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Abstract

A theorem of Rödl states that for every fixed F and ε > 0 there is δ = δF (ε) so
that every induced F -free graph contains a vertex set of size δn whose edge density
is either at most ε or at least 1 − ε. Rödl’s proof relied on the regularity lemma,
hence it supplied only a tower-type bound for δ. Fox and Sudakov conjectured
that δ can be made polynomial in ε, and a recent result of Fox, Nguyen, Scott and
Seymour shows that this conjecture holds when F = P4. In fact, they show that
the same conclusion holds even if G contains few copies of P4. In this note we give
a short proof of a more general statement.

Mathematics Subject Classifications: 05C35, 05C55

1 Introduction

Our investigation here is related to two of the most well studied problems in extremal
graph theory. A graph-family F has the Erdős-Hajnal property if there is c = c(F) > 0
such that every n-vertex induced F -free graph has a clique of independent set of size at
least cnc. The famous Erdős-Hajnal conjecture [4] states that every non-empty family of
graphs F has the Erdős-Hajnal property. A variant of the Erdős-Hajnal conjecture was
obtained by Rödl [10], who proved that if G is induced F -free then for every ε > 0, G
contains a set of vertices of size at least δF (ε) · n whose edge density is either at most ε
or at least 1− ε (we will henceforth call such sets ε-homogenous). Rödl’s proof relied on
Szemerédi’s regularity lemma, and thus supplied very weak tower-type bounds for δF (ε).
Fox and Sudakov [6] obtained a quantitative improvement over Rödl’s proof by showing

that one can take δF (ε) = εOF (log 1/ε). This was further improved to δF (ε) = εOF (
log 1/ε

log log 1/ε
)

in a recent work of Bucić, Nguyen, Scott and Seymour [3]. Fox and Sudakov [6] made the
conjecture that one can take δ = εOF (1) and noted that a proof of this conjecture would
also resolve the Erdős-Hajnal conjecture.

Motivated by Nikiforov’s [9] strengthening of Rödl’s theorem, Fox, Nguyen, Scott and
Seymour [5] introduced the following variant of the conjecture raised in [6]. Let us say
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that a graph F on f vertices is viral if for every ε > 0, there is δ = εOF (1) so that every
graph G that contains at most δnf induced copies of F must contain an ε-homogenous
set of size δn. The main result of [5] was that P4, the path on 4 vertices, is viral. Our aim
in this paper is to give a very short proof of this result. In fact, we prove the following
much more general statement.

Theorem 1. Let F be a finite graph family which contains a bipartite, a co-bipartite
and a split graph. Suppose that F satisfies the Erdős-Hajnal property. Then there is
C = C(F) such that for every ε ∈ (0, 1/2) and for every graph G on n > ε−C vertices,
if G contains fewer than εCn|V (F )| induced copies of F for every F ∈ F , then G contains
an ε-homogenous set X of size |X| > εCn.

Since P4 is bipartite, co-bipartite and split, and since it is well known that the Erdős-
Hajnal conjecture holds for P4, the fact that P4 is viral follows immediately from Theorem
1.

One of the tools used in [5] is the polynomial removal lemma for P4 of [1]. While
our proof of Theorem 1 is inspired by an alternative proof of this result in [7], our proof
here is much simpler. It is in fact very similar to the Regularity+Turán+Ramsey proof
technique that was first introduced in [10] and later used in numerous works applying
the regularity method. The key differences which give the improved polynomial bound
are that we replace the application of Szemerédi’s regularity lemma with an application
of the Alon-Fischer-Newman regularity lemma [2], and that we replace the application of
Ramsey’s theorem with an application of the (assumed) Erdős-Hajnal property.

2 Proof of Theorem 1

We will need the following lemma.

Lemma 2. Let F be a family of graphs which contains a bipartite graph, a co-bipartite
graph, and a split graph. Then there is d = d(F) such that for every γ ∈ (0, 1/2), the
following holds. For every k0 > 1 and every graph G on n > k0 ·γ−d vertices, if G contains
fewer than γdn|V (F )| induced copies of F for every F ∈ F , then G has an equipartition
into k parts V1, . . . , Vk, where k0 6 k 6 k0 · γ−d, such that for all but γ

(
k
2

)
of the pairs

1 6 i < j 6 k it holds that d(Vi, Vj) > 1− γ or d(Vi, Vj) 6 γ.

Lemma 2 was proved in [7], and it follows by combining Lemmas 2.2 and 2.8 in that
paper. Indeed, one first uses the fact that F contains a bipartite, a co-bipartite and a split
graph to show that there is a fixed-size bipartite graph H with sides X, Y such that if G is
induced F -free then G has no induced bipartite copy of H, namely, an induced copy of the
edges between X and Y (see Lemma 2.2 in [7]). We note that the existence of such an H
is equivalent to the statement that induced F -free graphs have bounded VC-dimension.
One then uses the conditional regularity lemma of Alon, Fischer and Newman [2] (see also
[8]) to show that either G contains many induced bipartite copies of H (in which case G
contains many induced copies of some F ∈ F) or G has a partition as asserted in Lemma
2 (see Lemma 2.8 in [7] for the details).
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Proof of Theorem 1. Let f := maxF∈F |V (F )| and c := c(F), namely, c is the constant
attesting that F has the Erdős-Hajnal property. Let d = d(F) be given by Lemma 2. Let
ε ∈ (0, 1/2). The required constant C = C(F) will be given implicitly by the proof; it
will only depend in f, c, d. Set

γ := min

{
1

f 2
,
ε

4
,

1

2

(cε
4

)1/c
}

and k0 := d1/γe. Let G be a graph on n > k0 · γ−d vertices. We may assume that G
contains fewer than γdn|V (F )| induced copies of F for every F ∈ F , because γd > εC holds
provided that C is large enough in terms of f, c, d. So we may apply Lemma 2 to obtain
a partition V1, . . . , Vk of G with the properties stated in that lemma. Note that k 6
k0 ·γ−d 6 γ−d−1. Define an auxiliary graph R′ on [k] where ij ∈ E(R′) if d(Vi, Vj) > 1−γ
or d(Vi, Vj) 6 γ. Lemma 2 guarantees that e(R′) > (1 − γ)

(
k
2

)
> (1 − 2γ)k

2

2
, using that

k > k0 > 1/γ. By Turán’s theorem, R′ contains a clique A of size |A| = d 1
2γ
e. Now define

an auxiliary graph R on A where ij is an edge if d(Vi, Vj) > 1− γ and ij is a non-edge if
d(Vi, Vj) 6 γ.

Case 1: R contains an induced copy of some F ∈ F . Let i1, . . . , im ∈ A be
the vertices of such a copy; so m = |V (F )| 6 f . Sample vij ∈ Vij uniformly at random
and independently, j = 1, . . . ,m. By the definition of R, for each iji` ∈ E(F ) we have
d(Vij , Vi`) > 1 − γ, and for each iji` /∈ E(F ) we have d(Vij , Vi`) 6 γ. By the union
bound, the probability that vi1 , . . . , vim do not span an induced copy of F is at most(
m
2

)
ε 6

(
f
2

)
γ < 1

2
, using that γ < 1/f 2. It follows that G has at least 1

2
|Vi1| · · · · · |Vim| =

1
2
(n/k)m > 1

2
γ(d+1)m · n|V (F )| > εCn|V (F )| induced copies of F , where the last inequality

holds provided that C � f, c, d. This completes the proof in Case 1.

Case 2: R is induced F-free. By the choice of c = c(F), the graph R contains a
clique or independent set B ⊆ A of size |B| > c|A|c > c( 1

2γ
)c > 4/ε, using our choice of γ.

Suppose without loss of generality that B is an independent set, and write B = {i1, . . . , it}.
For every 1 6 j < ` 6 t, we have d(Vij , Vi`) 6 γ 6 ε

4
. Also, the number of edges which

are contained in one of the sets Vi1 , . . . , Vit is at most t ·
(
n/k
2

)
6 tn2

2k2
6 εt2n2

8k2
, using that

t > 4/ε. Hence, setting X = Vi1 ∪ · · · ∪ Vit , we have |X| = tn
k
> γd+1n > εCn and

e(X) 6
εt2n2

8k2
+

(
t

2

)
ε

4
· n

2

k2
6
εt2n2

4k2
.

As
(|X|

2

)
=

(
tn/k
2

)
> t2n2

4k2
, we have that

d(X) =
e(X)(
X
2

) 6
εt2n2/(4k2)

t2n2/(4k2)
6 ε,

as required.
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