Weak (2, 3)-Decomposition of Planar Graphs

Ming $\operatorname{Han}^{a} \quad$ Xuding Zhu ${ }^{a}$
Submitted: Jan 6, 2023; Accepted: Sep 11, 2023; Published: Oct 20, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

This paper introduces the concept of weak (d, h)-decomposition of a graph G, which is defined as a partition of $E(G)$ into two subsets E_{1}, E_{2}, such that E_{1} induces a d-degenerate graph H_{1} and E_{2} induces a subgraph H_{2} with $\alpha\left(H_{1}\left[N_{H_{2}}(v)\right]\right) \leqslant h$ for any vertex v. We prove that each planar graph admits a weak (2,3)-decomposition. As a consequence, every planar graph G has a subgraph H such that $G-E(H)$ is 3 -paintable and any proper coloring of $G-E(H)$ is a 3-defective coloring of G. This improves the result in [G. Gutowski, M. Han, T. Krawczyk, and X. Zhu, Defective 3-paintability of planar graphs, Electron. J. Combin., 25(2):2.34, 2018] that every planar graph is 3 -defective 3 -paintable.

Mathematics Subject Classifications: 05C10,05C15,05C70

1 Introduction

A decomposition of a graph G is a collection of spanning subgraphs whose edge sets form a partition of $E(G)$. A graph is d-degenerate if every subgraph has a vertex of degree at most d. The degeneracy $d(G)$ of G is the minimum d such that G is d-degenerate. Given non-negative integers d and h, a (d, h)-decomposition of a graph G is a decomposition H_{1}, H_{2} of G such that H_{1} is d-degenerate and H_{2} has maximum degree at most h. We say G is (d, h)-decomposable if there exists a (d, h)-decomposition of G.

The concept of (d, h)-decomposition raises naturally in the study of the defective coloring of graphs. Assume f is a (not necessarily proper) coloring of the vertices of G. An edge $e=x y$ is defected if $f(x)=f(y)$. A d-defective coloring of a graph G is a coloring of the vertices of G in which each vertex v is incident to at most d defected edges. Thus a 0 -defective coloring is a proper coloring. Defective coloring of graphs was first studied by Cowen, Cowen and Woodall [2], who proved that every planar graph is 2 -defective 3 -colorable. We say a graph G is d-defective k-choosable if for any k-list assignment L, G has a d-defective L-coloring (i.e., a coloring f with $f(v) \in L(v)$ for each vertex v). Skrekovski [8] and Eaton and Hull [5] independently extended the result in [2] to the list

[^0]version and proved that every planar graph is 2-defective 3-choosable. They both asked the question whether every planar graph is 1 -defective 4 -choosable, and the question was answered by Cushing and Kierstead [3] in the affirmative.

The online version of defective list coloring of a graph is defined through a two-player game. Assume f is a function that assigns to each vertex v a non-negative integer $f(v)$. The d-defective f-painting game on G is played by two players: Lister and Painter. Initially, each vertex v has $f(v)$ tokens and is uncolored. In each round, Lister chooses a set M of uncolored vertices and removes one token from each chosen vertex. Painter colors a subset X of M which induces a subgraph $G[X]$ of maximum degree at most d, and colors vertices in X. Lister wins if at the end of some round, there is an uncolored vertex with no more tokens left. Otherwise, at some round, all vertices are colored and Painter wins. We say G is d-defective f-paintable if Painter has a winning strategy in this game. If $f(v)=k$ is a constant function, then d-defective f-paintable is called d-defective k-paintable. A graph is f-paintable if it is 0 -defective f-paintable, and the paint number $\chi_{P}(G)$ of G is the minimum k for which G is k-paintable. The d-defective f-painting game is an online version of the d-defective f-list coloring, in which Painter needs to color vertices before the full information of the list assignment is revealed. Thus d-defective f-paintable graphs are d-defective f-choosable, and $\operatorname{ch}(G) \leqslant \chi_{P}(G)$ for any graph G. Moreover, it is known [4] that $\chi_{P}(G)-\operatorname{ch}(G)$ can be arbitrarily large.

A natural question is whether the results in $[2,8,3]$ can be extended to online list coloring.
(1) Is it true that every planar graph is 2 -defective 3 -paintable?
(2) Is it true that every planar graph is 1-defective 4-paintable?

The answer to (1) is negative. It was proved in [7] that there are planar graphs that are not 2-defective 3 -paintable. However, the following positive result was proved in [7].

Theorem 1. Every planar graph is 3-defective 3-paintable.
The answer to (2) is "strongly" positive. It was proved in [6] that every planar graph G can be decomposed into a matching M (i.e., a graph of maximum degree at most 1) and a graph H of Alon-Tarsi number $A T(H)$ at most 4. We omit the definition of the Alon-Tarsi number (we shall not discuss this parameter further) and just mention that $\chi_{P}(G) \leqslant A T(G)$ for any graph G. Thus the following statement is a consequence of the mentioned result in [6].

Every planar graph G has a subgraph H of maximum degree at most 1 such that $G-E(H)$ is 4-paintable.

A natural question is whether Theorem 1 can be strengthened in the same manner.
(3). Is it true that every planar graph G has a subgraph H maximum degree at most 3 such that $G-E(H)$ is 3-paintable?

The answer to (3) is negative. It was proved in [1] that there are planar graphs G such that for any subgraph H with maximum degree $3, G-E(H)$ is not 3-choosable.

Observe that if $\left\{H_{1}, H_{2}\right\}$ is a (d, h)-decomposition of a graph G, where H_{1} is d degenerate and H_{2} has maximum degree at most h, then H_{1} is $(d+1)$-paintable, and any proper coloring ϕ of H_{1} is an h-defective coloring of G, as all the defected edges with respect to ϕ are contained in H_{2}. Motivated by the above questions, (d, h)-decomposability of planar graphs was studied in [1]. For $d=1,2,3,4$, let h_{d} be the minimum integer h such that every planar graph admits a (d, h)-decomposition. It was shown in [1] that $h_{1}=\infty, 4 \leqslant h_{2} \leqslant 6, h_{3}=2$ and $h_{4}=1$. In particular, it was shown in [1] that there are planar graphs that are not (2,3)-decomposable.

In this paper, also motivated by the above questions, we introduce a concept of weak (d, h)-decomposition. For a graph H, a vertex v of H and a subset X of vertices, $N_{H}(v)$ is the set of neighbours of v in $H, H[X]$ is the subgraph of H induced by X, and $\alpha(H)$ is the independence number of H.

Definition 2. A weak (d, h)-decomposition of a graph G is a decomposition of G into two subgraphs H_{1} and H_{2} such that H_{1} is d-degenerate, and for each vertex v of G, $\alpha\left(H_{1}\left[N_{H_{2}}(v)\right]\right) \leqslant h$.

The difference between (d, h)-decomposition and weak (d, h)-decomposition is that in a (d, h)-decomposition H_{1}, H_{2} of G, for every vertex v, instead of $\alpha\left(H_{1}\left[N_{H_{2}}(v)\right]\right) \leqslant h$, we require $d_{H_{2}}(v)=\left|N_{H_{2}}(v)\right| \leqslant h$. Thus a (d, h)-decomposition of G is a weak (d, h) decomposition of G, but the converse is not true.

Nevertheless, if H_{1}, H_{2} is a weak (d, h)-decomposition, then H_{1} is $(d+1)$-paintable, and any proper coloring of H_{1} is an h-defective coloring of G : If v has s neighbors $u_{1}, u_{2}, \ldots, u_{s}$ that are colored the same colors as v, then $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\} \subseteq N_{H_{2}}(v)$, and $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ is an independent set in H_{1} (as they are colored the same color). So $s \leqslant \alpha\left(H_{1}\left[N_{H_{2}}(v)\right]\right)$.

In this paper, we prove the following results:
Theorem 3. Every planar graph is weakly (2,3)-decomposable.
For a directed graph D, the out-degree $d_{D}^{+}(v)$ of a vertex v in D is the number of out-neighbours of v in D. Let $\Delta^{+}(D)=\max \left\{d_{D}^{+}(v): v \in V(G)\right\}$. It is well-known and easy to see that a graph G is d-degenerate if and only if it has an acyclic orientation D with $\Delta^{+}(D) \leqslant d$.

For a subgraph H of G and a vertex v of G, let $d_{H}^{*}(v)=\alpha\left(G\left[N_{H}(v)\right]-E(H)\right)$ and let $\Delta^{*}(H)=\max \left\{d_{H}^{*}(v): v \in V(G)\right\}$. Thus a weak (d, h)-decomposition can be expressed as a pair (D, H) such that H is a subgraph of G with $\Delta^{*}(H) \leqslant h$ and D is an acyclic orientation of $G-E(H)$ with $\Delta^{+}(D) \leqslant d$.

Let G be a plane graph. A plane subgraph of G is a subgraph of G whose plane embedding is inherited. We say G is a near triangulation if every face of G except the outer face is a triangle.

A directed edge is represented by an ordered pair of vertices: (u, v) is an arc from u to v. For a graph G and a set E of unordered pairs on $V(G)$, let $G+E$ (resp. $G-E$) denote the graph obtained from G by adding (resp. deleting) the elements of E to (resp.
from) the edge set of G. If $|E|=1$, say $E=w w^{\prime}$, then denote $G+E$ (resp. $G-E$) by $G+w w^{\prime}$ (resp. $G-w w^{\prime}$). For a digraph D and a set A of ordered pairs on $V(D)$, define $D+A, D-A, D+\left(w, w^{\prime}\right)$, and $D-\left(w, w^{\prime}\right)$ similarly. Moreover, for a digraph D and vertices $x, y \in V(D)$, let $D-x y$ denote the subdigraph $D-\{(x, y),(y, x)\}$. We often drop the parentheses to improve the readability. For instance, for a digraph D and sets A_{1}, A_{2}, A_{3} of ordered pairs on $V(D)$, both $D-A_{1}+A_{2}+A_{3}$ and $D-A_{1}+\left(A_{2}+A_{3}\right)$ denote $\left(\left(D-A_{1}\right)+A_{2}\right)+A_{3}$. For two (di)graphs G_{1} and G_{2}, let $G_{1} \cup G_{2}$ be the (di)graph such that $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. For a subset X of vertices of $G, E_{G}(X)$ is the set of edges of G with both end vertices in X.

For a plane graph G and a cycle K, we use $\operatorname{int}(\mathrm{K})$ to denote the set of vertices in the interior of K, and $\operatorname{ext}(\mathrm{K})$ to denote the set of vertices in the exterior of K. Denote by $\operatorname{int}[\mathrm{K}]$ and ext $[\mathrm{K}]$ the subgraph of G induced by $\operatorname{int}(\mathrm{K}) \cup \mathrm{K}$ and $\operatorname{ext}(\mathrm{K}) \cup \mathrm{K}$, respectively. For a simple path P and two distinct vertices u, v on that path, let $P[u, v]$ denote the subpath of P that traverses P from vertex u to vertex v, and let $P(u, v), P[u, v)$, and $P(u, v]$ to denote $P[u, v]-\{u, v\}, P[u, v]-v$, and $P[u, v]-u$, respectively. Similarly, for a simple cycle D in G and two distinct vertices u, v on that cycle, let $D[u, v]$ denote the subpath of D that traverses D in the clockwise direction from vertex u to vertex v.

2 Some preliminaries

In this section, we fix some terminology and prove some propositions needed in our proof of Theorem 3. Let G be a connected non-empty plane graph. By a plane graph, we mean a graph with a fixed planar drawing. Let B be the boundary walk of the outer face of G. For a vertex v on B, the set of B-neighbors of v is the set of vertices u such that $u v \in E(B)$. Observe that there may be more than two B-neighbors for a single vertex as B is not necessarily a simple walk.

Definition 4. A target is a triple (G, A, b), where G is a near triangulation of the plane, A is a set of at most two (possibly zero) vertices that appear consecutively on B, and \boldsymbol{b} is a vertex of $B-A$. Vertices in $A \cup\{b\}$ are called special vertices of G.

We write $A=\left\{a_{1}\right\}$ if $|A|=1$ and $A=\left\{a_{1}, a_{2}\right\}$ if $|A|=2$. We say that a vertex v is an (A, b)-cut if $v \notin A \cup\{b\}$ and v is on every path between A and \boldsymbol{b} in G. A vertex on B that is neither a special vertex nor an (A, b)-cut is called a regular boundary vertex. Instead of proving Theorem 3 directly, we prove the following more technical result, which is easily seen to imply Theorem 3.

Theorem 5. Let (G, A, b) be a target and $E^{\prime}(A, b)=E(A \cup\{b\}) \cap E(B)$, where B is the boundary of G. Then there exist a subgraph H of $G-E^{\prime}(A, b)$ and an acyclic orientation D of $G-E(H)-E^{\prime}(A, b)$ satisfying the following:
(i) For every interior vertex $w \in G-B, d_{D}^{+}(w) \leqslant 2$ and $d_{H}^{*}(w) \leqslant 3$.
(ii) For every regular boundary vertex $w, d_{D}^{+}(w) \leqslant 1$ and $d_{H}^{*}(w) \leqslant 2$.
(iii) For every (A, b)-cut vertex $w, d_{D}^{+}(w)=0$ and $d_{H}^{*}(w) \leqslant 2$.
(iv) For every special vertex $w \in A \cup\{b\}$, $d_{D}^{+}(w)=0$ and $d_{H}^{*}(w) \leqslant 1$. Moreover, if $a b \in E(B)$ for some $a \in A$, then $d_{H}^{*}(a)=0, d_{H}^{*}(b) \leqslant 1$ and $N_{H}(b) \subseteq N_{G}(a)$.

We call such a pair (D, H) a valid decomposition of (G, A, b).
For any two vertices $u, v \in B$, let $N_{G}(u, v)=N_{G}(u) \cap N_{G}(v)$ be the set of common neighbors of u and v. Note that by (iv), if $A=\left\{a_{1}, a_{2}\right\}$ and $a_{i} b \in E(B)$ for $i \in[2]$, then $N_{H}(b) \subseteq N_{G}\left(a_{1}, a_{2}\right)$.

If Theorem 5 is true, then for any planar graph G, we can choose any b on the boundary of the outer face and set $A=\emptyset$. By Theorem $5,(G, \emptyset, b)$ has a valid decomposition (D, H), which is a weak $(2,3)$-decomposition of G. The remainder of the paper is devoted to the proof of Theorem 5.

First, we have two easy propositions.
Proposition 6. Assume H_{1} and H_{2} are subgraphs of G.

1. If $E_{H_{1}}\left(N_{H_{2}}(v)\right)=\emptyset$ and $E_{H_{2}}\left(N_{H_{1}}(v)\right)=\emptyset$, then

$$
d_{H_{1} \cup H_{2}}^{*}(v) \leqslant d_{H_{1}}^{*}(v)+d_{H_{2}}^{*}(v) .
$$

2. If $N_{H_{1}}(v) \neq \emptyset$, $v w \in E(G)-E\left(H_{1}\right), N_{H_{1}}(v) \subseteq N_{G}(w)$ and H_{2} is obtained from H_{1} by adding the edge $v w$, then $d_{H_{2}}^{*}(v)=d_{H_{1}}^{*}(v)$.

Proof. (1) Let X be a maximum independent set in $G\left[N_{H_{1} \cup H_{2}}(v)-E\left(H_{1} \cup H_{2}\right)\right]$. Since $E_{H_{1}}\left(N_{H_{2}}(v)\right)=\emptyset$ and $E_{H_{2}}\left(N_{H_{1}}(v)\right)=\emptyset, X \cap N_{H_{1}}(v)$ is an independent set in $G\left[N_{H_{1}}(v)-\right.$ $\left.E\left(H_{1}\right)\right]$ and $X \cap N_{H_{2}}(v)$ is an independent set in $G\left[N_{H_{2}}(v)-E\left(H_{2}\right)\right]$. Hence $d_{H_{1} \cup H_{1}}^{*}(v)=$ $|X| \leqslant\left|X \cap N_{H_{1}}(v)\right|+\left|X \cap N_{H_{2}}(v)\right| \leqslant d_{H_{1}}^{*}(v)+d_{H_{2}}^{*}(v)$.
(2) By definition, $d_{H_{1}}^{*}(v)=\alpha\left(G\left[N_{H_{1}}(v)\right]-E\left(H_{1}\right)\right)$ and $d_{H_{2}}^{*}(v)=\alpha\left(G\left[N_{H_{2}}(v)\right]-E\left(H_{2}\right)\right)$. As $N_{H_{2}}(v)=N_{H_{1}}(v) \cup\{w\}$, and w is adjacent to all vertices in $N_{H_{1}}(v), \alpha\left(G\left[N_{H_{2}}(v)\right]-\right.$ $\left.E\left(H_{2}\right)\right)=\alpha\left(G\left[N_{H_{1}}(v)\right]-E\left(H_{1}\right)\right)$.

Proposition 7. Let G be a graph and D_{1}, D_{2} be the acyclic orientation on some subgraphs of G.

1. If $d_{D_{1}}^{+}(v)=0$, then $D^{\prime}=D_{1}+(u, v)$ is acyclic.
2. If $d_{D_{1}}^{+}(v)=0$ for every $v \in V\left(D_{1}\right) \cap V\left(D_{2}\right)$, then $D_{1}+D_{2}$ is acyclic.

The result of Proposition 7 is trivial and the proof is omitted.

3 Proof of Theorem 5

Assume G is a counterexample of Theorem 5 with minimum $|V(G)|$. It is obvious that G is connected. We shall prove a sequence of properties of G that lead to a final contradiction.

Lemma 8. $|V(G)| \geqslant 4$.
Proof. If $E(G)=E^{\prime}(A, b)$, then (\emptyset, \emptyset) is a valid decomposition of (G, A, b). Thus $E(G) \neq$ $E^{\prime}(A, b)$, and hence $|V(G)| \geqslant 2$. If $|V(G)|=2$, say $V(G)=\{b, c\}$, then $A=\emptyset$ and $((c, b), \emptyset)$ is a valid decomposition of (G, A, b). Assume that $V(G)=\{a, b, c\}$. As $E(G) \backslash$ $E^{\prime}(A, b) \neq \emptyset$, we have $|A| \leqslant 1$. If $A=\emptyset$, then set $H=\{a c\} \cap E(G)$ and $D=\{(v, b)$: $\left.v \in N_{G}(b)\right\}$. We have $d_{H}^{*}(b)=d_{D}^{+}(b)=0$ and $d_{D}^{+}(v), d_{H}^{*}(v) \leqslant 1$ for $v \in\{a, c\}$. Therefore, (D, H) is valid decomposition of (G, \emptyset, b). Otherwise, assume that $A=\{a\}$. If c is an (A, b)-cut, then G is a path $a c b$. Let $H=\{b c, a c\}$ and $D=\emptyset$. Thus, $d_{H}^{*}(c)=2$, $d_{H}^{*}(v)=1$ for $v \in\{a, b\}$, and so (D, H) is valid decomposition of $(G,\{a\}, b)$. Otherwise, we have $a b \in E^{\prime}(A, b)$ and $E(G) \backslash E^{\prime}(A, b) \subseteq\{b c, a c\}$. Set $H=\{a c\} \cap E(G)$ and $D=\{(v, b): v \in N(b)-a\}$. It is easy to check that (D, H) is a valid decomposition of $(G,\{a\}, b)$.

Lemma 9. G is 2 -connected.
Proof. Assume to the contrary that G has a cut-vertex w. Let G_{1}, G_{2} be two subgraphs of G such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{w\}$. Let B_{i} be the boundary of G_{i} for $i \in[2]$. Without loss of generality, we may assume that $b \in G_{1}$. We choose w such that $\left|A \cap G_{1}\right|$ is maximal, and G_{2} is 2-connected. Depending on the position of A relative to w, we consider three subcases.

Case $1 A \subseteq G_{1}$.
Let $A_{1}=A, A_{2}=\{w\}, b_{1}=b$ and $b_{2}=y$, where y is a B-neighbour of w in G_{2}. Then there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G, A_{i}, b_{i}\right)$ for $i \in[2]$. Let $H=H_{1} \cup H_{2}$ and $D=D_{1} \cup D_{2}+(y, w)$. As $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{w\}$ and $d_{D_{2}}^{+}(w)=0, D_{2}+(y, w)$ is acyclic, and D is acyclic. Observe that $\{w\}=G_{1} \cap G_{2}$. Condition (i-iv) hold since $d_{D}^{+}(y)=d_{D_{2}}^{+}(y)+1=0+1=1, d_{D}^{+}(w)=d_{D_{1}}^{+}(w)$ and $d_{H}^{*}(w)=d_{H_{1}}^{*}(w)+d_{H_{2}}^{*}(w)=d_{H_{1}}^{*}(w)$.

Case $2 A \subseteq G_{2}$ and $w \in A$.
We may assume that $A=\left\{a_{1}, a_{2}\right\}$ and $w=a_{1}$. Let $A_{1}=A_{2}=\left\{a_{1}\right\}, b_{1}=b$ and $b_{2}=a_{2}$. Note that $E^{\prime}\left(A_{1}, b_{1}\right)=E^{\prime}\left(\left\{a_{1}\right\}, b\right)$ and $E^{\prime}\left(A_{2}, b_{2}\right)=\left\{a_{1} a_{2}\right\}$. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G, A_{i}, b_{i}\right)$ for $i \in[2]$. Let $H=H_{1} \cup H_{2}$ and $D=D_{1} \cup D_{2}$. As $d_{D_{2}}^{+}\left(a_{1}\right)=d_{H_{2}}^{*}\left(a_{1}\right)=0,(D, H)$ is a valid decomposition of (G, A, b).

Case $3 A \subseteq G_{2}$ and $w \notin A$.
We may assume that $w \neq b$, for otherwise we can apply Case 1 . Thus, w is an (A, b) cut. Let $A_{1}=\{w\}, A_{2}=A, b_{1}=b$ and $b_{2}=w$. Then there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G, A_{i}, b_{i}\right)$ for $i \in[2]$. Observe that $d_{D_{1}}^{+}(w)=d_{D_{1}}^{+}(b)=0$ and $d_{H_{1}}^{*}(b), d_{H_{1}}^{*}(w) \leqslant$ 1. If $w b \in E\left(B_{1}\right)$, then $d_{H_{1}}^{*}(w)=0, d_{H_{1}}^{*}(b) \leqslant 1$ and $N_{H_{1}}(b) \subseteq N_{G_{1}}(w)$. In this case, we add $w b$ to H_{1}, and so we still have $d_{H_{1}}^{*}(w)=1, d_{H_{1}}^{*}(b) \leqslant 1$ by Proposition 6 . Similarly, if $a w \in E\left(B_{2}\right)$ for $a \in A$, then $d_{H_{2}}^{*}(a)=0, d_{H_{2}}^{*}(w) \leqslant 1$ and $N_{H_{2}}(w) \subseteq N_{G_{2}}(a)$. Again, we add
$w a$ to H_{2}, and so we still have $d_{H_{2}}^{*}(a)=1, d_{H_{2}}^{*}(w) \leqslant 1$. Let $H=H_{1} \cup H_{2}$ and $D=D_{1} \cup D_{2}$. Then, $d_{D}^{+}(w)=d_{D_{1}}^{+}(w)+d_{D_{2}}^{+}(w)=0+0=0$ and $d_{H}^{*}(w)=d_{H_{1}}^{*}(w)+d_{H_{2}}^{*}(w) \leqslant 1+1=2$. Therefore, (D, H) is a valid decomposition of (G, A, b).

By Lemma 9, the boundary walk B is a simple cycle. Furthermore, we assume that A has exactly two elements. If $A=\emptyset$, then we can choose any vertex $a_{1} \in B-b$ and set $A=\left\{a_{1}\right\}$. Thus, if (D, H) is a valid decomposition of $\left(G,\left\{a_{1}\right\}, b\right)$, then $\left(D^{\prime}, H\right)$ is a valid decomposition of (G, \emptyset, b), where $D^{\prime}=H+\left(a_{1}, b\right)$ if $a_{1} b \in E(B)$ and $D^{\prime}=D$ otherwise. If $A=\left\{a_{1}\right\}$, then choose a B-neighbour $a_{2} \neq b$ of a_{1}, and set $A=\left\{a_{1}, a_{2}\right\}$. Note that a_{2} is not a_{1}, b-cut. Thus, if (D, H) is a valid decomposition of ($G,\left\{a_{1}, a_{2}\right\}, b$), then $\left(D+\left(a_{2}, a_{1}\right), H^{\prime}\right)$ is a valid decomposition of $\left(G,\left\{a_{1}\right\}, b\right)$, where $H^{\prime}=H+a_{2} b$ if $a_{2} b \in E(B)$ and $H^{\prime}=H$ otherwise.

For a vertex $v \in B$, we define the path $N P(v)$ that traverses neighbors of v from u to w, where u, w are two B-neighbours of v. Assume that $u v$ is a boundary edge. The minimum common neighbor of u and v, denoted $\operatorname{minn}(\mathrm{u}, \mathrm{v})$, is a vertex $w \in N(u, v)$ such that int(uvwu) contains no common neighbor of u and v. The maximum common neighbor of u and v, denoted $\operatorname{maxn}(\mathrm{u}, \mathrm{v})$, is a vertex $w \in N(u, v)$ such that int[uvwu] contains all common neighbors of u and v. As u and v are B-neighbors, any two common neighbors x_{1}, x_{2} of u and v are on the same side of the edge $u v$. Thus, one of the sets $\operatorname{int}\left(\mathrm{x}_{1} u v x_{1}\right)$, $\operatorname{int}\left(\mathrm{x}_{2} \mathrm{uvx}_{2}\right)$ is contained in the other and that both $\operatorname{minn}(\mathrm{u}, \mathrm{v})$ and $\operatorname{maxn}(\mathrm{u}, \mathrm{v})$ exist.

Lemma 10. $|B| \geqslant 4$.
Proof. Assume to the contrary that $|B|=3$. Depending on whether a_{1}, a_{2} and b have a common neighbor, we consider two subcases.

Figure 1: Graph division in Case 1.
Case $1 a_{1}, a_{2}$ and b have a common neighbor d.
As shown in Figure 1, let P_{1} be the path $N P\left(a_{1}\right)[d, b)$ and P_{2} be the path $N P\left(a_{2}\right)(b, d]$, and

$$
G_{1}=\operatorname{int}\left[\mathrm{bP}_{1} \mathrm{db}\right], \mathrm{G}_{2}=\operatorname{int}\left[\mathrm{bdP}_{2} \mathrm{~b}\right], \mathrm{G}_{3}=\operatorname{int}\left[\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{da}_{1}\right] .
$$

By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, d\right)$, where $A_{1}=A_{2}=\{b\}, A_{3}=A$. Let $H_{4}=d b$ and $D_{4}=\left\{(v, u): v \in P_{1} \cup P_{2}, u \in N_{A}(v)\right\}$.

Then for $v \in P_{1} \cup P_{2}-d, d_{D_{4}}^{+}(v)=1, d_{H_{4}}^{*}(v)=0$ and $d_{D_{4}}^{+}(b)=0, d_{D_{4}}^{+}(d)=2, d_{H_{4}}^{*}(d)=$ $d_{H_{4}}^{*}(b)=1$. Set $D=\cup_{i=1}^{4} D_{i}, H=\cup_{i=1}^{4} H_{i}$. Then (D, H) is a decomposition of $G-E^{\prime}(A, b)$. As $d_{D_{i}}^{+}(d)=0$ for $i \in[3], \cup_{i=1}^{3} D_{i}$ is acyclic by (2) of Proposition 7. Then D is acyclic since $d_{D}^{+}\left(a_{i}\right)=0$ for $i \in[2]$. As $b d \in E\left(B_{1}\right), N_{H_{1}}(d) \subseteq N_{G_{1}}(b)$, and so $d_{H_{1}+H_{4}}^{*}(d)=d_{H_{1}}^{*}(d)$ by Proposition 6 (2), where B_{1} is the boundary of G_{1}. For $v \in G-B-P_{1} \cup P_{2}, v$ is contained in exactly one subgraph of G_{1}, G_{2}, G_{3}. For $i \in[2]$ and $v \in P_{i}-d, d_{D}^{+}(v)=$ $d_{D_{i}}^{+}(v)+d_{D_{4}}^{+}(v) \leqslant 1+1=2$ and $d_{H}^{*}(v)=d_{H_{i}}^{*}(v) \leqslant 2$. Thus, condition (i) holds since $d_{D}^{+}(d)=d_{D_{4}}^{+}(d)=2$ and $d_{H}^{*}(d)=\sum_{i=1}^{3} d_{H_{i}}^{*}(d) \leqslant 1+1+1=3$ (by Proposition 6 (1)). Condition (iv) holds since $N_{H}(b)=\{d\} \subseteq N_{G}\left(a_{1}, a_{2}\right)$,

$$
\begin{aligned}
d_{D}^{+}\left(a_{i}\right) & =d_{D_{3}}^{+}\left(a_{i}\right)=0, d_{H}^{*}\left(a_{i}\right)=d_{H_{3}}^{*}\left(a_{i}\right)=0 \text { for } i \in[2] ; \\
d_{D}^{+}(b) & =d_{D_{1}}^{+}(b)+d_{D_{2}}^{+}(b)=0, d_{H}^{*}(b)=d_{H_{1}}^{*}(b)+d_{H_{2}}^{*}(b)+d_{H_{4}}^{*}(b)=0+0+1=1 .
\end{aligned}
$$

Figure 2: Graph division in Case 2. On the left: graph G. Since $x_{1}=y_{1}, G_{1}$ consists only of x_{1}. Vertex c is an $\left(A_{3}, b_{3}\right)$-cut in G_{3}. On the right: graph G^{\prime} with boundary B^{\prime}.

Case $2 a_{1}, a_{2}$ and b have no common neighbor.
As shown in Figure 2, let $x_{i}=\operatorname{maxn}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}\right), y_{i}=\operatorname{minn}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}\right)$ for $i \in[2]$ and $x_{3}=$ $\operatorname{maxn}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right), y_{3}=\operatorname{minn}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$. Then we define G_{i}^{\prime} be the connected component of $G-\left\{a_{1}, a_{2}, b, x_{1}, x_{2}, x_{3}\right\}$ that contains y_{i} for $i \in[3]$. Then let $G_{i}=G_{i}^{\prime}+x_{i}$ for $i \in[3]$ and $G^{\prime}=G-B-\cup_{i=1}^{3} G_{i}^{\prime}$. Observe that the choice of x_{1}, x_{2} and x_{3} guarantees that the boundary walk B^{\prime} of G^{\prime} is a simple cycle, and each vertex $v \in V\left(B^{\prime}\right)-\left\{x_{1}, x_{2}, x_{3}\right\}$ is a neighbor of exactly one of the vertices a_{1}, a_{2}, b. We further divide G^{\prime} into three small subgraphs as follows: If $x_{1} x_{3} \in E(G)$, then let $z_{5}=x_{1}$. Otherwise let $z_{5} \in N_{B^{\prime}}\left(x_{3}\right)$ such that $N\left(x_{3}\right) \cap B^{\prime}\left(x_{1}, z_{5}\right)=\emptyset$. Similarly, if $x_{2} x_{3} \in E(G)$, then let $z_{6}=x_{2}$. Otherwise let
$z_{6} \in N_{B^{\prime}}\left(x_{3}\right)$ such that $N\left(x_{3}\right) \cap B^{\prime}\left(z_{6}, x_{2}\right)=\emptyset$. As shown in Figure 2 , let P be the path $N P\left(x_{3}\right)\left(z_{6}, z_{5}\right)$ and let

$$
G_{4}=\operatorname{int}\left[\mathrm{z}_{5} \mathrm{~PB}^{\prime}\left[\mathrm{z}_{6}, \mathrm{z}_{5}\right]\right], \mathrm{G}_{5}=\operatorname{int}\left[\mathrm{B}^{\prime}\left[\mathrm{z}_{5}, \mathrm{x}_{3}\right] \mathrm{z}_{5}\right], \mathrm{G}_{6}=\operatorname{int}\left[\mathrm{B}^{\prime}\left[\mathrm{x}_{3}, \mathrm{z}_{6}\right] \mathrm{x}_{3}\right] .
$$

Clearly, each G_{i} is a near triangulation. For $i \in[3], j \in\{5,6\}$, let $A_{i}=\left\{y_{i}\right\}, b_{i}=x_{i}$, $A_{4}=\left\{x_{1}\right\}, b_{4}=x_{2}$ and $A_{j}=\left\{z_{j}\right\}, b_{j}=x_{3}$. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, b_{i}\right)$ for $i \in[6]$.

Now we will make some modifications on (D_{i}, H_{i}) and combine them to obtain a valid decomposition of (G, A, b). Let W be the boundary of the graph $G-V(B)$. Observe that $E(G)-E^{\prime}(A, b)-\bigcup_{i \in[6]}\left(E\left(D_{i}\right) \cup E\left(H_{i}\right)\right)=\left\{v w: v \in W, w \in N_{B}(v)\right\} \bigcup\left\{v x_{3}: v \in\right.$ $\left.V(P)-\left\{z_{5}, z_{6}\right\}\right\} \bigcup\left(\cup_{i \in[6]} E^{\prime}\left(A_{i}, b_{i}\right)\right)$. Let

$$
D_{7}=\left\{(v, w): v \in W, w \in N_{B}(v)\right\} \cup\left\{\left(v, x_{3}\right): v \in V(P)-\left\{z_{5}, z_{6}\right\}\right\}
$$

and

$$
H_{7}=\cup_{i \in[6]} E^{\prime}\left(A_{i}, b_{i}\right)
$$

Let C_{i} be the set of $\left(A_{i}, b_{i}\right)$-cut for $i \in[3]$. Then $d_{D_{7}}^{+}(v)=2$ for $v \in \cup_{i \in[3]}\left(\left\{x_{i}, y_{i}\right\} \cup C_{i}\right)$. For other $v \in W \cup P, d_{D_{7}}^{+}(v)=1$. For $i \in[6]$ and $a \in A_{i}$, if $a b_{i} \in E\left(B_{i}\right)$, then $d_{D_{i}}^{+}(a)=d_{D_{i}}^{+}\left(b_{i}\right)=0, d_{H_{i}}^{*}(a)=0, d_{H_{i}}^{*}\left(b_{i}\right) \leqslant 1$ and $N_{H_{i}}\left(b_{i}\right) \subseteq N_{G_{i}}(a)$. In this case, we have $d_{H_{i} \cup\left(H_{7} \cap G_{i}\right)}^{*}(a)=d_{H_{7}}^{*}(a) \leqslant 1$ and $d_{H_{i} \cup\left(H_{7} \cap G_{i}\right)}^{*}\left(b_{i}\right)=d_{H_{i}}^{*}\left(b_{i}\right) \leqslant 1$ by Proposition 6.

Set $H=\cup_{i=1}^{7} H_{i}$ and $D=\cup_{i=1}^{7} D_{i}$. As $d^{+}(D)(v)=0$ for $v \in B, D$ is acyclic. Note that $d_{D}^{+}(v)=d_{D_{i}}^{+}(v)$ for $v \in G_{i}-P \cup W$ and $i \in[6]$. For $v \in P \cup W$, we have

$$
d_{D}^{+}(v)=d_{D_{7}}^{+}(v) \leqslant 2 \text { for } v \in \bigcup_{i \in[3]}\left(\left\{x_{i}, y_{i}\right\} \cup C_{i}\right) ;
$$

and for $i \in[4], v \in\left(P \cup W-\bigcup_{i \in[3]}\left(\left\{x_{i}, y_{i}\right\} \cup C_{i}\right)\right) \cap G_{i}$,

$$
d_{D}^{+}(v)=d_{D_{i}}^{+}(v)+d_{D_{7}}^{+}(v) \leqslant 1+1=2 .
$$

Thus, condition (i-iv) about the out-degree hold. It suffices to check condition (i-iv) about the d_{H}^{*}. For $v \in V(G)-B-\left\{x_{1}, x_{2}, x_{3}, z_{5}, z_{6}\right\}, v$ is contained in one of subgraphs, say G_{i}, and so $d_{H}^{*}(v)=d_{H_{i}}^{*}(v) \leqslant 3$. Besides, by Proposition 6 (1), we have

$$
d_{H}^{*}\left(x_{3}\right)=d_{H_{3}}^{*}\left(x_{3}\right)+d_{H_{5}}^{*}\left(x_{3}\right)+d_{H_{6}}^{*}\left(x_{3}\right) \leqslant 1+1+1=3 ;
$$

for $i \in[2], j \in\{5,6\}$

$$
\begin{aligned}
& d_{H}^{*}\left(x_{i}\right)= \begin{cases}d_{H_{i}}^{*}\left(x_{i}\right)+d_{H_{H}}^{*}\left(x_{i}\right) \leqslant 1+1=2 & \text { if } x_{i} \notin\left\{z_{5}, z_{6}\right\} ; \\
d_{H_{i}}^{*}\left(x_{i}\right)+d_{H_{4}}^{*}\left(x_{i}\right)+d_{H_{j}}^{*}\left(x_{i}\right) \leqslant 1+1+1=3 & \text { otherwise, say } x_{i}=z_{j} ;\end{cases} \\
& d_{H}^{*}\left(z_{j}\right)=d_{H_{4}}^{*}\left(z_{j}\right)+d_{H_{j}}^{*}\left(z_{j}\right) \leqslant 2+1=3,
\end{aligned}
$$

and so condition (i) holds. For $v \in V(B)$, we have $d_{D}^{+}(v)=d_{H}^{*}(v)=0$, and so condition (ii-iv) holds.

Figure 3: Graph division in Lemma 11.
Lemma 11. There is no chord of B incident to a_{1} which separates a_{2} from b, and no chord of B incident to a_{2} that separates a_{1} from b.

Proof. Assume $a_{1} d$ is a chord of B that separates a_{2} and b as illustrated in Figure 3. Depending on whether $a_{1} b \in E(B)$ or not, we consider two cases.

Case $1 a_{1} b \notin E(B)$.
Let $G_{1}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{a}_{1}, \mathrm{~d}\right] \mathrm{a}_{1}\right], A_{1}=\left\{a_{1}, d\right\}, b_{1}=a_{2}$ and $G_{2}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{d}, \mathrm{a}_{1}\right] \mathrm{d}\right], \mathrm{A}_{2}=\left\{\mathrm{a}_{1}, \mathrm{~d}\right\}, \mathrm{b}_{2}=$ b. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, b_{i}\right)$ for $i \in[2]$.

Observe that $d \in A_{1} \cap A_{2}, a_{1} a_{2} \in E\left(B_{1}\right)$. Thus, $d_{H_{1}}^{*}\left(a_{1}\right)=0$ and $d_{H_{2}}^{*}\left(a_{1}\right) \leqslant 1$, $d_{H_{2}}^{*}(b), d_{H_{1}}^{*}\left(a_{2}\right) \leqslant 1$ and $d_{H_{i}}^{*}(d) \leqslant 1$ for $i \in[2]$. If $d a_{2} \in E\left(B_{1}\right)$, then $d_{H_{1}}^{*}(d)=0$ and $N_{H_{1}}\left(a_{2}\right) \subseteq N_{G_{1}}\left(a_{1}, d\right)$. Let

$$
H_{1}^{\prime}= \begin{cases}H_{1}+a_{2} d, & \text { if } a_{2} d \in E\left(B_{1}\right) \\ H_{1}, & \text { Otherwise }\end{cases}
$$

Then we have $d_{H_{1}^{\prime}}^{*}(d), d_{H_{1}^{\prime}}^{*}\left(a_{2}\right) \leqslant 1$. Similarly, let

$$
H_{2}^{\prime}= \begin{cases}H_{2}+b d, & \text { if } b d \in E\left(B_{2}\right) \\ H_{2}, & \text { Otherwise }\end{cases}
$$

We have $d_{H_{2}^{\prime}}^{*}(d), d_{H_{2}^{\prime}}^{*}(b) \leqslant 1$. Set $D=D_{1} \cup D_{2}+\left(d, a_{1}\right)$ and $H=H_{1}^{\prime} \cup H_{2}^{\prime}$. As $d \in N\left(a_{1}\right)$, $N_{H_{2}^{\prime}}(b) \subseteq N_{G}\left(a_{1}\right)$. So $N_{H}(b) \subseteq N_{G}\left(a_{1}\right)$. As $d_{D_{1}}^{+}\left(a_{1}\right)=d_{D_{1}}^{+}(d)=0, D_{1} \cup D_{2}$ is acyclic. Since $d_{D}^{+}\left(a_{1}\right)=0, D$ is still acyclic.

Observe that $d_{H}^{*}\left(a_{1}\right)=d_{H_{1}^{\prime}}^{*}\left(a_{1}\right)+d_{H_{2}^{\prime}}^{*}\left(a_{1}\right) \leqslant 1$. It suffices to check the degree bound of d in D and H. Since

$$
d_{D}^{+}(d)=1 ; d_{H}^{*}(d)=d_{H_{1}^{\prime}}^{*}(d)+d_{H_{2}^{\prime}}^{*}(d) \leqslant 1+1=2,
$$

condition (ii) holds.
Case $2 a_{1} b \in E(B)$.
In this case, we consider the same decomposition (D, H) as shown in Case 1. Then as a_{1}, b play the role of A and b in G_{2}, we have $N_{H_{2}}(b) \subseteq N\left(a_{1}\right)$ and $d_{H_{2}}^{*}\left(a_{1}\right)=0$. So $d_{H}^{*}\left(a_{1}\right)=d_{H_{1}^{\prime}}^{*}\left(a_{1}\right)+d_{H_{2}^{\prime}}^{*}\left(a_{1}\right) \leqslant 1$. Other conditions of Theorem 5 also hold by the same argument in Case 1.

Lemma 12. b is not adjacent to A.

Figure 4: Graph division in Case 1.
Proof. Assume to the contrary that $a_{1} b \in E(G)$. Depending on whether $a_{1} b$ is an edge of B or not, we consider two cases.
Case $1 a_{1} b$ is a chord of B.
Let $G_{1}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{a}_{1}, \mathrm{~b}\right] \mathrm{a}_{1}\right], A_{1}=A, b_{1}=b$ and $G_{2}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{b}, \mathrm{a}_{1}\right] \mathrm{b}\right], \mathrm{A}_{2}=\{\mathrm{b}\}, \mathrm{b}_{2}=\mathrm{a}_{1}$ as illustrated in Figure 4. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, b_{i}\right)$ for $i \in[2]$. Observe that $a_{1} b \in E\left(B_{1}\right) \cap E\left(B_{2}\right)$. Thus, $d_{H_{1}}^{*}\left(a_{1}\right)=d_{H_{2}}^{*}(b)=0$, $d_{H_{2}}^{*}\left(a_{1}\right), d_{H_{1}}^{*}(b) \leqslant 1$ and $N_{H_{2}}\left(a_{1}\right) \subseteq N_{G_{2}}(b), N_{H_{1}}(b) \subseteq N_{G_{1}}\left(a_{1}\right)$. We add $a_{1} b$ to H_{i} for $i \in[2]$. By Proposition 6, we have $d_{H_{2}}^{*}\left(a_{1}\right), d_{H_{1}}^{*}(b) \leqslant 1$. Set $D=D_{1} \cup D_{2}$ and $H=H_{1} \cup H_{2}$. As $d_{D}^{+}\left(a_{1}\right)=d_{D}^{+}(b)=0, D$ is acyclic and condition (i-iv) about the out-degree hold. For $v \in V(G)-\left\{a_{1}, b\right\}, d_{H}^{*}(v)=d_{H_{i}}^{*}(v)$ for some $i \in[2]$ and so condition (i-iii) hold. Condition (iv) holds since $d_{H}^{*}\left(a_{1}\right)=d_{H_{2}}^{*}\left(a_{1}\right) \leqslant 1$ and $d_{H}^{*}(b)=d_{H_{1}}^{*}(b) \leqslant 1$.

Case $2 a_{1} b \in E(B)$. By Lemma $10, a_{2} b \notin E(B)$. Let $d=\operatorname{maxn}\left(\mathrm{a}_{1}, \mathrm{~b}\right)$. By Lemma 11,

Figure 5: Graph division in Cases 2. Vertex c is an (A, b)-cut in G_{1}.
$d \notin B$. Let P be the path $N P\left(a_{1}\right)\left(a_{2}, d\right]$ and Q be the path $N P(b)(d, w]$, where w is the B-neighbour of b other than a_{1}. Let $G_{1}=\operatorname{int}\left[\operatorname{QPB}\left[\mathrm{a}_{2}, \mathrm{w}\right]\right], \mathrm{A}_{1}=\left\{\mathrm{a}_{2}\right\}, \mathrm{b}_{1}=\mathrm{w}$ and $G_{2}=\operatorname{int}\left[\mathrm{ba}_{1} \mathrm{db}\right], \mathrm{A}_{2}=\left\{\mathrm{a}_{1}, \mathrm{~d}\right\}, \mathrm{b}_{2}=\mathrm{b}$, as illustrated in Figure 5. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, b_{i}\right)$ for $i \in[2]$. Let $D_{3}=\{(v, w)$: $\left.v \in P \cup Q-d, w \in N(v) \cap\left\{a_{1}, b\right\}\right\} \cup\left\{\left(d, a_{1}\right)\right\}$. Thus, D_{3} is acyclic and $d_{D_{3}}^{+}(v)=1$ for $v \in P \cup Q$. As $d_{D_{2}}^{+}(d)=0, D_{1} \cup D_{2}$ is acyclic.

Now we add $b d$ to H_{2}. Then $d_{H_{2}}^{*}(d)=1$ and $d_{H_{2}}^{*}(b) \leqslant 1$ by Proposition 6. Let $D=\cup_{i=1}^{3} D_{i}$ and $H=H_{1} \cup H_{2}$. As D_{1}, D_{2} are acyclic and $d_{D}^{+}\left(a_{1}\right)=d_{D}^{+}(b)=0, D$ is acyclic. For $v \in V\left(G_{i}\right)-P-Q$ and $i \in[2], d_{D}^{+}(v)=d_{D_{i}}^{+}(v)$ and $d_{H}^{*}(v)=d_{H_{i}}^{*}(v)$. Besides, for $v \in P \cup Q-d, d_{H}^{*}(v)=d_{H_{1}}^{*}(v) \leqslant 2$. If v is a $\left(A_{1}, b_{1}\right)$-cut, then $d_{D}^{+}(v)=$ $d_{D_{1}}^{+}(v)+d_{D_{3}}^{+}(v) \leqslant 0+1=1$; otherwise $d_{D}^{+}(v)=d_{D_{1}}^{+}(v)+d_{D_{3}}^{+}(v) \leqslant 1+1=2$. Meanwhile, $d_{D}^{+}(d)=d_{D_{1}}^{+}(d)+d_{D_{2}}^{+}(d) \leqslant 1+1=2$ and $d_{H}^{*}(d)=d_{H_{1}}^{*}(d)+d_{H_{2}}^{*}(d) \leqslant 2+1=3$. Therefore, condition (i-iv) of Theorem 5 hold.

Figure 6: Graph division of final case. In this figure $q_{m-1}=q_{m}, l=m-1$, and $c=w$. Path P is depicted in red, and path Q is depicted in blue.

Figure 7: Graph division of final case. In this figure $c \neq w$.
Now we are ready to derive the final contradiction.
Let $P=B\left[a_{2}, b\right]$ and Q denote the unique longest simple path from a_{1} to w in the subgraph induced by $V(G)-V(P)$ that traverses only vertices adjacent to P in G, where $w \in B-P$ is the unique B-neighbour of b. Let $p_{1}=a_{2}$, and let $p_{2}, p_{3}, \ldots, p_{m-1}$ be the set of all interior vertices of path P that have at least two neighbors in Q, and occur in this order in P, and let $p_{m}=b$. As G is a near triangulation, for $i \in\{1, \ldots, m-1\}$,

Figure 8: Graph division of final case. In this figure $q_{m-1} \neq q_{m}, l=m$, and $c=w$. Path P is depicted in red, and path Q is depicted in blue.
vertices p_{i} and p_{i+1} have a unique common neighbor in Q. Let $q_{0}=a_{1}, q_{m}=w$, and for $i \in\{1, \ldots, m-1\}$, let $q_{i} \in N\left(p_{i}, p_{i+1}\right)$. Observe that for $i, j \in\{0,1, \ldots, m-1\}$ with $i \neq j$, $q_{i} \neq q_{j}$ by the choice of $p_{1}, p_{2}, \ldots, p_{m-1}$. Moreover, we have the following observation.

Observation 13. Based on the choice of p_{i}, q_{i} for $i \in[m]$, we have

1. for $i \in[m-1], N\left(q_{i}\right) \cap\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}=\left\{p_{i}, p_{i+1}\right\}$;
2. For $i \in[m]$ and any $v \in Q\left(q_{i-1}, q_{i}\right), N(v) \cap P=\left\{p_{i}\right\}$;
3. For $i \in[m]$, $V\left(\operatorname{int}\left[\mathrm{Q}\left[\mathrm{q}_{\mathrm{i}-1}, \mathrm{q}_{\mathrm{i}}\right] \mathrm{p}_{\mathrm{i}}\right]\right)=\mathrm{Q}\left[\mathrm{q}_{\mathrm{i}-1}, \mathrm{q}_{\mathrm{i}}\right] \cup\left\{\mathrm{p}_{\mathrm{i}}\right\}$.

Note that it is possible that $q_{m-1}=q_{m}$ as shown in Figure 6. We divided the graph into several subgraphs depending on whether $Q \cap B\left(w, a_{1}\right)=\emptyset$ or not. Let $p \in P$ such that $N(p) \cap B\left[w, a_{1}\right) \neq \emptyset$ and for $v \in P\left[p_{1}, p\right), N(v) \cap B\left[w, a_{1}\right)=\emptyset$. The vertex p exists since $p_{m}=b$ is adjacent to $w \in B\left[w, a_{1}\right)$. Let $c \in N(p) \cap B\left[w, a_{1}\right)$ such that $N(p) \cap B[w, c)=\emptyset$ and observe that $c \in Q$. Let l be the minimal l such that $c \in Q\left(q_{l-1}, q_{l}\right]$ and observe that $p=p_{l}$. By Remark 11, we have $p_{l} \neq p_{1}$ and so $l \in\{2,3, \ldots, m\}$. Thus, we have the following observation:

Observation 14. By the choice of p and c, we have

1. If $l=m$, then $c=w$; if $l=m-1$, then $q_{m}=q_{m-1}=w=c$; Otherwise, $c \neq w$.
2. $Q\left(a_{1}, q_{l-1}\right) \cap B=\emptyset$ and $Q\left(q_{l-1}, c\right) \cap B \subseteq N_{B}\left(p_{l}\right)$. If $Q\left(q_{l-1}, c\right) \cap B \neq \emptyset$, then any $v \in Q\left(q_{l-1}, c\right) \cap B$ is an $\left(\left\{a_{1}\right\}, c\right)$-cut.

Let $G_{1}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{c}, \mathrm{a}_{1}\right] \mathrm{Q}\left(\mathrm{a}_{1}, \mathrm{c}\right]\right], \mathrm{A}_{1}=\left\{\mathrm{a}_{1}\right\}, \mathrm{b}_{1}=\mathrm{c}$ and $G_{i}=\operatorname{int}\left[\mathrm{P}\left[\mathrm{p}_{\mathrm{i}-1}, \mathrm{p}_{\mathrm{i}}\right] \mathrm{q}_{\mathrm{i}-1} \mathrm{p}_{\mathrm{i}-1}\right], A_{i}=$ $\left\{p_{i-1}, q_{i-1}\right\}, b_{i}=p_{i}$ for $i \in\{2,3, \ldots, l\}$. Additionally, if $l<m$, let $G_{l+1}=\operatorname{int}\left[\mathrm{B}\left[\mathrm{p}_{\mathrm{l}}, \mathrm{c}\right] \mathrm{p}_{\mathrm{l}}\right]$, $A_{l+1}=\left\{p_{l}, c\right\}$ and $b_{l+1}=b$, as illustrated in Figure 7. If $l=m$ (as shown in Figure 8),
then let $G_{l+1}=\emptyset$. By the minimality of G, there is a valid decomposition $\left(D_{i}, H_{i}\right)$ of $\left(G_{i}, A_{i}, H_{i}\right)$ for $i \in[l+1]$. Set

$$
D_{l+2}=\cup_{i=1}^{l-1}\left\{\left(v, p_{i}\right): v \in Q\left(q_{i-1}, q_{i}\right]\right\} \bigcup\left\{\left(v, p_{l}\right): v \in Q\left(q_{l-1}, c\right]\right\} .
$$

Then for $v \in Q\left(a_{1}, c\right], d_{D_{l+2}}^{+}(v) \leqslant 1$. First, we will modify H_{i}, D_{i} for $i \in[l+1]$. For $i \in[l+1]$, if $a b_{i} \in E\left(B_{i}\right)$ for $a \in A_{i}$, then $d_{H_{i}}^{*}(a)=0, d_{H_{i}}^{*}\left(b_{i}\right) \leqslant 1$ and $N_{H_{i}}\left(b_{i}\right) \subseteq N_{G_{i}}(a)$. Thus, we add $a b_{i}$ to H_{i}, and so $\left(D_{i}, H_{i}\right)$ is a valid (2,3)-decomposition of $G_{i}-E_{B_{i}}\left(A_{i}\right)$ such that $d_{D_{i}}^{+}(a)=d_{D_{i}}^{+}\left(b_{i}\right)=0$ and $d_{H_{i}}^{*}(a), d_{H_{i}}^{*}\left(b_{i}\right) \leqslant 1$.

Let $D=\cup_{i=1}^{l+2} D_{i}$ and $H=\cup_{i=1}^{l+1} H_{i}$. Note that for $i \in[l], d_{D_{i+1}}^{+}\left(q_{i}\right)=d_{D_{i+1}}^{+}\left(p_{i}\right)=0$. Thus, $\cup_{i=1}^{l+1} D_{i}$ is acyclic by (2) of Proposition 7. Then as $d_{D}^{+}\left(p_{i}\right)=0$ for $i \in[l], D$ is acyclic by (1) of Proposition 7. For $v \in G-\left\{p_{i}: i \in[l]\right\}-Q\left(a_{1}, c\right], v$ is contained in exactly one subgraph of $G_{1}, G_{2}, \ldots, G_{l+1}$, and so condition about $d_{D}^{+}(v), d_{H}^{*}(v)$ holds. If $v \in Q\left(a_{1}, c\right]$, then $v \in Q\left(q_{i-1}, q_{i}\right]$ for some $i \in[l-1]$ or $v \in Q\left(q_{l-1}, c\right]$. Condition (i) holds since

$$
\begin{aligned}
& d_{D}^{+}(v)= \begin{cases}d_{D_{1}}^{+}(v)+d_{D_{l+2}}^{+}(v) \leqslant 0+1=1, & \text { if } v \text { is a }\left(a_{1}, c\right) \text {-cut in } G_{1}, \\
d_{D_{1}}^{+}(v)+d_{D_{l+2}}^{+}(v) \leqslant 1+1=2, & \text { otherwise; }\end{cases} \\
& d_{H}^{*}(v)= \begin{cases}d_{H_{1}}^{*}(v)+d_{H_{l+1}}^{*}(v) \leqslant 1+1=2, & \text { if } v=c, \\
d_{H_{1}}^{*}(v)+d_{H_{i+1}}^{*}(v) \leqslant 2+1=3, & \text { if } v=q_{i} \text { and } v \neq c, \\
d_{H_{1}}^{*}(v) \leqslant 2, & \text { if } v \in Q\left(q_{i-1}, q_{i}\right) \text { or } v \in Q\left(q_{l-1}, c\right) .\end{cases}
\end{aligned}
$$

For $i \in\{2,3, \ldots, l\}$, vertex p_{i} satisfies

$$
d_{D}^{+}\left(p_{i}\right)=d_{D_{i}}^{+}\left(p_{i}\right)+d_{D_{i+1}}^{+}\left(p_{i}\right)=0+0=0, d_{H}^{*}\left(p_{i}\right)=d_{H_{i}}^{*}\left(p_{i}\right)+d_{H_{i+1}}^{*}\left(p_{i}\right) \leqslant 1+1=2,
$$

and so condition (ii) holds. For vertex $a_{i} \in A$, observe that a_{i} plays the role of A in G_{i} and a_{i} only appear in G_{i} for $i \in[2]$. Thus, for $i \in[2], d_{D}^{+}\left(a_{i}\right)=0$ and $d_{H}^{*}\left(a_{i}\right) \leqslant 1$. Vertex b plays the role of b in G_{l} or G_{l+1}, and so $d_{D}^{+}(b)=0$ and $d_{H}^{*}(b) \leqslant 1$. Therefore, condition (iv) also holds.

References

[1] E.-K. Cho, I. Choi, R. Kim, B. Park, T. Shan and X. Zhu. Decomposing planar graphs into graphs with degree restrictions. J. Graph Theory, 101:165-181,2022.
[2] L. J. Cowen, R. H.Cowen and D. R. Woodall. Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187-195, 1986.
[3] W.Cushing and H. A. Kierstead. Planar graphs are 1-relaxed, 4-choosable. European Journal of Combinatorics, 31(5):1385-1397, 2010.
[4] L. Duraj, G. Gutowski, and J. Kozik. Chip games and paintability. Electron. J. Combin., 23(3):\#P3.3, 2016.
[5] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bulletin of the Institute of Combinatorics and its Applications, 25:79-87, 1999.
[6] J. Grytczuk and X. Zhu. The Alon-Tarsi number of a planar graph minus a matching. J. Combin. Theory Ser. B, 145(1):511-520, 2020.
[7] G. Gutowski, M. Han, T. Krawczyk, and X. Zhu. Defective 3-paintability of planar graphs. Electron. J. Combin., 25(2):\#P2.34, 2018.
[8] R. Škrekovski. List improper colourings of planar graphs. Combinatorics, Probability and Computing, 8(3):293-299, 1999.

[^0]: ${ }^{a}$ Department of Mathematics, Zhejiang Normal University, China (mhan31@zjnu.edu.cn, xdzhu@zjnu.edu.cn).

