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Abstract

Given two k-uniform hypergraphs F and G, we say that G has an F -covering if
every vertex in G is contained in a copy of F . For 1  i  k− 1, let ci(n, F ) be the
least integer such that every n-vertex k-uniform hypergraph G with δi(G) > ci(n, F )
has an F -covering. The covering problem has been systematically studied by Falgas-
Ravry and Zhao [Codegree thresholds for covering 3-uniform hypergraphs, SIAM
J. Discrete Math., 2016]. In 2021, Falgas-Ravry, Markström, and Zhao [Triangle-
degrees in graphs and tetrahedron coverings in 3-graphs, Combinatorics, Probability
and Computing, 2021] asymptotically determined c1(n, F ) when F is the general-
ized triangle. In this note, we give the exact value of c2(n, F ) and asymptotically
determine c1(n, F ) when F is the linear triangle C3

6 , where C3
6 is the 3-uniform hy-

pergraph with vertex set {v1, v2, v3, v4, v5, v6} and edge set {v1v2v3, v3v4v5, v5v6v1}.
Mathematics Subject Classifications: 05C35, 05C07, 05C65

1 Introduction

Given a positive integer k  2, a k-uniform hypergraph (or a k-graph) G = (V,E) consists
of a vertex set V = V (G) and an edge set E = E(G) ⊂


V
k


, where


V
k


denotes the set

of all k-element subsets of V . We write graph for 2-graph for short. Let G = (V,E) be a
k-graph. For any S ⊆ V (G), let NG(S) = {T ⊆ V (G)\S : T ∪ S ∈ E(G)} and the degree
dG(S) = |NG(S)|. For 1  i  k− 1, the minimum i-degree of G, denoted by δi(G), is the
minimum of dG(S) over all S ∈


V (G)

i


. We also call δk−1(G) the minimum codegree of G

and δ1(G) the minimum vertex-degree of G. The link graph of a vertex x in V , denoted
by Gx, is a (k − 1)-graph Gx = {V (G)\{x}, NG(x)}.
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Figure 1: C3
6

Given a k-graph F , we say a k-graph G has an F -covering if each vertex of G is
contained in a subgraph of G isomorphic to F . For 1  i  k − 1, define

ci(n, F ) = max{δi(G) : G is a k-graph on n vertices with no F -covering}.

For graphs F , in the concluding remarks [10], the authors noted that the covering
problem is essentially equivalent to the Turán problem, and Falgas-Ravry and Zhao gave

a roughly proof of c1(n, F ) =


χ(F )−2
χ(F )−1

+ o(1)

n in [3], where χ(F ) is the chromatic number

of F . The authors in [3] also initiated the study of the covering problem in 3-graphs, and
determined the exact value of c2(n,K

3
4) (where K

3
r denotes the complete 3-graph on r  3

vertices) for n > 98 and gave bounds on c2(n, F ) which are apart by at most 2 in the
cases where F is K3−

4 (K3
4 with one edge removed, also called a generalized triangle),

K3?
5 , and the tight cycle C3

5 on 5 vertices. Yu, et al [9] showed that c2(n,K
3−
4 ) = ⌊n

3
⌋,

and c2(n,K
3−
5 ) = ⌊2n−2

3
⌋. Last year, Falgas-Ravry, Markström, and Zhao [2] gave close

to optimal bounds of c1(n,K
(3)
4 ) and asymptotically determined c1(n,K

(3)−
4 ). There are

some other related results in literature, for example in [4, 5].
A linear triangle C3

6 based on the triple v1v3v5 is a 3-graph with vertex set {v1, v2, v3, v4,
v5, v6} and edge set {v1v2v3, v3v4v5, v5v6v1} (as shown in Fig.1). Gao and Han showed in [6]
that, when n ∈ 6Z is sufficiently large, and H is a 3-graph on n vertices with δ2(H)  n/3,
then H has a C3

6 -covering such that every vertex H is covered by exactly one C3
6 (also

called a C3
6 -factor or a perfect C3

6 -tiling). In this article, we determine the exact value
of c2(n,C

3
6) and an asymptotic optimal value of c1(n,C

3
6). The main results are listed as

follows.

Theorem 1. For n  6, c2(n,C
3
6) = 1.

Theorem 2. For n  6, 3−2
√
2

4
n2 − n < c1(n,C

3
6) <

3−2
√
2

4
n2 + 3n

3
2 .

The rest of the article is arranged as follows. In Section 2, we construct extremal graphs
with minimum codegree one that have no C3

6 -covering, and minimum degree greater than
3−2

√
2

4
n2 − n that have no C3

6 -covering, respectively. The proofs of Theorems 1 and 2 are
given in Sections 3 and 4, respectively.
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Figure 2: Construction 2

2 Constructions

We introduce two constructions involving our result. For two families of sets A and B,
define A ∨ B = {A ∪B : A ∈ A and B ∈ B}.
Construction 1: Let G1 = (V1, E1) be a 3-graph with V1 = {x} ∪ V ′ and

E1 = {{x}} ∨

V ′

2


.

The following observation can be checked directly.

Observation 3. δ2(G1) = 1 and G1 has no C3
6 -covering (Indeed, the vertex x is not

covered in any copy of C3
6 ).

Construction 2: Let G2 = (V2, E2) be a 3-graph with V2 = {u} ∪ A1 ∪ A2 ∪ B1 ∪ B2,
and

E2 =


{{u}} ∨


A1

1


∨

A2

1


∪


A1

1


∨

B1

2


∪


A2

1


∨

B2

2


∪

B1 ∪B2

3


,

where ||A1|− |A2||  1, |B1| = |B2| = ⌊(1−
√
2
2
)n⌋.

Observation 4. δ1(G2) >
3−2

√
2

4
n2 − n and G2 has no C3

6 covering u.

Proof. It is easy to observe that G2 has no C3
6 covering u. Let b = |B1| = |B2| =

⌊(1 −
√
2
2
)n⌋ and a = n−1−2b

2
 (

√
2−1)n−1

2
. Without loss of generality, assume |A1| = ⌊a⌋
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and |A2| = ⌈a⌉. Now let us calculate δ1(G2). When n  23, we have 3−2
√
2

4
n2 − n < 0.

So we may suppose n  24. Therefore, b  2. We have |A1|+ |A2| = n− 1− 2b. Choose
v ∈ V (G2).

If v = u, then

dG2(v) = ⌊a⌋ · ⌈a⌉  a2 − 1

4
 3− 2

√
2

4
n2 − (

√
2− 1)n

2
>

3− 2
√
2

4
n2 − n.

If v ∈ A1 ∪ A2, then

dG2(v)  ⌊a⌋+

b

2


 (

√
2− 1)n− 3

2
+

(2−
√
2

2
n− 1)(2−

√
2

2
n− 2)

2
>

3− 2
√
2

4
n2 − n.

If v ∈ B1 ∪B2, then

dG2(v)  (b− 1) · ⌊a⌋+

2b− 1

2


 ⌊a⌋+


b

2


>

3− 2
√
2

4
n2 − n.

Therefore, δ(G2) >
3−2

√
2

4
n2 − n.

3 Proof of Theorem 1

We first introduce a lemma, which is of great importance to our proof. Let Pk (resp. Ck)
denote a path (resp. a cycle) with k vertices.

Lemma 5. Let G be a 3-graph with δ2(G)  2 and v ∈ V (G). If v is not covered by any
C3

6 , then Gv must be P5-free and 2P3-free.

Proof. Indeed, let us first suppose that Gv contains a 2P3, say, w1u1w2 and w3u2w4. Since
δ2(G)  2, there exists a vertex x ∕= v, u1u2x ∈ E(G). Since {w1, u1, w2}∩ {w3, u2, w4} =
∅, we may assume without loss of generality that w2 and w3 are different from x. Then
the subgraph induced by {v, w2, u1, x, u2, w3} contains a C3

6 based on v, u1 and u2. This
gives the conclusion that Gv does not contain a 2P3.

Now suppose that Gv contains a P5, say, w1u1wu2w2. Then similarly, there ex-
ists a vertex x ∕= v, u1u2x ∈ E(G). If x /∈ {w1, w2}, then the subgraph induced by
{v, w1, u1, x, u2, w3} contains a C3

6 based on v, u1 and u2. If x ∈ {w1, w2}, without loss of
generality, assume x = w1, then the subgraph induced by {v, w, u1, w1, u2, w2} contains a
C3

6 based on v, u1 and u2. This gives the conclusion that Gv is P5-free.

Now we are ready to finish the proof of Theorem 1.

Proof of Theorem 1. Suppose to the contrary that there is a 3-graph G with δ2(G)  2
and a vertex v ∈ V (G) that is not covered by C3

6 . Since δ2(G)  2, we have δ(Gv)  2.
By Lemma 5, Gv is P5-free and 2P3-free. Therefore, the longest path in Gv must be

P4 or P3 (otherwise, Gv must be a matching, which contradicts the fact that δ(Gv)  2).
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Note that every component of Gv contains a cycle since δ(Gv)  2. If the longest
path is P3 in Gv, then every component of Gv must be a K3. Since |V (Gv)|  5, we have
Gv

∼= tK3 for some t  2. However, this contradicts the fact that Gv is 2P3-free.
Now suppose the longest path is P4 in Gv. Consider the component H that contains

P4 = u1w1w2u2. Since P4 is a longest path and dH(u1)  2 and dH(u2)  2, it can
be easily checked that C4 ⊆ H, and thus, V (H) = V (P4) (otherwise, H contains a P5,
a contradiction). Since |V (Gv)|  n − 1  5, Gv has at least another component H ′.
Because every component of Gv contains a cycle, we have |V (H ′)|  3, a contradiction to
the fact that Gv is 2P3-free.

4 Proof of Theorem 2

We need the fundamental result in extremal graph theory due to Turán [8].

Theorem 6 (Turán, 1941). Let r  2 and Tn,r be the Turán graph. If G is a graph on n
vertices containing no Kr+1 as a subgraph, then e(G)  e(Tn,r).

Now we give the proof of Theorem 2.

Proof of Theorem 2: The lower bound of c1(n,C
3
6) is a direct corollary of Observation 4.

Therefore, it is sufficient to show that every 3-graph G on n vertices with δ1(G) 
3−2

√
2

4
n2 + 3n

3
2 has a C3

6 -covering.

Suppose to the contrary that there is a 3-graph G on n vertices with δ1(G)  3−2
√
2

4
n2+

3n
3
2 and a vertex u ∈ V (G) that is not contained in a copy of C3

6 . Recall that the link graph
Gu is the graph with vertex set V ′ = V \{u} and edge set E = {vw : uvw ∈ E(G)}. Denote
M0 as the set of components isomorphic to K2 of Gu and let I0 be the set of components
isomorphic to K1 in Gu. For any v ∈ V (Gu), let M(v) denote the set of components
isomorphic to K2 in Gu − {v} − V (M0), and let I(v) denote the set of components
isomorphic to K1 in Gu − {v} − I0. Note that M0 ∩M(v) = ∅ and I0 ∩ I(v) = ∅ by the
definitions.

Claim 7. Let v be a vertex in Gu with dGu(v)  4. Then

E(Gv − u) ⊆ M0 ∪M(v) ∪

I0 ∪ I(v)

2


.

Proof. Choose v1v2 ∈ E(Gv − u). If v1v2 /∈ M0 ∪M(v) ∪

I0∪I(v)

2


, then there is at least

one of v1, v2, say v1, that is not in I0 ∪ I(v).
If v1 ∈ V (M0) ∪ V (M(v)), since v1v2 /∈ M0 ∪M(v), there exists v′1 different from v2,

such that v1v
′
1 ∈ M0 ∪M(v). According to dGu(v)  4, there exists v′ different from v1,

v′1 and v2, such that vv′ ∈ E(Gu). In this case, uv′1v1, v1v2v and vv′u form a C3
6 based on

u, v1 and v covering u, a contradiction. Otherwise, v1 /∈ I0 ∪ I(v) ∪ V (M0) ∪ V (M(v)).
Then dGu(v1)  2. Thus there exists v′′1 different from v2 such that v1v

′′
1 ∈ E(Gu). Since

dGu(v)  4, there exists v′′ different from v1, v
′′
1 and v2, such that vv′′ ∈ E(Gu). Again
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we have a copy of C3
6 formed uv′′1v1, v1v2v and vv′′u based on u, v1 and v covering u, a

contradiction.
This finishes the proof of our claim.

Now, define a vertex v ∈ V (Gu) to be a good vertex if |I(v)| < n
1
2 ; a bad vertex,

otherwise. For a good vertex v, a vertex w in Gv is called a private vertex of v if w ∈
I0 ∪ I(v) and dGv−u(w)  2. Let X(v) denote the set of all private vertices of v, i. e.

X(v) = {w ∈ V (Gv) : w ∈ I0 ∪ I(v) and dGv−u(w)  2}.

For a good vertex v with dGu(v)  4, let x = |X(v)| and let J(v) = (I0 ∪ I(v))\X(v).
Denote H = Gv − u. By Claim 7, we have

dG(v)  dGu(v) + |M0|+ |M(v)|+
E(H) ∩


I0 ∪ I(v)

2

 .

By the definition of X(v), dH(w)  1 for any w ∈ J(v). Thus
E(H) ∩


I0∪I(v)

2

 


w∈J(v) dH(w)+ |

X(v)
2


|  |I0|+ |I(v)|−x+


x
2


. Clearly, dGu(v)  n and |M0|+ |M(v)| 

n−1−|I0|−|I(v)|
2

. Therefore,

dGu(v) < 2n+


x

2


.

Note that
3− 2

√
2

4
n2 + 3n

3
2  δ1(G)  dG(v) < 2n+


x

2


.

Therefore, we have

|X(v)| = x 
1 +


(2−

√
2)2n2 + 24n

3
2 − 12n+ 1

2



1−

√
2

2


n+ n

1
2 . (1)

Now, let us compute the number of edges of Gu. Define a bad edge in Gu as an edge
that is adjacent to at least one bad vertex, and a good edge if its two ends are good. Let E1

denote the set of bad edges in Gu, let E2 be the set of good edges with one end of degree at
most 3, and let E3 denote the remaining edges in Gu. Then |E(Gu)| = |E1|+ |E2|+ |E3|.
By the definition of E2, we have |E2|  3n. Note that I(v1) ∩ I(v2) = ∅ for different

vertices v1, v2 ∈ V (Gu). Since |I(v)|  n
1
2 for a bad vertex v ∈ V (Gu), the number of

the bad vertices is at most n/n
1
2 = n

1
2 . Therefore, they will contribute at most n

3
2 edges.

That is, |E1|  n
3
2 . Since n  6, and

n
3
2 + 3n+ |E3| = |E1|+ |E2|+ |E3| = d1(u)  δ1(G)  3− 2

√
2

4
n2 + 3n

3
2 , (2)

we have E3 ∕= ∅.
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Claim 8. For any e = v1v2 ∈ E3, X(v1) ∩X(v2) = ∅.

Proof. Suppose to the contrary that there exists w ∈ X(v1)∩X(v2). Since dGvi−u(w)  2
for i = 1, 2, there are two different vertices y1, y2 with y1w ∈ E(Gv1 − u) and y2w ∈
E(Gv2 − u). Therefore, v1y1w, wy2v2 and v2uv1 form a copy of C3

6 based on v1, w and v2,
a contradiction.

Let e = v1v2 ∈ E3 and xi = |X(vi)| for i = 1, 2. By (1) and Claim 8, we have

2


1−

√
2

2


n+2n

1
2  x1+x2 = |X(v1)∪X(v2)|  |I0∪ I(v1)∪ I(v2)| < |I0|+2n

1
2 , (3)

the last inequality holds since |I(v)| < n
1
2 for any good vertex v ∈ V (Gu). Therefore,

|I0| > 2(1−
√
2
2
)n.

If Gu[E3] := Gu ∩ E3 contains no K3, then, by Theorem 6 and (3),

|E3|  e(Tn−1−|I0|,2) 
(n− 1− |I0|)2

4
<


(
√
2− 1)n− 1

2

4
.

Therefore, by (2),

d1(u) = |E(Gu)| =
3

i=1

|Ei| <

(
√
2− 1)n− 1

2

4
+ 3n+ n

3
2  3− 2

√
2

4
n2 + 3n

3
2 ,

a contradiction.
Now assume Gu[E3] contains a copy of K3, say v1v2v3. Let xi = |X(vi)| for i = 1, 2, 3.

Again by (1) and Claim 8, we have

3


1−

√
2

2


n+ 3n

1
2  x1 + x2 + x3  |I0 ∪ I(v1) ∪ I(v2) ∪ I(v3)| < |I0|+ 3n

1
2 .

Therefore, |I0| > 3(1−
√
2
2
)n. Thus we have

d1(u) = |E(Gu)| 

n− 1− |I0|

2


<


3
√
2−4
2

n− 1

2


<

3− 2
√
2

4
n2 + 3n

3
2 ,

a contradiction.
This completes the proof of Theorem 2.

5 Discussion and Remarks

In this note, we show that 3−2
√
2

4
n2 − n < c1(n,C

3
6) <

3−2
√
2

4
n2 + 3n

3
2 for n  6 gave an

optimal extremal construction (see Construction 2) with minimum degree greater than
3−2

√
2

4
n2−n. It will be interesting to show that c1(n,C

3
6) =

3−2
√
2

4
n2−O(n), we leave this

as a problem.
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