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Abstract

Consider a system of m balanced linear equations in k variables with coefficients
in Fq. If k ⩾ 2m + 1, then a routine application of the slice rank method shows
that there are constants β, γ ⩾ 1 with γ < q such that, for every subset S ⊆ Fn

q of
size at least β · γn, the system has a solution (x1, . . . , xk) ∈ Sk with x1, . . . , xk not
all equal. Building on a series of papers by Mimura and Tokushige and on a paper
by Sauermann, this paper investigates the problem of finding a solution of higher
non-degeneracy; that is, a solution where x1, . . . , xk are pairwise distinct, or even a
solution where x1, . . . , xk do not satisfy any balanced linear equation that is not a
linear combination of the equations in the system.

In this paper, we focus on linear systems with repeated columns. For a large
class of systems of this type, we prove that there are constants β, γ ⩾ 1 with γ < q
such that every subset S ⊆ Fn

q of size at least β · γn contains a solution that is
non-degenerate (in one of the two senses described above). This class is disjoint
from the class covered by Sauermann’s result, and captures the systems studied by
Mimura and Tokushige into a single proof. Moreover, a special case of our results
shows that, if S ⊆ Fn

p is a subset such that S − S does not contain a non-trivial
k-term arithmetic progression (with p prime and 3 ⩽ k ⩽ p), then S must have
exponentially small density.
Mathematics Subject Classifications: 05D40, 11B25

1 Introduction

1.1 Background and prior results

For several decades, one of the major open problems in extremal combinatorics had been
to determine whether or not, for a given prime p ⩾ 3, there is a constant cp < p such that
every subset S ⊆ Fn

p of size |S| ⩾ cn
p contains a non-trivial 3-term arithmetic progression;
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that is, a solution to the equation x − 2y + z = 0 with x, y, z ∈ S distinct. For p = 3, this
problem was known as the cap set problem.

In 2016, Ellenberg and Gijswijt [EG17] solved this problem for all primes p ⩾ 3, using
a new application of the polynomial method developed by Croot, Lev and Pach [CLP17].
The solution was subsequently recast by Tao [Tao16] in terms of the slice rank of tensors
(or hypermatrices). Together, these developments have led to a surge of interest in problems
related to the cap set problem, using the slice rank polynomial method to attempt to solve
other problems.

One of these related open problems is to find the largest size of a subset of Fn
p without

a non-trivial k-term arithmetic progression, where p ⩾ k ⩾ 4 and n → ∞. It is not known
whether or not there is a constant cp,k < p such that every set S ⊆ Fn

p with |S| ⩾ cn
p,k

contains a k-term arithmetic progression. This problem is believed to be beyond the reach
of current slice rank methods.

Instead, mathematicians have turned their attention to related problems. Recently,
Mimura and Tokushige [MT19a, MT19b, MT20] and Sauermann [Sau23] have started
developing techniques to bound the maximum size of a subset of Fn

q which avoids non-
degenerate solutions to a given system of linear equations over a finite field Fq. More
formally, given a fixed matrix A = (aij) ∈ Fm×k

q , we want to bound the maximum size of a
subset S ⊆ Fn

q for which there are no k-tuples (x1, . . . ,xk) ∈ Sk satisfying
a11x1 + · · · + a1kxk = 0,

...

am1x1 + · · · + amkxk = 0;

(⋆)

except possibly trivial/degenerate solutions (more on that later). Note that the variables
x1, . . . ,xk are not taken from Fq, but from Fn

q as n → ∞.
If ai1 + · · · + aik ̸= 0 for some i (i.e. the coefficients in one of the rows do not sum to

zero), then there are large subsets of Fn
q with no solutions at all to (⋆). Indeed, let S ⊆ Fn

q

be the set of all vectors whose first coordinate is equal to 1. If some row of (⋆) does not
sum to zero, then S does not contain solutions to (⋆), and |S| = qn−1 = 1

q
· |Fn

q |, so S

contains a constant proportion of the vectors in Fn
q . (This example is due to Sauermann

[Sau23].)
We will henceforth assume that ai1 + · · · + aik = 0 for all i. Such equations are called

balanced linear equations (or affine dependences), and the system (⋆) is also called balanced.
Recent results show that the problem becomes much more interesting in this case.

If the system (⋆) is balanced, then every set S ⊆ Fn
q has at least |S| solutions to

(⋆), namely the solutions of the form (a, . . . , a) for a ∈ S. So the question is: how large
does S have to be to guarantee the existence of solutions to (⋆) which are somehow
non-degenerate? For this we consider three different notions of non-degeneracy:

Definition 1.1. A solution (x1, . . . ,xk) ∈ (Fn
q )k of (⋆) is called:

(a) non-trivial if x1, . . . ,xk are not all equal.
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(b) a (⋆)-shape 1 if x1, . . . ,xk are pairwise distinct.

(c) generic 2 if every balanced linear equation (over Fq) satisfied by (x1, . . . ,xk) is a
linear combination of the equations in (⋆).

The requirements get stronger in each step, moving from (a) to (c). Indeed, it is clear
that every (⋆)-shape is a non-trivial solution. Furthermore, if the system (⋆) does not
rule out the existence of (⋆)-shapes in Fn

q (in other words, if no linear combination of
the equations in (⋆) equals xi − xj = 0 for some i ̸= j), then every generic solution is a
(⋆)-shape.

The easiest of these problems is finding a non-trivial solution. If the number of variables
is sufficiently large (specifically, if k ⩾ 2m + 1), then this can be done by a routine
application of the slice rank method.

Theorem 1.2 ([Tao16], see also [Sau23, Theorem 1.1]3). If k ⩾ 2m+1, then there exists a
constant Γq,m,k < q such that every subset S ⊆ Fn

q of size at least (Γq,m,k)n has a non-trivial
solution of (⋆).

If k ⩽ 2m, then the problem of finding non-trivial bounds is believed to be beyond the
reach of current (slice rank) methods. Accordingly, most4 of our results are on systems
with k ⩾ 2m + 1; see Remark 2.4(i).

The aim of this paper is to refine Theorem 1.2 to the stronger notions of non-degeneracy
from Definition 1.1. For this we use the following terminology:

Definition 1.3. The linear system (⋆) is called:

(a) moderate 1 if there exist constants β, γ > 0 with γ < q such that every subset S ⊆ Fn
q

of size at least β · γn contains a (⋆)-shape;

(b) temperate 2 if there exist constants β, γ > 0 with γ < q such that every subset S ⊆ Fn
q

of size at least β · γn contains a generic solution of (⋆).

If (⋆) consists of the single equation x1 + · · · +xp = 0 over Fp (with p prime), then the
existence of (⋆)-shapes is tightly linked to the Erdős–Ginzburg–Ziv constant of the group
Fn

p . If p ⩾ 3, then this system is moderate over Fp; this is implicit in [Nas20] and [Sau21].
Furthermore, the method in [Sau21] can be easily adapted to show that every balanced
linear equation with at least 3 variables forms a moderate linear system.

The problem of determining whether or not a system of two or more equations is
moderate was first studied by Mimura and Tokushige [MT19a, MT19b, MT20].5 They

1Following terminology from Mimura and Tokushige [MT19a, MT19b, MT20].
2Terminology introduced by the authors.
3To get rid of the constant factor Cq,m,k from [Sau23, Theorem 1.1], use the power trick.
4The only exception is when we study different, related problems for which the assumption k ⩾ 2m + 1
is not necessary (such as Lemma 4.1, which is one of the main tools in our proofs).

5Similar results over the integers had been obtained by Ruzsa in the 1990s [Ruz93, Ruz95], but Mimura
and Tokushige were the first to study this problem for vector spaces over a finite field.
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showed that several specific linear systems are moderate. Although all of their proofs rely
on more or less the same idea, the details of the proofs are so different that a new proof is
needed for each new system. We discuss some of their results in more detail in §7.

The first general result in this direction was found by Sauermann [Sau23]. In an
elaborate proof, using a new application of the slice rank method and a subspace sampling
argument, she showed that (⋆)-shapes can always be found if the number of variables is
sufficiently large and if the system is very much non-degenerate:

Theorem 1.4 ([Sau23, Theorem 1.2]). If k ⩾ 3m and every m × m submatrix of A is
invertible, then (⋆) is moderate.

Despite its generality, this result does not replace the results of Mimura and Tokushige,
because the systems they studied have many singular m × m submatrices (so Theorem 1.4
does not apply).

The third and final problem is that of finding a generic solution. A partial result in
this direction was found by Sauermann, who showed that solutions of higher dimension
exist as the number of variables becomes larger:

Theorem 1.5 ([Sau23, Theorem 1.3]). If r ⩾ 2 and k ⩾ 2m−1+r, then there are constants
Crank

p,m,k,r ⩾ 1 and Γrank
p,m,k,r < p such that every subset S ⊆ Fn

p of size at least Crank
p,m,k,r ·(Γrank

p,m,k,r)n

has a solution (x1, . . . ,xk) ∈ Sk of (⋆) satisfying dim(span(x1, . . . ,xk)) ⩾ r.

Finding solutions of high dimension is closely related to finding a generic solution, as
we explain in §5.

1.2 Main results of this paper

The main results of this paper are twofold. First, we prove a general result on finding
(⋆)-shapes, which contains most of the results from [MT19a, MT19b, MT20] as special
cases. Second, we prove a general result for finding generic solutions, which we believe to
be the first of its kind.

Throughout the paper, we focus on a specific class of systems that is completely different
from the class of systems studied by Sauermann. Where Sauermann’s result (Theorem 1.4
above) requires every m × m submatrix to be invertible, we require the opposite: there
must be sufficiently many linear dependencies between the columns. Specifically, we focus
on the class of ‘type (RC)’ linear systems, which we define as follows:

Definition 1.6. Consider the linear system (⋆), whose coefficients are specified by the
matrix A = (aij) ∈ Fm×k

q .

(a) We say that two indices in [k] are equivalent if the corresponding columns of A are
nonzero scalar multiples of one another. This defines an equivalence relation on [k].
We will refer to the equivalence classes of this equivalence relation as the column
equivalence classes.
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(b) We say that (⋆) is a type (RC) linear system 6 if it is balanced and has at most one
column equivalence class of size 1.

(c) We say that a column equivalence class sums to zero if the columns indexed by that
class add up to the zero vector.

Examples of type (RC) linear systems will be given in §7 below. Among these examples
are the systems studied by Mimura and Tokushige.

The assumptions made throughout this paper can be summarized as follows:

Situation 1.7. Let (⋆) be a type (RC) linear system, given by the coefficient matrix
A = (aij) ∈ Fm×k

q , with ℓ column equivalence classes. Furthermore, assume that (⋆) is
non-degenerate and irreducible (see Definition 2.1 below).

In all of our main results below, we assume that (⋆) and A are as in Situation 1.7. In
particular, we always assume that (⋆) is irreducible. However, we note that our results can
also be applied to reducible systems. We show in Proposition 2.2 (resp. Proposition 5.4)
that a system is moderate (resp. temperate) if and only if every irreducible subsystem is
moderate (resp. temperate).

Our first main result is a sufficient condition for a type (RC) linear sytem to be
moderate.

Theorem A. Let (⋆), A, m, k and ℓ be as in Situation 1.7. Suppose that (⋆) satisfies at
least one of the following additional properties:

(i) none of the column equivalence classes of size 2 sums to zero;

(ii) every column equivalence class sums to zero, and k ⩾ 3.

Then (⋆) is moderate.

This result encompasses most of the systems studied by Mimura and Tokushige, and
the rest can be recovered using a slight modification of our proof. See §7 for a detailed
discussion.

Our second main result is a sufficient condition for a type (RC) linear sytem to be
temperate.

Theorem B. Let (⋆), A, m, k and ℓ be as in Situation 1.7. Suppose that (⋆) satisfies at
least one of the following additional properties:

(i) ℓ = m + 1;

(ii) every column equivalence class sums to zero.

Then (⋆) is temperate.
6Terminology introduced by the authors (‘RC’ stands for ‘repeated columns’).
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The requirements of Theorem B are more restrictive than those of Theorem A (see
Remark 2.4(ii)).7 In particular, one of the systems studied by Mimura and Tokushige does
not meet these requirements (see §7 for a detailed discussion).

We do not know if every irreducible linear system of type (RC) is moderate and/or
temperate, but we have the following partial result. We say that a balanced linear equation
satisfied by (x1, . . . ,xk) ∈ Sk preserves the column equivalence classes of (⋆) if appending
that equation to the system (⋆) preserves the column equivalence classes. We prove the
following:

Theorem C. Let (⋆), A, m, k and ℓ be as in Situation 1.7. Then there exist constants
β, γ > 0 with γ < q such that every subset S ⊆ Fn

q of size at least β · γn has a solution
(x1, . . . ,xk) ∈ Sk of (⋆) with the following properties:

(i) every balanced linear equation satisfied by (x1, . . . ,xk) preserves the column equiva-
lence classes of (⋆);

(ii) dim(aff(x1, . . . ,xk)) ⩾ min(k − ℓ, k − 2).

Theorem C improves upon Theorem 1.5 whenever 2 ⩽ ℓ < 2m; see Remark 6.8.
Finally, we turn to an application of our techniques and results. In characteristic 0,

results like Bourgain’s theorem [Bou90] (see also [TV06, Chapter 12]) show that it is
substantially easier to find long arithmetic progressions in sum sets than in general sets.
Using the techniques from this paper, we establish a similar result in vector spaces over Fq.

Given sets S1, . . . , Sl ⊆ Fn
q , we define the affinely independent restricted sum set (or

AIR-sumset) as follows:

S1 ∔
aff

· · · ∔
aff

Sl := {x1 + · · · + xl | x1 ∈ S1, . . . ,xl ∈ Sl affinely independent}.

Further, if (⋆) is linear system which is not necessarily balanced, then we say that a
solution (x1, . . . ,xk) ∈ (Fn

q )k is linearly generic if every linear equation (over Fq) satisfied
by (x1, . . . ,xk) is a linear combination of the equations in (⋆). By comparison, the solutions
which we call generic throughout this paper (see Definition 1.1(c)) only satisfy this property
for balanced linear equations (so by ‘generic’ we will always mean ‘affinely generic’).

Corollary D. Let Fq be a finite field, let (⋆) be a (not necessarily balanced) linear system
over Fq, and let c1, . . . , cl ∈ Fq \ {0} with c1 + · · · + cl = 0. Then there are constants
β, γ ⩾ 1 with γ < q such that, for every subset S ⊆ Fn

q of size at least β · γn, the set
(c1 · S ∔

aff
· · · ∔

aff
cl · S) ∪ {0} contains a linearly generic solution of (⋆).

Note that Corollary D does not impose any restriction on the linear system (⋆); that
is, the coefficient matrix A ∈ Fm×k

q can be arbitrary. This is a significant difference with
7Except that Theorem B(ii) does not have the condition k ⩾ 3. That condition is included in Theorem A
to rule out the system x1 − x2 = 0. It is not hard to see that this particular system is temperate but
not moderate.
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our main results and Sauermann’s result (Theorem 1.4 above), which only work for very
specific classes of linear systems.

In Corollary D, we only need to append 0 to the AIR-sumset when one of the single-
variable equations xj = 0 (j ∈ [k]) can be written as a linear combination of the equations
in the linear system (⋆). If this is not the case, then a linearly generic solution (x1, . . . ,xk)
will satisfy xj ̸= 0 for all j ∈ [k], so it is not necessary to append 0 to the AIR-sumset.

By letting (⋆) be the system that encodes a k-term arithmetic progression, Corollary D
contains the following special case:
Corollary E. Let p be prime, and let 3 ⩽ k ⩽ p. Then, for every subset S ⊆ Fn

p of size at
least p1+(1− 1

k
)n, the set (S − S) \ {0} contains a non-trivial k-term arithmetic progression.

We note that this special case can be proved without using the slice rank method,
using only a simple counting argument (see §7 for details).

1.3 Overview of the main ideas and organization of this paper

Main ideas. There are two new techniques in this paper.
First, the majority of our results depend on a ‘replacement trick’. This trick works

roughly as follows. If the j1-th and j2-th columns of A are non-zero multiples of one another,
and if we have a long enough list {(x(i)

1 , . . . ,x
(i)
k )}L

i=1 of pairwise disjoint solutions to (⋆),
then we use tricoloured sum-free sets to recombine these solutions to obtain new solutions
of (⋆). This is done by taking one of the solutions from this list, say (x(i)

1 , . . . ,x
(i)
k ), and

replacing x
(i)
j1

and x
(i)
j2

by (respectively) x
(i′)
j1

and x
(i′′)
j2

, for some i′, i′′ ≠ i. We show in
Corollary 3.6 that there exists i ∈ [L] which admits one such replacement (the ‘single
replacement trick’), and in Corollary 6.2 that there exists i ∈ [L] which admits many
replacements (the ‘multiple replacement trick’).

The second main ingredient in our proofs is Lemma 4.1, which shows that, for every
subset S ⊆ Fn

q of size at least q1+(1− 1
k

)n, the difference set S − S contains linearly generic
solutions to every linear system in k variables (even systems with k < 2m + 1). The proof
relies only on a simple counting argument, using the pigeonhole principle.

We point out that this paper does not make use of the full strength of Theorem 1.2, as
we only use the slice rank method for 3-tensors. Indeed, the replacement trick relies on
tricoloured sum-free sets, and Lemma 4.1 does not rely on the slice rank method at all.

The constants. Theorem A(i), Theorem B(i), and Theorem C rely only on the replace-
ment trick. Hence, the base of the exponent in the upper bounds from these theorems8 is
equal to Γq, the constant from the bound on tricoloured sum-free sets (see Theorem 3.2).

Theorem A(ii), Theorem B(ii), and Corollary D rely on a combination of the replacement
trick and Lemma 4.1. Hence, the base of the exponent in the upper bounds from these
theorems is the maximum of Γq and q

k−1
k .

Corollary E relies solely on Lemma 4.1. The base of the exponent in the upper bound
is p1− 1

k .
8By ‘the base of the exponent in the upper bound’, we mean the constant γ < q in the upper bound
β · γn.
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Organization of the paper. This paper consists of three parts.
First, in §2–4, we focus on moderate systems. In §2, we discuss the generalities of

moderate systems, and we show that we may restrict our attention to irreducible systems.
In §3, we establish the ‘single replacement trick’, and use it to prove Theorem A(i). In §4,
we establish the other main technique of this paper (Lemma 4.1), and combine it with the
replacement trick to prove Theorem A(ii).

Second, in §5–6, we focus on temperate systems. In §5, we discuss the generalities of
temperate systems. Here we show how the problem of finding solutions of high rank is
related to the problem of finding a generic solution, and we show that we may once again
restrict our attention to irreducible systems. In §6, we establish the ‘multiple replacement
trick’, and use it to prove Theorem B and Theorem C.

Finally, in §7, we discuss several examples and applications. Here we prove Corollary D
and Corollary E, and we recover most of the results from [MT19a, MT19b, MT20] as
special cases of our results. Furthermore, we show that the system conjectured to be
moderate in [MT20] is indeed moderate.

2 Preliminaries on moderate systems

In this paper, we study linear systems of the form
a11x1 + · · · + a1kxk = 0,

...

am1x1 + · · · + amkxk = 0;

(⋆)

with coefficient matrix A = (aij) ∈ Fm×k
q and variables x1, . . . ,xk ∈ Fn

q .
Following standard usage, we say that two linear systems (⋆) and (⋆′) are equivalent

if each equation in (⋆) is a linear combination of the equations in (⋆′) and vice versa.
Furthermore, we say that a variable xi is used by the linear system (⋆) if it occurs with
non-zero coefficient in at least one equation.

Definition 2.1. The linear system (⋆) is said to be:

(a) non-degenerate if the rows of A are linearly independent and every variable is used
(equivalently: A has rank m and A has no zero columns);

(b) reducible if it is equivalent to a linear system (⋆′) with the property that the variables
x1, . . . ,xk can be partitioned into two or more classes in such a way that every
equation in (⋆′) only uses variables from one partition class. If this is not the case,
then (⋆) is said to be irreducible.

Passing to an equivalent system or deleting columns with only zeroes does not change
the problem of finding a (⋆)-shape, so we may assume without loss of generality that (⋆)
is non-degenerate. The following proposition shows that we can also restrict our attention
to irreducible systems.
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Proposition 2.2. Suppose that (⋆) is equivalent to a linear system (⋆′) whose coefficient
matrix can be written as (

A1 0
0 A2

)

for some A1 ∈ Fm1×k1
q and A2 ∈ Fm2×k2

q with m1, m2, k1, k2 ̸= 0. Then (⋆) is moderate if
and only if the systems given by A1 and A2 are moderate.

Proof. If (⋆′) is moderate with constants β, γ > 0, where γ < q, then the same holds for
the systems given by A1 and A2 as every (⋆′)-shape (x1, . . . ,xk1+k2) yields an A1-shape
(x1, . . . ,xk1) and an A2-shape (xk1+1, . . . ,xk1+k2).

Conversely, suppose that for i = 1, 2, the system given by Ai is moderate, with
constants βi, γi > 0, where γi < q. Let S ⊆ Fn

q be a set of size at least max(β1γ
n
1 , k1 +

β2γ
n
2 ). Since |S| ⩾ β1γ

n
1 , we may choose an A1-shape (x1, . . . ,xk1) in S. Since |S \

{x1, . . . ,xk1}| ⩾ β2γ
n
2 , we may choose an A2-shape (y1, . . . ,yk2) in S\{x1, . . . ,xk1}. Then

(x1, . . . ,xk1 ,y1, . . . ,yk2) is a (⋆′)-shape. Since max(β1γ
n
1 , k1 + β2γ

n
2 ) ∈ O(max(γ1, γ2)n),

this shows that (⋆′), and therefore (⋆), is moderate.

Therefore we may restrict our attention to irreducible systems, as stipulated in Situa-
tion 1.7.

The following proposition will be useful later on.

Proposition 2.3. Let (⋆) be a linear system given by the matrix A = (aij) ∈ Fm×k
q . If

(⋆) is non-degenerate and irreducible, and if m ⩾ 2, then every non-zero linear equation
implied by (⋆) uses at least two column equivalence classes, and ℓ ⩾ m + 1.

Proof. Let ℓ be the number of column equivalence classes, and note that m = rank(A) ⩽ ℓ
(recall that the columns with indices in the same column equivalence class are scalar
multiples of each other). Suppose for the sake of contradiction that some linear combination
of the rows of (⋆) uses exactly one column equivalence class. By passing to an equivalent
system and permuting the columns, we may assume without loss of generality that the
first row of (⋆) only uses the column equivalence class C = {1, . . . , |C|} ⊆ [k]. Since the
columns indexed by C are non-zero multiples of one another, we have a1j ̸= 0 for all j ∈ C.

By Gaussian elimination, we may pass to an equivalent system (⋆′), given by the
matrix A′ = (a′

ij) ∈ Fm×k
q , such that ai1 = 0 for all i > 1. Since elementary row operations

preserve the column equivalence classes, we have aij = 0 for all (i, j) ∈ {2, . . . , m} × C.
It follows that every row in (⋆′) uses variables from either C or [k] \ C, but not both.
Since ℓ ⩾ m ⩾ 2, we have |C|, |[k] \ C| ̸= 0, so it follows that (⋆) is reducible. This is a
contradiction, so we conclude that every (non-zero) equation implied by (⋆) uses at least
two column equivalence classes.

To prove that ℓ ⩾ m + 1, let A′ be the matrix obtained by deleting from A the columns
in one column equivalence class. By the above, every non-zero element of the row space
of A′ uses at least one of the remaining ℓ − 1 column equivalence classes. It follows that
rank(A′) = m, so ℓ − 1 ⩾ m.
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Remark 2.4. In Theorems A – C we are in Situation 1.7; that is, our system is of type
(RC) and is irreducible and non-degenerate. For context, we mention two facts about this
situation that are not needed in the proofs, but may be helpful nonetheless.

(i) If m ⩾ 2, then k ⩾ 2m + 1. This follows directly from Proposition 2.3 and the fact
that, in a type (RC) linear system, every column equivalence class except at most
one must have size at least two.

(ii) If ℓ = m + 1, then either every column class sums to zero, or none of the column
classes sums to zero. Indeed, after row operations and permuting columns we may
assume that A =

[
I B

]
, where every column of B is a scalar multiple of one of the

vectors in {e1, . . . , em, b}, and b has no zero entries. So for every i ∈ [m], the union
of the column equivalence classes of ei and b sums to zero.

3 Proof of Theorem A(i)

In this section, we develop the first main technique (the ‘single replacement trick’, see
Corollary 3.6) and use it to prove Theorem A(i).

Definition 3.1. Let G be an abelian group. A sequence {(xi, yi, zi)}L
i=1 in G3 is called a

tricoloured sum-free set in G if for all i, i′, i′′ ∈ [L] one has xi + yi′ + zi′′ = 0 if and only if
i = i′ = i′′.

Note that the definition implies |{x1, . . . , xL}| = |{y1, . . . , yL}| = |{z1, . . . , zL}| = L;
that is, in a tricoloured sum-free set there can be no repetitions in each of the coordinates
(separately).

For all positive integers t ⩾ 2, define

J(t) := 1
t

min
0<x<1

1 + x + · · · + xt−1

x
t−1

3
.

It follows from [BCC+17, Prop. 4.12] that J(t) is decreasing in t. Hence, for all t ⩾ 2 we
have J(t) ⩽ J(2) = 3 · 2−5/3 < 0.945. For a prime power q, define Γq := qJ(q) < 0.945q.9

By a routine application of the slice rank method, one can prove the following bound on
the size of tricoloured sum-free sets.

Theorem 3.2 ([BCC+17]). Let q be a prime power, and let {(xi,yi, zi)}L
i=1 be a tricoloured

sum-free set in Fn
q . Then L < (Γq)n.

To recover Theorem 3.2 from known results, one has to proceed in three steps. First,
the bound L ⩽ 3 · (Γq)n follows from [BCC+17]. Second, to get rid of the additional factor
3, use the ‘power trick’ (a tricoloured sum-free set of size L in Fn

q gives one of size LN

in FnN
q for all N). Finally, to get a strict inequality, prove that (Γq)n is never an integer

9Alternatively, for a prime power q = ps, one could define Γq := (pJ(p))s < 0.945s q. This gives a slightly
better bound, and Theorem 3.2 remains true as stated, because Fn

q
∼= Fsn

p as groups.
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(see for instance [Dob23, Remark 5.11]). Alternatively, the results in this paper can be
recovered by passing to a marginally higher constant Γq + ε instead of Γq, because we have
L ⩽ (Γq)n < (Γq + ε)n for all ε > 0.

To prove the ‘single replacement trick’, we start with the following lemma.

Lemma 3.3. Let q be a prime power, and let Γq be as in Theorem 3.2. Let α, β ∈ Fq \ {0},
let x1, . . . ,xL ∈ Fn

q be distinct, and let y1, . . . ,yL ∈ Fn
q be distinct. If L ⩾ (Γq)n, then

there exist i, i′, i′′ ∈ [L] with i ̸= i′, i′′ and αxi + βyi = αxi′ + βyi′′.

Proof. For i ∈ [L], define zi := αxi +βyi. Each triple in the sequence {(αxi, βyi, −zi)}L
i=1

sums to zero, but we have L ⩾ (Γq)n, so it follows from Theorem 3.2 that this sequence is
not a tricoloured sum-free set. Therefore we may choose i, i′, i′′ ∈ [L], not all equal, such
that αxi + βyi = zi = αxi′ + βyi′′ .

Suppose that i′′ = i. Then we have αxi = αxi′ , hence xi = xi′ (because α ̸= 0), and
therefore i = i′ (because x1, . . . ,xL are distinct), contrary to our assumption that i, i′

and i′′ are not all equal. This is a contradiction, so we must have i′′ ̸= i. An analogous
argument shows that i′ ̸= i.

Remark 3.4. In Lemma 3.3, we do not require that i′ ̸= i′′. The case that i′ = i′′ corresponds
to the case that z1, . . . ,zL are not all distinct. This does not matter for the rest of the
proof.

Definition 3.5. We say that two solutions x⃗ = (x1, . . . ,xk) and y⃗ = (y1, . . . ,yk) to (⋆)
are disjoint if {x1, . . . ,xk} ∩ {y1, . . . ,yk} = ∅. Note that we do not require the xj (resp.
the yj) to be pairwise distinct.

Corollary 3.6 (‘Single replacement trick’). Let {(x(i)
1 , . . . ,x

(i)
k )}L

i=1 be a list of pairwise
disjoint solutions of (⋆), and suppose that j1 and j2 are distinct indices in the same column
equivalence class. If L ⩾ (Γq)n, then there exist i, i′, i′′ ∈ [L] with i ̸= i′, i′′ such that the
k-tuple (y1, . . . ,yk) ∈ (Fn

q )k given by

yj =


x

(i)
j , if j ̸= j1, j2;

x
(i′)
j , if j = j1;

x
(i′′)
j , if j = j2;

is also a solution of (⋆).

Proof. Since the j1-th and j2-th column of (⋆) are multiples of one another, we may choose
a vector v ∈ Fm

q and constants α, β ̸= 0 such that the j1-th column is equal to αv and the
j2-th column is equal to βv.

By assumption, the vectors x
(1)
j1

, . . . ,x
(L)
j1

are distinct, and likewise the vectors
x

(1)
j2

, . . . ,x
(L)
j2

are distinct, so it follows from Lemma 3.3 that there exist i, i′, i′′ ∈ [L]
with i ̸= i′, i′′ and αx

(i)
j1

+ βx
(i)
j2

= αx
(i′)
j1

+ βx
(i′′)
j2

. Hence, the total contribution of x(i)
j1

and x
(i)
j2

to the equations of (⋆) is the same as the contribution of x(i′)
j1

and x
(i′′)
j2

. Since
(x(i)

1 , . . . ,x
(i)
k ) is a solution of (⋆), so is (y1, . . . ,yk).
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We now prove the first main result of this paper, using the replacement trick from the
preceding corollary.

Proof of Theorem A(i). Let (⋆), A, m, k and ℓ be as in Situation 1.7, and suppose that
(⋆) satisfies property (i) from Theorem A (none of the column equivalence classes of size 2
sums to zero). Furthermore, let Γq be the constant from Theorem 3.2.

We prove by induction on λ that, for every λ ∈ [k], there is a constant βλ ⩾ 1 such
that every subset S ⊆ Fn

q of size at least βλ · (Γq)n contains a solution (x1, . . . ,xk) ∈ Sk of
(⋆) with at least λ different vectors; that is, |{x1, . . . ,xk}| ⩾ λ. Setting λ = k then proves
the theorem.

For λ = 1, the claim is trivially true with β1 = 1, since (x, . . . ,x) is a solution of (⋆)
for every x ∈ Fn

q .
For the induction step, suppose that λ0 ∈ [k − 1] is given such that the statement is

true for λ = λ0. Define βλ0+1 := βλ0 + P (k, λ0) · k, where P (k, λ0) denotes the number of
partitions of a k-element set into λ0 parts.

Let S ⊆ Fn
q be a set of size at least βλ0+1 · (Γq)n = βλ0 · (Γq)n + P (k, λ0) · (Γq)n · k.

Create a list of disjoint solutions {(x(i)
1 , . . . ,x

(i)
k )}L0

i=1 of (⋆) in S, each with at least λ0
different vectors, by repeatedly finding such a solution in S and removing it from S. By
the induction hypothesis, we can find a new solution as long as the remaining set has size
at least βλ0 · (Γq)n, and in each step we remove at most k vectors from S, so we find a list
of length L0 ⩾ P (k, λ0) · (Γq)n.

If one of the solutions in the list has strictly more than λ0 different vectors, then we
are done. So we may assume that every solution in the list has exactly λ0 different vectors.

We sort the entries in the list according to their partition pattern. We say that a
solution (x(i)

1 , . . . ,x
(i)
k ) is compatible with a partition [k] = J1 ∪· · ·∪Jλ0 if for all j1, j2 ∈ [k]

we have: x(i)
j1

= x
(i)
j2

if and only if j1 and j2 belong to the same partition class. Evidently
every solution is compatible with exactly one partition. By the pigeonhole principle, we
may choose a partition [k] = J1 ∪ · · · ∪ Jλ0 that occurs at least (Γq)n times in our list of
solutions. Thus, we obtain a list {(y(i)

1 , . . . ,y
(i)
k )}L1

i=1 of solutions of the same partition
type, where L1 ⩾ (Γq)n.

Now we have two competing partitions of [k], given by the column equivalence classes
and the (now fixed) partition type [k] = J1 ∪ · · · ∪ Jλ0 . For j1, j2 ∈ [k], we write j1 ∥ j2 if
j1 and j2 are in the same column equivalence class, and j1 ≡ j2 if j1 and j2 belong to the
same class in the partition [k] = J1 ∪ · · · ∪ Jλ0 (i.e. if y(i)

j1
= y

(i)
j2

for all i ∈ [L1]).
Since λ0 < k, we may choose distinct j0, j1 ∈ [k] with j0 ≡ j1. Furthermore, since (⋆) is

a type (RC) linear system (see Definition 1.6(b)), it has at most one column equivalence
class of size 1, so we may assume without loss of generality that j1 belongs to a column
equivalence class of size 2 or more. We distinguish two cases, depending on which of the
column equivalence classes j0 and j1 belong to.

• Case 1: j0 ∦ j1 or j0 and j1 belong to the same column equivalence class of size at
least 3. In this case, we may choose j2 ̸= j0, j1 such that j1 ∥ j2. By Corollary 3.6,
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there is a solution (z1, . . . ,zk) of (⋆) of the form

zj =


y

(i)
j , if j ̸= j1, j2;

y
(i′)
j , if j = j1;

y
(i′′)
j , if j = j2;

for some i, i′, i′′ ∈ [L1] with i ̸= i′, i′′. In other words, (z1, . . . ,zk) is obtained by
taking the solution (y(i)

1 , . . . ,y
(i)
k ) and replacing two entries.

We prove that |{z1, . . . ,zk}| ⩾ λ0 +1. First, note that {zj1 , zj2}∩{zj | j ̸= j1, j2} =
∅, since the solutions in the list were disjoint. Now we distinguish two cases.

– If j1 ≡ j2, then the removal of the j1-th and j2-th vectors from (y(i)
1 , . . . ,y

(i)
k )

does not change the number of different vectors, since y
(i)
j0

= y
(i)
j1

= y
(i)
j2

. We
replace them by two vectors zj1 , zj2 which are distinct from the other vectors
in the solution (but possibly zj1 = zj2), so the number of different vectors
increases by at least 1.

– If j1 ̸≡ j2, then the removal of j1-th and j2-th vectors from (y(i)
1 , . . . ,y

(i)
k )

decreases the number of different vectors by at most 1, because y
(i)
j0

= y
(i)
j1

. In
this case we are guaranteed to have zj1 ̸= zj2 : different solutions in the list are
disjoint, but even within the same solution the j1-th and j2-th entry are always
different (because j1 ̸≡ j2). Thus, adding zj1 and zj2 to the solution increases
the number of different vectors by 2. The net effect is an increase of at least 1.

This proves our claim that |{z1, . . . ,zk}| ⩾ λ0 + 1.

• Case 2: j0 and j1 belong to the same column equivalence class of size 2. Then, by
assumption (i) from the theorem statement, the j0-th and j1-th columns of (⋆) do
not sum to zero.
By Corollary 3.6, there is a solution (z1, . . . ,zk) of (⋆) of the form

zj =


y

(i)
j , if j ̸= j0, j1;

y
(i′)
j , if j = j0;

y
(i′′)
j , if j = j1;

for some i, i′, i′′ ∈ [L1] with i ̸= i′, i′′.

Suppose for the sake of contradiction that zj0 = zj1 ; that is, y(i′)
j0

= y
(i′′)
j1

. Since
the j0-th and j1-th columns of (⋆) do not sum to zero, and since y

(i)
j0

= y
(i)
j1

, the
fact that both (y(i)

1 , . . . ,y
(i)
k ) and (z1, . . . ,zk) are solutions of (⋆) implies that

y
(i′)
j0

= y
(i′′)
j1

= y
(i)
j0

= y
(i)
j1

. This is a contradiction, because i ̸= i′, i′′, and different
solutions of the list are disjoint. Therefore we must have zj0 ̸= zj1 .
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The removal of y(i)
j0

and y
(i)
j1

from the solution decreases the number of different
vectors by at most 1, since y

(i)
j0

= y
(i)
j1

. On the other hand, putting back zj0 and
zj1 increases the number of different vectors by 2, since we have zj0 ̸= zj1 and
{zj1 , zj2} ∩ {zj | j ≠ j1, j2} = ∅. The net effect is an increase of at least 1, so we
have |{z1, . . . ,zk}| ⩾ λ0 + 1.

4 Proof of Theorem A(ii)

In this section, we develop our second main technique and combine it with the techniques
from the previous section to prove Theorem A(ii).

Our second main technique is the following lemma, which shows that, for every subset
S ⊆ Fn

q of size at least q1+(1− 1
k

)n, the difference set S −S contains linearly generic solutions
to every linear system in k variables (including systems with k < 2m + 1).10 The proof
uses a simple counting argument and does not rely on the slice rank method at all.

Lemma 4.1. Let A = (aij) ∈ Fm×k
q be a non-zero matrix and let S ⊆ Fn

q have size
at least q1+(1− 1

k
)n. Then there are (x1, . . . ,xk), (y1, . . . ,yk) ∈ Sk such that, for all b =

(b1, . . . , bk) ∈ Fk
q , one has b1x1 + · · · + bkxk = b1y1 + · · · + bkyk if and only if b is in the

row space of A.

Proof. By removing redundant rows, we may assume without loss of generality that
rank A = m. If k = m, then we can take x = y ∈ Sk arbitrary. Hence, we may assume that
k ⩾ m + 1. By performing elementary row operations and permuting columns, we may
assume without loss of generality that A is of the form [A′ Im] for some A′ ∈ Fm×(k−m)

q .
The matrix A defines a function f : (Fn

q )k → (Fn
q )m, where [f(x1, . . . ,xk)]i = ai1x1 +

· · · + aikxk. By the pigeonhole principle, we may choose some z⃗ = (z1, . . . ,zm) ∈ (Fn
q )m

such that the set T := f−1(z⃗) ∩ Sk has size |T | ⩾ |S|k/qmn ⩾ qkq(k−m−1)n.
Let π : (Fn

q )k → (Fn
q )k−m be the projection onto the first k − m coordinates, let

g : T → (Fn
q )k−m be the restriction of π to T , and let T ′ := g[T ]. Since A is of the form

[A′ Im], it is easy to see that for every (x1, . . . ,xk−m) ∈ (Fn
q )k−m there is exactly one

possible choice of (xk−m+1, . . . ,xk) ∈ (Fn
q )m such that f(x1, . . . ,xk) = z⃗. Therefore g is

injective, and it follows that |T ′| = |T |.
Let D = {(w1, . . . ,wk−m) ∈ (Fn

q )k−m | w1, . . . ,wk−m are linearly dependent}. Then
|D| < qk−mq(k−m−1)n since there are fewer than qk−m possible linear relations.

Choose some y⃗ ′ = (y′
1, . . . ,y′

k−m) ∈ T ′. Since |T ′−y⃗ ′| = |T ′| > |D|, we have (T −y⃗ ′)\
D ̸= ∅, so we may choose (x′

1, . . . ,x′
k−m) ∈ T ′ such that x′

1 − y′
1, . . . ,x′

k−m − y′
k−m are

linearly independent. Let (x1, . . . ,xk), (y1, . . . ,yk) ∈ T ⊆ Sk be the (unique) preimages of
(x′

1, . . . ,x′
k−m) and (y′

1, . . . ,y′
k−m) under g. Note that (x1, . . . ,xk−m) = (x′

1, . . . ,x′
k−m)

and (y1, . . . ,yk−m) = (y′
1, . . . ,y′

k−m), since g is just a coordinate projection.
10We stress that the added generality of omitting the assumption that k ⩾ 2m + 1 will be needed in

applications of Lemma 4.1 in the proofs of Theorem A(ii), Theorem B(ii) and Theorem C, because
there we apply Lemma 4.1 to a system which has one column from each column equivalence class from
the original system (⋆).
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We claim that (x1, . . . ,xk) and (y1, . . . ,yk) satisfy the required property.
Since f(x1, . . . ,xk) = f(y1, . . . ,yk) = z⃗, it is clear that b1x1 + · · · + bkxk = b1y1 +

· · · + bkyk whenever (b1, . . . , bk) is in the row space of A.
Now let b = (b1, . . . , bk) ∈ Fk

q be an arbitrary row vector such that b1x1 + · · · + bkxk =
b1y1 + · · · + bkyk. Since A is of the form [A′ Im], we can add a linear combination of the
rows of A to b to obtain a vector c = (c1, . . . , ck) ∈ Fk

q with ck−m+1 = · · · = ck = 0. By
linearity, we have c1x1 + · · · + ckxk = c1y1 + · · · + ckyk, or equivalently,

c1(x1 − y1) + · · · + ck−m(xk−m − yk−m) = 0.

Since x1−y1, . . . ,xk−m −yk−m are linearly independent, it follows that c1 = · · · = ck−m =
0, so we have cj = 0 for all j ∈ [k]. This shows that b is in the row space of A.

We now come to the proof of Theorem A(ii). The proof is largely analogous to the
proof of Theorem A(i) (see §3), the main difference being that we now use Lemma 4.1 to
control column equivalence classes that sum to zero.

We prove the following slightly stronger theorem.

Theorem 4.2. Let (⋆), A, m, k and ℓ be as in Situation 1.7. Suppose that there is a
partition [k] = P1 ∪ · · · ∪ P2s such that:

(i) for all r ∈ [s], the columns of A indexed by Pr ∪ Ps+r sum to zero;

(ii) if (b1, . . . , bk) ∈ Fk
q \ {0} is a non-zero element in the row space of A, then one has∑

j∈Pr
bj ̸= 0 for at least two different values of r ∈ [s].11

(iii) if C is a column equivalence class of size 2 that sums to zero, then there is some
r ∈ [s] such that C = Pr ∪ Ps+r.

Then (⋆) is moderate.

Before we prove Theorem 4.2, we first show how it implies Theorem A(ii).

Proof of Theorem A(ii), assuming Theorem 4.2. Let C1, . . . , Cℓ ⊆ [k] denote the column
equivalence classes of A. We distinguish two cases:

• If ℓ = 1, then we have m = rank(A) ⩽ ℓ = 1, so we are in the situation with a single
equation. Since we assumed k ⩾ 3, there is no column equivalence class of size 2, so
it follows from Theorem A(i) that (⋆) is moderate.

• Suppose that ℓ ⩾ 2. Since A is non-degenerate, every column of A is non-zero. Hence,
since the column equivalence classes of A sum to zero, every column equivalence class
has size at least 2. For every r ∈ [ℓ], choose jr ∈ Cr arbitrary, and set Pr := {jr}
and Pℓ+r := Cr \ {jr}.

11Note that we only look at r ∈ {1, . . . , s}, and we ignore all r ∈ {s + 1, . . . , 2s}. This is because it follows
from (i) that

∑
j∈Pr

bj ̸= 0 if and only if
∑

j∈Ps+r
bj ̸= 0. An equivalent statement is that

∑
j∈Pr

bj ̸= 0
for at least four different values of r ∈ [2s].
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We prove that the partition [k] = P1 ∪ · · · ∪ P2ℓ satisfies the properties from Theo-
rem 4.2. Property (i) is met because each of the column equivalence classes sums to
zero, and property (iii) is met by construction. To see that property (ii) is met, recall
that (⋆) is irreducible, so it follows from Proposition 2.3 that every non-zero element
of the row space of A uses at least two different column equivalence classes.

Proof of Theorem 4.2. Let Γq be the constant from Theorem 3.2. We prove by induction
on λ that, for every λ ∈ [k], there is a constant βλ ⩾ 1 such that every subset S ⊆ Fn

q of
size at least βλ · (max(Γq, q

k−1
k ))n contains a solution (x1, . . . ,xk) ∈ Sk of (⋆) satisfying

the following properties:
(a) the solution contains at least λ different vectors; that is, |{x1, . . . ,xk}| ⩾ λ;

(b) for every column equivalence class of size 2 that sums to zero, the variables xj1 ,xj2

corresponding to that class are distinct.
Before proving the base case, we first show that the induction step from the proof of
Theorem A(i) carries through unchanged. This time, part (b) of the induction hypothesis
replaces the assumption (i) from Theorem A. To see that property (b) is automatically
maintained by the proof of Theorem A(i), recall that the induction step consists of choosing
a column equivalence class Ct and replacing two variables from that class by other values,
leaving the other classes unchanged. Since we started and ended with a solution of (⋆),
the contribution of the variables {xj | j ∈ Ct} to (⋆) must have remained the same.
Property (b) is equivalent to saying that the contribution of {xj | j ∈ C} to (⋆) is non-zero
for every column equivalence class C of size 2 that sums to zero, so this property is
automatically maintained by the proof of Theorem A(i).

It remains to prove the base case. Let B = (bir) ∈ Fm×s
q be the matrix given by

bir :=
∑

j∈Pr

aij = −
∑

j∈Ps+r

aij.

Suppose that S ⊆ Fn
q has size at least q · (max(Γq, q

k−1
k ))n. It follows from Lemma 4.1

that there are (z1, . . . ,zs), (zs+1, . . . ,z2s) ∈ Ss such that, for all (c1, . . . , cs) ∈ Fs
q, one has

c1z1 + · · · + cszs = c1zs+1 + · · · + csz2s if and only if (c1, . . . , cs) is in the row space of B.
By assumption (ii), none of the standard unit vectors e1, . . . , es ∈ Fs

q is in the row space
of B, so it follows that zr ̸= zs+r for all r ∈ [s] (since zr = zs+r would imply that er is
in the row space of B).

Since [k] = P1 ∪ · · · ∪ P2s is a partition, we may define y1, . . . ,yk ∈ {z1, . . . ,z2s} ⊆ S
in such a way that yj = zr if and only if j ∈ Pr. Then for all i ∈ [m] we have

ai1y1 + · · · + aikyk =
∑

j∈P1

aijz1 + · · · +
∑

j∈P2s

aijz2s

= bi1z1 + · · · + biszs − bi1zs+1 − · · · − bisz2s = 0,

so (y1, . . . ,yk) ∈ Sk is a solution of (⋆). Clearly |{y1, . . . ,yk}| ⩾ 1. Furthermore, by
assumption (iii), for every column equivalence class C = {j1, j2} of size 2 that sums
to zero, there is some r ∈ [s] such that Pr = {j1} and Ps+r = {j2}, so it follows that
yj1 = zr ̸= zs+r = yj2 .
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5 Preliminaries on temperate systems

We now shift our attention from moderate to temperate systems. We show that the problem
of finding a generic solution is closely related to the problem of finding solutions of high
dimension, and we show that we may once again restrict our attention to irreducible
systems.

For an affine subspace X ⊆ Fn
q we let dim(X) denote the dimension of X. So dim(X)

is the maximum number of affinely independent vectors in X minus one. For a set S ⊆ Fn
q ,

we let aff(S) denote the affine hull of S.

Definition 5.1. For any given k-tuple (x1, . . . ,xk) ∈ (Fn
q )k, let

Annbal(x1, . . . ,xk) = {(b1, . . . , bk) ∈ Fk
q | b1x1 + · · · + bkxk = 0, b1 + · · · + bk = 0}.

So the elements of Annbal(x1, . . . ,xk) correspond to the balanced linear equations satisfied
by (x1, . . . ,xk).

Lemma 5.2. For every (x1, . . . ,xk) ∈ (Fn)k we have

dim(aff(x1, . . . ,xk)) + dim(Annbal(x1, . . . ,xk)) = k − 1.

Proof. Let A ∈ F(n+1)×k be the matrix

A =


1 · · · 1

| |
x1 · · · xk

| |

 .

For I ⊆ [k] the vectors xi, i ∈ I are affinely independent if and only if the columns of A
indexed by I are linearly independent. So rank(A) = dim(aff(x1, . . . ,xk)) + 1.

Evidently, ker(A) is precisely Annbal(x1, . . . ,xk), so the result follows from the rank-
nullity theorem.

Corollary 5.3. Let (⋆) be a balanced linear system of rank m, with coefficient matrix
A ∈ Fm×k

q , and let (x1, . . . ,xk) be a solution of (⋆). Then dim(aff(x1, . . . ,xk)) ⩽ k−m−1,
with equality if and only if (x1, . . . ,xk) is a generic solution of (⋆).

Proof. Since (x1, . . . ,xk) is a solution of the system (⋆), the row space of A is contained
in Annbal(x1, . . . ,xk). Therefore we have m = rank(A) ⩽ dim(Annbal(x1, . . . ,xk)), so it
follows from Lemma 5.2 that

dim(aff(x1, . . . ,xk)) = k − 1 − dim(Annbal(x1, . . . ,xk)) ⩽ k − 1 − m.

Clearly we have equality if and only if the row space of A is equal to Annbal(x1, . . . ,xk),
which is equivalent to saying that all balanced linear equations satisfied by (x1, . . . ,xk)
are linear combinations of the equations in (⋆).

the electronic journal of combinatorics 30(4) (2023), #P4.1 17



Proposition 5.4. Suppose that (⋆) is equivalent to a linear system (⋆′) whose coefficient
matrix A′ can be written as

A′ =
(

A1 0
0 A2

)
for some A1 ∈ Fm1×k1

q and A2 ∈ Fm2×k2
q with m1, m2, k1, k2 ≠ 0. Then (⋆) is temperate if

and only if the systems given by A1 and A2 are temperate.

Proof. If (⋆′) is temperate, then it is easy to see that the same holds for the systems given
by A1 and A2.

Suppose that for i = 1, 2 the system given by Ai is temperate, with constants βi, γi > 0,
where γi < q. Let γ satisfy max(γ1, γ2) < γ < q, and choose β such that

βqγn ⩾ max(qn · β1q
γ1n, nqk1 · β2q

γ2n) for all n ∈ Z⩾1.

Let S ⊆ Fn
q have size |S| ⩾ βqγn. For i ∈ [n] and α ∈ Fq, write S(i, α) := {x ∈ S | xi = α}.

We claim that there exist i ∈ [n] and distinct α′, α′′ ∈ Fq such that |S(i, α′)|, |S(i, α′′)| ⩾ |S|
qn

.
For each coordinate i ∈ [n], let αi ∈ arg maxα∈Fq

|S(i, α)| be a most popular value. Then
S \ {(α1, . . . , αn)} = ∪i∈[n](S \ S(i, αi)). So we can choose i ∈ [n] such that |S \ S(i, αi)| ⩾
|S|−1

n
. Then there is an α′′ ̸= αi such that S(i, α′′) ⩾ |S|−1

n(q−1) ⩾ |S|
qn

. Taking α′ = αi proves
the claim.

Without loss of generality, we will assume that we can take i = 1 in the claim. We
denote S1 = S(1, α′) and S2 = S(1, α′′). Since |S1| ⩾ β1q

γ1n, there exists a generic solution
y⃗ = (y1, . . . ,yk1) ∈ (S1)k1 to the linear system given by A1. We can take I ⊆ [n] with
|I| ⩽ k1 − 1 such that for all b = (b1, . . . , bk1) ∈ Fk1

q with b1 + · · · + bk1 = 0 we have:

∀i ∈ I : (b1y1 + · · · + bk1yk1)i = 0 =⇒ b1y1 + · · · + bk1yk1 = 0.

Indeed, if M ∈ Fn×k1
q is the matrix with columns y1, . . . ,yk1 , then we can take I ⊆ [n] of

size |I| ⩽ k1 − 1 such that the rows of M are contained in the span of the rows indexed by
I and the row vector (1, . . . , 1). Since y11 = · · · = yk11 we may assume that 1 ̸∈ I.

As y⃗ is a generic solution to the system given by A1, we obtain

∀i ∈ I : (b1y1 + · · · + bk1yk1)i = 0 =⇒ b ∈ rowspace(A1). (5.5)

We can take αi ∈ Fq for each i ∈ I such that T = {x ∈ S2 | xi = αi for all i ∈ I} has size
|T | ⩾ |S2| · q1−k1 ⩾ β2q

γ2n.
It follows that there exists a generic solution z⃗ ∈ T k2 to the system given by A2. Now

x⃗ = (y⃗, z⃗) is a generic solution to (⋆′). Indeed, let b = (b1, . . . , bk) ∈ Annbal(x1, . . . ,xk).
It suffices to show that b ∈ rowspace(A′). Looking at the first coordinate and using that
b1 + · · · + bk = 0, we see that

0 = (b1 + · · · + bk1)α′ + (bk1+1 + · · · + bk)α′′ = (b1 + · · · + bk1)(α′ − α′′).

Since α′ ̸= α′′, we find that b1 + · · · + bk1 = 0 = bk1+1 + · · · + bk. Since z⃗ ∈ T k2 it follows
that

(b1y1 + · · · + bk1yk1)i = (b1x1 + · · · + bkxk)i = 0 (∀i ∈ I).
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It now follows from (5.5) that (b1, . . . , bk1) ∈ rowspace(A1). So after modifying b by
an element of rowspace(A′), we may assume that b1, . . . , bk1 = 0. Hence the fact that
b ∈ Annbal(x1, . . . ,xk) implies that bk1+1z1 + · · · + bkzk2 = 0. Since z⃗ is generic, we
conclude that (bk1+1, . . . , bk) ∈ rowspace(A2). Hence, b ∈ rowspace(A′).

6 Proof of Theorem B and Theorem C

In this section, we develop the multiple replacement trick (Corollary 6.2) and use it (in
combination with Lemma 4.1) to prove Theorem B and Theorem C.

We start with a many-solutions version of Lemma 3.3.

Lemma 6.1. Let q be a prime power, let N0 = (Γq)n, where Γq is as in Theorem 3.2, and
let t be a positive integer. Let x1, . . . ,xL ∈ Fn

q be distinct, let y1, . . . ,yL ∈ Fn
q be distinct,

and let α, β ∈ Fq \ {0}. If L ⩾ 4tN0, then there exists an i ∈ [L] such that∣∣∣{(i′, i′′) ∈ ([L] \ {i})2 | αxi′ + βyi′′ = αxi + βyi

}∣∣∣ ⩾ t.

Proof. Write

T := {(i, i′, i′′) ∈ [L]3 | αxi′ + βyi′′ = αxi + βyi and i ̸= i′, i′′}.

By Lemma 3.3, the set T ∩ J3 is nonempty for all J ⊆ [L] with |J | ⩾ N0. We claim that
|T ∩ J3| ⩾ |J | − N0 for all J ⊆ [L]. Indeed, suppose that |T ∩ J3| < |J | − N0; then we
could delete fewer than |J | − N0 elements from J to obtain a set J ′ of size |J ′| > N0 such
that T ∩ (J ′)3 is empty: a contradiction. So |T ∩ J3| − |J | + N0 ⩾ 0 for all J ⊆ [L].

Let J be the random subset of [L] obtained by independently taking each element of
[L] with probability 1

2t
. We have E[|J |] = L

2t
and E[|T ∩ J3|] ⩽ |T |

(2t)2 since |{i, i′, i′′}| ⩾ 2 for
all (i, i′, i′′) ∈ T . From E[|T ∩ J3| − |J | + N0] ⩾ 0 we obtain |T |

4t2 ⩾ L
2t

− N0, and therefore
|T |
L

⩾ 2t − 4t2N0
L

⩾ t. Hence, by the pigeonhole principle, there is an i ∈ [L] such that
|{(i′, i′′) ∈ [L]2 | (i, i′, i′′) ∈ T}| ⩾ t, as required.

Recall that two solutions (x1, . . . ,xk) and (y1, . . . ,yk) are said to be disjoint if
{x1, . . . ,xk} ∩ {y1, . . . ,yk} = ∅. We obtain a corollary analogous to Corollary 3.6.

Corollary 6.2 (‘Multiple replacement trick’). Let {(x(i)
1 , . . . ,x

(i)
k )}L

i=1 be a list of pairwise
disjoint solutions of (⋆), and suppose that j1 and j2 are distinct indices from the same column
equivalence class. Suppose that L ⩾ 4t · (Γq)n for some positive integer t. Then there exists
i ∈ [L] and t distinct pairs (i′

s, i′′
s) ∈ ([L] \ {i})2, s ∈ [t], such that (y(s)

1 , . . . ,y
(s)
k ) ∈ (Fn

q )k

given by

y
(s)
j =


x

(i)
j , if j ̸= j1, j2;

x
(i′

s)
j , if j = j1;

x
(i′′

s )
j , if j = j2;

is also a solution of (⋆) for all s ∈ [t].
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Proof. Since the j1-th and j2-th column of (⋆) are nonzero multiples of one another, we
may choose a vector v ∈ Fm

q and constants α, β ̸= 0 such that the j1-th column is equal to
αv and the j2-th column is equal to βv.

By assumption, the vectors x(1)
j1

, . . . ,x
(L)
j1

are pairwise distinct, and likewise the vectors
x

(1)
j2

, . . . ,x
(L)
j2

are pairwise distinct, so it follows from Lemma 6.1 that there exist i ∈ [L]
and t distinct pairs (i′

s, i′′
s) ∈ ([L]\{i})2, s ∈ [t], with αx

(i)
j1

+βx
(i)
j2

= αx
(i′

s)
j1

+βx
(i′′

s )
j2

. Hence,
the total contribution of x(i)

j1
and x

(i)
j2

to the equations of (⋆) is the same as the contribution
of x(i′

s)
j1

and x
(i′′

s )
j2

. Since (x(i)
1 , . . . ,x

(i)
k ) is a solution of (⋆), so is (y(s)

1 , . . . ,y
(s)
k ).

Definition 6.3. Let A ∈ Fm×k
q be a matrix and let j1, j2 ∈ [k] be distinct elements in the

same column equivalence class of A. We say that (b1, . . . , bk) ∈ Fk
q breaks the pair {j1, j2}

if after adding the row (b1, . . . , bk) to A, the columns indexed by j1 and j2 are no longer
scalar multiples of one another.

Lemma 6.4. Let (⋆), A, m, k and ℓ be as in Situation 1.7, let j1, j2 ∈ [k] be distinct
indices in the same column equivalence class, and let {(x(i)

1 , . . . ,x
(i)
k )}L

i=1 be a list of
pairwise disjoint solutions to (⋆). If L ⩾ 4qk(Γq)n, then there exists i ∈ [L] and a solution
(y1, . . . ,yk) to (⋆) such that:

(i) yj = x
(i)
j for all j ̸= j1, j2 and yj ∈ {x(1)

j , . . . ,x
(L)
j } for j ∈ {j1, j2};

(ii) Annbal(y1, . . . ,yk) ⊆ Annbal(x(i)
1 , . . . ,x

(i)
k );

(iii) no b ∈ Annbal(y1, . . . ,yk) breaks the pair {j1, j2}.

Proof. By Corollary 6.2, we may choose i ∈ [L] and a sequence {(i′
s, i′′

s)}qk

s=1 of qk pairwise
distinct pairs (i′

s, i′′
s) ∈ ([L]\{i})2 such that, for all s ∈ [qk], the k-tuple (z(s)

1 , . . . ,z
(s)
k ) ∈ Sk

defined by

z
(s)
j =


x

(i)
j if j ∈ [k] \ {j1, j2}

x
(i′

s)
j if j = j1

x
(i′′

s )
j if j = j2

is a solution to (⋆).
If b = (b1, . . . , bk) breaks the pair {j1, j2}, then the contributions bj1z

(s)
j1

+ bj2z
(s)
j2

for
s ∈ [qk] are pairwise distinct. Therefore we can have b ∈ Annbal(z(s)

1 , . . . ,x
(s)
k ) for at most

one value of s. Since the number of b ∈ Fk
q with b1 + · · · + bk = 0 is less than qk, we may

choose s0 ∈ [qk] such that no b ∈ Annbal(z(s0)
1 , . . . ,z

(s0)
k ) breaks the pair {j1, j2}.

Set y := z(s0). Then (i) and (iii) are met. To prove (ii), let b ∈ Annbal(y1, . . . ,yk) be
given. Since b does not break the pair {j1, j2}, we have bj1z

(s0)
j1

+bj2z
(s0)
j2

= bj1x
(i)
j1

+bj2x
(i)
j2

,
and therefore b ∈ Annbal(x(i)

1 , . . . ,x
(i)
k ), as desired.
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Lemma 6.5. Let (⋆), A, m, k and ℓ be as in Situation 1.7. Let S ⊆ Fn
q have size

|S| ⩾ q1+ ℓ−1
ℓ

n. Assume that at least one of the following two conditions holds:

(i) ℓ = m + 1;

(ii) every column equivalence class sums to zero.

Then there exists a solution x⃗ = (x1, . . . ,xk) ∈ Sk to (⋆) with the following property:

If b ∈ Annbal(x1, . . . ,xk) preserves the column
equivalence classes of (⋆), then b ∈ rowspace(A).

(6.6)

Proof. Let [k] = C1 ∪ · · · ∪ Cℓ be the partition of [k] into column equivalence classes.
We first consider the case that condition (i) holds. Let x⃗ = (x1, . . . ,xk) be any solution

to (⋆). Suppose that x⃗ satisfies a balanced equation b1x1+ · · ·+bkxk = 0 that preserves the
column equivalence classes of (⋆), but (b1, . . . , bk) is not in the row space of A. Let A′ be the
(m+1)×k matrix obtained by adding the row (b1, . . . , bk) to A. Then rank(A′) = m+1 = ℓ.
For t ∈ [ℓ] let σt ∈ Fm+1

q be the sum of the columns of A′ in class Ct. Since the column
rank of A′ is ℓ, it follows that if we take one index from each column equivalence class, the
corresponding ℓ columns are linearly independent. Let I = {t ∈ [ℓ] | σt ̸= 0}. Then the σt,
t ∈ I are linearly independent and ∑t∈I σt = ∑

t∈[ℓ] σt = 0. It follows that I = ∅. So all
column equivalence classes of A′ (and hence of A) sum to zero, and we are in case (ii).

We now consider the case that condition (ii) holds. Denote by V ⊆ Fk
q the set of vectors

that preserve the column equivalence classes of A. We will assume (by reordering the
columns of A) that C1 = {1, . . . , |C1|}, . . . , Cℓ = {k −|Cℓ|, . . . , k}. So there are row vectors
vt ∈ F|Ct|

q such that
V = {

[
c1v1 · · · cℓvℓ

]
| c1, . . . , cℓ ∈ Fq}.

Since the rows of A belong to V and A has no zero columns, the vt have only nonzero
entries. By scaling, we may assume that the first entry of vt equals 1. For t ∈ [ℓ] let
jt = |C1| + · · · + |Ct−1| + 1. So for all b ∈ V , we have b =

[
bj1v1 · · · bjℓ

vℓ

]
.

Let A′ = (a′
it) ∈ Fm×ℓ

q be the submatrix of A induced by columns j1, . . . , jt. Then
(b1, . . . , bk) is in the row space of A if and only if (bj1 , . . . , bjℓ

) is in the row space of A′.
Consider the system

ℓ∑
t=1

a′
ityt = 0 for all i ∈ [m].

Since |S| ⩾ q1+ ℓ−1
ℓ

n, it follows by Lemma 4.1 that there are (y1, . . . ,yℓ) and (z1, . . . ,zℓ)
in Sℓ such that for all (b1, . . . , bℓ) ∈ Fℓ

q one has b1(y1 − z1) + · · · + bℓ(yℓ − zℓ) = 0 if and
only if (b1, . . . , bℓ) is in the row space of A′. Define (x1, . . . ,xk) ∈ Sk by setting (for t ∈ [ℓ]
and j ∈ Ct)

xj =
yt if j = jt,

zt if j ∈ Ct \ {jt}.
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Since the entries of each vt sum to zero (the column equivalence classes sum to zero by
assumption), we have

bj1(y1 − z1) + · · · + bjℓ
(yℓ − zℓ) = 0 ⇐⇒ b1x1 + · · · + bkxk = 0 (6.7)

for every b ∈ V .
We now check that (x1, . . . ,xk) satisfies the required properties. To show that it is a

solution to (⋆), let b be a row of A. Then the restriction (bj1 , . . . , bjℓ
) is in the row space of

A′, so bj1(y1 − z1) + · · · + bjℓ
(yℓ − zℓ) = 0. Hence, by (6.7), we have b1x1 + · · · + bkxk = 0

as required.
Let b ∈ V ∩ Annbal(x1, . . . ,xk). It remains to show that b is in the row space of A. By

(6.7), we have bj1(y1 − z1) + · · · + bjℓ
(yℓ − zℓ) = 0, so (bj1 , . . . , bjℓ

) is in the row space of
A′. It follows that b is in the row space of A.

We are now ready to prove Theorem B and Theorem C.

Proof of Theorem B. Let Γq be the constant from Theorem 3.2. For every nonnegative
integer t, we define

Nt := q1+ ℓ−1
ℓ

n + t · (4kqk(Γq)n).
Let [k] = C1 ∪ · · · ∪ Cℓ be the partition of [k] into column equivalence classes of A. We will
prove by induction on |P | that, for every set P ⊆

(
C1
2

)
∪ · · · ∪

(
Cℓ

2

)
of equivalent pairs and

for every set S ⊆ Fn
q of size |S| ⩾ N|P |, the system (⋆) has a solution x⃗ = (x1, . . . ,xk) ∈ Sk

that satisfies (6.6) and such that no (b1, . . . , bk) ∈ Annbal(x1, . . . ,xk) breaks a pair in P .

• For |P | = 0, the claim follows directly from Lemma 6.5.

• Assume that |P | ⩾ 1 and that the claim holds for all sets of fewer than |P | pairs. Fix
some {j1, j2} ∈ P , write L = 4qk(Γq)n, and let S ⊆ Fn

q be a set of size |S| ⩾ N|P |.
Since |S| ⩾ N|P | ⩾ kL + N|P |−1, it follows from the induction hypothesis that there
exist L pairwise disjoint solutions x⃗ (1), . . . , x⃗ (L) ∈ Sk to (⋆) that satisfy (6.6) and
such that no (b1, . . . , bk) ∈ Annbal(x(i)

1 , . . . ,x
(i)
k ) breaks a pair in P \ {{j1, j2}}, for

all i ∈ [L].
By Lemma 6.4, we may choose i0 ∈ [L] and a solution x⃗ = (x1, . . . ,xk) ∈
Sk to (⋆) such that Annbal(x1, . . . ,xk) ⊆ Annbal(x(i0)

1 , . . . ,x
(i0)
k ) and no b ∈

Annbal(x1, . . . ,xk) breaks the pair {j1, j2}. By construction, x⃗ (i0) satisfies (6.6)
and no b ∈ Annbal(x(i0)

1 , . . . ,x
(i0)
k ) breaks a pair in P \ {{j1, j2}}, so the same

properties are true for x⃗, because Annbal(x1, . . . ,xk) ⊆ Annbal(x(i0)
1 , . . . ,x

(i0)
k ). We

conclude that x⃗ satisfies (6.6) and no b ∈ Annbal(x1, . . . ,xk) breaks a pair in P .

Letting P =
(

C1
2

)
∪ · · · ∪

(
Cℓ

2

)
completes the proof.

Proof of Theorem C. If all column equivalence classes sum to zero, the result follows
directly from Theorem B(ii). Assume therefore that not all column equivalence classes
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sum to zero. Let Γq be the constant from Theorem 3.2. For every nonnegative integer t we
define

Nt := t · (4kqk(Γq)n).
Let S ⊆ Fn

q have size |S| ⩾ Nk2 . By the same argument as in the proof of Theorem B, we
have a solution x⃗ = (x1, . . . ,xk) ∈ Sk to (⋆) such that no b ∈ Annbal(x1, . . . ,xk) breaks
a pair from the same column equivalence class. In other words, b preserves the column
equivalence classes, so this proves part (i).

For part (ii), observe that Annbal(x1, . . . ,xk) does not contain all balanced linear equa-
tions that preserve the column equivalence classes, for otherwise every column equivalence
class must sum to zero, contrary to our assumption. So we have dim(Annbal(x1, . . . ,xk)) ⩽
ℓ − 1, and therefore dim(aff(x1, . . . ,xk)) ⩾ k − ℓ, by Lemma 5.2.

Remark 6.8. We compare the rank of the solution (x1, . . . ,xk) in Theorem C to the
rank given by Theorem 1.5. Suppose we are in Situation 1.7, and set r = k − 2m + 1.
Then k ⩾ 2m − 1 + r, so it follows from Theorem 1.5 that we can find a solution with
dim(span(x1, . . . ,xk)) ⩾ r, and therefore dim(aff(x1, . . . ,xk)) ⩾ r − 1 = k − 2m.

So how do these two compare? If ℓ = 1, then we must have m = 1 (because we assume
that the rows of A are linearly independent), so in this case the rank from Theorem C
and Theorem 1.5 agree. If ℓ ⩾ 2, then we see that Theorem C improves upon Theorem 1.5
whenever m > ℓ

2 . Then again, Theorem C only applies to a smaller class of linear systems.

7 Examples and applications

We conclude this paper by looking at a few examples of type (RC) linear systems, to
highlight the applications and limitations of the results from this paper. First we will
look at an application to sumsets in Fn

q . We show that our results can be used to find
non-trivial solutions of an arbitrary linear system in the difference set S −S, but not in the
sumset S + S. After that, we will look at the systems studied by Mimura and Tokushige
[MT19a, MT19b, MT20]. We show that our techniques furnish alternative proofs that
those systems are moderate, and in many cases we strengthen this to show that the system
is also temperate.

7.1 Applications to sum and difference sets

Since this paper studies linear systems with repeated columns, one obvious question is to
which extent our results can be applied to the problem of finding solutions to a system
of linear equations in sum and difference sets. Throughout this section, let Fq be a finite
field of characteristic p, and let c1, . . . , cl ∈ Fq \ {0}. We consider the affinely independent
sumset (or AIR-sumset)

T := c1 · S ∔
aff

· · · ∔
aff

cl · S = {c1x1 + · · · + clxl | x1, . . . ,xl ∈ S affinely independent}.

If c1 + · · · + cl = 0, then Corollary D states that T contains generic solutions to every
linear system (⋆), provided that S is sufficiently large. We now prove this statement.
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Proof of Corollary D. Let A = (aij) ∈ Fm×k
q be the coefficient matrix of the system (⋆).

(Recall from the statement of Corollary D that A may be arbitrary.) Let A′ = (a′
ij) ∈ Fm×lk

q

be the m × lk matrix
A′ =

[
c1A | c2A | · · · | clA

]
,

and let (⋆′) be the corresponding linear system. Every column equivalence class of (⋆′) is
the union of sets of the form {j, j + k, . . . , j + (l − 1)k} (for some j ∈ [k]), so (⋆′) is of type
(RC). Furthermore, the column equivalence classes sum to zero, because c1 + · · · + cl = 0.
Hence it follows from Theorem B(ii) and Proposition 5.4 that (⋆′) is temperate. Therefore
there are constants β, γ ⩾ 1 with γ < q such that every set S ⊆ Fn

q with |S| ⩾ β · γn

contains a generic solution of (⋆′). Choose such a generic solution (x1, . . . ,xlk) ∈ Slk, and
define y1, . . . ,yk ∈ c1 · S + · · · + cl · S by

yj := c1xj + c2xj+k + · · · + clxj+(l−1)k.

Clearly (y1, . . . ,yk) is a solution of the linear system (⋆). We show that (y1, . . . ,yk) is
linearly generic and that y1, . . . ,yk ∈ (c1 · S ∔

aff
· · · ∔

aff
cl · S) ∪ {0}.

First, let b = (b1, . . . , bk) ∈ Fk
q be such that b1y1 + · · · + bkyk = 0. Then (x1, . . . ,xlk)

belongs to the kernel of the 1 × lk matrix

B′ =
[
c1b | c2b | · · · | clb

]
.

Since c1 +· · ·+cl = 0, the entries of B′ sum to 0, so B′ represents a balanced linear equation
satisfied by (x1, . . . ,xlk). Since (x1, . . . ,xlk) is a generic solution of (⋆′), it follows that
B′ is in the row space of A′. Equivalently, b is in the row space of A. This shows that
(y1, . . . ,yk) is linearly generic.

To complete the proof, it suffices to show that yj = 0 whenever the vectors
xj ,xj+k, . . . ,xj+(l−1)k are affinely dependent, for every j ∈ [k]. To that end, suppose that
xj ,xj+k, . . . ,xj+(l−1)k are affinely dependent. Then there is some b = (b1, . . . , bl) ∈ Fl

q\{0}
with b1 + · · · + bl = 0 and

b1xj + b2xj+k + · · · + blxj+(l−1)k = 0. (b′)

Since (x1, . . . ,xlk) is generic, the balanced linear equation (b′) is a linear combination of
the equations in (⋆′). By choosing some r ∈ [l] such that br ̸= 0 and restricting our attention
to the variables x(r−1)k+1, . . . ,xrk (i.e. the r-th block in the block matrix representation
of A′), we see that the equation yj = 0 is a linear combination of the equations in (⋆).

Corollary E can be deduced from Corollary D by letting (⋆) be the linear system that
encodes a k-term arithmetic progression and setting l = 2 and (c1, c2) = (1, −1). We
show that Corollary E does not depend on the full strength of Corollary D, as it follows
immediately from Lemma 4.1.
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Proof of Corollary E. Let (⋆) be a linear system which encodes a k-term arithmetic
progression, for instance the system given by the matrix

A =



1 −2 1 0 0 · · · 0 0 0 0 0
0 1 −2 1 0 · · · 0 0 0 0 0
... ... ... ... ... . . . ... ... ... ... ...
0 0 0 0 0 · · · 0 1 −2 1 0
0 0 0 0 0 · · · 0 0 1 −2 1

 ∈ F(k−2)×k
p .

Let S ⊆ Fn
p with |S| ⩾ p1+(1− 1

k
)n. By Lemma 4.1, there are (x1, . . . ,xk), (y1, . . . ,yk) ∈ Sk

such that (x1 − y1, . . . ,xk − yk) is a linearly generic solution of (⋆).
Since the standard basis vectors e1, . . . , ek ∈ Fk

q are not in the row space of A,12 we
have xj − yj ̸= 0 for all j ∈ [k]. Likewise, since the vectors ej − ej′ (j ̸= j′) are not
in the row space of A,12 we have xj − yj ̸= xj′ − yj′ whenever j ̸= j′. It follows that
(x1 − y1, . . . ,xk − yk) is a non-trivial k-AP in (S − S) \ {0}.

Remark 7.1. The preceding proof carries through unchanged if A is replaced by an arbitrary
matrix, and if the difference set (S − S) \ {0} is replaced by the sum set c1 · S + · · · + cl · S
with c1 + · · ·+cl = 0 (replace xj −yj ∈ S −S by c1xj +(c2 + · · ·+cl)yj ∈ c1 ·S + · · ·+cl ·S).
So a weaker version of Corollary D, where the AIR-sumset is replaced by an ordinary
sumset, can also be proved by a simple counting argument, without using the slice rank
method.
Remark 7.2. Now consider once again the sumset c1 · S + · · · + cl · S, but this time assume
that c1 + · · · + cl ̸= 0. In this case, the techniques from this paper do not say anything
non-trivial about the problem of finding a non-trivial k-AP in the sum set c1 ·S + · · ·+cl ·S.

We explain why the results from this paper do not work when c1 + · · · + cl ̸= 0. It
is tempting to try to repeat the proof of Corollary D, but we run into a problem: The
column equivalence classes no longer sum to zero, so we have to replace Theorem B(ii)
by Theorem B(i). However, this imposes two extra conditions on the original m × k
matrix in the proof of Corollary D, namely that A1 = 0 (i.e. (⋆) is balanced) and that
k = rank(A) + 1. So we can only say something for a very specific class of linear systems.
In fact, this class is so specific that the coefficient matrix must satisfy ker(A) = span(1),
so every solution of the original system must be constant!

Likewise, it is tempting to try to repeat the proof of Corollary D, but this time
replacing Theorem B(ii) by Theorem A(i). After all, to find (say) a non-trivial k-AP, it is
enough to find a solution with y1, . . . ,yk pairwise distinct instead of a generic solution.
Here we run into another problem. In the proof of Corollary D, we can find a solution
(x1, . . . ,xlk) ∈ Slk of the extended system (⋆′) with x1, . . . ,xlk pairwise distinct. But
when we recombine these to form a solution (y1, . . . ,yk) ∈ (c1 · S + · · · + cl · S)k of the
original system (⋆), we may end up with y1 = · · · = yk, since we have no way to avoid
these additional equations. In fact, if we use the proof of Theorem A(i) as an algorithm to
find the x1, . . . ,xlk, then this is guaranteed to happen: We start with a solution where
12To prove this, it is sufficient to note that there exist non-trivial k-APs in Fn

q \ {0}.
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all variables x1, . . . ,xlk are equal, and then modify the variables in such a way that
the contribution to each column equivalence class remains the same, so the equation
y1 = · · · = yk is maintained throughout the proof. Once again, the techniques from this
paper are unable to say anything non-trivial.

7.2 The systems studied by Mimura and Tokushige

In a series of papers [MT19a, MT19b, MT20], Mimura and Tokushige studied several
specific (classes of) linear systems, and showed that each of them is moderate. These were
the first results of this type. We show that our results and techniques furnish alternative
proofs for all systems studied by Mimura and Tokushige (though our constants might not
be as good).

The systems studied by Mimura and Tokushige have integer entries, and can therefore
be interpreted as a linear system over Fq for an arbitrary prime power q = ps. Depending
on the system, Mimura and Tokushige sometimes had to assume that p ̸= 2 or p ̸= 3, and
we shall do the same.

Example 7.3. In [MT19a], Mimura and Tokushige studied a star of k three-term arithmetic
progressions, given by the linear system (S∗k) with coefficient matrix

1 1 0 0 · · · 0 0 −2
0 0 1 1 · · · 0 0 −2
... ... ... ... . . . ... ... ...
0 0 0 0 · · · 1 1 −2

 ∈ Fk×(2k+1)
q ,

and proved that this system is moderate whenever p ⩾ 3.
This result can be recovered as a special case of Theorem A, and strengthened to

(S∗k) being temperate by Theorem B. Indeed, (S∗k) is a type (RC) linear system, as it
is balanced and there is only one column equivalence class of size 1. If p ̸= 2, then the
system is non-degenerate and irreducible, and all column equivalence classes have sum
±2 ̸= 0, so it follows from Theorem A(i) that (S∗k) is moderate. Additionally, since there
are k equations and k + 1 column equivalence classes, it follows from Theorem B(i) that
(S∗k) is temperate.

Example 7.4. Also in [MT19a], Mimura and Tokushige point out that their proof also
extends to a ‘fan’ of k three-term arithmetic progressions, given by the linear system (S ′

∗k)
with coefficient matrix

1 −2 0 0 · · · 0 0 1
0 0 1 −2 · · · 0 0 1
... ... ... ... . . . ... ... ...
0 0 0 0 · · · 1 −2 1

 ∈ Fk×(2k+1)
q .

Analogously to Example 7.3, it follows from Theorem A(i) and Theorem B(i) that (S ′
∗k) is

moderate and temperate, provided that p ̸= 2.
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Example 7.5. In [MT19b], Mimura and Tokushige studied the problem of avoiding a ‘W
shape’, and showed that the linear system (W) with coefficient matrix(

1 −1 −1 1 0
1 0 −2 0 1

)
∈ F2×5

q

is moderate whenever p ⩾ 3.
This is not a type (RC) linear system, since there are 3 column equivalence classes of

size 1, so this result cannot be recovered as a special case of Theorem A or Theorem B.
Nevertheless, our techniques from §3 can be adapted to recover this result as well. Indeed,

let Γq be the constant from Theorem 3.2, and let S ⊆ Fn
q with |S| ⩾ 4 ·(Γq)n. By repeatedly

finding a non-trivial 3-AP and removing it from S, we can find a list {(x(i)
1 ,x

(i)
3 ,x

(i)
5 )}L

i=1
of L ⩾ (Γq)n pairwise disjoint non-trivial 3-APs in S3. For all i ∈ [L], set x

(i)
2 = x

(i)
3

and x
(i)
4 = x

(i)
5 , so that (x(i)

1 ,x
(i)
2 ,x

(i)
3 ,x

(i)
4 ,x

(i)
5 ) ∈ S5 is a solution of (W). Since 2 and

4 belong to the same column equivalence class, it follows from Corollary 3.6 that there
are i ≠ i′, i′′ such that the 5-tuple (y1,y2,y3,y4,y5) = (x(i)

1 ,x
(i′)
2 ,x

(i)
3 ,x

(i′′)
4 ,x

(i)
5 ) ∈ S5 is

also a solution of (W). Then y1,y3,y5 are pairwise distinct because they stem from the
same non-trivial 3-AP, and {y1,y3,y5} ∩ {y2,y4} = ∅ because they stem from disjoint
solutions. Finally, note that y2 ≠ y4, for otherwise the first equation of (W) would imply
that y1 = y3. This shows that (W) is moderate.

With minor modifications, the preceding argument also shows that (W) is temperate.
Indeed, by repeating the argument, but using multiple replacement (Corollary 6.2) instead
of single replacement (Corollary 3.6), we can make sure that x

(i′)
2 is not in the line

through x
(i)
1 , x(i)

3 and x
(i)
5 . Then dim(aff(x(i)

1 ,x
(i′)
2 ,x

(i)
3 ,x

(i′′)
4 ,x

(i)
5 )) ⩾ 2, so it follows

from Corollary 5.3 that this solution is generic.

Example 7.6. In [MT20], Mimura and Tokushige studied the system (T ) with coefficient
matrix (

1 −2 1 0 0
0 0 −2 1 1

)
∈ F2×5

q ,

and proved that it is moderate whenever p ⩾ 3.
Once again, this result can be recovered as a special case of Theorem A(i), and

strengthened to (T ) being temperate by Theorem B(i).

Example 7.7. In [MT20], Mimura and Tokushige studied the class of linear systems
(lSk+2). This class is defined as follows: let k ⩾ 1, and let a1, . . . , ak+2 ∈ Fq be non-zero
such that a1 + · · · + ak+2 = 0. Then (lSk+2) is given by the coefficient matrix

a1 · · · ak ak+1 ak+2 0 0 · · · 0 0
a1 · · · ak 0 0 ak+1 ak+2 · · · 0 0
... . . . ... ... ... ... ... . . . ... ...

a1 · · · ak 0 0 0 0 · · · ak+1 ak+2

 ∈ Fl×(k+2l)
q .

In [MT20, Thm. 5], Mimura and Tokushige showed that such a system is always moderate.
(This contains the linear system (S1) from [MT20] as a special case.)
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This result can be recovered as a special case of Theorem A, and strengthened to
(lSk+2) being temperate by Theorem B. Indeed, (lSk+2) is balanced, and it has one column
equivalence class of size k ⩾ 1 and l column equivalence classes of size 2, so it is a type
(RC) linear system. Furthermore, the system is non-degenerate and irreducible. Note that,
if one column equivalence class sums to zero, then all column equivalence classes must
sum to zero, so it follows from either Theorem A(i) or Theorem A(ii) that (lSk+2) is
moderate. Furthermore, since the number of equations is l and the number of column
equivalence classes is l + 1, it follows from either Theorem B(i) or Theorem B(ii) that
(lSk+2) is temperate.
Example 7.8. In [MT20], Mimura and Tokushige studied the class of linear systems
(2Tk,l). This class is defined as follows: let k ⩾ 1 and l ⩾ 2, and let a1, . . . , ak+l ∈ Fq be
non-zero such that a1 + · · · + ak+l = 0. Then (2Tk,l) is given by the coefficient matrix(

a1 · · · ak ak+1 · · · ak+l 0 · · · 0
a1 · · · ak 0 · · · 0 ak+1 · · · ak+l

)
∈ F2×(k+2l)

q .

In [MT20, Thm. 6], Mimura and Tokushige showed that such a system is always moderate.
(This contains the linear system (S2) from [MT20] as a special case.)

This result can be recovered as a special case of Theorem A, and strengthened to (2Tk,l)
being temperate by Theorem B. The argument is analogous to that of Example 7.7.
Example 7.9. In [MT20], Mimura and Tokushige studied the linear system (S−

3 ) with
coefficient matrix 1 1 1 1 −4 0 0 0 0 0

1 1 0 0 0 1 1 −4 0 0
1 1 0 0 0 1 0 0 1 −4

 ∈ F3×10
q ,

and proved that it is moderate whenever p ̸= 2.13

This result can be recovered as a special case of Theorem A, provided that p ̸= 2, 3.14

The results from this paper are insufficient to determine whether (S−
3 ) is temperate,

because there are not enough equations to apply Theorem B(i).
Example 7.10. Finally, in [MT20, Conjecture 1], Mimura and Tokushige conjectured
that the system (S3) with coefficient matrix1 1 1 1 −4 0 0 0 0 0 0

1 1 0 0 0 1 1 −4 0 0 0
1 1 0 0 0 0 0 0 1 1 −4

 ∈ F3×11
q

13The authors don’t make the assumption p ̸= 2 explicit in their proof. This assumption is nec-
essary because the sum of the second and third row of the coefficient matrix is congruent to(
0 0 0 0 0 0 1 0 −1 0

)
(mod 2). So for p = 2 the system cannot be moderate because it

forces two variables to be equal.
14If p = 2, then there are three column equivalence classes of size 1, so the system is not of type (RC).

Furthermore, if p ∈ {2, 3}, then there are column equivalence classes of size 2 that sum to zero, but not
all column equivalence classes sum to 0, so neither Theorem A(i) nor Theorem A(ii) applies in this case.
If p /∈ {2, 3}, then the system is of type (RC) and none of column equivalence classes sums to zero, so
Theorem A(i) applies.
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is moderate. This is confirmed by our results. If p ̸= 2, then it follows from Theorem A(i)
and Theorem B(i) that (S3) is moderate and temperate. If p = 2, then some of the columns
become zero, so they correspond to free variables. After removing those columns, it follows
from Theorem A(ii) and Theorem B(ii) that (S3) is moderate and temperate.

In summary: in all examples except Example 7.9, we were able to prove that the system
is moderate and temperate, thereby strengthening prior results (and proving a conjecture)
of Mimura and Tokushige. In Example 7.9, we gave an alternative proof of the fact that
the system is moderate, but we were unable to determine whether the system is also
temperate.

In Example 7.5, we could not apply Theorem A. Instead, we needed a proof that was
adapted to this particular system, using results from §3, to furnish an alternative proof
that the system is moderate. In all other examples, the fact that the system is moderate
follows immediately from Theorem A.
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