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Abstract

We prove that every n-vertex Kt-minor-free graph G of maximum degree ∆ has
a set F of O(t2(log t)1/4

√
∆n) edges such that every component of G − F has at

most n/2 vertices. This is best possible up to the dependency on t and extends
earlier results of Diks, Djidjev, Sýkora, and Vrťo (1993) for planar graphs, and of
Sýkora and Vrťo (1993) for bounded-genus graphs. Our result is a consequence of
the following more general result: The line graph of G is isomorphic to a subgraph
of the strong product H �Kbpc for some graph H with treewidth at most t− 2 and

p =
√

(t− 3)∆|E(G)|+ ∆.

Mathematics Subject Classifications: 05C83

1 Introduction

A balanced vertex separator of an n-vertex graph G is a set X ⊆ V (G) such that every
component of G−X has at most n/2 vertices.1 The well-known Planar Separator Theorem
by Lipton and Tarjan [7] states that every n-vertex planar graph has a balanced vertex
separator of size O(

√
n). Alon, Seymour, and Thomas [1] showed that every n-vertex

Kt-minor-free graph has a balanced vertex separator of size at most t3/2
√
n.

In this paper, we study balanced edge separators. A balanced edge separator of an
n-vertex graph G is a set F ⊆ E(G) such that every component of G−F has at most n/2
vertices. The aforementioned classes of graphs with balanced vertex separators of size
O(
√
n) do not admit balanced edge separators of size o(n); indeed, the smallest balanced

edge separator of the n-vertex star K1,n−1 has size dn/2e.
The star, however, has a vertex of degree n − 1. If we assume that the maximum

degree ∆ of G is sublinear in n, then in some cases we can retrieve sublinear balanced
edge separators. Diks, Djidjev, Sýkora, and Vrťo [3] showed that if G is planar, then G
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has a balanced edge separator of size O(
√

∆n), and Sýkora and Vrťo [8] showed that if
the Euler genus of G is g, then there exists a balanced edge separator of size O(

√
g∆n).

These results are true also in the weighted setting where each vertex x ∈ V (G) is assigned
a weight w(x) with 0 6 w(x) 6 1

2
, the total weight of all vertices is 1, and the edge

separator should split G into components of weight at most 1
2
.

Lasoń and Sulkowska [6] showed that in the weighted setting, if G is an n-vertex
Kt-minor-free graph of maximum degree ∆ = o(n) and the vertices are weighted propor-
tionally to their degrees, then there exists a balanced edge separator of size o(n). Their
proof relies on spectral methods—more precisely, on an upper bound for the second small-
est eigenvalue of the Laplacian matrix of Kt-minor-free graphs due to Biswal, Lee, and
Rao [2]—and only works for these specific weights. They asked if one can always find
a balanced edge separator of size Ot(

√
∆n) for any weights (including uniform weights),

as is the case for planar graphs and graphs of bounded genus. In this paper, we give an
affirmative answer to this question.

Theorem 1. Let t > 3, let G be an n-vertex Kt-minor-free graph of maximum degree ∆,
and let w : V (G) → [0, 1

2
] be a weight function such that

∑
x∈V (G) w(x) = 1. Then there

exists a set F ⊆ E(G) with

|F | 6 (t− 1)
⌊√

(t− 3)|E(G)|∆ + ∆
⌋
∈ O

(
t2(log t)1/4 ·

√
∆n
)

such that
∑

x∈V (C) w(x) 6 1
2

for each component C of G− F .

This result is best possible up to dependency on t: Sýkora and Vrťo [8] showed that
there exist n-vertex planar graphs G of maximum degree ∆ such that every balanced edge
separator has size Ω(

√
∆n).

We actually prove the following stronger result.

Theorem 2. Let t > 3 and let G be a Kt-minor-free graph of maximum degree ∆ with m
edges. Then the line graph of G is isomorphic to a subgraph of the strong product H�Kbpc
for some graph H with tw(H) 6 t− 2 and p =

√
(t− 3)∆m+ ∆.

The strong product H � K of graphs H and K is a graph on V (H) × V (K) where
(x1, y1) and (x2, y2) are adjacent if x1 = x2 and y1y2 ∈ E(K), or x1x2 ∈ E(H) and y1 = y2,
or x1x2 ∈ E(H) and y1y2 ∈ E(K). (When K is a complete graph on p vertices, taking
the strong product of H with K amounts to ‘blowing up’ each vertex of H by a clique
of size p.) Theorem 2 directly implies the following upper bound on the treewidth of the
line graph of G.

Theorem 3. Let t > 3, and let G be a Kt-minor free graph of maximum degree ∆ with
m edges. Then the line graph of G has treewidth at most (t− 1)b

√
(t− 3)∆m+ ∆c − 1.

Theorem 1 then follows from Theorem 3 by a simple argument on the tree-
decomposition provided by the latter theorem (see Section 3).

Theorem 2 can be thought of as an ‘edge version’ of the following recent strength-
ening of the balanced vertex separator result by Alon, Seymour and Thomas [1] due to
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Illingworth, Scott and Wood [4]: Every n-vertex Kt-minor free graph is isomorphic to
a subgraph of the strong product H � Kbpc where tw(H) 6 t − 2 and p = 2

√
(t− 3)n.

The authors of [4] established their result by modifying the proof in [1]. Our proof of
Theorem 2 is likewise a modification of the proof in [1] and relies heavily on the insights
from [4]; the main work consists in adapting to the edge setting.

One consequence of Theorem 1 is an upper bound for the isoperimetric number (a.k.a.
edge expansion or Cheeger constant) of Kt-minor-free graphs. The isoperimetric number
φ(G) of a graph G is defined as

φ(G) = min

{
|{xy ∈ E(G) : x ∈ S, y 6∈ S}|

|S|
: S ⊆ V (G), 1 6 |S| 6 |V (G)|/2

}
.

Corollary 4. For t > 3, every n-vertex Kt-minor-free graph G with maximum degree ∆
satisfies

φ(G) = O
(
t2(log t)1/4 ·

√
∆
n

)
Proof. Let F be a balanced edge separator of G with |F | = O(t2(log t)1/4 ·

√
∆n) given by

Theorem 1. Since each component of G − F has at most n/2 vertices, we may choose a
subset of these components so that the union S of their vertex sets satisfies 1

3
n 6 |S| 6 1

2
n.

It follows

φ(G) 6
|{xy ∈ E(G) : x ∈ S, y 6∈ S}|

|S|
6
|F |
n/3

= O

(
t2(log t)1/4 ·

√
∆

n

)
.

The bound in Corollary 4 is best possible up to the dependence on t, and extends
previous bounds for planar graphs [3] and bounded-genus graphs [8].

Our proofs are constructive, and in particular, there exists a polynomial time algo-
rithm, which given a graph G and an integer t, outputs a set F as in Theorem 1 and a
graph H as in Theorem 2 together with an isomorphism between the line graph of G and
a subgraph of H �Kbpc where p =

√
(t− 3)∆m+ ∆.

In Section 2 we introduce all the necessary definitions, notations and preliminary
results, and in Section 3 we prove Theorems 1, 2 and 3.

2 Preliminaries

We consider simple finite undirected graphs G with vertex set V (G) and edge set E(G).
For subsets X, Y ⊆ V (G), we denote by EG(X, Y ) the set of all edges xy ∈ E(G) with
x ∈ X and y ∈ Y . We denote by NG(X) the open neighborhood of a set X ⊆ V (G), i.e.
the set of all vertices outside X that are adjacent to at least one vertex from X. We drop
the subscripts from the notations EG(X, Y ) and NG(X) when the graph G is clear from
the context.

A set of vertices U ⊆ V (G) is connected in a graph G if the induced subgraph G[U ]
is connected. For t > 1, a Kt-model in G is a sequence (U1, . . . , Ut) of pairwise disjoint

the electronic journal of combinatorics 30(4) (2023), #P4.12 3



connected subsets of V (G) such that E(Ui, Uj) 6= ∅ for distinct i, j ∈ {1, . . . , t}. Note
that G contains Kt as a minor if and only if G has a Kt-model.

A tree-decomposition of a graph G is a family (Bu)u∈V (T ) of subsets of V (G) called
bags, indexed by nodes of a tree T , such that

• V (G) =
⋃
u∈V (T )Bu,

• for every xy ∈ E(G) there exists u ∈ V (T ) with {x, y} ⊆ Bu, and

• For all u1, u2, u3 ∈ V (T ) such that u2 lies on the path between u1 and u3 in T , we
have Bu1 ∩Bu3 ⊆ Bu2 .

The width of (Bu)u∈V (T ) is max{|Bu|−1 : u ∈ V (T )}. The treewidth of a graph G, denoted
tw(G), is the minimum width of its tree-decompositions. The following fact summarizes
some simple properties of tree-decompositions that we use in our proof.

Fact 5. Given a graph G with a tree-decomposition (Bu)u∈V (T ) of width at most k, the
following properties hold:

(i) For every clique X in G there exists u ∈ V (T ) with X ⊆ Bu.

(ii) For every connected set U ⊆ V (G), the set {u ∈ V (T ) : Bu ∩ U 6= ∅} is connected
in T .

(iii) For every graph G′ such that tw(G′) 6 k and G∩G′ is a (possibly empty) complete
graph, we have tw(G ∪G′) 6 k.

(iv) Every graph G′ obtained from G by adding a new vertex adjacent to a clique of G
of size at most k has treewidth at most k.

The line graph L(G) of a graph G is a graph whose vertex set is E(G) and in which
distinct edges e, e′ ∈ E(G) are adjacent if they share a common end in G.

Given a graph G, a graph-partition of G is a graph H such that the vertex set of H
is a partition of V (G) into nonempty parts, and for all distinct X, Y ∈ V (H) we have
XY ∈ E(H) if EG(X, Y ) 6= ∅. (Note that XY is allowed to be an edge of H even if
EG(X, Y ) = ∅) For an integer k and a real p, we call a graph-partition H of G a (k, p)-
partition if tw(H) 6 k and |X| 6 p for each X ∈ V (H). Observe that if a graph G
has a (k, p)-partition then G is isomorphic to a subgraph of H �Kbpc for some graph H
with tw(H) 6 k. In the proofs, we will often consider a graph-partition H of a graph G
together with some distinguished clique {X1, . . . , Xh} of H; in this case, we say that H
is rooted at {X1, . . . , Xh}.

3 The proofs

We need the following lemma by Alon, Seymour and Thomas [1].
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Lemma 6 ([1]). Let G be a graph, let A1, . . . , Ah be h subsets of V (G), and let r be a real
number with r > 1. Then either:

• there is a tree T in G (not necessarily induced) with |V (T )| 6 r such that V (T )∩Ai 6=
∅ for every i ∈ {1, . . . , h}, or

• there exists Z ⊆ V (G) with |Z| 6 (h−1)|V (G)|/r such that no component of G−Z
intersects all of A1, . . . , Ah.

We deduce an edge variant of this lemma.

Lemma 7. Let G be a graph without isolated vertices, let A1, . . . , Ah be h subsets of V (G),
and let r be a real number with r > 1. Then either:

• there is a tree T in G with |E(T )| 6 r such that V (T ) ∩ Ai 6= ∅ for every i ∈
{1, . . . , h}, or

• there exists F ⊆ E(G) with |F | 6 (h−1)|E(G)|/r such that no component of G−F
intersects all of A1, . . . , Ah.

Proof. Apply Lemma 6 to L(G), the sets EG(A1, V (G)), . . . , EG(Ah, V (G)) and r. If
L(G) contains a tree T0 with |V (T0)| 6 r such that V (T0) ∩ EG(Ai, V (G)) 6= ∅ for every
i ∈ {1, . . . , h}, then G contains a tree T such that E(T ) = V (T0), and thus |E(T )| =
|V (T0)| 6 r and V (T ) ∩ Ai 6= ∅ for every i ∈ {1, . . . , h}.

Now suppose that L(G) contains a set Z ⊆ V (L(G)) with |Z| 6 (h−1)|V (L(G))|/r =
(h− 1)|E(G)|/r such that no component of L(G)− Z intersects each EG(Ai, V (G)) with
i ∈ {1, . . . , h}. Let F := Z. If no component of G − F intersects all of A1, . . . , Ah, then
F satisfies the lemma, and we are done. Assume thus that some component C of G− F
intersects all of A1, . . . , Ah. By our assumption on F , there exists i ∈ {1, . . . , h} such
that E(C) ∩EG(Ai, V (G)) = ∅. Hence, C must consist of a single vertex that belongs to
all of A1, . . . , Ah, and therefore the tree T := C satisfies the lemma.

The following lemma is the heart of the proofs of our results.

Lemma 8. Let t,∆,m, h be integers with t > 3 and ∆,m, h > 1, and let p :=√
(t− 3)∆m+∆. Let G be a connected Kt-minor-free graph of maximum degree at most ∆

with m edges, let C be a proper induced subgraph of G with |V (C)| > 1, and let E1, . . . , Eh
be disjoint nonempty subsets of E(G) \ E(C) such that |Ei| 6 p for each i ∈ {1, . . . , h}.
If there exists a Kh-model (U1, . . . , Uh) in G− V (C) such that N(V (C)) ⊆ U1 ∪ · · · ∪ Uh
and E(V (C), Ui) ⊆ Ei for each i ∈ {1, . . . , h}, then L(G)[E(C) ∪E1 ∪ · · · ∪Eh] admits a
(t− 2, p)-partition H rooted at {E1, . . . , Eh}.

Proof. We prove the lemma by induction on the value 2|V (C)| + h. Since there exists a
Kh model in the Kt-minor free graph, we have h 6 t − 1. Therefore, if |V (C)| = 1, and
thus E(C) = ∅, then the lemma is satisfied by the partition H which is a complete graph
on {E1, . . . , Eh}. In particular, the lemma holds in the base case, when 2|V (C)|+ h = 3.
From now on, we assume

|V (C)| > 1.
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For the induction step, suppose that 2|V (C)|+h > 3. Suppose that C is disconnected,
say C is the union of vertex disjoint graphs C1 and C2 with |V (Cα)| > 1 for α ∈ {1, 2}.
For each α ∈ {1, 2}, we have 2|V (Cα)| + h < 2|V (C)| + h, N(V (Cα)) ⊆ N(V (C)) and
E(V (Cα), Ui) ⊆ E(V (C), Ui) for each i ∈ {1, . . . , h}, so we may apply the induction
hypothesis to Cα to obtain a (t − 2, p)-partition Hα of L(G)[E(Cα) ∪ E1 ∪ · · · ∪ Eh]
rooted at {E1, . . . , Eh}. By Fact 5(iii), H = H1 ∪H2 is the desired (t− 2, p)-partition of
L(G)[E(C)∪E1∪· · ·∪Eh)]. Therefore, we may assume that C is connected. In particular,
(V (C), U1, . . . , Uh) is a Kh+1-model in the Kt-minor-free graph G, so

h 6 t− 2.

For each i ∈ {1, . . . , h}, let Ai = V (C) ∩ N(Ui). Suppose that some Ai is empty,
say without loss of generality Ah = ∅. Since G is connected, not all sets Ai are empty,
so h > 2. We have 2|V (C)| + (h − 1) < 2|V (C)| + h and N(V (C)) ⊆ U1 ∪ · · · ∪ Uh−1

because N(V (C)) ∩ Uh = ∅, so we may apply the induction hypothesis to C and the sets
E1, . . . , Eh−1 to obtain a (t− 2, p)-partition H0 of L(G)[E(C)∪E1 ∪ · · · ∪Eh−1] rooted at
{E1, . . . , Eh−1}. Since Ah = ∅, no edge of Eh is incident to an edge in E(C), and thus the
line graph L(G) does not contain any edges between Eh and E(C). Hence, by Fact 5(iv),
the desired (t− 2, p)-partition H of L(G)[E(C)∪E1 ∪ · · · ∪Eh] can be obtained from H0

by adding Eh as a new vertex adjacent to E1, . . . , Eh−1. Therefore, we may assume that
the sets A1, . . . , Ah are nonempty.

Suppose that C contains a tree T on at most
√

(h− 1)m/∆ + 1 vertices that contains
at least one vertex in Ai for each i ∈ {1, . . . , h}. Let Uh+1 = V (T ), so that (U1, . . . , Uh+1)
is a Kh+1-model, and let Eh+1 := E(V (T ), V (C)). Note that Eh+1 is nonempty, since C
is connected and |V (C)| > 1. Observe that

|Eh+1| 6 ∆ · |V (T )| 6 ∆ ·
(√

(h− 1)m/∆ + 1
)
6
√

(t− 3)∆m+ ∆ = p.

If V (T ) = V (C) then the complete graph on {E1, . . . , Eh+1} gives the desired (t − 2, p)-
partition H of L(G)[E(C) ∪ E1 ∪ · · · ∪ Eh]. (Recall that h 6 t− 2.)

If V (T ) 6= V (C), then we have 2 · |C − V (T )| + (h + 1) 6 2(|V (C)| − 1) + (h + 1) <
2|V (C)|+h, so we may apply the induction hypothesis to C−V (T ), (U1, . . . , Uh+1) and the
sets E1, . . . , Eh+1 to obtain a (t−2, p)-partition H of L(G)[E(C−V (T ))∪E1∪· · ·∪Eh+1]
rooted at {E1, . . . , Eh+1}. Since E(C) = E(C−V (T ))∪Eh+1, the partition H is a (t−2, p)-
partition of L(G)[E(C) ∪ E1 ∪ · · · ∪ Eh] rooted at {E1, . . . , Eh}, as desired.

It remains to consider the case when no tree in C with at most
√

(h− 1)m/∆ + 1
vertices intersects all of A1, . . . , Ah. In particular, h > 2. Since C is connected and
|V (C)| > 1, C does not contain isolated vertices. By Lemma 7 with r =

√
(h− 1)m/∆,

there exists a set F ⊆ E(C) with

|F | 6 (h− 1)m/
√

(h− 1)m/∆ =
√

(h− 1)∆m 6
√

(t− 3)∆m < p

such that no component of C − F intersects all of A1, . . . , Ah. See Figure 1. Among all
such sets F , choose a smallest one. Since C is connected and the sets A1, . . . , Ah are
nonempty, F 6= ∅.
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Figure 1: The component C is adjacent to each set Ui in the Kh-model. Every dotted
edge with an end in a set Ui has the other end in Ai and belongs to Ei (the set Ei may
contain other edges without any ends in C). One of the following holds: (1) there exists
a tree T ⊆ C which intersects all sets Ai and its vertices are incident to at most bpc edges
of C, or (2) there exists a set F ⊆ E(C) with |F | 6 bpc such that no component of C−F
intersects all sets Ai.

Let C1, . . . , Cs be the components of C − F . Observe that C1, . . . , Cs are induced
subgraphs of C (and thus of G), by the minimality of F . Our goal now is to show that for
each j ∈ {1, . . . , s}, there exists a (t−2, p)-partition Hj of L(G)[E(Cj)∪F ∪E1∪· · ·∪Eh]
rooted at {F,E1, . . . , Eh}. By Fact 5(iii), this will then imply that L(G)[E(C)∪E1∪· · ·∪
Eh] admits a (t− 2, p)-partition H rooted at {E1, . . . , Eh}, as desired.

Towards this goal, fix j ∈ {1, . . . , s}, and let i′ ∈ {1, . . . , h} be such that V (Cj)∩Ai′ =
∅. Consider the sets E ′1, . . . , E

′
h where E ′i = Ei for i 6= i′ and E ′i′ = F .

Let X denote the set of all vertices of C that lie in some component of C−F containing
at least one vertex from Ai′ . Since each component of C[X] contains a vertex from Ai′ ,
the set Ui′ ∪ X is connected in G. Let (U ′1, . . . , U

′
h) be the Kh-model where U ′i = Ui for

i 6= i′ and U ′i′ = Ui′ ∪ X. By the minimality of F , each edge e ∈ F with an end in
Cj belongs to one component of C − (F \ {e}) with an element of A′i, so e has an end
in U ′i′ . Hence, N(Cj) ⊆ (U ′1 ∪ · · · ∪ U ′h). Note also that 2|V (Cj)| + h < 2|V (C)| + h.
Therefore, we may apply the induction hypothesis to Cj and the sets E ′1, . . . , E

′
h to obtain

a (t− 2, p)-partition H0
j of L(G)[E(Cj) ∪ E ′1 ∪ · · · ∪ E ′h] that is rooted at {E ′1, . . . , E ′h}.

Since V (Cj) ∩ Ai′ = ∅, and since Ei′ ⊆ E(G) \ E(C), no edge of Ei′ is incident to an
edge in E(Cj). Thus, the line graph L(G) does not contain any edges between Ei′ and
E(Cj). Since E(V (C), Ui′) ⊆ Ei′ and h 6 t − 2, we can obtain a (t − 2, p)-partition Hj

of L(G)[E(Cj)∪F ∪E1 ∪ · · · ∪Eh] rooted at {F,E1, . . . , Eh} from H0
j by adding Ei′ as a

new vertex adjacent to E ′1, . . . , E
′
h.

By Fact 5(iii), H := H1∪· · ·∪Hs is a (t−2, p)-partition of L(G)[E(C)∪E1∪· · ·∪Eh]
rooted at {F,E1, . . . , Eh} and in particular at {E1, . . . , Eh}. This concludes the proof of
the lemma.

Proof of Theorem 2. Let G be a Kt-minor-free graph of maximum degree ∆ with m edges,
and let G1, . . . , Gs be the components of G. For each j ∈ {1, . . . , s}, we construct a
(t− 2, p)-partition Hj of L(Gj). If Gj is an isolated vertex, then L(Gj) is an empty graph
and we can take the empty graph as Hj. If Gj is not an isolated vertex, then choose
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any vertex x ∈ V (Gj). By Lemma 8 applied to C = Gj − x, E1 = E({x}, V (G)) and
U1 = {x}, L(Gj) has a (t−2, p)-partition Hj. Hence, by Fact 5(iii), H = H1∪· · ·∪Hs is a
(t−2, p)-partition of L(G), and therefore L(G) is isomorphic to a subgraph ofH�Kbpc.

Proof of Theorem 3. Let G be a Kt-minor-free graph of maximum degree ∆ with m edges.
By Theorem 2, there exists a graph H with tw(H) 6 t−2 such that L(G) is isomorphic to
a subgraph of H�Kbpc where p =

√
(t− 3)∆m+∆. If (Bu)u∈V (T ) is a tree-decomposition

of H of width at most t−2, then (Bu×V (Kbpc))u∈V (T ) is a tree-decomposition of H�Kbpc
of width at most (t− 1)bpc − 1, so

tw(L(G)) 6 tw(H �Kbpc) 6 (t− 1)bpc − 1 = (t− 1)
⌊√

(t− 3)∆m+ ∆
⌋
− 1.

Proof of Theorem 1. Let G be a Kt-minor-free graph of maximum degree ∆ with n
vertices and m edges, and let w : V (G) → [0, 1

2
] be a weight function such that∑

x∈V (G) w(x) = 1.

By Theorem 3, we have tw(L(G)) 6 (t−1)b
√

(t− 3)∆m+∆c−1. Let (Bu)u∈V (T ) be a
tree-decomposition of L(G) of minimum width. For each x ∈ V (G), the set E({x}, V (G))
is a clique in L(G), so by Fact 5(iii) we can choose a node u(x) ∈ V (T ) such that
E({x}, V (G)) ⊆ Bu(x).

For a subtree T ′ of T , we define the weight w(T ′) of T ′ as the sum of weights w(x) of
all vertices x ∈ V (G) such that u(x) ∈ V (T ′). Let us orient an edge u1u2 ∈ E(T ) from
u1 to u2 when in T − u1u2 the component containing u2 has weight greater than 1

2
(and

thus the component containing u1 has weight smaller than 1
2
). We do not orient an edge

e ∈ E(T ) in any direction if both components of T − e have weight exactly 1
2
.

Choose a node v in T such that no edge incident with v in T is oriented away from v.
We claim that F = Bv satisfies the theorem. Since the tree-decomposition has minimum
width, we have |F | 6 (t− 1)b

√
(t− 3)∆m + ∆c. Consider a component C of G− F . If

C consists of a single vertex, then
∑

x∈V (C) w(x) 6 1
2

clearly holds. If C has more than

one vertex, then E(C) 6= ∅, and L(G)[E(C)] is connected since C is connected. We have
E(C) ∩ F = ∅, so by Fact 5(ii), there must exist a component T ′ of T − {v} such that
every node u ∈ V (T ) with Bu ∩ E(C) 6= ∅ belongs to T ′. In particular, u(x) ∈ V (T ′) for
each x ∈ V (C). By our choice of v, the weight of T ′ is at most 1

2
, so

∑
x∈V (C) w(x) 6 1

2
.

Kostochka [5] and Thomason [9] showed that a Kt-minor-free graph on n vertices has

at most O(t
√

log t ·n) edges, so (t− 1)b
√

(t− 3)∆m+ ∆c 6 O
(
t2(log t)1/4 ·

√
∆n
)

. This

completes the proof.
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