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Abstract

We exhibit several posets arising from commutative algebra, order theory, trop-
ical convexity as potential face posets of tropical polyhedra, and we clarify their
inclusion relations. We focus on monomial tropical polyhedra, and deduce how
their geometry reflects properties of monomial ideals. Their vertex-facet lattice is
homotopy equivalent to a sphere and encodes the Betti numbers of an associated
monomial ideal.

Mathematics Subject Classifications: 14T15, 52B99, 13D02, 06A07

1 Introduction

A union of shifted copies of the positive orthant is a seemingly simple but fundamental
object in mathematics. We call such an object a monomial tropical polyhedron. It occurs
in the study of monomial ideals in commutative algebra [47], in multicriteria and vector
optimisation [24, 33], in order theory [54] and tropical convexity [37]. While the starting
point of our investigation is the search for the concept of faces of tropical polyhedra, arising
from convexity over the (max,+)-semiring, we do not focus on the geometric viewpoint
but rather on the combinatorial side of a face poset. Our work demonstrates that the
search for the ‘right’ notion of faces for a tropical polytope is actually a far deeper question
that branches out into commutative algebra and order theory.

In the development of the theory of tropical polyhedra, it turned out that the classical
approaches to the definition of a face are all flawed, see [34, 21, 30, 5, 1, 6]; they do
not properly tile the boundary of the polyhedra, they do not fulfil the desirable charac-
terization of a face in terms of its defining vertices or do not tie in with the extremality
property arising from linear programming. Our work emerges from the introduction of the
vertex-facet lattice, defined in Section 3. This is a new face lattice for monomial tropical
polyhedra, building on work from Joswig [34] and from Develin and Yu [21]. We define
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it as the intersection lattice of the vertices contained in the facets, which are well-defined
for monomial tropical polyhedra. As the work [21] exhibited and we also demonstrate
later, it is subtle to put this notion of face in correspondence with parts of the boundary
of the tropical polyhedron, therefore we view it as a purely combinatorial object. The
restriction to monomial tropical polyhedra is justified because they form the building
blocks for general tropical polyhedra.

Theorem (Prop. 84). A d-dimensional tropical polyhedron is the intersection of d + 1
monomial tropical polyhedra, one for each possible affine tropical direction.

We establish a common framework based on covector graphs to compare several posets
partly originating in commutative algebra or order theory, which serve some purpose of
a face poset of a monomial tropical polyhedron. We associate the Scarf poset, CP-order,
max-min poset, vertex-facet lattice, max-lattice and pseudovertex poset to a monomial
tropical polyhedron.

Theorem (Synopsis of Section 4). The six posets from left to right are embedded in each
other, where the embedding of the Scarf poset has the additional property of being cover
preserving. Furthermore, if the monomial tropical polyhedron is sufficiently generic, the
first four posets are isomorphic.

Those six, along with two further occurring posets, are visualised in Figure 1. The
strictness of the inclusions is deduced through the construction of separating examples.
Each of these posets is a natural candidate as a face poset of a monomial tropical poly-
hedron that emphasises different properties. The pseudovertex poset is a highly refined
tropical object, derived from the covector decomposition of tropical polyhedra introduced
in [20], that records all possible candidates for faces. The max-min poset is a far sim-
pler poset that restricts to well-behaved faces that overcome some of the discrepancy
displayed in [21], as well as exhibiting the natural duality of monomial tropical polyhe-
dra. The max-lattice is the natural generalisation of the LCM-lattice, an object from the
study of monomial ideals that preserves many homological properties of the monomial
ideal [28, 32]. The CP-order is an object from order theory [25, 39], used to study orthog-
onal surfaces [46] (called ‘grid surfaces’ there) and that captures many of the desirable
geometric properties one would want a face to exhibit. Finally, the Scarf poset is derived
from the construction of primitive sets for Scarf’s algorithmic proof of Brouwer’s fixed
point theorem in [52]. While his work operates under a genericity assumption, his defini-
tion was generalised to the language of more general monomial ideals in [9, 48]. From this
viewpoint, the Scarf poset can be viewed as an extension of the Scarf complex to allow
unbounded faces.

Cryptomorphic to the vertex-facet lattice, we define the facet complex, the simplicial
complex whose maximal simplices are the vertices incident to a single facet of the mono-
mial tropical polyhedron. Section 6 is dedicated to establishing properties of this complex.
We show that the facet complex captures a certain universal structure:

Theorem (Synopsis of Section 6.1). The facet complex of a monomial tropical polyhedron
contains the following objects as natural subcomplexes:
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Figure 1: Different posets serving as face posets; they are all subposets of (R ∪ {±∞})d
with the componentwise order. The posets on the left are motivated by geometric con-
structions, while those on the right arise from commutative algebra.

1. the facet complex of any lift of the monomial tropical polyhedron,

2. the facet complex of any deformation of the monomial tropical polyhedron,

3. the Scarf complex of the monomial tropical polyhedron.

Develin and Yu give a list of desirable behaviour that a face lattice for tropical poly-
topes should have [21, Conjecture 4.7]. In particular, they say it should have the homology
of a sphere, which the facet complex satisfies:

Theorem (Theorem 79). The facet complex of a d-dimensional monomial tropical poly-
hedron is homotopy equivalent to a (d− 1)-sphere.

Finally, we establish a dictionary in Section 5 between monomial ideals and monomial
tropical polyhedra to prove the following:

Theorem (Theorem 81). The facet complex of a monomial tropical polyhedron encodes
the Betti numbers of its associated monomial ideal.

We show how recent advances on the structure and resolutions of monomial ideals [32,
14, 23] are reflected in the geometry of monomial tropical polyhedra. This complements
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multiple other connections between tropical convexity and monomial ideals noted in [12,
22, 49, 47]. We make an explicit interpretation of the duality for monomial tropical
polyhedra demonstrated in [37] as Alexander duality for monomial ideals, mirroring the
Čech hull construction from [45]. We further expand on the connection between cellular
resolutions of monomial ideals and lifts of monomial tropical polyhedra which was explored
in [21]. We also consider two posets associated to monomial ideals, the LCM-lattice [28]
and the Betti poset [16], and investigate their relation with the face posets of monomial
tropical polyhedra established in Section 4, briefly outlined in Figure 1.

We begin our investigation in Section 2 by identifying (R ∪ {±∞})d, the tropical hy-
percube, as the natural space for the face posets and their duality. In particular, we later
extend existing poset constructions to obtain the complete structure mimicking the face
poset of a classical polytope. While one can use projective transformations to reduce the
combinatorial study of classical polyhedra to polytopes, this fails in the tropical world
due to the lack of appropriate transformations. Hence, dealing with rays and generators
with non-finite entries was often avoided in former work as it imposes additional technical
obstacles. We accept this additional overhead to lay the groundwork for the further study
of face posets of tropical polyhedra.

2 Monomial tropical polyhedra

2.1 Tropical hypercube

We work over Tmax = (R∪{−∞},⊕,�), the max-tropical semiring, where ⊕ denotes the
max operation and � denotes addition. Our definitions of tropical convexity follow [29].
We define the tropical convex hull of a finite set V = {v(1), . . . , v(n)} ⊂ Tdmax by

tconv(V ) =

{
n⊕
j=1

λj � v(j)
∣∣∣∣∣ v(j) ∈ V λj ∈ Tmax ,

⊕
λj = 0

}
. (1)

This is the tropical polytope generated by V . A set is tropically convex if it contains the
tropical convex hull of each of its finite subsets. Additionally, we define the tropical conic
hull of a finite set W = {w(1), . . . , w(m)} by

tcone(W ) =

{
m⊕
j=1

λj � w(j)

∣∣∣∣∣ w(j) ∈ W , λj ∈ Tmax

}
. (2)

Remark 1. Some parts of the literature refer to (2) as the tropical convex hull. When
working in Rd, the condition

⊕
λj = 0 can be obtained by quotienting by scalar addition,

a standard practice in tropical geometry. However this does not hold when working with
infinite coordinates in Tdmax, and so tropical convex and conic hull are necessarily different
notions.

More generally, we can define a tropical polyhedron as the tropical sum

Q = tconv(V )⊕ tcone(W ) = {v ⊕ w | v ∈ tconv(V ) , w ∈ tcone(W )} (3)
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for two finite subsets V,W ⊂ Tdmax. In this representation, the set tcone(W ) is unique
and it is called the tropical recession cone of Q.

There is a distinguished subset of the generators of tconv(V ) called the extreme points,
elements that cannot be written as the tropical convex hull of other points of tconv(V ).
These form a minimal generating set for the tropical polytope. Analogously, there is a
distinguished family of points of tcone(W ) called extreme that cannot be written as the
tropical sum of other points of tcone(W ). If w ∈ tcone(W ) is extreme, the points in
the set {λ� w | λ ∈ Tmax} are also extreme and form an extremal ray of the tropical
cone. A set of representatives from the extremal rays yields a minimal generating set
for tcone(W ), unique up to choice of representative. These two minimal generating sets
comprise a minimal generating set for Q.

Given Q ⊆ Tdmax, we obtain its homogenisation Q̂ ⊆ Td+1
max as the tropical cone defined

as

Q̂ = tcone(V̂ ∪ Ŵ ) ,

V̂ = {(0, v1, . . . , vd) | v ∈ V } ,

Ŵ = {(−∞, w1, . . . , wd) | w ∈ W} .

Similarly, we refer to V̂ and Ŵ as the homogenisation of the points and rays respectively.
By [3, Proposition 4], identifying Tdmax with {0} × Tdmax ⊂ Td+1

max allows us to recover Q

from Q̂ via

{0} ×Q = Q̂ ∩ ({0} × Tdmax) .

Moreover, the (minimal) generators of Q̂ define the (minimal) generators of Q.
By the tropical Minkowski-Weyl theorem, [30, Theorem 1], such a tropical polyhedron

can also be written as the intersection of finitely many max-tropical halfspaces, which are
of the form

H(a, I) =

x ∈ Tdmax

∣∣∣∣∣∣
⊕
i∈I

ai � xi >
⊕

j∈[d]0\I

aj � xj , x0 = 0

 . (4)

for some (a0, a1, . . . , ad) ∈ Td+1
max and a subset I of [d]0 := {0, 1, . . . , d}.

The dual point −a ∈ Td+1
min is unique up to scaling and it is often called the apex of the

halfspace. It has the property that evaluating the inequality in (4) yields the same value
for all the products ak�xk with k ∈ [d]. The point naturally lives in the dual space Td+1

min ,
where Tmin = (R∪{+∞},min,+) is the min-tropical semiring. We will use the notion of
an apex in a slightly different way tailored to the specific class of tropical polyhedra we
are interested in.

We consider the max-tropical semiring embedded in the space

T = {−∞} ∪ R ∪ {∞} .

This leads to the d-dimensional tropical hypercube, the space Td.
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Tropical polyhedra and their defining halfspaces naturally live in spaces that are dual
to each other, namely Tmax and Tmin. To capture both features at once, it will be beneficial
to consider a larger space that comprises the two spaces. T is precisely that, with Tmax

and Tmin identified along their common elements.

Remark 2. It will be useful to us to consider the tropical hypercube as a topological space,
in particular, as a compactification of Tdmax. We imbue Tdmax with the product topology

induced by the order topology on Tmax. With this topology, Tdmax is dense in Td and so
the tropical hypercube is the compactification of Tdmax. This follows by considering any

point p ∈ Td as the limit of a points p(k) = (p
(k)
1 , . . . , p

(k)
d ) ∈ Tdmax, where p

(k)
i = pi if

pi ∈ Tmax and (p
(k)
i )k∈N is a strictly increasing divergent sequence otherwise. Note that

Td is also the compactification of Tdmin with respect to this topology.

Remark 3. Compactifications are widely used in tropical geometry. However, one usually
takes the quotient

TPdmax =
(
Td+1

max \ {(−∞, . . . ,−∞)}
)
/R · 1

as a compactification of the d-dimensional space. In dimension one, there is a bijection
between the tropical projective line TP1 and our compactification T given by (x1, x2) 7→
x1 − x2. The classical projective line P1 can be formed by taking two copies of A1 and
gluing them by identifying x and x−1. Tropically, this is done by gluing two copies of
Tmax by identifying x and −x, or equivalently by gluing Tmax and Tmin along R. This

bijection extends to higher dimensions, where there is a natural identification between Td

and (TP1)d.
The max-tropical unit vectors e(1), . . . , e(d) ∈ Tdmax are given by

e
(i)
k =

{
0 if i = k

−∞ otherwise
for 1 6 i, k 6 d .

We set
Emax =

{
e(1), e(2), . . . , e(d)

}
⊆ Tdmax . (5)

This also gives rise to the dual min-tropical unit vectors Emin = −Emax.

2.2 Monomial tropical polyhedra

Our main object of study are tropical polyhedra whose recession cone is tcone(Emax), the
span of the max-tropical unit vectors.

Definition 4. For a finite set V ⊂ Tdmax, we define the monomial tropical polyhedron by

M(V ) = tconv(V )⊕ tcone(Emax) .

Due to the special structure of its recession cone, these tropical polyhedra have a
unique minimal set of extremal generators for the polytope part tconv(V ), which we call
its vertices.
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A different point of view on monomial tropical polyhedra comes from the observation
that we can also represent it as a classical Minkowski sum with a non-negative orthant

M(V ) = V + Rd>0 . (6)

This also yields the connection with multicriteria optimisation [17] where the latter con-
struction leads to the set of points dominated by V .

For a subset J ⊆ [d] we introduce the vector fJ ∈ Td

fJk =

{
+∞ if k ∈ J
0 otherwise

for 1 6 i, k 6 d .

To capture all features on the boundary, we define the closed monomial tropical polyhedron
by

M(V ) =
⋃
J⊆[d]

(
fJ + M(V )

)
⊂ Td .

Note that this differs slightly from the use of this notation in [37]; this has been adapted
due to the focus on tropical polyhedra than on tropical cones.

The external representation of monomial tropical polyhedra is as follows. All defining
halfspaces are of the form

H(c) =

x ∈ Tdmax

∣∣∣∣∣∣
⊕
i∈[d]

ci � xi > 0

 , (7)

with (c1, . . . , cd) ∈ Tdmax. We call the dual point a = −c ∈ Tdmin the apex of the halfspace.
Unlike general tropical polyhedra, monomial tropical polyhedra have a unique minimal
exterior description.

This can be nicely seen through a particular duality exhibited in [37]. Let us define

M

(V ) as the closure in Td of the complement of the closed monomial tropical polyhedron

Td \M(V ) and

M

(V ) as

M

(V ) ∩ Tdmin. We state [37, Theorem 10] in a slightly modified
version, tailored to our purposes.

Theorem 5. The set

M

(V ) is a min-tropical polyhedron in Tdmin. It has the exterior
description

⋂
v∈V −H(−v). Furthermore, if H is a set of max-tropical halfspaces such

that
⋂
H = M(V ), then

M

(V ) = −M(−A) ,

where A ⊂ Tdmin is the set of apices of the tropical halfspaces in H. In particular,

M

(V ) =
tconv(A)⊕ tcone(Emin).

Corollary 6. Let M(V ) be a monomial tropical polyhedron generated by V . Then there
is a unique inclusionwise minimal finite set A ⊂ Tdmin such that

M(V ) =
⋂
a∈A

H(−a) .
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For a classical pointed polyhedron P , there is always a projective transformation
mapping it to a polytope P , allowing one to assign the face lattice of a polytope to a
polyhedron [35]. We shall perform a similar construction for M(V ) and M(V ).

While the Corollary 6 describes the principal halfspaces, we also introduce additional
inequalities corresponding to the non-negativity constraints on Tdmax. Explicitly, we in-
clude (at most) d inequalities of the form xi > −∞ for i ∈ [d]. We add the inequality
xi > −∞ if there is a vertex v ∈ V with vi = −∞. These are the boundary inequalities,
and including them allows us to get the exterior polyhedral description in an analogous
form as for a classical polytope. We note that there have been recent attempts to formu-
late tropical polyhedra over the signed tropical numbers, where one does not have these
non-negativity constraints [42].

To represent boundary inequalities as tropical halfspaces with apices, we note that
each boundary inequality is the limit of the inequality xi > −c as c goes to infinity. These
can be equivalently expressed as the tropical linear inequality

xi � c > 0⊕
⊕

j∈[d]\{i}

(xj �−∞) , (8)

which has a well-defined apex (∞, . . . ,−c, . . . ,∞) ∈ Tdmin with all entries +∞ except
for −c in the ith coordinate. Taking the limit of this apex as c → ∞ gives us the

boundary apex (∞, . . . ,−∞, . . . ,∞) ∈ Td of the ith boundary inequality. By defining the
boundary apex as a limit of apices of principal halfspaces, the combinatorics of boundary
apices mirrors that of apices of principal halfspaces; see Proposition 8.

Moreover, we introduce a special superfluous inequality 0 > −∞, equivalent to

0 >
⊕
i∈[d]

xi �−∞ , (9)

which determines the far face. The notion of the far face originally occurs in the classical
construction as the unique maximal face of P not in the images of faces of P .

While Corollary 6 describes M(V ) in Tdmax, the purpose of these additional inequalities

is to describe M(V ) including its boundary correctly in Td. For example, the far face
inequality (9) is not tight for any points of M(V ), but it is tight for points of the boundary
of M(V ).

Example 7. We examine “the model” introduced by Develin and Yu [21]. This is the
tropical polytope tconv(V ) ⊂ T3

max shown in Figure 2, generated by

V =

A B C D E F( )2 2 1 1 1 1
0 1 2 3 4 5
1 0 5 4 3 2

.

Note that we will use the same non-standard axes for all 3D figures as those given in used
in Figure 2. This allows us to display boundary behaviour cleanly in later examples, and
allows direct comparison with the examples given in [21] where the same axes are used.
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Figure 2: The model tconv(V ) from [21], along with the relevant axes.

The monomial tropical polyhedron M(V ) generated by V is shown in Figure 3. The
apices of its principal halfspaces are shown in red. Explicitly, they are the following points
in T3

min:

r s t u v w x y z( )2 2 2 ∞ 2 2 1 ∞ ∞
3 4 5 1 ∞ 2 ∞ 0 ∞
5 4 3 1 2 ∞ ∞ ∞ 0

As no generators have −∞ in any coordinate, we do not require any boundary inequalities
of the form (8). The only additional inequality we add is the far-face given in equation
(9).

3 Vertex-facet lattice

As monomial tropical polyhedra have a unique minimal set of non-redundant vertices and
defining halfspaces, their incidences form a canonical notion of combinatorial type for a
monomial tropical polyhedron. While this notion is motivated from the combinatorial type
of classical polytopes, we discuss the relation with the existing notion of combinatorial
type for tropical polytopes arising from the covector decomposition [26] in Section 4.1.

To define a notion of face lattice, we require concrete characterisations of apices of

facets and incidence in Td.
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Figure 3: The monomial tropical polyhedron M(V ); the apices of its principal halfspaces
are marked in red.

3.1 Facet-apices and incidence

The natural partial order on T is the standard partial order on Rd extended to Td. This
means that

x 6 y ⇔ xi 6 yi for all i ∈ [d] , (10)

and with 6 replaced by <, respectively.
The following statement appears in the literature in [5] and [17] for tropical polyhedra

in Rd. We give a simple extension to Td.

Proposition 8. A point a ∈ Td is an apex of a principal or non-redundant boundary
halfspace of the monomial tropical polyhedron M(V ) if and only if

1. there is no generator v ∈ V with v < a,

2. for each i ∈ [d] with ai 6=∞ there exists a generator v such that vi = ai and vk < ak
for all k 6= i.
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Proof. The arguments of [5] and [17] still hold if one allows for −∞ as coordinates of the
generators i.e. a ∈ Tdmin a principal apex. For any other points a /∈ Tdmin, at least one
coordinate must satisfy ai = −∞: this immediately implies the first condition cannot
hold. For any coordinate k 6= i, if ak 6=∞ then the second condition implies we can find
some generator v such that vk = ak and vi < ai = −∞, giving a contradiction. Therefore
the only remaining points that may satisfy these conditions are boundary apices. The
boundary apices satisfy condition (2) precisely when the boundary inequality xi > −∞
is tight with respect to some generator.

We define a facet-apex to be any point in Td satisfying the condition of Proposition
8, and we denote the set of them by F . Those arising as apices of principal halfspaces
we call principal apices and those arising from non-redundant boundary inequalities we

call boundary apices. We also associate a far-apex b∞ without geometric meaning in Td

to the inequality (9) corresponding to the far face.
Using Proposition 8 and the duality from Theorem 5 we get an analogous characteri-

sation of the vertices.

Corollary 9. A point v ∈ Td is a minimal generator of the monomial tropical polyhedron
M(V ) if and only if

1. there is no facet-apex a ∈ A with v < a,

2. for each i ∈ [d] with vi 6= −∞ there exists a facet-apex a such that vi = ai and
vk < ak for all k 6= i.

We are now ready to define the notion of incidence among points and rays. Let p be
a point in Tdmax and q ∈ Tdmin the apex of the halfspace H(−q) of the form (7). We say p
is incident to H(−q) if and only if the tropical inequality

⊕
k∈[d] xk �−qk > 0 is tight at

the point p. This leads to the following notion of incidence in Td.

Definition 10. A point p ∈ Td is incident with a point q ∈ Td if p 6 q and there exists

some coordinate i ∈ [d] such that pi = qi. A ray e(i) ∈ Emax is incident with a point q ∈ Td

if qi =∞. Additionally, each of the rays is incident with the far-apex.

Note that these two notions of incidence coincide when we homogenise, where points
and rays are indistinguishable. Consider the points ê(i) = (−∞, e(i)) in Td+1

max and q̂ = (0, q)
in Td+1

min . The point ê(i) is tight at the homogeneous tropical inequality
⊕

k∈[d] xk �−qk >
x0 � −q0 if and only if −qi = −∞. One can also check that these homogeneous unit
vectors are tight with the homogenised far face inequality (9).

We are now ready to consider the incidences in a monomial tropical polyhedron M(V ).
Recall that the elements of V , the unique inclusion-wise minimal set needed to describe a
monomial tropical polyhedron in the form (6), are the vertices. The tropical unit vectors
Emax are its rays. Let V = V ∪ Emax denote the set of vertices and rays of M(V ). Let
F = F ∪ b∞ denote the set of facet-apices and the far-apex of M(V ).
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Definition 11. The vertex-facet incidence graph is the bipartite graph on the node set
V t F with edge (v, a) if v is incident to the apex a.

Example 12. Consider the monomial tropical polyhedron M(V ) shown in Figure 4. Its
generators and facet-apices are

V =
[
v(1) v(2)

]
=

[
1 2
2 −∞

]
, F =

[
a(1) a(2) a(3)

]
=

[
1 2 ∞
∞ 2 −∞

]
.

Its vertex-facet incidence graph is also shown in this figure.

(1, 2) (2, 2)

(2,−∞) (+∞,−∞)

(1,+∞)

v(1)

v(2)

e(1)

e(2)

a(1)

a(2)

a(3)

b∞

Figure 4: M(V ) and its vertex-facet incidence graph defined in Example 12.

3.2 Vertex-facet lattice

We briefly recall some necessary concepts from lattice theory, we refer to [10] for more
details. Let L be a lattice with minimal element 0̂ and maximal element 1̂. The atoms of
L are the elements a ∈ L such that 0̂ < b 6 a implies a = b. The coatoms of L are the
elements c ∈ L such that c 6 d < 1̂ implies c = d. We shall insist that our lattices are
finite, therefore the atoms and coatoms of L are well defined. Furthermore, every finite
lattice is complete i.e., every subset has a greatest lower bound and a least upper bound.

Let F = {F1, . . . , Fk} be a finite collection of sets on some ground set E. We define a
closure operator cl(·) on E by

cl(A) =
⋂

A⊆Fi∈F

Fi ⊆ E .
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This induces a corresponding closure operator on F given by

cl({Fi1 , . . . , Fik}) =

{
Fi ∈ F

∣∣∣∣∣ Fi ⊇
k⋂
`=1

Fi`

}
.

This construction describes a complete lattice L, given by either the closed subsets of E
ordered by inclusion or the closed subsets of F ordered by reverse inclusion. We consider
these as two distinct labellings for L.

Example 13. Let G be a bipartite graph on disjoint node sets U, V . Then G describes
a set system on the ground set U via the neighbourhoods N (v) of v ∈ V , i.e.,

{N (v) ⊆ U | v ∈ V } .

This gives rise to the lattice L of closed sets of U . Reversing the roles of U and V in this
construction gives the alternative labelling of L by closed sets of V .

Example 14. Let C be a cone with rays R and facets F . The ray-facet incidence relations
of C form a bipartite graph on the node set R t F whose edges encode whether a ray
is contained in a facet. The lattice L of closed sets is the face lattice of C, and can be
defined by the conic hull of rays or the intersection of facets. We remark that the dual
lattice of closed sets of F ordered by inclusion is the face lattice of the dual cone C∗.

Any polyhedron P ⊆ Rd can be realised as the intersection of a cone C ⊆ Rd+1 with
the hyperplane x0 = 0. Furthermore, the face lattice of C is isomorphic to the face lattice
of P , and duality is preserved i.e., the face lattice of C∗ is isomorphic to the face lattice of
P ∗. If P is a polytope, this is the lattice induced by the vertex-facet incidence relations.
However if P is unbounded, certain rays of C will not be geometrically realised as vertices
of P , rather as unbounded rays. It is still beneficial to record the incidence data of these
rays as it is crucial for recovering the face lattice of the dual polyhedron, see also [35].

Example 14 motivates our definition for a face lattice of a monomial tropical polyhe-
dron.

Definition 15. Consider the set system induced by the vertex-facet incidence graph, in
the sense of Example 13. The lattice of closed sets is the vertex-facet lattice V of M(V ).

The vertex-facet lattice of the monomial tropical polyhedron described in Example
12 is given in Figure 5. We note that the two-dimensional case is misleading in its sim-
plicity. The following example demonstrates that vertex-facet lattices can have seemingly
pathological behaviour.

Example 16. We continue with M(V ) from Example 7. The vertex-facet incidence graph
is shown in Figure 6. The corresponding vertex-facet lattice is large, therefore we show
just a section of it. Specifically, we show all maximal chains passing through AB. Unlike
the face lattice of a classical polytope, we note that not all maximal chains are of the
same length. As a result, vertex-facet lattices do not admit a grading and so we have no
notion of the ‘combinatorial’ dimension of a face.
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∅

v(1) v(2) e(1) e(2)

v(1)v(2) v(1)e(2) v(2)e(1) e(1)e(2)

v(1)v(2)e(1)e(2)

Figure 5: The vertex-facet lattice of M(V ) from Example 12.

Section 4 is dedicated to comparing the vertex-facet lattice V to existing posets. To
do this, it will be necessary to consider a subposet of V .

Definition 17. The affine part of V is the induced subposet of V whose elements are
closed subsets S ⊆ V such that S ∩ V 6= ∅ or S = ∅.

We shall see that these are the elements that have geometric representations in Td via
their tropical barycenter described in Section 4.2.

Lemma 18. The affine part of the vertex-facet lattice is a lattice.

Proof. Let S1, S2 be closed subsets of V such that Si∩V 6= ∅ or Si = ∅, it suffices to show
the affine part contains a unique least upper bound and greatest lower bound of S1, S2.
The least upper bound of S1, S2 in V contains S1 ∪ S2 (with equality if S1 = S2 = ∅),
therefore also satisfies this condition. Consider the greatest lower bound S of S1, S2 in V ,
either it satisfies S ∩ V 6= ∅, or it is not contained in the affine part. In the latter case,
the greatest lower bound of S1 and S2 is the empty set in the affine part.

Remark 19. The facets in the sense of Joswig [34, §3] are exactly the halfspaces given
by the facet-apices. The construction described around [34, Theorem 3.7], extended to
tropical polyhedra and considered as a lattice, yields a face poset isomorphic to the vertex-
facet lattice. This follows since the main condition of facets to form a face is that their
meet is not empty. However, we refrain from assigning a geometric object due to the
discrepancy described in Section 4.3 between the two possible labels arising from the
duality between vertices and facet-apices.

Similar issues were discussed by Develin & Yu concerning the facets by Joswig in [21].
Consequently, they introduced a concept of face in terms of lifts of tropical polyhedra
(see Section 5.3 for the definition of a lift). Explicitly, a face is a minimal subset of the
boundary which corresponds to faces of a lift of the same dimension, for any choice of lift.
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y
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∞ ∅

A B

AB

ABC ABD ABE ABF

ABe(1) ABCD ABDE ABEF ABFe(2)ABCe(3)

ABCDEFe(1)e(2)e(3)

Figure 6: Pictured left is the vertex-facet incidence graph of the monomial tropical poly-
hedron induced by the model. Pictured right is the subposet of the vertex-facet lattice
given by all chains containing AB.

This notion is rather coarse as it tries to unify the face structure of all lifts. This makes
it less suitable for our framework of face posets.

Remark 20. The paper [17] gives an efficient algorithm for computing the optima of a
discrete multicritera optimisation problem. From our perspective, their result uses the
combinatorics of the vertex-facet incidences to update the search region in the computa-
tion of the optima. Their update procedure is to introduce a new vertex and efficiently
update the corresponding vertex-facet incidences. Indeed, [17, §3 & 4] shows a clever way
to decompose and traverse the dual graph of the facet-apices.

3.3 Intermediate faces

As Proposition 8 and Corollary 9 give us a geometric characterisation of the vertices
and facet-apices, the next natural question is whether we can characterise all faces of
the vertex-facet lattice. The following example suggests this question is more difficult by
demonstrating how degenerate some faces can be.

Example 21. We consider two small examples which highlight the degenerate nature of
monomial tropical polyhedra. Consider the generating sets

V1 =

a b c( )1 0 0
0 1 0
0 0 1

V2 =

u v w( )0 1 1
1 0 1
1 1 0

.
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The monomial tropical polyhedra M(V1) and M(V2) are displayed in Figure 7. The first,
M(V1), has the facets

abc , abe(1)e(2) , ace(1)e(3) , bce(2)e(3) ,

and the far-face. Note that M(V1) is degenerate as perturbations of V1 yield more facets.
However, its vertex-facet lattice is realisable as the face lattice of the classical polyhedron
conv(a, b, c) + R3

>0. This can also be seen as the dual monomial tropical polyhedron is
generic.

The second monomial tropical polyhedron M(V2) has the facets

uvwe(1) , uvwe(2) , uvwe(3) , ue(2)e(3) , ve(1)e(3) , we(1)e(2) ,

along with the far-face. M(V2) is also degenerate, but unlike the previous example its
vertex-facet lattice is not realisable by a classical polyhedron. This is due to the element
uvw, the intersection of the facets uvwe(1), uvwe(2), uvwe(3), being an ‘edge’ containing
three vertices. This example has been identified as problematic from the perspective of
monomial ideals and orthogonal surfaces, see [23, Example 3.8] and [39, Section 3.1].

a

b

c u

v

w

Figure 7: Two degenerate monomial tropical polyhedra, M(V1) and M(V2) from Example
21.

The natural way to characterise faces of ordinary polyhedra is via minimising linear
functions. Given c ∈ Tdmin, consider the tropical linear functional

ϕc : Tdmax → Tmax

p 7→
⊕
i∈[d]

−ci � pi = max
i∈[d]

(pi − ci) ,

We say a vertex v ∈ V minimises ϕc if ϕc(v) 6 ϕc(w) for all w ∈ V . Similar to our
previous treatment of tropical rays, we say e(i) minimises ϕc if ci = ∞. The following
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proposition shows every face of the vertex-facet lattice is the minimum of some tropical
linear functional.

Proposition 22. For each closed set S ⊆ V in the affine part of the vertex-facet lattice,
there exists some c ∈ Tdmin such that every v ∈ S minimises ϕc and every w ∈ V \ S does
not minimise ϕc.

Proof. Let S be a closed set and T ⊆ F its corresponding closed set of facets. Define
c := min {a | a ∈ T}. For v ∈ S ∩V , we have v 6 c componentwise but v > c for at least
one component, hence maxi∈[d](v − c) = 0. For each w ∈ V \ S, there is some a ∈ T such
that wi > ai for at least one i ∈ [d]. This implies maxi∈[d](w − p) > 0, and therefore the
only elements of V that minimise ϕc are those in S. Note that e(i) ∈ S if and only if all
facet-apices of T have ai =∞, which is equivalent to e(i) minimises ϕc.

Unfortunately, the characterisation of faces of ordinary polyhedra does not carry over
to monomial tropical polyhedra. The following example demonstrates that the reverse
direction of Proposition 22 is not correct. It extends [34, Remark 3.10] by demonstrating
that also our combinatorially defined faces do not fulfil this desirable property.

A

B

C

D

Figure 8: M(V ) from Example 23. The red point is the apex of the tropical linear
functional minimised at ABC.

Example 23. Consider the monomial tropical polyhedron M(V ) depicted in Figure 8
whose generators are

V =

A B C D( )1 2 3 4
4 3 2 1
1 2 2 1

.
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Its facets are

Ae(2)e(3) , De(1)e(3) , ADe(1)e(2) , ABCD , CDe(3) , BCe(3) , ABe(3) ,

along with the far-face. Its other (affine) faces are

AB , AD , BC , CD , Ae(3) , Ae(2) , Be(3) , Ce(3) , De(1) , De(3) .

The tropical linear functional max(x1−3, x2−4, x3−2) is minimised on the set of vertices
ABC, however this is not a face in the vertex-facet lattice.

4 Face posets

A closed monomial tropical polyhedron M(V ) is, as a subset of Td, equipped with the

componentwise partial order of Td, which extends the natural partial order of Rd. All the

following posets are naturally subposets of Td equipped with that order.

4.1 Covector decomposition

In [36], the notion of covector graphs introduced in [20] were used to study the combina-
torics of point configurations at infinity, extending results from [26]. We introduce that
notion in a way slightly adapted to our purposes.

Given a point v ∈ Tdmax, its ith affine sector is defined as

Si(v) =

⋂
k∈[d]

{
z ∈ Tdmax

∣∣ zi + vk 6 zk + vi
} ∩ {z ∈ Tdmax

∣∣ zi 6 vi
}

S0(v) =
⋂
k∈[d]

{
z ∈ Tdmax

∣∣ vk 6 zk
} . (11)

Given a ray w ∈ Tdmax, its ith affine sector is

Si(w) =
⋂
k∈[d]

{
z ∈ Tdmax

∣∣ zi + wk 6 zk + wi
}

i ∈ [d], (12)

where S0(w) is empty. These definitions are compatible with the usual notion of sector,
which we discuss further in Section 7.

This leads to the notion of affine covector graph. Given a finite set of points and rays
V,W ⊆ Tdmax, we define for p ∈ Tdmax the set

Np(v) = {i ∈ [d]0 | p ∈ Si(v)} for v ∈ V ∪W .

Recall that the definition of affine sector Si(v) differs depending on whether v is a point
or a ray. The covector graph Gp of p with respect to V ∪W is the bipartite graph on
(V ∪ W ) × [d]0 with edges (v, i) for i ∈ Np(v). Note that we will only be considering

the electronic journal of combinatorics 30(4) (2023), #P4.11 18



covectors with respect to monomial tropical polyhedra, and so our set of rays will always
be W = Emax. These rays describe the boundary strata: a point p is in Si(e

(k)) for i 6= k
if and only if pi = −∞. Note that every point p ∈ Tdmax is contained in Si(e

(i)).

We can define covector graphs for points in Td in the following way. For any point

p ∈ Td, consider p̃ ∈ Tdmax defined as

p̃i =

{
pi if pi ∈ Tmax

M if pi =∞

for arbitrarily large M ∈ R. We define the covector graph Gp as

Gp = Gp̃ ∪
{

(e(i), 0)
∣∣ pi =∞

}
.

The intuition behind this definition is as follows. Let ê(i) = (−∞, e(i)) be the homogeni-
sation of e(i). In Td+1

max, the zeroth sector of ê(i) is defined to be

S0(ê
(i)) =

{
z ∈ Td+1

max

∣∣ z0 6 zi −∞
}
.

In affine space Tdmax, the zeroth coordinate is always equal to zero, therefore we can
formally define p ∈ S0(e

(i)) if and only if pi =∞.
Covector graphs have a natural poset structure given by containment. However, we

will consider another partial ordering derived from the natural partial order on Td. Our

elements will be the pseudovertices, the points p ∈ Td whose covector graphs Gp are con-
nected. Via the procedure described in [20, 37], one can obtain these points geometrically
as follows. If one replaces each principal halfspace by the corresponding tropical hyper-
plane, one gets a polyhedral decomposition of Tdmax containing M(V ) as a subcomplex.
The pseudovertices are precisely the zero-dimensional cells of this decomposition. While
not all of them are vertices of M(V ) in the sense of tropical convexity, they are vertices
of a polyhedral complex whose support is M(V ). We also include the unique minimal
element −∞ = (−∞, . . . ,−∞); note that the unique maximal element is the pseudover-
tex∞ = (∞, . . . ,∞). We let P be the set of pseudovertices including −∞ with partial

order given by the standard partial order 6 on Rd extended to Td. We call (P ,6) the
pseudovertex poset.

Note that P is not a lattice as the following example demonstrates.

Example 24. Let M(V ) be the monomial tropical polyhedron generated by

V = {(2, 1, 0), (2, 0, 1), (1, 2, 3), (1, 3, 2)} .

Figure 9 shows M(V ) and an interval in its pseudovertex poset. In particular, elements
(2, 2, 1) and (2, 1, 2) have no unique least upper bound.

Remark 25. The duality between tropical point configurations and subdivisions of prod-
ucts of simplices established in [20] emphasises a different viewpoint on the partial or-
derings of covector graphs. The first ‘natural’ choice of containment of covector graphs
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233

−∞

133

Figure 9: The monomial tropical polyhedron described in Example 24 and the interval
[−∞, (2, 3, 3)] in its pseudovertex poset.

translates to a reversed order for the corresponding cells in the subdivision of a product
of two simplices. However, the interpretation of the partial order on the pseudovertices
does not have such a clear geometric analogue. Note that a combinatorial abstraction
of the ordering derived from the graph structure is used to measure progress in abstract
tropical linear programming [41].

While a natural first choice of poset to describe the ‘face structure’ of M(V ), Example
24 highlights that the pseudovertex poset is not the correct choice. Additionally, covector
graphs encode a lot of information that is not relevant as the structure of M(V ) is mostly
encoded via the zeroth sectors and their interaction with other sectors. We highlight
this in Figure 10. This motivates the study of a coarser poset that only encodes this
information.

4.2 Max-lattice

We start with a lattice that is significantly simpler than the pseudovertex poset but still
fine enough to capture all other posets in this section. It is inspired by and closely related
to the LCM-lattice which we further discuss in Section 5.4.

In the following we introduce the max-lattice of the monomial tropical polyhedron
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A

B

C

Figure 10: A monomial tropical polyhedron with generators A,B,C. Vertices B and C
can move freely without changing the vertex-facet lattice, but may drastically change the
underlying covector graphs.

M(V ). We define the modified max-tropical unit vectors Emax = {ē(1), . . . , ē(d)} ⊂ Td as

ē
(i)
k =

{
+∞ if i = k

−∞ if i ∈ [d] \ k
.

For each S ⊆ V ∪ Emax such that S ∩ V 6= ∅, we define the elements

mS = max {v | v ∈ S}

where max is taken componentwise. The max-lattice is the set of elements of this form,
along with the unique minimal element m∅ = −∞ ordered by the standard partial order

on Td. An element m of the max-lattice is naturally labelled by the maximal inclusionwise
set S such that m = mS. We note that the unique maximal element is mV ∪Emax

=∞.

Lemma 26. The max-lattice of M(V ) is a lattice. Moreover, for each pair of elements
mS,mT labelled by maximal sets S, T , their join and meet is defined as

mS ∨mT = max {v | v ∈ S ∪ T} = mS∪T

mS ∧mT = max {v | v ∈ S ∩ T} = mS∩T .

Proof. The definition of the join mS ∨mT is immediate; moreover, we can extend it to
arbitrary sets of elements. As any subset of elements has a unique least upper bound,
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and the max-lattice has a unique smallest element, it forms a (complete) lattice by [53,
Proposition 8.7].

Let Q ⊆ V ∪ Emax be the unique maximal set such that mQ 6 mS,mT : uniqueness
comes from lattice properties. As S, T are maximal sets, this implies that each v ∈ Q
satisfies v 6 mS,mT , and conversely for each v /∈ Q we have either v � mS or v � mT .
It follows that Q = S ∩ T and hence mS ∧mT = mS∩T .

Note that it is essential that S, T are maximal sets in the definition of mS ∧mT , else
we may have mS∩T < mS ∧mT .

There is geometric intuition behind the definition of the max-lattice. Let X be a

subset of Td, the max-tropical barycenter of X is

tbary(X) = sup {x | x ∈ X} , (13)

where sup is taken componentwise. This definition is obtained by directly tropicalising
the classical notion of barycenter, and appears as an important tool in [2]. Note that we

must work in Td, else the tropical barycenter may not be well-defined.
Given S ⊆ V ∪ Emax, we define the tropical polyhedron:

PS = tconv(v | v ∈ S ∩ V )⊕ tcone(e(k) | ē(k) ∈ S ∩ Emax) .

If S has the additional property that S ∩ V 6= ∅, then S is a tropical subpolyhedron
of M(V ). The following lemma shows the max-lattice contains geometric information of
M(V ) in terms of tropical barycenters.

Lemma 27. Let S ⊆ V ∪ Emax with S ∩ V 6= ∅. Then

mS = tbary(PS) .

Proof. The ‘largest’ points of PS are obtained by the representation(⊕
0� v

)
⊕
(⊕

λk � e(k)
)

v ∈ S ∩ V , ē(k) ∈ S ∩ Emax

where λk are arbitrarily large. Taking the supremum of these points gives the desired
result.

Example 28. Consider the monomial tropical polyhedron M(V ) generated by V =
{(1, 2), (2,−∞)} and its max-lattice shown in Figure 11. All subsets of V ∪ Emax whose
intersection with V is non-empty have a corresponding point in M(V ), in particular the
vertices and facet-apices are contained.

The following two propositions describe the relationship between the max-lattice, the
vertex-facet lattice and the pseudovertex poset.

Proposition 29. The affine part of the vertex-facet lattice of M(V ) is a sublattice of its
max-lattice.
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(1, 2) (2, 2)

(2,−∞) (+∞,−∞)

(1,+∞)

(−∞,−∞)

(1, 2) (2,−∞)

(1,+∞) (2, 2) (+∞,−∞)

(+∞, 2)(2,+∞)

(+∞,+∞)

Figure 11: The monomial tropical polyhedron M(V ) and its max-lattice defined in Ex-
ample 28. Vertices of M(V ) are marked black, facet-apices are marked red and other
elements are marked white.

Proof. Given a closed subset S of V ∪ Emax, the corresponding subset S of V ∪ Emax is
defined by simply replacing e(k) with ē(k). We claim that the map from the vertex-facet
lattice to the max-lattice defined by S 7→ mS is an order embedding.

Let S1, S2 be closed subsets of V ∪ Emax such that Si ∩ V 6= ∅ for i = 1, 2. It suffices
to show S1 ⊆ S2 if and only if mS1

6 mS2
. If S1 ⊆ S2, it is immediate that S1 ⊆ S2 and

therefore mS1
6 mS2

.
Conversely, suppose S1 * S2. By closedness, there exists an apex a ∈ F such that all

elements of S2 are incident with a, but there exists some w ∈ S1 \ S2 that is not incident
with a. There exists some coordinate i ∈ [d] such that

vi 6 ai < wi ∀v ∈ S2 ∩ V if w ∈ V
vi 6 ai <∞ ∀v ∈ S2 ∩ V if w = e(i)

In either case, we have m{w} � mS2
therefore mS1

� mS2
.

Proposition 30. The max-lattice is a subposet of the pseudovertex poset.

Proof. Let m = mS be an element of the max-lattice, we claim that m is a pseudovertex

as a point in Td. Let Gm be the covector graph associated to m, we show that Gm is
connected.

By Lemma 27, m is the tropical barycenter of the tropical polyhedron PS. If mi is
finite there exists some vertex w such that wi = mi, therefore 0, i ∈ Nm(w). If mi = ∞
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then 0, i ∈ Nm(e(i)), as every element is contained in Si(e
(i)) and m ∈ S0(e

(i)) if and only
if mi = ∞. This implies there exists a connected component in Gm containing every
node of [d]0. Furthermore, no node of V ∪ Emax can be isolated in Gm, therefore Gm is
connected.

Corollary 31. A pseudovertex p with covector graph Gp is an element of the max-lattice
if and only if Np(Np(0)) = [d]0.

Proof. The previous proof shows elements of the max-lattice satisfy this condition. Con-
versely, let S = Np(0). For all i ∈ [d] there exists w ∈ S such that wi = pi or pi =∞ and
w = e(i). This implies p = mS.

As the covector graph of an element of the max-lattice only depends on the neigh-
bourhood of 0, we get the following.

Corollary 32. The max-lattice is purely determined by the componentwise order of the
points and does not depend on the actual coordinates.

Remark 33. Example 24 and Corollary 31 demonstrate that the pseudovertex poset is in
general not equal to the max-lattice. Furthermore, unlike the max-lattice the pseudovertex
poset does not only depend on the ordering of the coordinates. This can be seen via the
example in Figure 9 by perturbing the vertex 132 to 142. This does not change the ordering
of the coordinates, however the vertex 210 splits into 210 and the new pseudovertex 220.

4.3 Max-min poset

We introduce a new poset which is motivated by the duality of monomial tropical poly-
hedra. However, we show that its unexpected behaviour reflects the discrepancy of the
tropical convex hull of the vertices and the intersection of the halfspaces corresponding
to a face in the vertex-facet lattice. It is this behaviour that causes a major problem for
the face lattice defined by Joswig in [34].

Dual to the max-lattice, we introduce the min-lattice of a monomial tropical polyhe-
dron. For this, we set Emin = −Emax and let A be the set of principal apices of M(V ). We
mirror the construction of the max-lattice from Tmax to Tmin. We replace max with min,
the ground set V ∪ Emax with A ∪ Emin and for each T ⊆ A ∪ Emin such that T ∩ A 6= ∅,
we define the elements

nT = min {a | a ∈ T} .

By reversing the partial order on Td and letting∞ be the unique minimal element in this
partial order, we obtain the min-lattice of M(V ). As a direct consequence of Theorem 5,
we have the following relation between the min and the max-lattice.

Lemma 34. There is an order-reversing isomorphism between the min-lattice of M(V )
and the max-lattice of M(−A) = −

M

(V ).
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Proof. There is a bijection between the two posets given by

nT = min {a | a ∈ T} = −max {−a | a ∈ T} = −mT .

Furthermore, this bijection is order reversing as nS 6 nT ⇔ −mS > −mT .

The consequence of this lemma is that the min-lattice is a reformulation of the max-
lattice of the complementary monomial cone, and vice versa. As a result, both the max-
lattice and the min-lattice describe the face structure of the intersection M(V ) ∩

M

(V ).
Furthermore, both have associated geometric data in the form of the max-barycenter mS

and the min-barycenter nT , respectively. A set of facet-apices T ⊆ F is also naturally a
subset of A∪ Emin by sending any boundary apices to the corresponding element in Emin.
This gives a natural embedding of the affine part of the vertex-facet lattice V into the
max-lattice Lmax and the min-lattice Lmin via the maps

V ↪→ Lmax V ↪→ Lmin

S 7→ mS T 7→ nT

where S is a closed set of vertices and T is a closed set of facet-apices.
A natural question is whether the geometric data agrees on the affine part of the

vertex-facet lattice. Right from Definition 10, we obtain a weaker statement.

Lemma 35. Let S ⊆ V be a closed set of vertices with S ∩ V 6= ∅ whose element in the
max-lattice is mS, and let T ⊆ F its corresponding closed set of facets whose element in
the min-lattice is nT . Then mS 6 nT .

However, equality is not always attained as the following example demonstrates.

Example 36. Consider the monomial tropical polyhedron M(V ) displayed in Figure 12
with generating set

V =

A B C D E( )1 1 1 0 0
0 1 2 3 4
2 1 0 4 3

.

Its set of facet-apices is

F =

s t u v w x y z( )1 1 1 ∞ ∞ 0 ∞ ∞
4 3 ∞ 1 2 ∞ 0 ∞
4 ∞ 3 2 1 ∞ ∞ 0

Consider the subset of vertices {A,B,C}; this is a closed set and its corresponding
closed set of apices is {s, t, u}. The point in the max-lattice corresponding to {A,B,C}
is (1, 2, 2), while the point in the min-lattice corresponding to {s, t, u} is (1, 3, 3). These
points are both marked on Figure 12 by crosses.
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Figure 12: The monomial tropical polyhedron M(V ) given in Examples 36 and 45.

It is desirable to have a face poset of a monomial tropical polyhedron that reflects the
inherent duality of monomial tropical polyhedra which can be seen in Theorem 5 and in
its translation to Alexander duality explained in Section 56. This motivates the following
definition.

Definition 37. The max-min poset M is the induced subposet of Lmax on the elements
in the intersection Lmax ∩ Lmin.

We remark that it is equally reasonable to define M as an induced subposet of Lmin,
this will simply reverse the partial order.

Proposition 38. The max-min poset is a subposet of the affine part of the vertex-facet
lattice.

Proof. It suffices to show if mS = nT for some maximal subsets of vertices and facet-apices
S and T , then S and T are closed. There must exist some maximal set, as if mS = mS′ ,
then we can take their union S ∪ S ′ without increasing the max. Consider w 6 a for all
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a ∈ T , then w 6 nT = mS and so w ∈ S by maximality. This implies S is closed, T is
closed by a similar argument.

However, note that Example 36 implies the max-min poset may be a strict subposet of
the vertex-facet lattice. We shall see in Section 4.4 that the max-min poset is not a lattice
in these cases. Furthermore, the following example highlights that the max-min poset is
not recoverable from certain combinatorial data of the monomial tropical polyhedron,
such as its vertex-facet incidence graph and the covector graphs of points.

Example 39. We consider the following variant of the monomial tropical polyhedron
from Example 36. Explicitly, we consider the generating set Ṽ obtained from V after
replacing D and E with D̃ = (0, 2, 3) and Ẽ = (0, 3, 2). This affects the three facet-apices
s, t, u: we replace them with

s̃ = (1, 3, 3) , t̃ = (1, 2,∞) , ũ = (1,∞, 2) .

We now have max(A,B,C) = min(s̃, t̃, ũ) = (1, 2, 2), and so {A,B,C} is an element of
the max-min poset of M(Ṽ ).

We note that M(V ) and M(Ṽ ) have isomorphic vertex-facet lattices as these replace-
ments do not affect the vertex-facet incidences. We also note that the covectors for ABC
in M(V ) and M(Ṽ ) are equal up to relabelling D,E by D̃, Ẽ. This implies that one can-
not determine if a point is contained in the max-min poset from its covector, or from the
vertex-facet incidence graph.

While we cannot give a characterisation of the covector graph of a point in the max-
min poset, we conclude with a characterisation of the covector graphs of principal apices,
the coatoms of the max-min poset, which is essentially a reformulation of Proposition 8.

Lemma 40. A point p ∈ Tdmin is an apex of a principal halfspace of M(V ) if and only if

a) Np(0) contains no node of degree 1,

b) for each i ∈ [d], there is at least one element v ∈ V such that Np(v) = {0, i}.

4.4 CP-orders

Felsner and Kappes [25] introduced another poset associated to a monomial tropical poly-
hedron called the CP-order. Their work was motivated by the study of the order dimension
of a poset, see in particular [25, Prop. 2].

We use a definition of CP-order tailored to our terminology by adapting combinatorial
notions introduced in Kappes’ thesis [39]. We say q is almost strictly greater than p if
there exists some coordinate i such that pi = qi and pk < qk for all k 6= i, denoted p /i q.
An i-witness for a point p ∈ ∂M(V ) is a vertex v ∈ V such that there exists q ∈ ∂M(V )

satisfying v 6 p 6 q and v /i q. Note that this does not extend immediately to Td: any
point p with pi = ∞ cannot have an i-witness as vertices are elements of Tdmax. In this
case, one can think of this as e(i) acting as an i-witness. This motivates the following

definition for characteristic points in Td.
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Definition 41. A point p is a characteristic point if for each i ∈ [d], either p has an
i-witness or pi = ∞. The CP-order is the poset of characteristic points, along with the
unique minimal element −∞, with the standard partial order.

As an example, we note that the vertices and facet-apices of M(V ) are characteristic
points. A vertex v ∈ V is its own i-witness with respect to q where qi = vi and qj = vj +ε
for all j 6= i. By condition (2) of Proposition 8, a facet-apex a must either have ai = ∞
or some vertex v be an i-witness.

Characteristic points have a geometric interpretation that can informally be thought
of as the “corners” of M(V ) where d components of the boundary intersect, each parallel
to a different coordinate hyperplane. While intuitive, the geometric definition is subtle
and much more cumbersome than the clean combinatorial formulation we use.

The CP-order is relatively hard to deal with. For example, it may not be a lattice as
Example 45 demonstrates. Furthermore, it appears to be computationally unwieldy: the
best known approach is naively compute a poset containing it and manually check if each
element satisfies the condition of being a characteristic point. However, the following
results show the CP-order is intimately related to the computationally amenable face
posets we have already discussed.

Lemma 42. A point p ∈ Td with covector graph Gp is a characteristic point if and
only if for each i ∈ [d] there exists v ∈ Np(0) ∩ Np(i) such that Np(u) * Np(v) for all
u ∈ Np(0) \ Np(i).

Proof. It suffices to show this condition on v is equivalent to being an i-witness to p. The
condition v ∈ Np(0) ∩ Np(i) ensures that v 6 p and vi = pi. The condition on u is a
translation of [39, Proposition 4.15]. Paired with the first condition, this is equivalent to
v being an i-witness.

Proposition 43. The CP-order is a subposet of the max-min poset, and hence of the
max-lattice and the pseudovertex poset.

Proof. Given some characteristic point p, we construct subsets S ⊆ V and T ⊆ F such
that their corresponding elements in the max-lattice and min-lattice respectively equal p.
As p is a characteristic point, for each i ∈ [d] either it has an i-witness v(i) or pi =∞. In
the former case, there exists some apex a(i) such that v(i) 6 p 6 a(i) with equality in the
i-th coordinate, therefore we add v(i) to S and a(i) to T . In the latter case, we add e(i) to
S. The elements corresponding to S in the max-lattice and T in the min-lattice gives the
desired result.

Proposition 44. The CP-order is a subposet of the affine part of the vertex-facet lattice.

Proof. Let p ∈ Td \∞ be a characteristic point of M(V ) and define

S =
{
v ∈ V

∣∣ v is incident to p
}
⊆ V ,

T = {a ∈ F | p is incident to a} ⊆ F .
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There must exist some i-witness for p, therefore we have S ∩ V 6= ∅ immediately. We
claim that S and T are closed sets.

First we show that every element of S is incident to every element of T . Fix some
vertex v ∈ S and consider a facet-apex a ∈ T , we have v 6 p 6 a. Furthermore, by
the definition of facet-apex there exists some coordinate such that vi = ai, therefore v in
incident to every facet-apex of T . Now fix some ray e(i) ∈ S. For any facet-apex a ∈ T
we have ai > pi =∞ therefore a is incident to e(i).

Suppose there exists w ∈ V \ S incident to all facet-apices a ∈ T . Suppose w = e(i),
then every facet-apex has ai =∞. There does not exist an i-witness for p, as this would
imply there exists a vertex v ∈ Tdmax such that vi = ai =∞. By definition of characteristic
points, this implies pi =∞, and therefore e(i) ∈ S.

Instead suppose w ∈ V . As w /∈ S, there exists i ∈ [d] such that wi > pi. There exists
an i-witness v ∈ S for p and some a ∈ T such that vi = pi = ai and vk < ak for all k 6= i.
This implies wi > ai, contradicting that w is incident to a.

We now prove the equivalent statement for T . Suppose there exists some facet-apex
a ∈ F \ T incident to all elements of S. As a /∈ T , there exists some i ∈ [d] such
that pi > ai. By definition of characteristic point, p has an i-witness v ∈ S, implying
vi = pi > ai, and so a is not incident to all elements of S. This completes the proof that
S and T are corresponding closed sets.

We note as the CP-order is a subposet of the max-lattice, no two characteristic points
can have the same S. Therefore every characteristic point is an element of the vertex-
facet lattice. The final points to consider are the unique maximal point∞ and the unique
minimal element −∞. To each of these we have the natural embedding

∞ 7→ V −∞ 7→ ∅ ,

and there corresponding closed subsets of F of facets. As the partial order on both is
domination, the CP-order is a subposet of the vertex-facet lattice.

Example 45. We show the CP-order is distinct from the vertex-facet lattice and max-min
poset by revisiting Examples 36 and 39.

Consider the monomial tropical polyhedron introduced in Example 36, and the interval
[B,ABCDE] of its vertex-facet lattice displayed in Figure 13. For each element, the max
of their vertices is a characteristic point other than ABC: the point max(A,B,C) is
marked with a cross in Figure 12, and is clearly not a characteristic point. Therefore the
corresponding interval in the CP-order is not a lattice as AB and BC have both ABCD
and ABCE as minimal upper bounds, as shown in Figure 13. The corresponding interval
in the max-min poset coincides with the CP-order, hence it differs from the vertex-facet
lattice.

Now consider the monomial tropical polyhedron from Example 39. The point (1, 2, 2)
defined by max(A,B,C) is now contained in the max-min poset. However, it is still not
a characteristic point as it has no 2-witness or 3-witness. This shows the CP-order may
be a strict poset of the max-min poset.
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Figure 13: The interval [B,ABCDE] in the vertex-facet lattice (left) and the CP-order
(right) of the monomial tropical polyhedron studied in Examples 36 and 45.

The previous results in this section demonstrate that there are many lattices that
the CP-order may embed into, but we would like to find the smallest such lattice. This
motivates the following construction. Let P be a partially ordered set, for some subset of
elements A ⊆ P , we denote

A↑ = {p ∈ P | p > q , ∀q ∈ A} ,

A↓ = {p ∈ P | p 6 q , ∀q ∈ A} .

Definition 46 ([18]). Given a partially ordered set P , its Dedekind-MacNeille completion
is the complete lattice of subsets

DM(P ) =
{
A ⊆ P

∣∣ (A↑)↓ = A
}

ordered by inclusion.

P embeds into DM(P ) via the map p 7→ p↓. Moreover, DM(P ) is the smallest
complete lattice that P embeds into: any embedding P ↪→ L into a complete lattice L
induces an embedding DM(P ) ↪→ L [53, Theorem 8.27]. Note that all of our lattices are
finite, therefore completeness comes for free.

Theorem 47. The affine part of the vertex-facet lattice is the Dedekind-MacNeille com-
pletion of the CP-order.

Proof. Given a poset P , a subset Q ⊆ P is join-dense if for every p ∈ P , there exists
a subset A ⊆ Q such that P is the join of the elements of A in P , i.e. p =

∨
a∈A a; we

define meet-dense analogously with ∧. By [18, Theorem 7.41], if a poset P is join and
meet-dense in a complete lattice L, then L ' DM(P ). Therefore it suffices to show that
the CP-order is join and meet-dense in the affine part of the vertex-facet lattice.

Let C be the CP-order of M(V ) and L the affine part of the vertex-facet lattice.
Proposition 44 shows that C is a subposet of L, and so we can label the characteristic
points by their corresponding closed subsets of either V or F . To show that C is meet-
dense, recall that every facet-apex is a characteristic point, and therefore any closed set
T ⊆ F in L can be realised as the meet of the characteristic points {a | a ∈ T}.
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Showing that C is join-dense is more involved as while the vertices V are characteristic
points, the rays e(i) are not. Let S ⊆ V be a closed set in L and T ⊆ F its corresponding
closed set of facet-apices. For each e(i) ∈ S, pick v ∈ S ∩ V such that vi > wi for all
w ∈ S ∩ V . Furthermore, define v(i) where v

(i)
i =∞ and v

(i)
k = vk for all k 6= i. We claim

that v(i) is a characteristic point.
We show that for each k 6= i, the vertex v is a k-witness for v(i), i.e. there exists some

q ∈ ∂M(V ) such that v /k q where v 6 v(i) 6 q. We set q to be

qj =


∞ j = i

vk j = k

vj + ε j 6= i, k

,

for some small ε > 0. This satisfies the necessary inequalities of a k-witness, it just remains
to show that q ∈ ∂M(V ) for sufficiently small ε. Suppose q is not in the boundary for any
choice of ε > 0, then there exists w ∈ V such that w < q. Letting ε → 0, we get that
wj 6 vj for all j 6= i, implying that wi > vi; otherwise v dominates w and so cannot be a
minimal generator. For each facet-apex a ∈ T , we have ∞ = ai > wi and aj > vj > wj.
We cannot have w < a else this would contradict condition (1) of Proposition 8, therefore
we must have equality in some coordinate. This implies w is incident to every facet-apex
in T and so is contained in S. However, v was picked such that it maximizes the ith
coordinate over S, and so this is a contradiction. Therefore v(i) has a k-witness for every
k 6= i, as well as v

(i)
i =∞ and so is a characteristic point.

We finally note that if we label v
(i)
i by its closed set, this set contains {v, e(i)}. As

a result, we can realise S as the join of the characteristic points {v | v ∈ S ∩ V } and
{v(i) | e(i) ∈ S}.

As a corollary of this result, the CP-order is a lattice if and only if it is equal to the
vertex-facet lattice.

4.5 Scarf poset

In his seminal work on computing fixed-points, see [51], Scarf essentially uses a tropicalised
version of the famous algorithm by Lemke & Howson for finding equilibria [40]. The
algorithm pivots along the vertices of a generic monomial tropical polyhedron and is
essentially iterated over the facets of the monomial tropical polyhedron. This work, along
with its connections to commutative algebra, lead to the introduction of the Scarf complex,
see [47, §6.2] for further details.

We define a poset for a monomial tropical polyhedra M(V ) which generalises the face

poset of the Scarf complex. A point p ∈ Td is a Scarf point if there is a unique subset
X ⊆ V ∪ Emax with tbary(X) = p (see Equation 13). The Scarf poset is the set of
all Scarf points with maximal element ∞ and minimal element −∞ with the standard

partial order on Td.
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Lemma 48. A point p ∈ Td is a Scarf point if and only if

a) Np(Np(0)) = [d],

b) for each node v in Np(0), there exists i ∈ [d] such that Np(0) ∩Np(i) = {v}.

Proof. Let X ⊆ V ∪ Emax be a set of points and X̃ ⊆ V ∪ Emax its corresponding set
obtained by swapping ē(i) for e(i). The set X fulfils tbary(X) = p if and only if for
each i ∈ [d] there is an element x ∈ X̃ ∩ Np(0) such that i is adjacent with x, which
condition a) ensures the existence of. The subset X of V is not the unique set defining p
as its barycenter if and only if there is a point in X which does not uniquely define any
coordinate of p. This translates exactly to condition b).

Recall that given two elements x, y in a poset P , we say y covers x if x < y and there
does not exists z ∈ P such that x < z < y.

Proposition 49. The Scarf poset is a cover-preserving subposet of the CP-order, the
max-min poset, the vertex-facet lattice and the max-lattice.

Proof. Firstly, the Scarf poset is a subposet of all these posets as it is a subposet of the CP-
order. This follows by comparing the condition in Lemma 48 and Lemma 42. Moreover,
it is enough to show that the Scarf poset is a cover-preserving subposet of the max-lattice
by the inclusions of the other posets. Now, for each element p of the max-lattice there
is a unique inclusionwise maximal set Xp of generators with tbary(Xp) = p. The partial
order of the elements in the max-lattice is just the order of these sets by inclusion. If p is
a Scarf point covered by the Scarf point q, then |Xq| = |Xp|+ 1. Hence, p is also covered
by q in the max-lattice.

We say a monomial tropical polyhedron M(V ) is generic if u, v ∈ V with ui = vi implies
there exists w ∈ V such that wk < max(uk, vk) for all k ∈ [d] with max(uk, vk) 6= −∞. The
following theorem shows that under this genericity assumption, most of the face posets
presented so far coincide. This notion of genericity is motivated further in Section 5.6 by
its connection to monomial ideals.

Theorem 50. If a monomial tropical polyhedron is generic, then the affine part of the
vertex-facet lattice, the max-min poset, the CP-order and the Scarf poset are isomorphic.

Proof. By Proposition 49, it suffices to show a principal facet-apex a is a Scarf point;
equivalently that it satisfies the conditions of Lemma 48. Comparing the characterisation
of facet-apices in Lemma 40, the first condition Np(Np(0)) = [d] is satisfied regardless of
genericity. Suppose the second condition does not hold, as Na(0) has no degree one nodes
there must exist u, v ∈ V and i ∈ [d] such that u, v ∈ Na(0) ∩Na(i), or equivalently that
ui = vi = ai. By genericity, there exists w ∈ V such that wk < max(uk, vk) 6 ak, or
equivalently that w is a node of degree one in Na(0), contradicting Lemma 40.
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5 Monomial ideals

5.1 A dictionary

Let K be a field, we consider S = K[x1, . . . , xd] the d-variate polynomial ring with coeffi-
cients in K. An ideal I of S is monomial if it is generated by monomials xu = xu11 · · ·x

ud
d .

Monomial ideals are completely determined by the monomials they contain. Therefore
we can encode monomial ideals as a subset of Zd>0 by considering the set of exponents of
all monomials supp(I) =

{
u ∈ Zd

∣∣ xu ∈ I
}

called the support of the monomial ideal.
As I is always finitely generated and is closed under multiplication by S, its support

supp(I) is given by a finite set of lattice points with a copy of the positive orthant attached
to each. This structure is very similar to that of a monomial tropical polyhedron, and
the following construction shows we can associate a monomial tropical polyhedron to I
that encodes much of its information. Let U ⊂ supp(I) be the subset corresponding to
the unique minimal generating set of I. For each u ∈ U ⊂ Zd>0, we define ũ ∈ Tdmax by

ũi =

{
−∞ ui = 0

ui ui 6= 0
. (14)

Note that as ũ is always an element of (Z>0 ∪ {−∞})d, we can always recover u from ũ.
Denote the set of all such ũ by VI ⊂ Tdmax, the monomial tropical polyhedron corresponding
to I is denoted M(VI).

This construction appears in the monomial ideal literature as the Čech hull of a mono-
mial ideal.

Definition 51 ([45]). Given a monomial ideal I ⊆ S, the Čech hull of I is the S-module

Ĩ =
〈

xu
∣∣∣ u ∈ Zn and xu

+ ∈ I
〉
⊆ K[x±1 , . . . , x

±
d ] , u+ = max(u, 0) .

The first two images of Figure 14 show a diagrammatic construction of the Čech hull.
From [45, Proposition 2.6], we immediately get the following lemma.

Lemma 52. Let I be a monomial ideal. Its support is encoded by the monomial tropical
polyhedron M(VI), explicitly:

supp(I) = M(VI) ∩ Zd>0 , supp(Ĩ) = M(VI) ∩ Zd.

Remark 53. The Čech hull was introduced to better exhibit Alexander duality of monomial
ideals. We shall see in Section 5.2 that monomial tropical polyhedra carry this duality
even more naturally than the Čech hull.

A monomial ideal is irreducible if it is of the form ma = 〈xaii | ai > 1〉 where a ∈ Zd>0.
An irreducible decomposition of a monomial ideal I is a representation

I = ma(1) ∩ · · · ∩ma(r) . (15)
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Expression (15) is unique if we restrict to irredundant decompositions i.e., no component
can be omitted. If the decomposition is unique, the ideals listed in (15) are the irreducible
components of I.

Let A be the set of exponents a defining the irredundant irreducible decomposition
of I. Suppose a ∈ A has no coordinates equal to zero, the support of ma is the set of
non-negative integer lattice points p such that pi > ai for some i ∈ [d]. Equivalently,
the support of ma is cut out by the tropical linear inequality

⊕
i∈[d]−ai � pi > 0. As

the support is precisely those points covered by the tropical halfspace with apex a, one
may expect the irredundant irreducible decomposition can be recovered tropically from
M(VI). However, if a has zero coordinates then ma has different behaviour which our
tropical inequality must capture. Specifically, when ai = 0 the corresponding variable xi
is omitted from the generators of ma entirely. For each a ∈ A, we define â ∈ Tdmin by

âi =

{
∞ ai = 0

ai ai 6= 0
.

Denote the set of all such â by FI ⊂ Tdmin.

Proposition 54. Let I be a monomial ideal and FI the set of defining facet-apices of
M(VI). The irredundant irreducible decomposition of I is

I =
⋂
â∈FI

ma .

Proof. We prove the equivalent statement that supp(I) =
⋂
â∈FI

supp(ma). By Lemma
52, supp(ma) is equal to the monomial tropical polyhedron M(Vma) intersected with the
integer points of the positive orthant. This is the monomial tropical polyhedron generated
by vertices {v(i)| ai 6= 0} whose entries are −∞ everywhere except v

(i)
i = ai; if ai = 0 then

v
(i)
i is not included by the definition of ma.

Let b be the apex of a principal halfspace of M(Vma). By Proposition 8, whenever
ai 6= 0 we must have bi finite else b > v(i) by condition (1). Furthermore, as v(i) is the
only generator with finite ith coordinate, we must have bi = ai by condition (2). Whenever
ai = 0, all generators of M(Vma) have −∞ in their i-th coordinate and so bi =∞ to satisfy
condition (2). This implies that b = a and that M(Vma) has a single principal halfspace
H(−â), and is therefore equal to it.

Let FI be the set of facet-apices of M(VI), then its minimal exterior representation
can be expressed

M(VI) =
⋂
â∈FI

H(−â) =
⋂
â∈FI

M(Vma) . (16)

Intersecting (16) with Zd>0 and using Lemma 52, we get the irreducible decomposition

supp(I) =
⋂
â∈FI

supp(ma) .

The final claim that this is irredundant comes from (16) being the minimal exterior
description.
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5.2 Alexander duality

We recall Alexander duality, a form of duality for monomial ideals which arises by reversing
the roles of generators and irreducible components.

A monomial xa strictly divides another monomial xc if ai < ci or ai = ci = 0 for all
i ∈ [d]. Given two vectors a, c ∈ Zd>0 such that xa strictly divides xc, we let cr a denote
the vector with ith coordinate

ci r ai =

{
ci − ai ai > 1

0 ai = 0
.

Definition 55. Let I be a monomial ideal whose minimal generators all strictly divide
xc, the Alexander dual of I with respect to c is

I [c] = 〈xcra | ma is an irreducible component of I〉 .

A monomial tropical polyhedron M(V ) also comes with a natural duality, namely the
complementary monomial tropical polyhedron

M

(V ). The following proposition shows
this duality is equivalent to Alexander duality for monomial ideals.

Proposition 56. Let I be a monomial ideal whose minimal generators all strictly divide
xc. The support of its Alexander dual I [c] is encoded by the complementary monomial
tropical polyhedron

M

(VI), explicitly:

supp(I [c]) = (c−

M

(VI)) ∩ Zd>0 ,

where c−

M

(VI) is the Minkowski difference of the vector c ∈ Zd>0 and the complementary
monomial polyhedron generated by VI .

Proof. This is simply a restatement of [45, Lemma 2.11] in the language of monomial
tropical polyhedra.

The Čech hull was introduced to exhibit Alexander duality more cleanly for monomial
ideals. Figure 14 demonstrates the role the Čech hull plays in the construction of I [c]

using the terminology of [45]. Each step also displays the corresponding notions in the
language of monomial tropical polyhedra.

We note that monomial tropical polyhedra carry this duality more naturally than Čech
hulls. The complementary cone

M

(VI) carries all the information of M(VI), and as it is
a min-tropical polyhedron, no translation or reflection is necessary. Moreover,

M

(VI) has
the additional benefit of being a canonical choice and not requiring a choice of vector c.

5.3 Resolutions

In the following, we study the link between resolutions of monomial ideals and lifts of
monomial tropical cones. We begin by briefly recalling the notion of cellular resolutions;
for further details, see [47].
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I ∼ M(VI) ∩ Z
d

≥0 Ĩ ∼ M(VI)

M

(VI)

Ĩ
T
∼ −

M

(VI)

Ĩ
T [−c] ∼ c−

M

(VI) I
[c]

∼ (c−

M

(VI)) ∩ Z
d

≥0

c c

−c

0

Figure 14: The construction of I [c] from I in the language of monomial tropical polyhedra
and [45]. Red dots are the vertices of M(VI) and the blue dots are its facet-apices.

A free S-module of rank r is a module F ' S(−a1) ⊕ · · · ⊕ S(−ar) where S(−ai) is
the polynomial ring S where the degree of each element is shifted by ai. A chain complex
F is a chain of maps between free S-modules

F : 0← F0 ←δ1 F1 ←δ2 · · · ←δk Fk ← 0

such that δi+1 ◦ δi = 0 for all i. A chain complex is exact if ker(δi) = im(δi+1). A free
resolution F of a module M is an exact chain complex such that M ' F0/ im(δ1).

We are particularly interested in free resolutions arising from polyhedral complexes.
Let X be a polyhedral complex, we say that X is labelled if each vertex v is labelled by
some vector av ∈ Zd>0. These induce labels on all faces of X, where the label of a face P
is equal to the componentwise maximum aP = max (av | v ⊂ P ). We will always consider
these labels coming from the exponents of the generating set of some ideal IX = 〈xav |
v vertex of X〉. We will also need to consider the subcomplex X6b of X of faces P with
labels aP 6 b under the standard partial order on Zd.

The associated chain complex FX is the complex of free modules

Fi =
⊕
P∈X

dim(P )=i−1

S(−aP ) , δ(P ) =
∑

Q facet of P

sign(Q,P )xaP−aQQ ,
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where sign(Q,P ) is ±1 chosen in some consistent way such that δ2 = 0. Note that we
consider the symbols P and Q both as faces of X and as basis vectors in degrees aP and
aQ. We say FX is a cellular resolution for S/IX if it is also a free resolution.

Cellular resolutions allow us to get a handle on purely algebraic invariants via methods
from polyhedral geometry and topology. In particular, the following proposition shows
that whether FX is a resolution or not depends entirely on the topology of X.

Proposition 57. [47, Proposition 4.5] FX is a cellular resolution for S/IX if the complex
X6b is contractible for all b ∈ Zd>0.

Note that Proposition 57 was originally stated as an ‘if and only if’ statement, where
‘contractible’ is replaced with ‘acyclic over K’, i.e. has trivial homology over K. However,
this formulation suffices for our purposes as all of our approaches will be topological.

We recall a class of cellular resolutions that is already well-established in the literature.
Let tu = (tu1 , . . . , tud) for some real t> 1. Given a monomial ideal I, define the polyhedron

PI,t = conv {tu | xu ∈ I} ⊂ Rd

= conv {tv | xv a minimal generator of I}+ Rd>0 .

Definition 58. The hull complex hull(I) of a monomial ideal I is the polyhedral cell
complex of all bounded faces of PI,t for t � 0. This complex is naturally labelled, with
each vertex corresponding to a minimal generator of I. The associated cellular resolution
Fhull(I) is called the hull resolution of I.

The hull complex is a special case of a more general class of polyhedra [21] that we
detail now. In the following, we consider the field of (generalized) real Puiseux series
R{{t}}, whose elements

γ =
∑

cit
ai , ai, ci ∈ R , a0 > a1 > a2 > . . .

are (locally finite) formal power series with real exponents [44]. We say γ is positive if its
leading term has positive coefficient. This makes R{{t}} an ordered field via γ > δ if and
only if γ − δ is positive. As a result, one can form polyhedra over R{{t}} as solution sets
to linear inequalities, as one would over R. Furthermore, given a polyhedron over R{{t}}
one can substitute t for some τ ∈ R yielding an ordinary polyhedron over R. For large τ ,
these polyhedra are combinatorially isomorphic [38].

Tropical polyhedra arise as the image of polyhedra over certain valued fields. In
particular, R{{t}} carries the valuation map

val : R{{t}} → Tmax∑
cit

ai 7→ a0

where val(0) = −∞. Restricting to R{{t}}>0, the semiring of nonnegative Puiseux series,
turns val into an order-preserving homomorphism of semirings.
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Definition 59. Let Q ⊆ Tdmax be a tropical polyhedron with minimal representation

Q = tconv(V )⊕ tcone(W ) , V,W ⊆ Tdmax .

A polyhedron P ⊆ R{{t}}d>0 is called a lift of Q if there exists a representation

P = conv(X) + cone(Y ) , X, Y ⊆ R{{t}}d>0 ,

such that val(X) = V and val(Y ) = W .

As val is a surjective order-preserving homomorphism, it follows that P being a lift of
Q implies val(P ) = Q. Often in the literature, this condition is taken to be the definition
of a lift. However, our definition is a strengthening of this, as it ensures vertices are
mapped to vertices and rays are mapped to rays.

We can consider PI,t as a polyhedron over R{{t}}, namely

PI = conv {tv | xv a minimal generator of I}+ R{{t}}d>0 .

Furthermore its bounded faces give a cellular resolution of I: the hull complex. The fol-
lowing proposition shows we can perform this procedure for any lift of M(VI). Specifically,
we get a cellular resolution of I from the complex of bounded faces of an associated lifted
polyhedron M whose vertices are labelled by their image under the valuation map, i.e. x
is labelled by val(x) ∈ VI .

Proposition 60. Let M ⊂ R{{t}}d>0 be a lift of M(VI). The complex of bounded faces of
M yields a cellular resolution of I.

Proof. The following is an adaptation of the proof of [21, Theorem 3.2]. By Proposition 57,
it suffices to check that for each b = (b1, . . . , bd) ∈ Zd>0, the bounded faces of M with
labels dividing b form an acyclic complex. Let the coordinates on R{{t}}d be given by
z1, . . . , zd and consider the linear function on R{{t}}d given by

f(x) = t−b1z1 + · · ·+ t−bdzd .

Then for a vertex of M , f(z) has positive leading exponent if and only if the corresponding
generator does not divide xb. Thus the bounded faces of M in the halfspace given by
f(z) 6 t

1
2 are precisely those in the subcomplex X6b. Consider the polytope obtained as

the intersection M ∩
{
p
∣∣∣ f(p) 6 t

1
2

}
. The complex X6b is precisely the subcomplex of

faces disjoint from the face M ∩
{
p
∣∣∣ f(p) = t

1
2

}
, and is therefore acyclic by [47, Lemma

4.18].

Remark 61. While Proposition 60 is based on a similar statement for the hull complex,
PI may not be a lift of M(VI) as it does not modify the generators by replacing 0 by
−∞. The replacement of 0 by −∞ does not play a big role from the point of view of
the resolution. The monomial ideals I and x1 · · ·xd · I have isomorphic resolutions, which
equates to shifting the monomial tropical polyhedron in the direction (1, . . . , 1) to replace
0 by a positive number.
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5.4 LCM-lattice

The LCM-lattice is a natural sublattice of the max-lattice which was introduced in [28]
for monomial ideals, defined as follows. Let I be a monomial ideal minimally generated
by monomials xv

(1)
, . . . ,xv

(n)
. Its LCM-lattice LI is the lattice of elements

xJ = lcm
{

xv
(i)
∣∣∣ i ∈ J} , J ⊆ [n]

ordered by divisibility. The unique maximal element is lcm(xv
(1)
, . . . ,xv

(n)
) and set 0̂ =

lcm(∅) = 1 to be the unique minimal element. As with the max-lattice, the LCM-lattice
is a lattice as each pair of elements xJ ,xK labelled by their maximal sets have a unique
meet and join defined by

xJ ∨ xK = lcm
{

xv
(i)
∣∣∣ i ∈ J ∪K} = xJ∪K ,

xJ ∧ xK = lcm
{

xv
(i)
∣∣∣ i ∈ J ∩K} = xJ∩K ,

the proof of which is identical to Lemma 26; compare also with the discussion of this
lattice in the original paper [28].

The LCM-lattice is a powerful invariant: it determines a minimal free resolution [28]
and the Stanley depth of I [32]. The result of particular note to us is that it encodes the
Betti numbers of I via its homology. We briefly recall some basics of lattice homology at
the end of this subsection.

Theorem 62. [28, Theorem 2.1] For i > 1, we have

βi,u(S/I) =

{
dim H̃i−2((0̂,x

u)LI
;K) xu ∈ LI

0 xu /∈ LI
.

The LCM-lattice of I is a sublattice of the max-lattice of M(VI) via the embedding

lcm
{

xv
(i)
∣∣∣ i ∈ J} 7→ max

{
ṽ(i)

∣∣ i ∈ J} .

Furthermore, the only elements of the max-lattice that are not elements of the LCM-
lattice are those with ∞ in some coordinate. As a corollary to Theorem 62, we get that
the max-lattice of M(VI) determines the Betti numbers of I by restricting to elements
without ∞ in any coordinate. As a result, we define the LCM-lattice of a monomial
tropical polyhedron to be the induced sublattice of the max-lattice consisting of elements
without ∞ in some coordinate.

We end this subsection recalling some concepts from poset homology necessary for
Section 6.2. Let P be a poset with minimal and maximal elements 0̂, 1̂. The order
complex ∆(P ) is the abstract simplicial complex whose faces are chains in P \ {0̂, 1̂}.
The homology groups of P are given by the simplicial homology groups of ∆(P ), i.e.
H̃i(P ) = H̃i(∆(P )). This notion extends for open intervals (p, q)P = {r ∈ P | p < r < q}
of P .

Let L be a lattice, we have more homological tools available than for arbitrary posets.
A crosscut of L is a subset of elements C ⊂ L such that
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1. 0̂, 1̂ /∈ C,

2. If p, q ∈ C then p ≮ q and q ≮ p,

3. any finite chain in L can be extended to a chain which contains an element of C.

A notable example is that the set of atoms of L form a crosscut. We say a finite subset
{p1, . . . , pn} ⊂ C spans if p1∧· · ·∧pn = 0̂ and p1∨· · ·∨pn = 1̂. Let ∆(C) be the abstract
simplicial complex whose faces are the non-spanning subsets of C. We again define the
homology of a crosscut by H̃i(C) = H̃i(∆(C)).

A key observation is that the homology of a crosscut is isomorphic to the homology
of the lattice, and that homology is invariant under the choice of crosscut.

Theorem 63 (Theorem 3.1 [27]). Let L be a lattice and C a crosscut of L. Then H̃i(L) ∼=
H̃i(C) for all i ∈ Z.

5.5 Syzygy points and the Betti poset

The Betti numbers of an ideal are encoded by the Koszul complexes of I in various
degrees. These complexes have geometric formulation that can be naturally recovered
from monomial tropical polyhedra.

Definition 64 ([47, 39]). The Koszul complex of a point p ∈ M(V ) is the simplicial
complex

∆p = {J ⊆ [d] | ∃q ∈ M(V ) such that q 6 p , qj < pj ∀j ∈ J} .

Then p is a syzygy point if ∆p has non-trivial homology. The syzygy points are equipped

with the standard partial order on Td.

Note that one could extend Definition 64 to M(V ). However, for any point p with
pi = +∞, the Koszul complex ∆p is a cone, i.e. F ∈ ∆p implies that F ∪ {i} ∈ ∆p. As
cones are contractible, these points are never syzygy points. As a result, we only consider
points of M(V ).

We first note that syzygy points fit neatly into our hierarchy of posets on M(V ).

Lemma 65 ([39]). Syzygy points are a strict subset of characteristic points.

Proof. By [39, Lemma 5.12], a point p ∈ M(V ) (with pi 6= +∞) is a characteristic point
if and only if ∆p is not a cone. As a cone is contractible, the claim follows. Note that this
is strict as M(V ) \M(V ) always contains a facet-apex, and facet-apices are characteristic
points.

Note that even if we restrict the CP-order to M(V ), the syzygy points may still be
a strict subset. In dimension three, a case check demonstrates that all characteristic
points are also syzygy points, but for dimension four and higher there are examples of
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characteristic points p whose complex ∆p has trivial homology; see [39] for an explicit
example.

Given a monomial tropical polyhedron M(VI) and p ∈ Zd, the complex ∆p is the Koszul
complex of I in degree p as defined in [47, Definition 1.33]. Moreover, [47, Theorem 1.34]
states that these points encode the Betti numbers of I via the equation

βi,p(I) = βi+1,p(S/I) = dim H̃i−1(∆p;K) . (17)

Recently, Koszul complexes have played a key role in the construction of a canonical
minimal free resolution for arbitrary monomial ideals [23]. These results show that they
play a fundamental role in the homology of monomial ideals. The following proposition
shows they are encoded by the combinatorial structure of monomial tropical polyhedra,
in particular via covector graphs.

Proposition 66. The Koszul complex of a point p can be determined from its covector
graph Gp. Explicitly, it is the simplicial complex

∆p = {J ⊆ [d] | Np(0) * Np(J)} .

Proof. The condition that J ⊆ [d] is a face of the Koszul complex ∆p is equivalent to
there existing some v ∈ V such that p > v and pj > vj for all j ∈ J . These two conditions
are equivalent to the covector conditions v ∈ Np(0) and v /∈ Np(j) for all j ∈ J .

A related homological construction is the Betti poset, introduced by Clark and Mapes
[15, 16] as a distillation of a poset to its homologically nontrivial part.

Definition 67. The Betti poset of P is the induced subposet of homologically contributing
elements

B(P ) =
{
p ∈ P

∣∣∣ H̃i((0̂, p)P ;K) 6= 0 for some i
}

.

Let I be a monomial ideal and LI its LCM-lattice. Theorem 62 shows LI totally
determines the Betti numbers of I, combining with [16, Theorem 1.4] implies we can
restrict to the Betti poset of LI

βi,p(S/I) = dimK H̃i−2((0̂, p)B(LI);K) , (18)

and that B(LI) is the minimal poset with this property. As a result, when we refer to the
Betti poset, we consider only the Betti poset of the LCM-lattice unless explicitly stated.

Equations (17) and (18) show two distinct methods to compute the Betti numbers of
a monomial ideal. The following proposition shows this equivalence holds for an arbitrary
monomial tropical polyhedron.

Proposition 68. Fix a monomial tropical polyhedron. The poset of its syzygy points with
the standard partial order is equal to its Betti poset.
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Proof. Let L be the LCM-lattice of M(V ). We first note that every syzygy point is
contained in L, as the syzygy points are a subset of the CP-order, and therefore also
the max-lattice of M(V ). As syzygy points have no coordinates equal to +∞, the claim
follows.

Fix some p ∈ L; we show that ∆p and (0̂, p)L have the same homology. As both posets
have the same partial order, the claim of the proposition follows from this.

Let v(1), . . . , v(s) ⊆ V be the set of vertices such that p > v(i). These are the set of
atoms of the interval (0̂, p)L, and therefore form a crosscut. By Theorem 63, the homology
of (0̂, p)L is equivalent to the homology of the simplicial complex

Σ =

{
I ⊆ [s]

∣∣∣∣ max
i∈I

(
v(i)
)
< p

}
.

For each j ∈ [d], define the simplicial complex

σj =

{
I ⊆ [s]

∣∣∣∣ max
i∈I

(
v
(i)
j

)
< pj

}
.

Note that each σj is a simplex and is a face of Σ. Furthermore, for any face I ⊆ Σ,

there exists some j ∈ [d] such that maxi∈I

(
v
(i)
j

)
< pj. Therefore Σ =

⋃
j∈[d] σj and any

intersection
⋂
j∈J σj is contractible or empty. Let

N =

{
J ⊆ [d]

∣∣∣∣∣ ⋂
j∈J

σj 6= ∅

}

be the nerve of Σ. By the Nerve theorem [11, Theorem 10.7], we obtain that Σ and N
are homotopy equivalent. However, the intersection

⋂
j∈J σj is non-empty if and only if

there exists some v ∈ V such that p > v and pj > vj for all j ∈ J . This is equivalent to
p−

∑
j∈J εej ∈ M(V ), and therefore ∆p is the nerve of Σ.

Combining this result with Lemma 65, we deduce that the Betti poset of M(V ) is a
(strict) subposet of the CP-order. This allows it to fit neatly into our family of posets
from Section 4, as other than the Scarf poset, it is a subposet of them all.

5.6 Genericity

For monomial ideals and monomial tropical polyhedra there are several notions of gener-
icity, as discussed in [47] and [1], respectively.

Definition 69. A monomial ideal 〈m1, . . . ,mn〉 is generic if whenever two distinct mini-
mal generatorsmi andmj have the same nonzero degree in some variable, a third generator
mk divides lcm(mi,mj)x

−1
i for all variables xi dividing lcm(mi,mj).

This is equivalent to the notion of genericity for monomial tropical polyhedra given at
the end of Section 4.5. There are two stronger notions of genericity arising from commu-
tative algebra and tropical convexity. A monomial tropical polyhedron is strongly generic
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if ui 6= vi for all u, v ∈ V, i ∈ [d]. There is an even stronger notion of tropically generic
where the generators v1, . . . , vn ∈ Tdmax are in tropically generic position i.e. the matrix
of (homogenised) generators has no tropically singular minors; see [1, §2.1.2] for details.
This notion of genericity is too refined for monomial tropical polyhedra, as discussed in
Remark 33: the combinatorics of ideals and the max-lattice are purely determined by the
orderings of coordinates, while the combinatorics of covectors are more refined.

One can study properties of arbitrary monomial ideals via the generic monomial ideals
arising via genericity by deformation [47, Section 6.3]. The same procedure extends very
naturally to monomial tropical polyhedra. Let M(V ) be a monomial tropical polyhedron
where V = {v(1), . . . , v(n)}.

Definition 70. A deformation of M(V ) is the monomial tropical polyhedron arising from
a choice of vectors ε(j) ∈ Rd for j ∈ [n] such that

v
(j)
i < v

(k)
i ⇒ v

(j)
i + ε

(j)
i < v

(k)
i + ε

(k)
i . (19)

Define M(Vε) to be the monomial tropical polyhedron generated by

Vε =
{
v(j) + ε(j)

∣∣ i ∈ [n]
}
.

We say a face poset P of a monomial tropical polyhedron M(V ) is invariant under
deformation if the respective face poset of any deformation M(Vε) is isomorphic to P .
Using this notion, we get a nice connection between notions of genericity and deformations
of face posets.

Proposition 71. A monomial tropical polyhedron is

• generic if and only if its Scarf poset is invariant under deformation,

• strongly generic if and only if its max-lattice is invariant under deformation,

• tropically generic if and only if its pseudovertex poset is invariant under sufficiently
small deformations.

Proof. The first and second equivalence are given by [47, Theorem 6.26] and Corollary 32
respectively. For the third, [20, Proposition 24] shows that a tropically generic monomial
tropical polyhedron has its pseudovertices in bijection with maximal cells of a regular
subdivision of the product of simplices ∆n−1×∆d−1. Furthermore, this subdivision is given
by weighting the vertices of ∆n−1 ×∆d−1 by the matrix V . By [19, Lemma 2.3.16], this
regular subdivision is invariant under sufficiently small perturbations of V ; in particular,
for any sufficiently small deformation Vε.

Note that by Theorem 50 we could replace Scarf poset with CP-order, max-min poset
or vertex-facet lattice.
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Remark 72. While genericity by deformation was originally defined for monomial ideals,
it is a more natural construction for monomial tropical polyhedra than monomial ideals
for two reasons. Firstly, as monomial ideals naturally have integer exponents, non-integer
deformations must be defined formally as an ideal of a larger polynomial ring with real
exponents. Monomial tropical polyhedra have no such constraints as objects naturally
living in Tdmax. Secondly, condition (19) is a simplified version of the equivalent condition
for monomial ideals, as one does not need to differentiate between the cases where ui is
zero and non-zero for monomial tropical polyhedra; ui = −∞ is automatically accounted
for.

6 Facet complex

Recall the definition of the vertex-incidence graph from Definition 15. We define the
facet complex as the abstract simplicial complex whose maximal simplices are the sets of
vertices incident with a facet. Letting V be the set of vertices and rays of a monomial
tropical polyhedron, we denote the corresponding facet complex by F(V ).

6.1 Embedding in the facet complex

In the following we use the natural correspondence between the apex a of a halfspace and
the corresponding tropical inequality max(xi − ai) > 0. Recall that an inequality is valid
if it is satisfied by all points of M(V ).

Lemma 73. Let S be a subset of V such that there is an apex a ∈ Td which corresponds
to a valid inequality for M(V ) and which is incident with S but not with V \ S. Then S
is a simplex in the facet complex.

Proof. An apex corresponds to a valid inequality exactly if there is no element v in V
with v < a. By the extremality of facet-apices and the duality in Theorem 5, there is

a facet-apex b ∈ Td with a 6 b. By the definition of incidence and as b is also a valid
inequality, this implies that b is incident with the elements in S.

A similar statement holds for the set Emax of rays, as the far-apex is incident with
precisely them, and corresponds to the valid inequality (9).

For an arbitrary polytope P over R or R{{t}}, we can define its facet complex F(P )
to be the complex whose maximal simplicies are those vertex sets that form a facet. This
notion can be extended to a polyhedron by considering a projectively equivalent polytope.

Let M ⊂ R{{t}}d>0 be a lift of M(V ), i.e.,

M = conv(X) + cone(Y ) , val(X) = V , val(Y ) = Emax .

All vectors in the preimage of e(i) are equivalent to the i-th unit vector of R{{t}}d>0

y
(i)
k =

{
1 i = k

0 i 6= k
,
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upto scaling by an element of R{{t}}>0, and so cone(Y ) = R{{t}}d>0. We make the
additional restriction that val induces a bijection between the vertices of M and M(V ),
i.e., X = {x(1), . . . , x(n)} such that val(x(i)) = v(i). By identifying elements of X ∪Y with
their images in V ∪Emax via the valuation map, the facet complex F(M) of M is naturally
on the same vertex set as F(V ). The following theorem shows the facet complex F(M)
of M is naturally a subcomplex of F(V ).

Theorem 74. Let M be a lift of M(V ) such that val induces a bijection between the
vertices of M and M(V ). Then F(M) is a subcomplex of F(V ).

Proof. Without loss of generality, let {x(1), . . . , x(k)} be the vertices of a facet of M with
rays {y(1), . . . , y(`)}. Then there is a non-negative vector c ∈ R{{t}}d>0 such that c>·x(i) = 1
and c> · u > 1 for all other vertices u of M . Furthermore, c> · (x(i) + λy(j)) = 1 for all
λ ∈ R{{t}}>0 and 1 6 j 6 `: this implies that cj = 0 in the first ` entries.

As the valuation map is an order preserving semiring homomorphism, the inequality
val(c) � x > 0 is valid for the monomial tropical polyhedron. Furthermore, it is tight at
the vertices val(x(i)). In addition, the rays e(1), . . . , e(`) are incident to the apex val(c) as
val(cj) =∞ for 1 6 j 6 `. Now the claim follows from Lemma 73.

Remark 75. For an arbitrary lift M of M(V ), we may have multiple vertices of M that
map to the same vertex of M(V ) under the valuation map. As a result, F(M) and F(V )
may not be on the same vertex set. We can state a weaker version of Theorem 74 for
arbitrary lifts by defining a “degenerate” facet complex that identifies vertices of M if
they have the same image in the valuation map. This degenerate facet complex will be
subcomplex of F(V ).

The facet complex also captures the crucial information of the deformations of a
monomial ideal. We make this precise in the next theorem.

Let ε(j) ∈ Rd for j ∈ [n], such that M(Vε) is a deformation of M(V ); recall that this is
equivalent to ε(j) satisfying

v
(j)
i < v

(k)
i ⇒ v

(j)
i + ε

(j)
i < v

(k)
i + ε

(k)
i .

By identifying v(j) with the deformed vertex v(j) + ε(j), the facet complex F(Vε) can
be considered on the same vertex set as F(V ). The following theorem shows F(Vε) is a
subcomplex of F(V ).

Theorem 76. Let M(Vε) be a deformation of M(V ).Then F(Vε) is a subcomplex of F(V ).

Proof. Denote the vertices of M(Vε) by w(j) := v(j) + ε(j). Recall that the definition of
deformation gives us the following implications that will be of use throughout:

v
(j)
i < v

(k)
i ⇒ w

(j)
i < w

(k)
i ,

w
(j)
i = w

(k)
i ⇒ v

(j)
i = v

(k)
i .
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Let bε be a facet-apex of M(Vε) and define the point b ∈ M(V ) by

bi =

{
v
(j)
i bεi = w

(j)
i

∞ bεi =∞
.

We note that b is defined such that bε → b as we let each ε(j) → 0.
We first claim that b is incident to some principal facet-apex a of M(V ). Recall that

the interior of M(V ) is given by
⋃
v∈V (v + R>0), therefore b is incident to some principal

facet-apex if there exists no v ∈ V such that v < b. Suppose there exists some v(k) < b,
then for each i ∈ [d] with bi 6= ∞, there exists some j such that v

(k)
i < v

(j)
i = bi. This

implies w
(k)
i < w

(j)
i = bεi , and so w(k) < bε. However, this contradicts condition (1) of

Proposition 8 that bε is a facet-apex of M(Vε). Therefore b must be incident to some
facet-apex a.

Let ∆bε and ∆a be the maximal simplices of F(Vε) and F(V ) corresponding to bε and
a respectively. If the vertex w(j) is incident to the facet-apex bε of M(Vε), deformation
implies v(j) must also be incident to the point b of M(V ), and therefore also a. Similarly,
if the ray e(i) is incident to bε then it is also incident to a. As a result, ∆bε is a subsimplex
of ∆a.

Remark 77. Recall that in the context of monomial ideals and their resolutions, one
usually uses the Scarf complex instead of the Scarf poset. Using a slight modification of
[47, Theorem 6.13] and Proposition 49, one can deduce that the Scarf complex embeds
into the facet complex.

6.2 Properties of the facet complex

[21, Conjecture 4.7] is a list of desirable properties for tropical face posets. In particular,
the third item states the homology of the face poset should be that of a sphere. The
following theorem shows that the facet complex fulfils this property.

For its proof, we use a version of the famous Nerve theorem. We use a version close
to the original one by Borsuk [13] and refer to a more general overview in recent work [8].

Let T be a finite-dimensional metric space and let U ⊂ 2T be a finite set of compact
subsets of T . The nerve complex of U is the simplicial complex with vertex set U such
that a subset S ⊆ U forms a simplex exactly if

⋂
s∈S s 6= ∅.

Lemma 78 (Nerve Theorem). If all intersections
⋂
s∈S s for S ⊆ U are contractible, then

the nerve complex is homotopy equivalent with the whole union
⋃
s∈U s.

We use this to prove the following.

Theorem 79. The facet complex of a monomial tropical polyhedron M(V ) in Tdmax is
homotopy equivalent to a (d− 1)-sphere.

Proof. For each generator v ∈ V , we define

Cv =
{
p ∈ M(V )

∣∣ ∃a ∈ F , i ∈ [d] such that v 6 p 6 a , vi = ai = pi
}
.
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This is equivalent to v, p being incident with a and each other. Furthermore, for i ∈ [n],
we define

Di =
{
p ∈ M(V )

∣∣ pi = +∞
}
.

Firstly, we prove that {Cv | v ∈ V }∪{Di | i ∈ [d]} forms a set cover of the boundary
of M(V ). The points with an +∞ entry are covered by the sets Di. For the other
points, recall that the finite boundary points are also the finite boundary points of the
dual monomial tropical polyhedron. The characterization of vertices from Corollary 9
shows that a set Cv is the intersection of the finite part of the boundary of

M

(V ) with
the min-tropical halfspace with apex v. Now, the representation of the dual monomial
tropical polyhedron in Theorem 5 implies that each finite point in the boundary of M(V )
is covered by some Cv.

To see the compactness of the sets, we apply an order preserving homeomorphism.

We can think of the closed hypercube [−1, 1]d instead of Td via the order preserving
homeomorphism

[−1, 1] → T

x 7→ tan
(πx

2

)
,

(20)

which extends componentwise. Under this map, the sets Cv andDi are mapped to compact
sets.

For each set S ⊆ V , we consider

AS =

( ⋂
v∈S∩V

Cv

)
∩

 ⋂
e(i)∈S

Di

 ⊆ Td .
The final observation for applying the Nerve Theorem is that AS is contractible. Each

Cv is min-tropically convex: let r = min(p, λ + q) where p, q ∈ Cv and λ > 0. Then
there exists a ∈ F such that v 6 r 6 p 6 a with equality in some coordinate, and so r is
also in Cv. This implies any intersection

⋂
v∈S Cv is min-tropically convex and therefore

contractible. Each
⋂
i∈I Di is homeomorphic to a closed ball and therefore contractible.

Finally, we note that the intersection of any min-tropically convex space C with Di is
also min-tropically convex. For any p, q ∈ C with pi = qi = ∞ and λ > 0, the element
r = min(p, λ+ q) is in C ∩Di and therefore is min-tropically convex. Iterating this gives
the claim that each AS is contractible or empty.

Hence, we can apply Lemma 78 to deduce that the boundary of M(V ) is homotopy
equivalent to the nerve complex of its cover {Cv | v ∈ V } ∪ {Di | i ∈ [d]}.

Next, we show that the nerve complex equals the facet complex. We claim S is a face
of the facet complex if and only if AS is non-empty.

Pick some facet-apex a ∈ F and consider the corresponding closed set S ⊆ V of
vertices and rays incident with a. By the second condition of Proposition 8, we have
AS = {a}. To see this, let I ⊆ [d] such that ai 6= ∞. For each i ∈ I, choose an element

w(i) ∈ V with w
(i)
i = ai as in Proposition 8. Then w(i) ∈ S for all i ∈ I and the intersection
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(⋂
i∈I Cwi

)
∩
(⋂

j /∈I Dj

)
is just {a}. For the far apex b∞, the corresponding closed set is

S = {e(1), . . . , e(d)} with AS = {∞}.
Conversely, consider some S ⊆ V such that AS 6= ∅. For each p ∈ AS, we have p > v

for all v ∈ S ∩ V and pi = ∞ for each e(i) ∈ S. If p ∈ Cv for some v ∈ V , there exists
some facet-apex a ∈ F incident with p, and therefore incident with all elements of S. If

p /∈

M

(V ) then p is in the boundary of Td. Otherwise S ⊆ Emax, the closed set of rays
corresponding to the far-apex b∞. This shows the maximal faces of the facet complex are
those closed sets incident to a single apex.

Finally, we show that the boundary of M(V ) is homotopy equivalent with a sphere.
Again, consider the image of T under the homeomorphism described in (20) (to avoid an
extra treatment of +∞). Let Ω be a point which is coordinate-wise bigger than all points
in V , and ε > 0 sufficiently small. We get a homotopy equivalence from the boundary of
M(V ) to a Euclidean ball around ω = Ω + ε1 with radius ε by the retraction along the
lines emerging from ω. This concludes the proof.

We claim the facet complex of M(V ) encodes homological data of IV . To do so, we
label each vertex of the facet complex by the corresponding generator or tropical unit
vector, and label faces by the maximum of its contained vertices. To get data of IV , we
restrict to the bounded complex Ffin(V ). This subcomplex of the facet complex consists
of those faces which do not contain a tropical unit vector. It is the analogue of the
bounded complex of bounded faces of an unbounded polyhedron, see e.g. [35]. Note that
the resulting complex is labelled by finite vectors.

The finite generators V of M(V ) are the atoms of the affine part of the vertex-facet
lattice, hence they form a crosscut.

Lemma 80. The crosscut complex ∆(V ) of the affine part of the vertex-facet lattice is
the bounded complex Ffin(V ).

Proof. A subset of V is spanning if and only if its componentwise maximum lies in the
interior of M(V ). By definition of the facet-apices, a subset is not spanning exactly if all
its points are incident with a facet apex. This implies the claim.

Theorem 81. The finite facet complex Ffin(V ) of M(V ) encodes the Betti numbers of
IV .

Proof. By Proposition 68, the syzygy poset equals the Betti poset of the LCM-lattice.
Combining Lemma 65 and Proposition 44, we see that all syzygy points are in the image
of the vertex-facet lattice in the LCM-lattice. Hence, the LCM-lattice and the bounded
part of the vertex-facet lattice have the same lattice homology. As a lattice has the same
homology as its crosscut complex by Theorem 63, we can deduce from Lemma 80 that
the finite facet complex Ffin(V ) has the same homology as the ideal IV .
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7 Representation of tropical polyhedra via monomial tropical
polyhedra

The following construction demonstrates that the study of monomial tropical polyhedra
lays the foundations for face structures of more general tropical polyhedra.

7.1 ith monomial tropical cones

In [37], Joswig and the first author introduced monomial tropical cones. Let Êmax =
{ê(0), ê(1), . . . , ê(d)} where

ê
(i)
k =

{
0 if i = k

−∞ otherwise
for 0 6 i, k 6 d .

be the set of tropical unit vectors in Td+1
max.

Definition 82. The ith monomial tropical cone of a finite set U ⊂ Td+1
max is the tropical

cone

MCi(U) = tcone(U ∪ Êmax \ ê(i)) .

We remark that [37] defined monomial tropical cones for generating sets U where
ui 6= −∞ for all u ∈ U , however Definition 82 does not require this assumption. If U does
satisfy this assumption, we get their original characterisation of monomial tropical cones:

MCi(U) =
⋃
u∈U

{
x ∈ Td+1

max

∣∣ xi − ui 6 xk − uk
}

for all k ∈ [d]0 with uk 6= −∞ .

We also remark that one can relax the finiteness condition on U for the results in this
section, but MCi(U) may not be a tropical cone, rather a tropical conic set. Monomial
tropical cones already appear in [4] under the name ith polar cones as building blocks for
a canonical exterior description of tropical cones.

Given V ∈ Tdmax, observe that MC0(V̂ ), where V̂ = {(0, v) | v ∈ V }, is the homogeni-
sation of the monomial tropical polyhedron M(V ). This observation offers two directions
for generalisation: we can consider the dehomogenisation of ith monomial cones for i 6= 0,
and we can consider those with generators whose first coordinate is −∞. This leads to a
more general definition of monomial tropical polyhedron.

Definition 83. Fix i ∈ [d]0 and let P = tconv(V )⊕ tcone(W ) for V,W ⊂ Tdmax. The ith
monomial tropical polyhedron induced by P is the tropical polyhedron

Mi(P ) = tconv(V ∪ e(0))⊕ tcone(W ∪ (Emax \ e(i))) for i 6= 0 ,

M0(P ) = tconv(V )⊕ tcone(W ∪ Emax) ,
(21)

where e(0) = (−∞, . . . ,−∞).
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The ith monomial tropical polyhedron Mi(P ) is precisely the dehomogenisation of the

ith monomial cone MCi(V̂ ∪ Ŵ ) as defined in Section 2.1. Note that Definition 83 is not
symmetric due to the fact that we have dehomogenised the monomial tropical cone with
respect to x0.

One can see that Definition 4 is a special case of Definition 83 by setting i = 0 and
W = ∅. Note that outside of this section, the simplified definition suffices for our purposes.

7.2 Intersection of monomial tropical cones

The following Proposition implies that tropical convexity is encoded in the interplay of
these ith monomial tropical polyhedra.

Proposition 84. Let P = tconv(V ) ⊕ tcone(W ) be a tropical polyhedron in Tdmax. P is
equal to the intersection ⋂

i∈[d]0

Mi(P ) . (22)

Remark 85. By taking the unique minimal exterior description of each ith monomial
tropical polyhedron in (22), we obtain a canonical exterior description of an arbitary
tropical polyhedron. This representation already occurs in the proof of [4, Prop. 2].

Addressing again one of our main motivations for this work, this representation leads
to an extension of our results to arbitrary tropical polyhedra. To capture all the com-
binatorial data, one can define a face stack, which contains the information of the ith
monomial tropical polyhedra for all i ∈ [d]0. The properties of such a face stack are
subject to further work.

We shall show this by proving its analogous homogeneous statement, for which we
require some additional machinery. Given a point u ∈ Td+1

max \{(−∞, . . . ,−∞)}, we define
its ith sector as the set of points

Ŝi(u) =
⋂
k∈[d]0

{
z ∈ Td+1

max

∣∣ zi + uk 6 zk + ui
}
.

Note that when restricted to Rd+1, this definition aligns with the usual definition [36],
but this change in formulation allows us to account for points with infinite coordinates.
In particular, if ui = −∞ then we have Ŝi(u) =

{
z ∈ Td+1

max

∣∣ zi = −∞
}

. We remark that
the usual definition of a sector breaks down for u = (−∞, . . . ,−∞), however this will not
be an issue as (−∞, . . . ,−∞) is always contained in a tropical cone and never a minimal
generator.

With this definition, the Tropical Farkas Lemma with infinity [36, Lemma 28] extends
to Td+1

max.

Lemma 86. Let U ⊂ Td+1
max. A point z ∈ Td+1

max is contained in tcone(U) if and only if for

every i ∈ [d]0, there exists a minimal generator u such that z ∈ Ŝi(u).
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Proof. Fix I ⊆ [d]0 and define

R|I| =
{
z ∈ Td+1

max

∣∣ zi ∈ R ∀i ∈ I , zk = −∞ ∀k /∈ I
}

T|I|max =
{
z ∈ Td+1

max

∣∣ zk = −∞ ∀k /∈ I
}
.

Furthermore, we define U I = {u ∈ U | uk = −∞ ∀k /∈ I} ⊂ T|I|max. By [36, Lemma 28], a
point z ∈ R|I| is contained in tcone(U I) if and only if for each i ∈ I there exists u ∈ U I

such that Ŝi(u). Furthermore z ∈ Ŝk(u) for all k /∈ I, extending the result to each i ∈ [d]0.
It remains to show tcone(U I) = tcone(U) ∩ R|I|.

One containment is straightforward; for the other, consider z ∈ tcone(U)∩R|I|. There
exists a representation z =

⊕
u∈U λu � u, in particular zk = max{λu + uk} = −∞ for all

k /∈ I. If uk 6= −∞, we must have λu = −∞ and so we can equivalently simply remove v
from the representation. Repeating this, we get a representation of z using just elements
from UI .

Corollary 87. Let U ⊂ Td+1
max. The ith monomial tropical cone generated by U is the

union of the ith sectors of its generators, i.e.,

MCi(U) =
⋃
u∈U

Ŝi(u)

Proof. By definition, the kth sector of the kth tropical unit vector Ŝk(ê
(k)) is the whole of

Td+1
max. Therefore Lemma 86 reduces to z is contained in MCi(U) if and only if there exists

u ∈ U such that z ∈ Ŝi(u), giving the required equality.

Proof. (Proof of Proposition 84) Combining Lemma 86 and Corollary 87 gives the pro-
jective version of this statement: for a finite generating set U ⊂ Td+1

max we have

tcone(U) =
⋂
i∈[d]0

MCi(U) . (23)

By considering the tropical cone generated by U = V̂ ∪Ŵ and dehomogenising, the affine
version follows immediately.

Remark 88. Equations (11) and (12) are the dehomogenisation of the projective sectors

Ŝi((0, v)) and Ŝi((−∞, w)) respectively. This immediately gives affine versions of the
statements Lemma 86 and Corollary 87.

8 Conclusion

We finish with some thoughts on the classification of the combinatorial types of monomial
tropical polyhedra and potential applications.
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8.1 Combinatorial types of monomial tropical polyhedra

As discussed in Section 3, the vertex-facet incidence graph (Def. 11) captures the combi-
natorial type of a monomial tropical polyhedron, in an analogous way to how one captures
the combinatorial type of a classical polyhedron. However, while the latter depends subtly
on the values of the subdeterminants of the generator matrix, the situation is significantly
simpler for monomial tropical polyhedra. This allows us to define ‘abstract’ monomial
tropical polyhedra that are encoded purely combinatorially in the following way.

The order pattern of a matrix V ∈ Td×nmax is the d-tuple of total preorders on n elements
represented as a matrix of indeterminates X = (xij)(i,j)∈[d]×[n] with

xij1 6 xij2 ⇔ vij1 6 vij2 .

We are mainly interested in those order patterns where the columns actually represent
non-redundant generators of a monomial tropical polyhedron. The columns of an order
pattern form a valid generator pattern if the columns of X form an antichain in the weak
partial order defined as the Cartesian product of the preorders in the rows.

Example 89. The matrix V =

2 4 8 4
6 −∞ 2 4
5 5 −1 5

 gives rise to the three total preorders

x11 < x12 = x14 < x13

x22 < x23 < x24 < x21

x33 < x31 = x32 = x34

This gives rise to a weak partial order on {(x1i, x2j, x3k) | i, j, k ∈ [3]}. Here, the columns
are pairwise incomparable except forx12x22

x32

 6

x14x24
x34

 .

Hence, columns 1, 3, 4 or 1, 2, 3 would form an antichain but all three together, they do
not form a valid generator pattern. This is reflected when considering the monomial
tropical polyhedron M(V ): the point (4, 4, 5) is not a minimal generator as it dominates
(4,−∞, 5).

Proposition 8 gives criteria for a point to be a facet-apex that depends purely on the
order pattern of the generators. This motivates the following combinatorial abstraction

of a facet-apex. The pattern type of a facet-apex a ∈ Td is the bipartite graph on [d]t [n]
with an edge (i, j) ∈ [d] × [n] if and only if ai = vij and vkj < ak for all k 6= i. Isolated
nodes on the side [d] in P correspond to components of a which are +∞.

Hence, recalling again the definition of vertex-facet incidence graph (Def. 11), we
obtain the following consequence of Proposition 8.
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Corollary 90. The vertex-facet incidence graph of a monomial tropical polyhedron only
depends on the order pattern of the generator matrix.

We also note that deformations become very natural when working purely with order
patterns. Explicitly, a deformation in the sense of Definition 70 becomes a refinement of
the order pattern in that more elements per row are strictly ordered.

Recall that the braid fan Bd in Rd is the complete polyhedral fan which is cut out by
the hyperplanes xp = xq for p 6= q ∈ [d]. For an introduction on the combinatorics of
the braid fan, see [50]. The stratification of the space of real (d × n)-matrices by their
order pattern is the product of the braid fans Bd × · · · × Bd = Bnd . Note that Td×nmax can
be stratified by the same set of hyperplanes, resulting in the product of braid fans plus
some extra stratification at the boundary. This means one can consider the space of
monomial tropical polyhedra as a subfan of Bnd whose associated order patterns form a
valid generator pattern. Furthermore, the face structure of this fan indicates how one can
deform from one monomial tropical polyhedron to another.

8.2 Further Questions

We conclude with several problems which are motivated from tropical convexity and
commutative algebra.

Question 91. Can one characterise the face posets of ordinary polyhedra arising as some
face poset of a (generic) monomial tropical polyhedron?

This question goes back to [9] for generic monomial ideals. In the terminology of
orthogonal surfaces, some necessary conditions have been established in [39, 25] and also
the condition on the facet-ridge graph in [17] could be applied. Our notion of pattern type
from Section 8.1 could be used to enumerate the finite number of occurring vertex-facet
lattices in fixed dimension. While previously the combinatorial types of tropical polytopes
were considered via the secondary fan of products of two simplices through the connection
discussed in Remark 25, we propose to restrict to the more tractable fan Bdn, the n-fold
product of the d-dimensional braid fan.

Focusing directly on monomial tropical polyhedra without their connection to classical
polyhedra leads to the following.

Question 92. Which atomic and coatomic lattices arise as vertex-facet lattices of mono-
mial tropical polyhedra?

A similar motivation lies at the heart of which atomic lattices arise as the LCM-lattice
of a monomial ideal studied in [43, 31, 32].

Using the combinatorial framework of covector graphs, it is tempting to generalise the
face poset constructions to tropical oriented matroids, see [7] for an introduction (where
‘type’ is used instead of covector graph) and [41] for an application to tropical linear

programming. The pseudovertex poset is defined in terms of the partial ordering on Td.
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Question 93. Can one derive this partial ordering directly from the graph structure of
the covector graphs?

This would allow one to extend the study of the face posets discussed in Section 4
and 5 to general tropical oriented matroids that may not be realisable.

We finish by returning to monomial ideals and their resolutions. We saw the Betti
poset contains all the essential homological data, but is hard to compute. However, it is
contained in far more computationally amenable posets, in particular the max-min poset.

Question 94. Can one derive a resolution of a monomial ideal I from the max-min poset
of the monomial tropical polyhedron M(VI).
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[42] Georg Loho and László A. Végh, Signed Tropical Convexity, 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020) (Thomas Vidick, ed.), Leibniz
International Proceedings in Informatics (LIPIcs), vol. 151, 2020, pp. 24:1–24:35.

[43] Sonja Mapes, Finite atomic lattices and resolutions of monomial ideals, J. Algebra
379 (2013), 259–276.

[44] T. Markwig, A field of generalised Puiseux series for tropical geometry, Rend. Semin.
Mat. Univ. Politec. Torino 68 (2010), no. 1, 79–92.

the electronic journal of combinatorics 30(4) (2023), #P4.11 56



[45] Ezra Miller, Alexander duality for monomial ideals and their resolutions, 1998,
arXiv:math/9812095.

[46] , Planar graphs as minimal resolutions of trivariate monomial ideals, Doc.
Math. 7 (2002), 43–90.

[47] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate
Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.

[48] Ezra Miller, Bernd Sturmfels, and Kohji Yanagawa, Generic and cogeneric monomial
ideals, J. Symb. Comput. 29 (2000), no. 4-5, 691–708 (English).

[49] Patrik Norén, Slicing and dicing polytopes, 2016, arXiv:1608.05372.

[50] Alex Postnikov, Victor Reiner, and Lauren Williams, Faces of generalized permuto-
hedra, Doc. Math. 13 (2008), 207–273.

[51] Herbert Scarf, The approximation of fixed points of a continuous mapping, SIAM J.
Appl. Math. 15 (1967), 1328–1343.

[52] , The computation of economic equilibria, Yale University Press, New Haven,
Conn.-London, 1973, With the collaboration of Terje Hansen, Cowles Foundation
Monograph, No. 24.

[53] Bernd Schröder, Ordered sets, second ed., Birkhäuser/Springer, 2016, An introduc-
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