfKmfrOctlVaFXKjl127iqFWjU9RBZO4BRK4MAl1OAWGtAEBg/wDG/wbkXWk/Vivf5EM1b65xj+yPr4BtWdjcg=</latexit><latexit sha1_base64="f0k3YIjcLNgdj2J8TMB2sOtDk08=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZQqIbExIXuMRELglMSKccoKFzse2YkAmvoSuj7nwYX8C3seAsFPxXX8//Nzn/8SLBlbbtLyuztr6xuZXdzu3s7u0f5A+PWiqMJcMmC0UoOx5VKHiATc21wE4kkfqewLY3uZn77UeUiofBvZ5G6Pp0FPAhZ1SbkVusn1/X+0nJqV7Miv18wS7bC5FVcFIoQKpGP//ZG4Qs9jHQTFCluo4daTehUnMmcJbrxQojyiZ0hF2DAfVRucli6Rk5G4aS6DGSxft3NqG+UlPfMxmf6rFa9ubD/7xurIdXbsKDKNYYMBMx3jAWRIdk3p0MuESmxdQAZZKbLQkbU0mZNhfKmfrOctlVaFXKjl127iqFWjU9RBZO4BRK4MAl1OAWGtAEBg/wDG/wbkXWk/Vivf5EM1b65xj+yPr4BtWdjcg=</latexit><latexit sha1_base64="f0k3YIjcLNgdj2J8TMB2sOtDk08=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZQqIbExIXuMRELglMSKccoKFzse2YkAmvoSuj7nwYX8C3seAsFPxXX8//Nzn/8SLBlbbtLyuztr6xuZXdzu3s7u0f5A+PWiqMJcMmC0UoOx5VKHiATc21wE4kkfqewLY3uZn77UeUiofBvZ5G6Pp0FPAhZ1SbkVusn1/X+0nJqV7Miv18wS7bC5FVcFIoQKpGP//ZG4Qs9jHQTFCluo4daTehUnMmcJbrxQojyiZ0hF2DAfVRucli6Rk5G4aS6DGSxft3NqG+UlPfMxmf6rFa9ubD/7xurIdXbsKDKNYYMBMx3jAWRIdk3p0MuESmxdQAZZKbLQkbU0mZNhfKmfrOctlVaFXKjl127iqFWjU9RBZO4BRK4MAl1OAWGtAEBg/wDG/wbkXWk/Vivf5EM1b65xj+yPr4BtWdjcg=</latexit><latexit sha1_base64="f0k3YIjcLNgdj2J8TMB2sOtDk08=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZQqIbExIXuMRELglMSKccoKFzse2YkAmvoSuj7nwYX8C3seAsFPxXX8//Nzn/8SLBlbbtLyuztr6xuZXdzu3s7u0f5A+PWiqMJcMmC0UoOx5VKHiATc21wE4kkfqewLY3uZn77UeUiofBvZ5G6Pp0FPAhZ1SbkVusn1/X+0nJqV7Miv18wS7bC5FVcFIoQKpGP//ZG4Qs9jHQTFCluo4daTehUnMmcJbrxQojyiZ0hF2DAfVRucli6Rk5G4aS6DGSxft3NqG+UlPfMxmf6rFa9ubD/7xurIdXbsKDKNYYMBMx3jAWRIdk3p0MuESmxdQAZZKbLQkbU0mZNhfKmfrOctlVaFXKjl127iqFWjU9RBZO4BRK4MAl1OAWGtAEBg/wDG/wbkXWk/Vivf5EM1b65xj+yPr4BtWdjcg=</latexit>

G0 = G(23)
<latexit sha1_base64="KQWGpZdwUvA0M/EUEAphwNcidxw=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZNNGNCYkLXGIilwQmpFPOQEPnYtsxIRNeQ1dG3fkwvoBvY0EWCv6rr+f/m5z/eLHgStv2l5VZWV1b38hu5ra2d3b38vsHTRUlkmGDRSKSbY8qFDzEhuZaYDuWSANPYMsb3Uz91iNKxaPwXo9jdAM6CLnPGdVm5BZrp9e1XlqqnJ9Nir18wS7bM5FlcOZQgLnqvfxntx+xJMBQM0GV6jh2rN2USs2ZwEmumyiMKRvRAXYMhjRA5aazpSfkxI8k0UMks/fvbEoDpcaBZzIB1UO16E2H/3mdRPtXbsrDONEYMhMxnp8IoiMy7U76XCLTYmyAMsnNloQNqaRMmwvlTH1nsewyNCtlxy47d5VC9WJ+iCwcwTGUwIFLqMIt1KEBDB7gGd7g3YqtJ+vFev2JZqz5n0P4I+vjG9Wejcg=</latexit><latexit sha1_base64="KQWGpZdwUvA0M/EUEAphwNcidxw=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZNNGNCYkLXGIilwQmpFPOQEPnYtsxIRNeQ1dG3fkwvoBvY0EWCv6rr+f/m5z/eLHgStv2l5VZWV1b38hu5ra2d3b38vsHTRUlkmGDRSKSbY8qFDzEhuZaYDuWSANPYMsb3Uz91iNKxaPwXo9jdAM6CLnPGdVm5BZrp9e1XlqqnJ9Nir18wS7bM5FlcOZQgLnqvfxntx+xJMBQM0GV6jh2rN2USs2ZwEmumyiMKRvRAXYMhjRA5aazpSfkxI8k0UMks/fvbEoDpcaBZzIB1UO16E2H/3mdRPtXbsrDONEYMhMxnp8IoiMy7U76XCLTYmyAMsnNloQNqaRMmwvlTH1nsewyNCtlxy47d5VC9WJ+iCwcwTGUwIFLqMIt1KEBDB7gGd7g3YqtJ+vFev2JZqz5n0P4I+vjG9Wejcg=</latexit><latexit sha1_base64="KQWGpZdwUvA0M/EUEAphwNcidxw=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZNNGNCYkLXGIilwQmpFPOQEPnYtsxIRNeQ1dG3fkwvoBvY0EWCv6rr+f/m5z/eLHgStv2l5VZWV1b38hu5ra2d3b38vsHTRUlkmGDRSKSbY8qFDzEhuZaYDuWSANPYMsb3Uz91iNKxaPwXo9jdAM6CLnPGdVm5BZrp9e1XlqqnJ9Nir18wS7bM5FlcOZQgLnqvfxntx+xJMBQM0GV6jh2rN2USs2ZwEmumyiMKRvRAXYMhjRA5aazpSfkxI8k0UMks/fvbEoDpcaBZzIB1UO16E2H/3mdRPtXbsrDONEYMhMxnp8IoiMy7U76XCLTYmyAMsnNloQNqaRMmwvlTH1nsewyNCtlxy47d5VC9WJ+iCwcwTGUwIFLqMIt1KEBDB7gGd7g3YqtJ+vFev2JZqz5n0P4I+vjG9Wejcg=</latexit><latexit sha1_base64="KQWGpZdwUvA0M/EUEAphwNcidxw=">AAAB7nicbZDLTgIxFIbP4A3xhrp00whG3JAZNNGNCYkLXGIilwQmpFPOQEPnYtsxIRNeQ1dG3fkwvoBvY0EWCv6rr+f/m5z/eLHgStv2l5VZWV1b38hu5ra2d3b38vsHTRUlkmGDRSKSbY8qFDzEhuZaYDuWSANPYMsb3Uz91iNKxaPwXo9jdAM6CLnPGdVm5BZrp9e1XlqqnJ9Nir18wS7bM5FlcOZQgLnqvfxntx+xJMBQM0GV6jh2rN2USs2ZwEmumyiMKRvRAXYMhjRA5aazpSfkxI8k0UMks/fvbEoDpcaBZzIB1UO16E2H/3mdRPtXbsrDONEYMhMxnp8IoiMy7U76XCLTYmyAMsnNloQNqaRMmwvlTH1nsewyNCtlxy47d5VC9WJ+iCwcwTGUwIFLqMIt1KEBDB7gGd7g3YqtJ+vFev2JZqz5n0P4I+vjG9Wejcg=</latexit>

Figure 2: For G = P4 with V (P4) = {v1, v2, v3, v4}, E(P4) = {v1v2, v2v3, v3v4}, and
λ(vi) = i, i ∈ [4], we have LG = {12, 23, 34}. The labelings corresponding to the permutations
id, (14)(23), (23) and (14) are depicted (left to right) showing the copies G = Gid = G(14)(23)

and G′ = G(23) = G(14), where E(Gσ) = {vivj | σ(i)σ(j) ∈ LG} in all cases.

The key point of using labels on the vertices is to keep track of the role each vertex and
each edge is playing in each of the copies of G. More precisely, note that the corresponding
copies of the vertices and edges of G in Gσ are given by their labels: The copy of vertex
vi of G is the vertex of Gσ having label i, while the copy of an edge vivj ∈ E(G) is the
edge of Gσ having label ij. It is important to note that LGσ = LG for all σ ∈ SX , i.e.
the set of labels of the edges of G remains invariant among all copies Gσ, σ ∈ SX . Given
the prescribed labeling, we can talk now about edge-replacements by means of elements
in LG. In this context, we will denote by rs→ kl the edge-replacement that corresponds
to deleting the edge with label rs and adding the edge with label kl. When the edge-
replacement rs→ kl is feasible, it means that G−vrvs+vkvl ∼= G. We denote with ∅ → ∅
the neutral edge-replacement, where no edge is replaced at all. We define now

RG = {rs→ kl | G− vrvs + vkvl ∼= G, rs 6= kl} ∪ {∅ → ∅}

as the set of all feasible edge-replacements of G given by their labels together with the
neutral edge-replacement. Let R∗G = RG \ {∅ → ∅}. We will use sometimes the notation
e → e′ ∈ RG when we do not require to specify the labels of the vertices involved in
the edge-replacement, and it includes the possibility that e → e′ is the neutral edge-
replacement.
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Notice that, since feasible edge-replacements are defined by the labels of the edges,
any e → e′ ∈ RG represents also a feasible edge-replacement of any copy Gσ, σ ∈ SX .
Hence, clearly RGσ = RG for any σ ∈ SX .

Given a feasible edge-replacement rs→ kl ∈ R∗G we will use the following notation

FerG(rs→ kl) = {σ ∈ SX | Gσ = G− vrvs + vkvl},

and we will set FerG(∅ → ∅) = AG.
That is, FerG(e → e′) is the set of permutations representing the |Aut(G)| different

copies of G that one can get to by means of performing the feasible edge-replacement
e→ e′ ∈ RG.

Observe that performing a feasible edge-replacement e → e′ ∈ RG in a copy Gρ of G
yields the copy of G given by the permutation σ ρ, where we can choose any σ ∈ FerG(e→
e′). In other words, we can model the application of a series of feasible edge-replacements
by considering the composition of the corresponding permutations. A formal proof of this
rather intuitive fact can be found in Lemma 39 in the Appendix. It now makes sense
to consider the group Fer(G) generated by the permutations associated to all feasible
edge-replacements, that is, by the set

EG =
⋃

e→e′∈RG

FerG(e→ e′).

Thus,
Fer(G) = 〈EG〉 .

Clearly, Fer(G) acts on the set {Gσ | σ ∈ SX} by means of (ρ,Gσ) 7→ Gρσ, where
ρ ∈ Fer(G) and σ ∈ SX . Observe that this action represents what happens when a series
of feasible edge-replacements, represented by ρ, is performed on a copy Gσ of G: the
result is the graph Gρσ. Hence, the property of being able to go from any copy Gσ to
any other Gσ′ by means of a chain of feasible edge replacements means that, for any
σ, σ′ ∈ SX , there is a ρ ∈ Fer(G) such that σ′ = ρσ, i.e. Fer(G) = SX . Recall also that,
by Proposition 6, if G ∪ t0K1 is a local amoeba for some t0 > 0, then actually G ∪ tK1 is
a local amoeba for every t > t0. Thus, we can define now local and global amoebas by
means of the group Fer(G).

Definition 9. Let G be a graph provided with a labeling λ : V (G)→ X on its vertices.
G is called a local amoeba if Fer(G) = SX . On the other hand, G is called global amoeba
if there is an integer t > 1 such that G ∪ tK1 is a local amoeba.

We shall also note that Aut(G) ∼= AG = {σ ∈ SX |Gσ = G} 6 Fer(G). In the next
lemma, we discuss the connection between the feasible edge-replacements of a graph G
and those of its complementary graph G, concluding that the corresponding associated
groups are the same.

Lemma 10. Let G be a graph provided with a labeling λ : V (G) → X on its vertices.
Then Fer(G) = Fer(G).
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Proof. By definition, it is enough to show that, for every feasible edge-replacement e →
e′ ∈ RG and σ ∈ FerG(e→ e′), there is a feasible edge-replacement in G represented by σ,
and vice-versa. If e → e′ = ∅ → ∅, then clearly G ∼= Gσ for any σ ∈ FerG(∅ → ∅) = AG.
Hence, take kl→ rs ∈ R∗G, and σ ∈ FerG(rs→ kl), and observe that

G ∼= Gσ = G− vrvs + vkvl = G− vkvl + vrvs,

which means that σ ∈ SG(kl→ rs). The converse is analogous.

As a consequence, we note the following.

Proposition 11. A graph G is a local amoeba if and only if its complementary graph G
is a local amoeba.

To continue, we need some terminology. Given a subgroup Γ 6 SX and k ∈ X, we
denote by Γk the orbit of k by means of the canonical action of Γ on X, i.e.

Γk = {σ(k) | σ ∈ Γ}.

If, for some Y ⊆ X and some k ∈ Y , we have that Γk = Y , then we say that Γ acts
transitively on Y . We denote by StabΓ(Y ), the stabilizer of Γ on Y , that is

StabΓ(Y ) = {σ ∈ Γ | σ(y) ∈ Y for all y ∈ Y }.

For an x ∈ X, we write StabΓ(x) instead of StabΓ({x}). Moreover, for σ ∈ SX and
Y ⊆ X, we denote with σ|Y the restriction of σ to Y , i.e. the mapping σ|Y : Y → X

defined by σ|Y (y) = σ(y) for y ∈ Y . Given sets A,B,X, Y and two mappings σ : A→ X,

and τ : B → Y such that σ(i) = τ(i) for every i ∈ A∩B, we denote with σ ∪ τ the union
of σ and τ , that is, the function σ ∪ τ : A ∪B → X ∪ Y such that

(σ ∪ τ)(i) =

{
σ(i), if i ∈ A
τ(i), if i ∈ B.

According to Definition 9, in order to determine whether a graph G with a vertex
labeling λ : V (G) → X is a local amoeba, we need to demonstrate that Fer(G) = SX .
Therefore, any way that enables us to generate the symmetric group SX using a small
number of specific permutations would be advantageous. For example, the following are
well known facts:

• For any i ∈ [1, n] we have that Sn = 〈(1 2 3 · · · n), (i i+ 1)〉.

• The set {(i n) | i ∈ [n− 1]} generates Sn.

• Let X be a finite set, and let k ∈ X. Then, for any subgroup Γ 6 StabSX (k) which
is transitive on X \ {k}, we have that SX = 〈Γ∪ {(i k)}〉, where i is any element of
∈ X \ {k}.

Due to this, we can derive the following observation.
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Observation 12. Let G be a graph, and let λ : V (G) → X be a labeling on its vertices.
In the following cases, G is a local amoeba:

• If X = [n], (1 2 3 · · · n) ∈ Fer(G) and, for some i ∈ [1, n], also (i i+ 1) ∈ Fer(G).

• If X = [n], and (i n) ∈ Fer(G) for all i ∈ [n− 1].

• If there is a k ∈ X such that StabFer(G)(k) acts transitively on X \ {k} and (i k) ∈
Fer(G) for some i ∈ X \ {k}.

Next, we will show how Definition 9 is very handy by completing the proof of items
(iii) and (iv) of Example 5. We also present an example that will be used in Section
5. The different feasible edge-replacements performed in Example 13 together with the
corresponding permutations are illustrated Figure 3.

Example 13.

(i) For n > 1, the path Pn on n vertices is a local and a global amoeba.

(ii) For n even, the graph n
2
K2 is a global amoeba but not a local amoeba.

(iii) For n > 3, the graph C(n, 1) obtained from a cycle on n vertices by attaching a
pendant vertex, is both, a local amoeba and a global amoeba.

Proof. (i) For n 6 2, we are done by Proposition 4. So we assume n > 3. Let P =
v1v2 · · · vn be a path on n > 3 vertices, with the labeling λ : V (P ) → [n], λ(vi) = i.
Consider the feasible edge-replacements n − 1 n → 1 n and 2 3 → 1 3, which give
the permutations (1 2 3 · · · n) and (1 2). Since 〈(1 2 3 · · · n), (1 2)〉 = Sn, P is a local
amoeba. Let now P ′ = P ∪ {vn+1}, a graph isomorphic to Pn ∪ K1, with the usual
labeling on its vertices. Clearly, (1 2 3 · · · n), (1 2) ∈ StabFer(P ′)(n + 1), which acts
transitively on [n] = [n+1]\{n+1}. Moreover, we have now the feasible edge-replacement
n − 1 n → n − 1 n + 1 that gives the permutation (n n + 1) ∈ Fer(P ′). Thus, By
Observation 12 we have that P ′ is a local amoeba, and thus P is a global amoeba.
(ii) Let n be even. To show that n

2
K2 is a global amoeba, we will demonstrate that

n
2
K2∪K1 is a local amoeba. Let n be even, and let G be a graph isomorphic to n

2
K2∪K1.

Let V (G) = {vi | i ∈ [n + 1]} and E(G) = {vivi+1 | i ∈ [n], i odd}. As usual, let
λ(vi) = i be a labeling on its vertices, i ∈ [n + 1]. Clearly, the permutations (i i + 1)
and (i n− 1)(i + 1 n) are contained in AG 6 Fer(G), for any odd i ∈ [n]. Moreover, the
edge-replacement n− 1 n→ n− 1 n+ 1 is certainly feasible, and so (n n+ 1) ∈ Fer(G).
Now we can see that, for any i ∈ [n], where i is odd, we have:

(i n− 1)(i+ 1 n) ◦ (n n+ 1) ◦ (i n− 1)(i+ 1 n) = (i+ 1 n+ 1) ∈ Fer(G).

Thus, we can also perform the following computation with elements from Fer(G):

(i i+ 1) ◦ (i+ 1 n+ 1) ◦ (i i+ 1) = (i n+ 1) ∈ Fer(G).
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Figure 3: Pn is local and global amoeba; n
2K2 is global but not local amoeba; C(n, 1) is global

and local amoeba.

the electronic journal of combinatorics 30(3) (2023), #P3.9 12



It follows that (j n+ 1) ∈ Fer(G) for every j ∈ [n]. This set of permutations is known to
generate Sn+1. Hence, G is a local amoeba and we are done.
(iii) Let C(n, 1) be defined on the vertex set {v1, v2, . . . , vn+1} with edges {vivi+1 | i ∈
Zn} ∪ {v1vn+1} and let it have the labeling λ : V (C(n, 1)) → [n + 1] with λ(vi) = i, for
i ∈ [n+ 1]. Then 1 (n+ 1)→ n (n+ 1) and (n− 1) n→ (n− 1) (n+ 1) are feasible edge-
replacements that give the permutations (1 2 3 · · · n) and (n n + 1) that generate Sn+1.
Thus, C(n, 1) is a local amoeba and, by Proposition 3, it is also a global amoeba.

The graphs Pn, n
2
K2 and C(n, 1) are still quite basic examples to test to which amoeba

family they belong. However, a simple application of the definition is not that easy to
use when we consider a little more complicated graphs (not necessarily large ones). For
example, the graph depicted below in Figure 4 can be shown to be a global amoeba and
that it is not a local amoeba. We will prove this later on by means of more sophisticated
tools that we will develop (see Example 17). Meanwhile, we leave to the reader to play
around with this example.

G9

Figure 4: Example of a graph that is a global amoeba but not a local amoeba.

We will finish this section with an interesting example that will play an important role
in Section 6. Let Hn be the graph of order n > 2 with V (Hn) = A ∪B such that, taking
q = bn

2
c, A = {v1, v2, . . . , vq} and B = {vq+1, vq+2, . . . , vq+dn

2
e}, where B is a clique, A is

an independent set and adjacencies between A and B are given by vivq+j ∈ E(Hn) if and
only if j 6 i, where 1 6 i 6 q and 1 6 j 6 dn

2
e (see Figure 5). Observe that deg(vi) = i

for all 1 6 i 6 q and deg(vq+j) = n − j for all 1 6 j 6 dn
2
e. Hence, we have one vertex

from each degree between 1 and n− 1 with exception of vertices vq and vn that have both
degree bn

2
c.

Example 14. Hn is both a local and a global amoeba.

Proof. In [7], it is shown that Hn is the only graph of order n having {deg(v) | v ∈
V (G)} = [n − 1]. Observe that Hn can be defined recursively in the following way.
By definition, H2

∼= K2, which is the same as H1 ∪K1. Now we will show that Hn
∼=

Hn−1 ∪K1 for n > 3. Indeed, this comes from the fact that the set of all degree values
in Hn−1 ∪ K1 is [n − 2] ∪ {0} yielding that the set of all degree values in Hn−1 ∪K1 is
{n− 1− d |0 6 d 6 n− 2} = [n− 1]. Hence, Hn

∼= Hn−1 ∪K1, for each n > 2. To show
that Hn is a global and a local amoeba, we proceed again by induction on n. H2

∼= K2 is
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clearly both a local and a global amoeba. Now we assume that Hn is a local and a global
amoeba for some n > 2. By Proposition 6, it follows that Hn∪K1 is a local amoeba. Then
also Hn+1

∼= Hn ∪K1 is a local amoeba (Proposition 11), and because it has minimum
degree 1, it is also a global amoeba (Proposition 6).

T5 v1

v3

v2

v5

v4

v8

v10

v7

v9

v6

vq+1 vq+2 v2q

vq

vq+3
Kq

Hn
v1 v2 v3

n = 2q

vq+1 vq+2 v2q

v1 v2 vq

vq+3

v3

vn
Kq+1

Hn
n = 2q + 1

Gn
v1 v2 vqv3

Kq

vn

n = 2q + 1

vq+1 vq+2 vq+3 v2q

Gn
n = 2q + 1

v1 v2 vq−1v3

Kq

vn

vq+1 vq+2 vq+3 v2q−1 v2q

vq

Figure 5: The graph Hn.

4 Main result

4.1 Characterizations of global amoebas

The following theorem provides equivalent statements for the definition of a global amoeba.
An important consequence of Theorem 15 is that it shows that a graph G is a global
amoeba if and only if G ∪K1 is a local amoeba, giving an answer to Question 7.

Theorem 15. Let G be a non-empty graph. Let λ : V (G) → X be a labeling on its
vertices, and let Γ = Fer(G). For each x ∈ X, let vx = λ−1(x). The following statements
are equivalent:

(i) G is a global amoeba.

(ii) G ∪K1 is a local amoeba.

(iii) For each x ∈ X, there is a y ∈ Γx such that degG(vy) = 1.

(iv) For each x ∈ X such that degG(vx) > 2, there is a σ ∈ Γ such that degG(vσ(x)) =
degG(vx)− 1.

Theorem 15 gives us interesting information about amoebas and useful tools to deter-
mine if a graph is a global amoeba. Before giving its proof, we will discuss some of its
consequences and give some examples of how it can be applied. Recall that, by Proposi-
tion 3, every global amoeba G has minimum degree 0 or 1. On the other hand, a local
amoeba can have minimum degree arbitrarily large (for example Kn), and by Proposi-
tion 6, a local amoeba with minimum degree 0 or 1 is a global amoeba, too. However,
the converse of the latter is only true when the graph has isolated vertices, as can be seen
with the graph G9 depicted in Figure 4.
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Corollary 16. Let G be a graph with minimum degree δ = 0. Then G is a local amoeba
if and only if G is a global amoeba.

Proof. If G is a local amoeba with δ = 0, then G ∪K1 is a local amoeba by Proposition
6. Hence, it follows with Theorem 15 that G is a global amoeba. For the only-if part, let
G be a global amoeba with an isolated vertex v. By definition, G− v is a global amoeba
and thus, by Theorem 15, G is a local amoeba.

To prove the usefulness of Theorem 15, let us consider two examples. The graph Gn

we describe next is a variation of the graph Hn in which we attach just a pendant vertex.
It turns out that, while the property of being a global amoeba is conserved, it is no longer
a local amoeba. Let Gn be the graph of odd order n = 2q + 1, for q > 4, obtained from
Hn−1 (see Example 14) by attaching a pendant vertex v2q+1 to vertex v2q (see Figure
6). Observe that the graph G9 is precisely the graph of Figure 4. The second example
is the so-called half-graph, as was named by Erdős and Hajnal [16]. The half-graph is
famous for being an example that shows that Szemerédi’s Regularity Lemma cannot be
strengthened to a regular partition [14]. The half-graph, which we denote here with En is
closely related to Hn, as can be seen in the following description: let En be the bipartite
graph of even order n = 2q > 2 with V (En) = A ∪ B such that A = {v1, v2, . . . , vq} and
B = {vq+1, vq+2, . . . , vn}, and the edges between A and B are given by vivq+j ∈ E(Hn) if
and only if j 6 i, where 1 6 i, j 6 q.

Example 17. The following graphs are global amoebas but not local amoebas:

(i) The graph Gn, for odd n > 9.

(ii) The graph En, for even n > 6.

Proof. (i) Let n = 2q + 1, where q > 4. We first note that the degrees of the vertices in
Gn are the following: deg(vj) = j for 1 6 j 6 q, deg(vq+j) = 2q − j for 1 6 j 6 q − 1,
deg(v2q) = q + 1, and deg(vn) = 1. By Theorem 15(iv), to prove that Gn is a global
amoeba, it is enough to show that, for each x ∈ [n] such that deg(vx) > 2, there is a
σ ∈ Fer(Gn) such that deg(vσ(x)) = deg(vx) − 1. For 2 6 j 6 q, we can see that the
feasible edge replacement j (q + j) → (j − 1) (q + j) implies that (j − 1 j) ∈ Fer(Gn).
Also, for 1 6 j 6 q−2, the feasible edge replacement j (q+j)→ j (q+j+1) implies that
(q+j q+j+1) ∈ Fer(Gn). Finally, the feasible edge replacements (q−1) (2q−1)→ (q−1) q
and 2q n → q n imply, respectively, that (q 2q − 1) and (q 2q) belong to Fer(Gn).
Therefore, every vertex with degree at least 2 can decrease its degree in one unit, as
desired. To see that Gn is not a local amoeba, observe that Fer(Gn) contains two orbits,
[2q] and {n}, because (having n > 9) there is no feasible edge-replacement that can change
the role of vn (see Figure 6 for a visual representation).
(ii) Let n = 2q, where q > 3. Using feasible edge-replacements similar as with Gn, we
obtain permutations (j j+1), and (q+j q+j+1), for 1 6 j 6 q−1. Moreover, the graph
has exactly one automorphism represented by the permutation (1 n)(2 n−1) . . . (q q+ 1).
We obtain therefore one single orbit, and, as En has vertices of degree 1, we conclude
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with Theorem 15(iii) that En is a global amoeba. However, besides the automorphism
mentioned above that interchanges the whole sets A and B, there is no other way of
permuting labels between vertices from A and vertices from B, and thus Fer(En) 6∼= Sn
(see Figure 6).

G9

Gn
n = 2q + 1

v1 v2 vq−1v3

Kq

vn

vq+1 vq+2 vq+3 v2q−1 v2q

vq En
n = 2q

v1 v2 vq−1v3

vq+1 vq+2 vq+3 v2q−1 v2q

vq

Figure 6: The graphs Gn and En and their orbits.

These examples are just a glimpse of the power of Theorem 15. In Section 5, it will
prove to be a very important tool.

4.2 Proof of Theorem 15

To prove Theorem 15, we will need a lemma that deals with the situation of edge re-
placements where no isolated vertex is involved or, on the contrary, when isolated vertices
are involved. The lemma is quite technical and graph theoretically it is easy to handle,
but the proof of Theorem 15 will require us to work with the group action, and so this
language is necessary. Due to these reasons, we chose to put it in the Appendix Section as
Lemma 41, and here we will just describe informally what it is about. First of all, let us
remark that, to have a better control of the situation, we will consider a graph G without
isolates and we will add to it t isolated vertices. Now we let U be a set of t vertices
disjoint from V (G), for some t > 1, and G∗ = G ∪ U ∼= G ∪ tK1. We use the labelings
λ : V (G) → X and λ : V (G∗) → X ∪ Y such that λ∗|V (G)

= λ, and let Γ = Fer(G) and

Γ∗ = Fer(G∗).
Lemma 41 has two statements. Item (i) deals with the case of a feasible edge replace-

ment e → e′ ∈ RG that does not involve isolated vertices. In such a situation, we have
that any permutation σ ∈ Γ∗(e → e′) permutes labels among X and maybe also among
Y but it does not interchange labels between the two sets. That happens, in particular,
when σ ∈ AG∗ . Moreover, the restriction σ|X of every such permutation σ corresponds to

a permutation in Γ(e→ e′) and AG = {ϕ|X | ϕ ∈ AG∗}.
In the second statement, we have a permutation in σ ∈ EG∗ that interchanges labels

between X and Y , meaning that there are vertices from G as well as isolated vertices
involved. This can only happen in one of the following situations: either we are deleting
a pending edge and inserting a new edge making it pend on the same vertex but joining
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now one of the isolated vertices, or we have an isolated edge (two adjacent vertices of
degree 1) and we are replacing it by an edge joining two of the isolated vertices outside
G. Item (ii) of Lemma 41 describes then how σ can be expressed in those two cases: it
can be written as a concatenation σ = ϕ ◦ (r k) or σ = ϕ ◦ (r k)(s l), where r, s ∈ X,
k, l ∈ Y , and ϕ ∈ EG∗∩StabΓ∗(X). In the second case, one can even deduce that ϕ ∈ AG∗ .

Now we are ready to present the proof of Theorem 15.

Proof of Theorem 15. We will show (i) ⇒ (iii) ⇒ (ii) ⇒ (i), and (iii) ⇔ (iv).

To see (i) ⇒ (iii), let G be a global amoeba. We will first handle the case that G has
no isolates and then the case with isolates will easily follow.
Case 1: Suppose that G has no isolates.
By definition of global amoeba, there is a t > 1 such that G∗ = G ∪ tK1 is a local
amoeba, that is, Fer(G∗) ∼= S|X|+t. Let λ∗ : V (G∗) → X ∪ Y a labeling on V (G∗) such
that λ∗|V (G)

= λ, and set vy = λ∗−1(y), for each y ∈ Y . Let Γ∗ = Fer(G∗), and let

x ∈ X. Take a permutation τ ∈ Γ∗ with τ(x) = m for some m ∈ Y . We know that
τ = σqσq−1 · · ·σ1 where σ1, . . . , σq ∈ EG∗ . Set τi = σi · · ·σ1, 1 6 i 6 q. If q = 1, we
have that τ ∈ EG∗ , and the facts that x ∈ X and τ(x) ∈ Y imply that, after an edge-
replacement, the vertex vx gets degree 0, meaning that it originally had degree 1. As
x ∈ Γx, in this case we are done. In case q > 2, we will show that τ can be chosen having
the following properties:

(a) τi(x) ∈ X for all 1 6 i 6 q − 1.

(b) τi(x) 6= τj(x) for any pair i, j with 1 6 i < j 6 q.

(c) σi ∈ StabΓ∗(X), for 1 6 i 6 q − 1.

If τi(x) ∈ Y for some i < q, then we can take τi instead of τ . Hence, we may as-
sume property (a). If τi(x) = τj(x) for some pair 1 6 i < j 6 q, then we can take
τ ′ = σqσq−1 · · ·σj+1σiσi−1 · · ·σ1 instead of τ . Hence, we may assume (b). Suppose
σj /∈ StabΓ∗(X) for some j ∈ {1, 2, . . . , q−1}. Choose j such that it is minimum with this
property. Then σj(r) ∈ Y for some r ∈ X, say σj(r) = k. By (a), we have r, k 6= τj−1(x).
By Lemma 41, either there is a ϕ ∈ EG∗ ∩StabΓ∗(X) such that σj = ϕ◦ (r k), or there is a
ϕ ∈ AG∗ such that σj = ϕ◦(r k)(s l) for certain s ∈ X \{r}, l ∈ Y \{k}. Suppose we have
the first case. Since ϕ ∈ EG∗ , and τj(x) = σj(τj−1(x)) = (ϕ ◦ (r k))(τj−1(x)) = ϕ(τj−1(x)),
we can replace τ by τ ′ = σ′q · · · σ′1, with σ′i = σi for 1 6 i 6 q, i 6= j, and σ′j = ϕ.
Suppose now that σj = ϕ ◦ (r k)(s l) for certain s ∈ [n] \ {r}, l ∈ Y \ {k}, where
ϕ ∈ AG∗ . Observe that, by item (i) of Lemma 41, ϕ ∈ EG∗ ∩ StabΓ∗(X). Then
σj(s) = ϕ ◦ (r k)(s l) = ϕ(l) ∈ Y . Thus, by (a), we know that s 6= τj−1(x). Hence,
we can proceed completely analogous to the previous case replacing σ′j by ϕ. Thus, we
can assume that σi ∈ StabΓ∗(X), for 1 6 i 6 q − 1 and property (c) is satisfied.
Set y = τq−1(x). Now, since σq ∈ EG∗ , y ∈ X, and

σq(y) = σq(τq−1(x)) = τq(x) = τ(x) = m ∈ Y,
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we have, in view of Observation 1, that degG∗(vy) = 1. Finally, we will show that y ∈ Γx.
To this aim, we will use the fact that σi ∈ StabΓ∗(X) for each 1 6 i 6 q − 1 and so
σi|X ∈ Γ by Lemma 41 (i). Then τq−1|X = (σq−1 · · ·σ1)|X ∈ Γ, and we have

τq−1|X(x) = τq−1(x) = y,

implying that y ∈ Γx. Since degG(vy) = degG∗(vy) = 1, we have finished.

Case 2: Suppose that G has a non-empty set U of isolated vertices.
Observe that, by definition and in view of Proposition 6, G− U is global amoeba if and
only if G is a global amoeba. Hence, if G is a global amoeba, it follows with Case 1 that
(G−U)∪K1 is a local amoeba, and, applying Proposition 6 as many times as necessary,
we obtain that G is a local amoeba and thus Fer(G) = SX . As G is non-empty, it has
to have at least one vertex of degree 1 by Proposition 3, say vy. Hence, we have that
y ∈ Fer(G)x = SXx = X for every x ∈ X.

To see (iii) ⇒ (ii), let G∗ = G ∪ K1 and let λ∗ : V (G∗) → X ∪ {y} a labeling such
that λ∗|V (G)

= λ. Let Γ∗ = Fer(G∗) and X ′ = {x ∈ X | degG(vx) = 1}. Note that item

(ii) is equivalent to say that X =
⋃
x∈X′ Γx. For every σ ∈ Γ, consider the permutation

σ ∪ ι ∈ StabSG∗ (n + 1), where ι = idS{n+1} . Let k ∈ Γi for some i ∈ X ′. Then there is a
σ ∈ Γ such that σ(k) = i. Moreover (i n+ 1) ∈ Γ∗ for every i ∈ X ′ because of the feasible
edge-replacement sii→ si(n+1) ∈ RG∗ , where vsi is the unique neighbor of vi in G. Then
(σ ∪ ι)−1(i n+ 1)(σ ∪ ι) = (k n+ 1) ∈ SG∗ . Since this holds for each k ∈

⋃p
i=1 SGi = [n],

(k n+ 1) ∈ SG∗ for all k ∈ [n] and we conclude that SG∗ ∼= Sn+1. Hence, G∗ = G ∪K1 is
a local amoeba.

Finally, the implication (ii) ⇒ (i) is direct by the definition of global amoeba and
Proposition 6, while (iii) ⇔ (iv) is easy to see considering Observation 1.

5 Constructions

In this section, we give several constructions of global amoebas that arise from smaller
ones. In particular, we will be able to construct large global amoebas, as well as global
amoebas having any connected graph as one of its components and global amoeba-trees
with arbitrarily large maximum degree. It is important to note that, by Proposition 6
and Proposition 11, every construction given here for a global amoeba G can also be used
to construct a local amoeba when considering the graph G ∪ tK1 for any t > 1, which
is, in fact, connected. In order to simplify things, we will make use of certain abuse of
notation when we deal with unions of graphs.

Remark 18. Let G = H ∪ H ′ be the disjoint union of two graphs H and H ′. Let λ :
V (H) → X and λ′ : V (H ′) → X ′ be labelings, where X ∩X ′ = ∅. Let Γ = Fer(H), and
Γ′ = Fer(H ′). We will identify the groups {σ∪τ | σ ∈ Γ, τ ∈ Γ′} and Γ×Γ′. Since we have
that Γ×Γ′ 6 StabFer(G)(X) 6 Fer(G), we have in particular that Γ ∼= Γ×〈idΓ′〉 6 Fer(G)
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and that Γ′ ∼= 〈idΓ〉 ×Γ′ 6 Fer(G). In an abuse of notation, we will say that Γ and Γ′ are
subgroups of Fer(G).

The formal argument of the existence of the subgroups mentioned in Remark 18 can
be checked in Lemma 40 of the Appendix.

5.1 Unions and expansions

As a consequence of Theorem 15, we will show, in the first place, that the vertex disjoint
union of two global amoebas is again a global amoeba.

Proposition 19. Let H and H ′ be two vertex-disjoint global amoebas. Then G = H ∪H ′
is a global amoeba, too.

Proof. Let λ : V (H)→ X and λ′ : V (H ′)→ X ′ be labelings on the vertices of H and H ′,
respectively, where X ∩X ′ = ∅. Let IX and IX′ be the sets of all labels of the vertices of
degree one in H and H ′, respectively. Let Γ = Fer(H) and Γ′ = Fer(H ′). Since H and H ′

are global amoebas, we have, by the equivalence of items (i) and (iii) of Theorem 15, that⋃
i∈IX

Γi = X and
⋃
i∈IX′

Γ′i = X ′.

Hence, with Γ× Γ′ 6 Fer(G) (see Remark 18), and I = IX ∪ IX′ we obtain

X ∪X ′ =
⋃
i∈I

(Γ× Γ′)i ⊆
⋃
i∈I

Fer(G)i,

from which, again by the equivalence of items (i) and (iii) of Theorem 15, we obtain that
G is a global amoeba.

Observe that the converse statement of Proposition 19 is not valid. For example, let
H = Pk and H ′ = Ck, for k > 3; the graph G = H∪H ′ is a global amoeba as we will show
in item (ii) of Example 23. However, H = Ck is not a global amoeba (by Proposition
3). We remark also at this point that there is no corresponding result to Proposition 19
for local amoebas, since the union of two local amoebas is not necessarily again a local
amoeba. For instance, take H = H ′ = Pk, for k > 2, then, while Pk is a local amoeba (see
Example 13), the graph G = H∪H ′ is not. In item (i) of Example 23 we prove something
stronger. Before that, we need to prove the following proposition, which establishes that
the union of several vertex-disjoint global amoebas with the same number of edges is again
a global amoeba but never a local amoeba.

Proposition 20. Given an integer k > 2, let G1, G2, . . . , Gk be connected and pairwise
vertex-disjoint global amoebas such that |E(Gi)| = |E(Gj)| > 1, for 1 6 i, j 6 k. Then

G =
⋃k
i=1Gi is a global amoeba but not a local amoeba.

Proof. Let n = n(G). By Proposition 19, G is a global amoeba. However, G is not a local
amoeba because the only possible feasible edge replacements can just interchange edges
within the components, implying that Fer(G) ∼= Fer(G1)× · · · × Fer(Gk) 6∼= Sn.
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In the next proposition, we give a construction of a union of two vertex-disjoint graphs
that is always both, a local and a global amoeba.

Proposition 21. Let G be a local amoeba on n vertices with a vertex v ∈ V (G) such that
deg(v) = 1. If H is a copy of G− v, which is vertex-disjoint from G, then G∪H is both,
a local and a global amoeba.

Proof. Let λ : V (G) → X = [n] be a labeling on V (G) such that v = vn, and let
λ′ : V (H) → Y = [n + 1, 2n − 1] be a labeling on V (H) such that vn+i is the copy of
vi, for 1 6 i 6 n − 1. Consider now the labeling λ′′ : V (G ∪ H) → X ∪ Y = [2n − 1].
Since G is a local amoeba, we know that Fer(G) = SX = Sn. By Remark 18, we have
Fer(G) 6 Fer(G ∪H). Thus,

(1 2 · · · n− 1), (n− 1n) ∈ Fer(G ∪H).

Let now vj be the neighbor of v and consider the feasible edge-replacement j n→ n+ j n,
which gives the permutation

σ = (1n+ 1)(2n+ 2) · · · (n− 1 2n− 1) ∈ Fer(G ∪H).

Then we have two permutations (1 2 · · · n−1) and σ which act transitively on [2n−1]\{n}.
Hence, together with the permutation (n−1n), they generate S2n−1, implying that G∪H
is a local amoeba. Since G ∪H has a vertex of degree 1, it follows by Proposition 6 that
G ∪H is a global amoeba, too.

The next proposition allows us to enlarge a global amoeba by means of taking a copy
of a portion of its components where either an edge is added or deleted.

Proposition 22. Let G = H ∪ J be a global amoeba, where H and J are vertex-disjoint
subgraphs of G (where J can be possibly empty, meaning that G = H) and such that
E(G) = E(H) ∪ E(J). Let H ′ be a copy of H which is vertex disjoint from G. Then we
have the following facts.

(i) For any e ∈ E(H ′), G ∪ (H ′ + e) is a global amoeba.

(ii) For any e ∈ E(H ′), G ∪ (H ′ − e) is a global amoeba.

Proof. We will give only the proof of item (i) as the one of (ii) can be deduced similarly. We
consider a labeling λ : V (G∪ (H ′+ e))→ Y such that λ(V (H)) = X and λ(V (H ′)) = X ′.
As usual, we set vi = λ−1(i), for each i ∈ Y . Moreover, for x ∈ X, let vx′ be the copy
of vx in H ′ (and so we have X ′ = {x′ | x ∈ X}), and let e = vj′vk′ . Then j′k′ → jk is
a feasible edge-replacement in G ∪ (H ′ + e) and the permutation σ ∈ SY with σ(i) = i′

and σ(i′) = i, for i ∈ X, and σ(i) = i, for i ∈ Y \ (X ∪X ′) is in Fer(G ∪ (H ′ + e)). Then
x′ ∈ Fer(G ∪ (H ′ + e))x, for every x ∈ X. Since G is a global amoeba, we know, by the
equivalence of items (i) and (iii) of Theorem 15, that Fer(G)x, and, by Remark 18, also
Fer(G∪(H ′+e))x, contains an element l ∈ Y \X ′ such that degG∪(H′+e)(vl) = degG(vl) = 1.
Hence, G ∪ (H ′ + e) is a global amoeba and we are done.
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The converse statements of Proposition 22 are not valid. For item (i), we can take
G = C(k, 1) ∪ (Ck ∪K1), where C(k, 1) is the graph obtained from a cycle on k vertices
by attaching a pendant vertex. Then G is a global amoeba by Proposition 22(ii) because
C(k, 1) is a global amoeba (see Example 13(iii)). However, Ck∪K1 is not a global amoeba
because it violates Proposition 3. On the other hand, for item (ii), consider the graph
Ck ∪ Pk, k > 3, that is a global amoeba as we will show in Example 23(ii). However, we
also know that Pk is a global amoeba (Example 13), while Ck is not (by Proposition 3).

Example 23. The following graphs are global but not local amoebas:

(i) The graph obtained by taking the disjoint union of t copies of a path of order k,
tPk, for t > 2 and k > 2.

(ii) The disjoint union of a path and a cycle of the same order k, Pk ∪ Ck, for k > 3.

Proof. (a) For t > 2 and k > 2, tPk is not a local amoeba by Proposition 20. However,
the graph tPk is a global amoeba because of Proposition 19 and the fact that Pk is a
global amoeba (see Example 13).
(b) For k > 3, the disjoint union of a path Pk and a cycle Ck is a global amoeba by means of
Proposition 22(i) because Pk is a global amoeba (see Example 13) and Ck can be obtained
from Pk by adding an edge. However, Pk ∪Ck is not a local amoeba. To show this, let us
describe the graph with the path v1v2 . . . vk and the cycle vk+1vk+2 . . . v2kvk+1. Since Pk is a
local amoeba, we know that the permutations corresponding to feasible edge-replacements
that interchange edges with vertices in {v1, v2, . . . , vk} generate the symmetric group Sk.
Moreover, there are no non-trivial feasible edge-replacement involving edges with ver-
tices {vk+1, vk+2, . . . , v2k} (because Ck is regular). Thus, the corresponding permutations,
which are only the automorphisms of Ck, generate the cyclic group on k elements. Finally,
the other possible feasible edge-replacements are those that arise by taking one edge from
the cycle and moving it to the path such that we join both end-vertices. These permuta-
tions operate by interchanging completely the sets {1, 2, . . . , k} and {k+1, k+2, . . . , 2k}.
Thus, we cannot hope for obtaining a copy of Pk ∪Ck where both the path and the cycle
have vertices from both sets {v1, v2, . . . , vk} and {vk+1, vk+2, . . . , v2k}. Hence, it is not a
local amoeba.

Note that item (i) of Example 23 generalizes the fact that, for n even, n
2
K2 is a global

amoeba (see Example 13), but its proof is much more direct in the group theoretical
setting than in the graph theoretical setting.

Observe that Proposition 19 and Proposition 22 offer a wide range of possibilities for
building amoebas with a diversity of components. For example, given a global amoeba
G, the union of G together with any union of graphs that arise from G by adding an
edge or by deleting an edge is a global amoeba. One can also include components that
are built from smaller components by joining them with edges (needing possibly to apply
Proposition 22(i) several times). In fact, by iteratively applying Proposition 22, one can
manage to have any connected graph G as a connected component of a global amoeba,
as we will show in the following corollary (see also Figure 7 for an illustrative drawing of
the method).
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Theorem 24. Let G be any connected graph. Then there is a global amoeba H having G
as one of its components.

Proof. We will construct a global amoeba H by means of the following recursion. Let
H0 = K1. For i > 1, we do the following. If Hi−1 6∼= G, then either there is one edge
e ∈ E(Hi−1) such that the graph Hi−1 + e is contained in G as a subgraph, or there is
one edge e ∈ E(Hi−1 ∪K1) \ E(Hi−1) such that (Hi−1 ∪ K1) + e is contained in G as a
subgraph. In the first case we set Hi to be a copy of Hi−1 + e, in the second case to be a
copy of (Hi−1 ∪K1) + e. Since we add in each step a new edge and the obtained graph is
always contained in G as a subgraph, after m = |E(G)| steps, we will obtain a component
Hm
∼= G. By means of m consecutive applications of Proposition 22 (i) (where sometimes

Hi−1 and sometimes Hi−1 ∪ H0 plays the role of H ′) and, since H0 = K1 is a global
amoeba, it follows that H =

⋃m
i=0Hi is a global amoeba having one of its components

isomorphic to G.

Figure 7: Example illustrating the proof of Theorem 24 with G = K4.

As a consequence of Proposition 22, we obtain that there are global amoebas having
arbitrarily large chromatic and clique number, but in proportion to their order these
numbers may be small. In Section 6, we will present an example of a connected global
and local amoeba whose clique and chromatic numbers equal to half its order plus one
and we show that this is best possible.

5.2 Fibonacci amoeba-trees

As we know, paths, the simplest trees one can imagine having only 1 and 2-degree vertices,
are global amoebas. In this section, we will construct an infinite family of trees via
a Fibonacci-recursion which are global amoebas and which will have arbitrarily large
maximum degree (and, by Proposition 3, vertices of all other possible degrees).

Lemma 25. Let G be a graph provided with a labeling λ : V (G)→ X. Let G = G′ ∪G′′
for two subgraphs G′ and G′′ that are not necessarily disjoint. Let λ′ = λ|V (G′)

, and

λ′′ = λ|V (G′′)
be the corresponding labelings on G and G′, and let Γ′ = Fer(G′) and

Γ′′ = Fer(G′′). Set I = λ(V (G′)) ∩ λ(V (G′′)). Then, for every σ ∈ EG′ ∩
⋂
j∈I StabΓ′(j),

the permutation σ ∪ idΓ′′ is in EG.

the electronic journal of combinatorics 30(3) (2023), #P3.9 22



Proof. Let σ ∈ EG′ ∩
⋂
j∈I StabΓ′(j) and σ̂ = σ ∪ idΓ′′ , and set vi = λ−1(i) for i ∈ X.

Then there is a feasible-edge replacement rs → kl ∈ RG′ with r, s, k, l ∈ λ(V (G′)). This
edge-replacement gives a copy G′σ of G′ that leaves the vertices vi with i ∈ I untouched,
i.e. σ(i) = i for all i ∈ I. Then G = G′ ∪G′′ ∼= G′σ ∪G′′ = Gσ̂. Hence, rs → kl is also a
feasible edge-replacement in G and σ̂ ∈ FerG(rs→ kl) ⊆ EG.

Example 26. The graphG depicted below in Figure 8 is built by the union of the graphG′

and the graphG′′, where λ : V (G)→ [9], vi = λ−1(i), and λ(V (G′))∩λ(V (G′′)) = {4, 5, 6}.
Let Γ′ = Fer(G′) and Γ′′ = Fer(G′′). The edge-replacement 12→ 13 is feasible in G′ and
we have that σ = (2 3) ∈ FerG′(12 → 13). Since σ = (2 3) ∈ EG′ ∩

⋂
i=4,5,6 StabΓ′(i), it

follows by previous lemma that σ̂ = σ ∪ idΓ′′ = (2 3) ∈ EG.

Figure 8: Sketch for Example 26.

Let G be a graph equipped with a labeling λ : V (G) → X, and let vi = λ−1(i). Let
I = {i1, i2, . . . , ik} ⊆ X and let H be another graph provided with a special vertex called
the root of H. We define G∗IH as the graph obtained by taking G and k different copies
H1, H2, . . . , Hk of H and identifying the root of Hj with vertex vij of G, for 1 6 j 6 k
(see Figure 9). We will also use the following language. Given two subgraphs G1, G2 6 G
that are isomporphic, and given an isomorphism ψ : V (G1)→ V (G2), then we say that ψ
induces a bijection ϕ : λ(V (G1))→ λ(V (G2)) by means of λ(v) 7→ λ(ψ(v)), for v ∈ V (G1).
That is, ϕ is the bijection between the labels of the vertices of G1 and G2 corresponding
to the given isomorphism.

Lemma 27. Let G be a graph equipped with a labeling λ : V (G)→ X. Let H be another
graph provided with a root. Let I ⊆ X, and consider the graph G ∗I H with labeling
λ∗ : V (G∗IH)→ X∗, where λ∗|V (G)

= λ. For each i ∈ I, let Hi be the copy of H attached

to vertex vi = λ−1(i), which is the root of Hi in G ∗I H. Let Xi = λ∗(V (Hi)), i ∈ I, and
let ϕi,j : Xi → Xj be the bijection given by an isomorphism between Hi and Hj that sends
vi to vj, for i, j ∈ I. If σ ∈ EG ∩ StabFer(G)(I), then

σ ∪
⋃
i∈I

ϕi,σ(i) ∈ EG∗IH .
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Proof. Let σ ∈ EG∩StabFer(G)(I). Then there is a feasible-edge replacement rs→ kl ∈ RG

with r, s, k, l ∈ X. This edge-replacement gives a copy Gσ of G such that σ(i) ∈ I for all
i ∈ I. Observe that the only intersections among the sets Xi, i ∈ I, and X are given by
Xi ∩X = {i}. Hence, σ̃ is well defined as σ̃(x) = σ(x), for x ∈ X, σ̃(x) = ϕi,σ(i)(x), for
x ∈ Xi, and σ̃(i) = σ(i) = ϕi,σ(i), for i ∈ I. Then

(G ∗I H)σ̃ = Gσ ∗I H ∼= G ∗I H,

implying that rs→ kl is also a feasible edge-replacement inG∗IH and thus σ̃ ∈ EG∗IH .

Example 28. Let G = v1v2v3v4v5
∼= P5 and H ∼= K1,3 + e, i.e. a star on three peaks

together with an edge joining two of the vertices of degree 1, where we designate one of
the vertices of degree 2 as the root of H. Let λ : V (G) → [5] with λ(vi) = i, i ∈ [5],
let I = {2, 3} and let G ∗I H be as in Figure 9. Let λ∗ : V (G ∗I H) → [11] such
that λ∗(vi) = i. Then 4 5 → 1 5 ∈ RG with σ = (1 4)(2 3) ∈ FerG(4 5 → 1 5), and
ϕ2,3 = ϕ3,2 = (2 3)(6 9)(7 10)(8 11). Since σ ∈ EG∩StabFer(G)({2, 3}), it follows by Lemma
27 that σ̃ = (1 4)(2 3)(6 9)(7 10)(8 11) ∈ EG∗IH .

Figure 9: Sketch of a graph G ∗I H, where I = {ij | j ∈ [k]}, and of Example 28.

We will describe a family of trees that are constructed via a Fibonacci recursion. We
define T1 = T2 = K2. For i > 2, we define Ti+1 as the tree consisting of one copy T of Ti−1

and one copy T ′ of Ti, where a vertex of maximum degree of T is joined to a vertex of
maximum degree of T ′ by means of a new edge, see Figure 10. Observe that ∆(Ti) = i−1
for i > 2, while n(Ti) = 2Fi, being Fi the i-th Fibonacci number. Note also that, for
i > 4, Ti has only one vertex of maximum degree, which we will call the root of Ti. For
the case that i 6 3, we will designate one of the vertices of maximum degree as the root of
Ti and this will be the vertex that will be used to attach the new edge in the construction
of Ti+1.
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Figure 10: Fibonacci amoeba-trees Ti, 1 6 i 6 6.

Theorem 29. Ti is a global amoeba for all i > 1.

Proof. Let T be a tree isomorphic to Ti equipped with a labeling λ : V (T ) → X, and
let vi = λ−1(i), and Γ = Fer(T ). Let c ∈ J such that vc has maximum degree in T . We
will show by induction on i that there is a subset R ⊆ ET ∩ StabΓ(c) such that 〈R〉 acts
transitively on X \ {c}.

If i = 1, 2, there is nothing to prove. If i = 3, then T ∼= P4, say T = v4v3v1v2 with
c = 1. Then the feasible edge-replacements 34 → 24 and 13 → 14 give respectively the
permutations (2 3) and (3 4), which act transitively on {2, 3, 4} = X \ {c}. If i = 4,
then let T be the tree built from the path v4v3v1v2

∼= T3 and a T2
∼= K2, given by v5v6,

and the edge v1v5 joining both trees. Clearly, the only maximum degree vertex is v1 and
thus c = 1. Then the feasible edge-replacements 34 → 24 and 13 → 14 give respectively
the permutations (2 3) and (3 4), which together with the automorphism (3 5)(4 6), act
transitively on [6] \ {1} leaving c = 1 fixed.

Now suppose that i > 4 and that we have proved the above statement for integer values
at most i. Let T ∼= Ti+1. For a subset J ⊂ X, we define VJ = {vj | j ∈ J}, TJ = T [VJ ],
and ΓJ = Fer(TJ) using the inherited labeling λ|VJ . Let X = U ∪W be a partition of

X such that TU ∼= Ti−1 and TW ∼= Ti. Further, let U = A ∪ B and W = C ∪ D be
partitions such that TA ∼= Ti−3, TB ∼= Ti−2, TC ∼= Ti−1, and TD ∼= Ti−2. By construction,
vc is the root of TC . Let a, b, d ∈ X be such that va, vb, vd are the roots of TA, TB, and TD,
respectively. Notice that vavbvcvd is a path of length 4 in T . See Figure 11 for a sketch.
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Figure 11: Sketch of the tree T ∼= Ti+1 with its subtrees TU ∼= Ti−1 and TW ∼= Ti, and
subsubtrees TA ∼= Ti−3, TB ∼= Ti−2, TC ∼= Ti−1, and TD ∼= Ti−2.

By the induction hypothesis, there are subsets RU ⊆ ETU ∩ StabΓU (b) and RW ⊆
ETW ∩ StabΓW (c) such that 〈RU〉 acts transitively on U \ {b} and 〈RW 〉 acts transitively

on W \ {c}. Let R̂U = {σ ∪ idΓW | σ ∈ RU} and R̂W = {σ ∪ idΓU | σ ∈ RW}. Then,

by Lemma 25, R̂U , R̂W ⊆ ET . Moreover, the transitive action is inherited, i.e., 〈R̂U〉 acts

transitively on U \ {b} and 〈R̂W 〉 acts transitively on W \ {c}.
Consider now the tree T (B,D) that is obtained by identifying all vertices from VB

with vertex vb and all vertices from VD with vertex vd, i. e. we contract the sets VB and
VD each into a single vertex (see Figure 12). Observe that ab → ad is a feasible edge-
replacement in T (B,D) with (b d) ∈ FerT (B,D)(ab→ ad), and that T ∼= T (B,D)∗{b,d}Ti−2.
Since TB ∼= TD ∼= Ti−2, there is a bijection ϕ : B → D such that ϕ(b) = d given by an
isomorphism between TB and TD that maps vb to vd. Then, by Lemma 27, we have that
ab→ ad is a feasible edge-replacement in T with τ ∈ FerT (ab→ ad) defined by

τ = (b d) ∪ ϕ ∪ ϕ−1 ∪ idΓA ∪ idΓC ,

and such that τ ∈ ET . Moreover, τ leaves c fixed and so τ ∈ ET ∩StabΓ(c). Now we define

R = R̂U ∪ R̂W ∪ {τ}.

Since 〈R̂U〉 acts transitively on U \ {b}, and 〈R̂W 〉 acts transitively on W \ {c}, these two
sets together with τ generate a group 〈R〉 that acts transitively on X \ {c}.

Hence, we have shown that if T ∼= Ti, for any i > 1, then there is a subset R ⊆
ET ∩ StabΓ(c) such that 〈R〉 acts transitively on X \ {c}, where c ∈ X such that vc has
maximum degree in T .

To finish the proof, we will show that there is a permutation ρ ∈ Γ such that 〈R∪{ρ}〉
acts transitively on X, meaning that Γ acts transitively on X, too, which implies that T
is a global amoeba by Theorem 15(iii). Since we know already that 〈R〉 acts transitively
on X \{c}, we just need to find a ρ ∈ Γ with ρ(c) 6= c. Indeed, there is such a permutation
ρ, namely one produced by the feasible edge-replacement cd→ bd in T , which, by Lemma
27, can be obtained by means of the permutation (b c) ∈ FerT (U,C)(cd→ bd) through

ρ = (b c) ∪ ψ ∪ ψ−1 ∪ idΓW ,
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where ψ : C → U is the bijection with ψ(c) = b given by an isomorphism between TC and
and TU that sends vc to vb. Hence, Ti is a global amoeba for all i > 1.

Figure 12: Trees T (B,D) and T (U,C).

That T1, T2 and T3 are local amoebas follows directly from Example 13. To see that T5

is also a local amoeba, let T5 have vertices vi, 1 6 i 6 10, distributed as in Figure 13, and
consider the feasible edge-replacements 9 10 → 8 10, 5 6 → 2 6, 1 7 → 1 9, and 1 5 → 7 5
that produce the permutations (8 9), (2 5), (7 9)(8 10), and (1 7)(2 8)(3 9)(4 10). It is not
difficult to check that, these permutations act transitively on [10]\{6} (see Figure 13 for a
visual representation of this partial orbit). Finally, consider the feasible edge-replacement
1 5→ 1 6 that gives the permutation (5 6), which together with the above 4 permutations,
generate S10 by Observation 12. A very similar argument can be applied for T4 to show
that it is a local amoeba. Hence, Ti is a local amoeba for all 1 6 i 6 5. However, for
i > 6, the above argument cannot be generalized that simply. We leave this as an open
question (see Problem 35).

T5 v1

v3

v2

v5

v4

v8

v10

v7

v9

v6

vq+1 vq+2 v2q

vq

vq+3
Kq

Hn
v1 v2 v3

n = 2q

vq+1 vq+2 v2q

v1 v2 vq

vq+3

v3

vn
Kq+1

Hn
n = 2q + 1

Gn
v1 v2 vqv3

Kq

vn

n = 2q + 1

vq+1 vq+2 vq+3 v2q

Gn
n = 2q + 1

v1 v2 vq−1v3

Kq

vn

vq+1 vq+2 vq+3 v2q−1 v2q

vq

Figure 13: Graph T5 with the transitive action on [10] \ {6}.
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6 Extremal global amoebas with respect to size, chromatic num-
ber and clique number

We denote by e(G), χ(G) and ω(G) the size (number of edges), the chromatic number
(smallest number of colors in a proper vertex coloring) and the clique number (order of a
maximum clique) of G respectively.

We shall note that the degrees constraint established in Proposition 3 compromises
the number of edges that a global amoeba or a local amoeba with small minimum degree
can have. In this section, we will show that a graph of order n that is a global amoeba
cannot have more than bn2

4
c edges. Interestingly, it turns out that this bound is sharp.

We will also prove that the chromatic number, and thus the clique number, of a global
amoeba of order n can not be greater than bn

2
c+ 1. Again, this upper bound is sharp and

we will prove that it is reached when having the maximum possible number of edges.
The family of graphs that proves the sharpness in the upper bounds mentioned in

the previous paragraph is Hn, which was given in Example 14 as the graph of or-
der n with V (Hn) = A ∪ B such that, taking q = bn

2
c, A = {v1, v2, . . . , vq} and

B = {vq+1, vq+2, . . . , vq+dn
2
e}, where B is a clique, A is an independent set and adjacencies

between A and B are given by vivq+j ∈ E(Hn) if and only if j 6 i, where 1 6 i 6 q and
1 6 j 6 dn

2
e. It was shown in the mentioned example that Hn is both a global and a local

amoeba. It is also very simple to note that e(Hn) = bn2

4
c and ω(Hn) = bn

2
c+ 1.

The next theorem gives upper bounds for the edge number e(G), the chromatic number
χ(G), and the clique number ω(G), of a global amoeba with minimum degree 1. We will
use the Powell-Welsh bound on the chromatic number of a graph G [42] (see [8] for an
alternative proof):

χ(G) 6 max
16i6n

min{di + 1, i} (2)

where d1 > d2 > · · · > dn is the degree sequence of G.

Theorem 30. If G is a global amoeba of order n with minimum degree δ(G) = 1, then

(i) e(G) 6 bn2

4
c, and

(ii) ω(G) 6 χ(G) 6 bn
2
c+ 1,

where all bounds are sharp. Moreover, we have the following relations concerning the
equalities in the above bounds.

(iii) If e(G) = bn2

4
c then ω(G) = χ(G) = bn

2
c+ 1, but the converse is not true.

(iv) We have ω(G) = bn
2
c+ 1 if and only if χ(G) = bn

2
c+ 1.

Proof. Let d1 > d2 > · · · > dn = 1 be the degree sequence of a global amoeba G, and let
D = {di | i ∈ [n]}. By Proposition 3, we know that D = [d1] where d1 ∈ [n− 1] and that,
for every i ∈ [n],

di 6 n+ 1− i. (3)
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Now we will prove the four items separately.

(i) By inequality (3), the sum of the bn
2
c smallest degrees satisfies

n∑
i=dn

2
e+1

di 6
n∑

i=dn
2
e+1

n+ 1− i =

bn
2
c∑

i=1

i =
1

2

⌊n
2

⌋(⌊n
2

⌋
+ 1
)
. (4)

Let L be the set of the dn
2
e vertices having the largest degrees (corresponding to the

degrees d1, d2, . . . , ddn
2
e), and let S = V (G) \ L. Denote by e(L) the number of edges

induced by the vertices in L and by e(L, S) the number of edges between L and S. Then
we have

dn
2
e∑

i=1

di = 2e(L) + e(L, S) 6
⌈n

2

⌉(⌈n
2

⌉
− 1
)

+
n∑

i=dn
2
e+1

di. (5)

Hence, inequalities (4) and (5) yield

2e(G) =
n∑
i=1

di 6
⌈n

2

⌉(⌈n
2

⌉
− 1
)

+ 2
n∑

i=dn
2
e+1

di

6
⌈n

2

⌉(⌈n
2

⌉
− 1
)

+
⌊n

2

⌋(⌊n
2

⌋
+ 1
)

=

⌊
n2

2

⌋
,

and the bound follows because 1
2
bn2

2
c = bn2

4
c. Observe that the bound is attained for the

graph Hn shown in Example 14 to be global amoeba.

(ii) For every
⌊
n
2

⌋
+ 2 6 i 6 n, we have, using (3) with i =

⌊
n
2

⌋
+ 2, that

min{di + 1, i} 6 di + 1 6 dbn2 c+2 + 1 6
⌈n

2

⌉
6
⌊n

2

⌋
+ 1.

For the remaining cases 1 6 i 6
⌊
n
2

⌋
+ 1, we obtain as well

min{di + 1, i} 6 i 6
⌊n

2

⌋
+ 1.

Altogether it follows with (2), that χ(G) 6 bn
2
c+ 1. The trivial inequality ω(G) 6 χ(G)

yields the result. To show that the bound is sharp, consider again the graph Hn, that is
a global amoeba by Example 14, and that satisfies ω(Hn) = χ(Hn) = bn

2
c+ 1.

(iii) Observe now that a global amoeba G with degree sequence d1 > d2 > · · · > dn = 1
satisfies e(G) = bn2

4
c if and only if equalities in (4) and (5) hold. This happens if and only

if, on the one hand, the smallest degrees 1, 2, . . . , bn
2
c− 1 appear each one once (while the

degree bn
2
c appears at least once) and, on the other hand, the sum of the degrees of the dn

2
e

vertices having the largest degrees is exactly
⌈
n
2

⌉ (⌈
n
2

⌉
− 1
)

+
∑n

i=dn
2
e+1 di, meaning that
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they form a clique and that the complementary set (i.e. the bn
2
c vertices of the smallest

degrees) is edge-less. From here, it is easy to see that ω(G) = bn
2
c+ 1. Thus, by item (ii),

also χ(G) = bn
2
c+1. To see that the converse is not true, take the graph Gn defined before

Example 17 that is a global amoeba with minimum degree 1, and ω(G) = χ(G) = bn
2
c+1,

but has e(Gn) < bn2

4
c for n > 4.

(iv) The necessity part is clear because of item (ii). For the converse, suppose that
χ(G) = bn

2
c + 1. Let L be the set of all vertices of degree at least bn

2
c. Since V (G) \ L

contains all vertices of degree at most bn
2
c − 1, it follows by Proposition 3 that⌊n

2

⌋
− 1 6 |V (G) \ L| = n− |L|.

Hence, we obtain that |L| 6 dn
2
e+ 1.

We assume first that n is even and we suppose for a contradiction that L is not a
clique. Then we can color the vertices of L with |L| − 1 = n

2
different colors such that

there are no adjacent vertices with the same color. Since the vertices in V (G) \ L have
degree not larger than n

2
−1, we can proceed coloring the vertices of V (G)\L one after the

other by taking always one of the colors that is not already taken by one of its neighbors.
In this way, we use at most n

2
colors and there are no two adjacent vertices with the same

color, implying the contradiction χ(G) 6 n
2
. Hence, L has to be a clique and it follows

that ω(G) = n+1
2

.
Let now n be odd. Let v ∈ V (G) \ L be the vertex of degree n−1

2
. If |N(v) ∩ L| =

n−1
2

and N(v) ∩ L is a clique, we have finished because then N [v] is a clique and so
ω(G) = n+1

2
= bn

2
c + 1. Hence, we may assume that N(v) ∩ L is not a clique or that

|N(v) ∩ L| 6 n−3
2

. In both cases we can color the vertices of L with n−1
2

different colors
in such a way that there is no adjacent pair with the same color but taking also care that
there are no more than n−3

2
colors in N(v) ∩ L. Now we can color v using a color that

has been used in L \ N(v). The remaining vertices have degree at most n−3
2

, so that we
can proceed in a greedy way as in previous case using no more than n−1

2
colors in total.

Hence, it follows that χ(G) 6 n−1
2

= bn
2
c, a contradiction.

The search for the extremal family in the bound of item (i) of Theorem 30 requires a
much more detailed analysis that takes into account, not only the degree sequence, but
the inner structure of a global amoeba. We already know that, if the graph has maximum
degree n − 1, the only extremal graph is Hn (see proof of Example 14). However, if the
maximum degree is smaller, there may be different possibilities for the repetitions among
the higher degrees. Still, we believe that the only possible graph attaining equality here
is Hn (see Conjecture 36).

We finish this section with a simple upper bound on the maximum degree of a global
amoeba with minimum degree 1.

Proposition 31. Let G be a global amoeba on n vertices and m edges such that δ(G) = 1.
Then

∆(G) 6
1

2

(
1 +
√

1− 8n+ 16m
)
< 1 + 2

√
m,
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and the left inequality is sharp.

Proof. Let ∆ = ∆(G). By Proposition 3, we deduce that 2m > (n−∆) +
∑∆

i=1 i, which
gives 4m > ∆2 −∆ + 2n. Solving the quadratic inequality, the bound

∆(G) 6
1

2

(
1 +
√

1− 8n+ 16m
)

follows. The bound is sharp for the star forest K1,2 ∪ K1,3 ∪ · · · ∪ K1,∆, which can be
shown to be a global amoeba by means of Proposition 22. Finally, the inequality

1

2

(
1 +
√

1− 8n+ 16m
)
< 1 + 2

√
m

is easy to verify.

It is easy to construct graphs, in particular acyclic graphs, satisfying equality in Propo-
sition 31, namely having n−∆ + 1 vertices of degree 1 and the remaining vertices having
degree 2, 3, . . . ,∆. However, to find constructions of such graphs which are also amoebas
is much harder. We leave as an open problem to characterize the family of global amoebas
that attains this bound (see Problem 38 in Section 7).

7 Basic problems about amoebas

In this section, we discuss some problems that arise naturally from the concepts of global
and local amoebas and the theory developed in this paper.

One of our main interests is to find more families of local and global amoebas as well
as to develop more methods to construct them. Observe that, besides the Fibonacci-
amoeba trees given in Section 5.2, all constructions of global amoebas provided in Section
5 yield disconnected graphs. In [10], a way of recursively constructing global amoebas is
developed, and it is also shown how it can be used to construct the Fibonacci-amoeba
trees. This method is interesting but it yields graphs that have many cut vertices. So
it would be nice to find other constructions that give rise to global amoebas with higher
connectivity. It would be also interesting to know if there are local or global amoebas
with all possible edge numbers.

Problem 32.

(i) Find other families of global and/or local amoebas. In particular, find other infinite
families of connected global amoebas.

(ii) Is there a global amoeba on n vertices and m edges for every m with 0 6 m 6 bn2

4
c?

(iii) Is there a local amoeba on n vertices and m edges for every m with 0 6 m 6
(
n
2

)
?
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Of course, the recognition problem and its complexity should be studied. To determine
if a graph is a local or a global amoeba, one first has to determine which are its feasible
edge-replacements, a problem that involves checking if two graphs are isomorphic. The
isomorphism problem in graphs has been intensively studied. The best currently accepted
theoretical algorithm is due to Babai and Luks [4], which has a running time of 2O(

√
n logn)

for a graph on n vertices. A quasi-polynomial time algorithm was announced by Babai
in 2015 [2], but its proof is not yet fully peer-reviewed, see [3]. However, there are many
graphs classes in which the isomorphism problem is polynomial [33, 34]. The difference
in checking if a graph G of order n is a local or a global amoeba lies on checking if the
group SG is isomorphic to the symmetric group Sn, or if SG∗ acts transitively on [n+ 1],
where G∗ = G ∪ K1 (see Theorem 15). Both things can be computed in O(|S|n)-time,
given that S is a set of generators (see [29, 41]). In [20], among other results, a public
repository containing several programs to detect both types of amoebas is presented, see
[21], where a collection of results for sets of non-isomorphic graphs of order up to 10, as
well as non-isomorphic trees of order up to 22 are shown.

Problem 33. What is the computational complexity of determining if a graph G is a
global and/or local amoeba?

A structural characterization of the graphs that are global but not local amoebas or
of those that are local but not global, or of those that are both, that could give clues on
how they can be constructed or recognized may be an interesting problem.

Problem 34. Provide a structural characterization of the following graph families.

(i) Global amoebas that are not local amoebas.

(i) Local amoebas that are not global amoebas.

(i) Graphs that are both, global and local amoebas.

However, as the above problem could be challenging in general, it could be more doable
if restricted to a particular class of graphs. In this line, we have studied the Fibonacci-
trees Ti in Section 5.2 and we have shown that they are global amoebas. We also have
shown at the end of Section 5.2 that T5 is a local amoeba, too, and, while analogous
arguments work for i 6 4, it is not clear how to proceed for i > 6.

Problem 35. Which trees are local/global amoebas? Is the Fibonacci-tree Ti a local
amoeba for all i > 1?

The graph Hn given in Example 14 is shown in Theorem 30(i) to have the largest
density among the global amoebas of minimum degree 1. We believe this is the family
that characterizes the equality. We state this as a conjecture.

Conjecture 36. If G is a global amoeba of order n and minimum degree 1, then e(G) =
bn2

4
c if and only if G ∼= Hn.

the electronic journal of combinatorics 30(3) (2023), #P3.9 32



For the bound on the chromatic and the clique numbers given in Theorem 30(ii),
where Hn is also an example for their sharpness, a characterization of the graphs attaining
equality would be interesting as well.

Problem 37. Characterize the families of global amoebas G of order n and minimum
degree 1 with χ(G) = bn

2
c+ 1 (and, hence, ω(G) = bn

2
c+ 1 by Theorem 30(iv)).

The graph Hn is also an example of a global amoeba with the largest possible max-
imum degree, namely n − 1. We also have shown in Proposition 31 that the maxi-
mum degree of a global amoeba with minimum degree 1 and with m edges is at most
1
2

(
1 +
√

1− 8n+ 16m
)
, and the bound is attained for the star forestK1,2∪K1,3∪· · ·∪K1,∆.

However, we do not know about connected global amoebas attaining the bound. In partic-
ular, it is intriguing to discover what is the maximum possible degree of a global amoeba
tree. We recall at this point that, for the Fibonacci-tree family Ti, i > 1, that we dis-
cussed in Section 5.2, the growing rate of the maximum degree of Ti is logarithmical with
respect to its order, but it could be that there are global amoeba trees where the behavior
between maximum degree and order is not that drastic and comes rather closer to

√
n.

Problem 38. Let Gn be the family of global amoebas of order n and minimum degree 1.

(i) Characterize the family of all graphs G ∈ Gn such that
∆(G) = 1

2

(
1 +
√

1− 8n+ 16m
)
.

(ii) Determine f(Fn) = max{∆(F ) | F ∈ Fn} for different families Fn ⊆ Gn, like trees,
bipartite graphs, connected graphs, etc.

(iii) In particular for the case of the family Tn of trees on n vertices: is f(Tn) = Θ(
√
n)?

8 Appendix: theoretical setting

The following lemma shows that the application of feasible edge-replacements on any
copy Gρ of a graph G leads to a copy Gσ ρ, where σ is a permutation associated to the
performed edge-replacement.

Lemma 39. Let G be a graph provided with a labeling V (G) 7→ X on its vertices. Then,
for any rs→ kl ∈ R∗G, σ ∈ FerG(rs→ kl) and ρ ∈ SX ,

Gσ ρ = Gρ − e+ e′,

where e = vρ−1(r)vρ−1(s) and e
′ = vρ−1(k)vρ−1(l).

Proof. Since σ ∈ FerG(rs→ kl), we have

E(Gσ) = (E(G) \ {vrvs}) ∪ {vkvl} = {vivj | ij ∈ (LG \ {rs}) ∪ {kl}} .

On the other side, it can be seen easily that

E(Gσ) = {vivj | σ(i)σ(j) ∈ LG} = {vσ−1(i)vσ−1(j) | ij ∈ LG}.
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Thus, we can infer that

{{i, j} | ij ∈ (LG \ {rs}) ∪ {kl}} =
{
{σ−1(i), σ−1(j)} | ij ∈ LG

}
.

Having this, the following equality chain is straightforward.

E(Gσρ) = {vivj | σρ(i)σρ(j) ∈ LG}
=
{
vρ−1(σ−1(i))vρ−1(σ−1(j)) | ij ∈ LG

}
=
{
vρ−1(i)vρ−1(j) | ij ∈ (LG \ {rs}) ∪ {kl}

}
=
(
{vρ−1(i)vρ−1(j) | ij ∈ LG} \ {vρ−1(r)vρ−1(s)}

)
∪ {vρ−1(k)vρ−1(l)}

=
(
{vivj | ρ(i)ρ(j) ∈ LG} \ {vρ−1(r)vρ−1(s)}

)
∪ {vρ−1(k)vρ−1(l)}

= E(Gρ − e+ e′).

Therefore, Gσ ρ = Gρ − e+ e′, as claimed.

In the next lemma, we establish important facts related to the feasible edge-replacements
in non-connected graphs.

Lemma 40. Let G = H ∪ H ′ be the disjoint union of two graphs H and H ′. Let λ :
V (H) → X and λ′ : V (H ′) → X ′ be labelings, where X ∩X ′ = ∅. Let Γ = Fer(H), and
Γ′ = Fer(H ′). Then RH , RH′ ⊆ RG and Γ×Γ′ ∼= {σ∪ τ | σ ∈ Γ, τ ∈ Γ′} 6 StabFer(G)(X).

Proof. It is easy to see that RH , RH′ ⊆ RG. Let σ ∈ Γ and τ ∈ Γ′. By definition, σ =
σqσq−1 · · ·σ1 for certain σ1, . . . , σq ∈ EH , while τ = τq′τq′−1 · · · τ1 for certain τ1, . . . , τq′ ∈
EH′ . Without loss of generality, assume that q > q′. Define τj = idΓ′ for q′ + 1 6 j 6 q.
For 1 6 j 6 q, let ρj = σj ∪ τj. Since RH , RH′ ⊆ RG and, for 1 6 j 6 q,

Gρj = (H ∪H ′)ρj = Hσj ∪H ′τj ,

then ρ1, . . . , ρq ∈ EG. Moreover, ρ = ρqρq−1 · · · ρ1 and ρ ∈ StabΓ(X). Since Γ × Γ′ ∼=
{σ ∪ τ | σ ∈ Γ, τ ∈ Γ′}, the latter is a subgroup of StabFer(G)(X).

The following lemma deals with edge-replacements that involve, or not, isolated ver-
tices. It is necessary for the proof of Theorem 15.

Lemma 41. Let G be a graph without isolated vertices, and let U be a set of t vertices
disjoint from V (G), for some t > 1. Let G∗ = G ∪ U ∼= G ∪ tK1. Let λ : V (G) → X
and λ : V (G∗) → X ∪ Y be labelings such that λ∗|V (G)

= λ, and let Γ = Fer(G) and

Γ∗ = Fer(G∗). We have the following properties:

(i) If e → e′ ∈ RG and σ ∈ Γ∗(e → e′), then σ ∈ StabΓ∗(X) and σ|X ∈ Γ(e → e′). In

particular, AG∗ 6 StabΓ∗(X) and AG = {ϕ|X | ϕ ∈ AG∗}.

(ii) If σ ∈ EG∗ is such that with σ(r) = k for some r ∈ X and k ∈ Y , then

• either σ = ϕ ◦ (r k) for some ϕ ∈ EG∗ ∩ StabΓ∗(X),
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• or σ = ϕ ◦ (r k)(s l) for some s ∈ X \ {r}, l ∈ Y \ {k} and ϕ ∈ AG∗.

Proof. (i) If e → e′ = ∅ → ∅ and σ ∈ AG∗ , then σ can only permute elements inside X
(via an automorphism of G) or inside Y . Hence, σ ∈ StabΓ∗(X), and it follows easily
that AG∗ 6 StabΓ∗(X), and AG = {ϕ|X | ϕ ∈ AG∗}. Now suppose that e → e′ ∈ R∗G
and let e = rs and e′ = kl, where r, s, k, l ∈ X. Since G has no isolates, it follows that
σ ∈ StabΓ∗(X). Then, by definition,

G∗σ = G∗ − vrvs + vkvl = (G− vrvs + vkvl) ∪X = Gσ|
X

∪ U.

Hence, σ|X ∈ Γ(e→ e′).

(ii) Since k ∈ Y , we have degG∗(vk) = 0. Having that σ ∈ EG∗ , σ(r) = k, and G has no
isolates, we conclude that degG∗(vr) = 1 in view of Observation 1. Moreover, there must
be some s ∈ X and some l ∈ (X ∪ Y ) \ {k} such that σ ∈ Γ∗(rs→ kl).
Suppose first that l ∈ X. Observe that (r k) ∈ Γ∗(rs→ ks) ⊆ EG∗ , and thus E(G∗(r k)) =

E(G∗ − vrvs + vkvs). Therefore,

E(G∗σ) = E(G∗ − vrvs + vlvk)

= E((G∗ − vrvs + vsvk)− vsvk + vlvk)

= E
(
G∗(r k) − vsvk + vlvk

)
.

But in the copy G∗(r k) the vertex vk has label r, thus G∗σ = G∗ϕ◦(r k), where ϕ ∈ Γ∗(sr →
lr) ⊆ EG∗ . Finally, since r, s, l ∈ X, item (i) yields that ϕ ∈ StabΓ∗(X).
Now suppose that l ∈ Y . In this case we have degG∗(vk) = degG∗(vl) = 0, and by
Observation 1 it follows that degG∗(vr) = degG∗(vs) = 1. Hence,

E(G∗σ) = E(G∗ − vrvs + vlvk) = E
(
G∗(r k)(s l)

)
.

It follows now that there is a ϕ ∈ AG∗ such that σ = ϕ ◦ (r k)(s l).
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