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Abstract

This survey explains the origin and the further development of the Heawood
inequalities, the Heawood number, and generalizations to higher dimensions with
results and further conjectures.

Mathematics Subject Classifications: 05C15, 05C10, 52B70, 57Q15, 57Q35

1 The classical Heawood problem on surfaces

The original motivation for Heawood’s1 investigations [27] seems to be the problem of col-
oring maps on surfaces. A surface is interpreted as an abstract two-dimensional compact
and connected manifold without boundary. By definition it is assumed that every point
has an open neighborhood that is homeomorphic with an open planar disc, moreover any
two points have to be separable by two disjoint open neighborhoods (Hausdorff axiom).
A map on a surface is a decomposition into compact “countries” that meet along their
common boundaries. A coloring of a map assigns a color to each of the parts such that
adjacent “countries” get different colors. For the 2-sphere (or, equivalently, the euclidean
plane) the celebrated 4-color theorem was incorrectly proved in the 19th century, it re-
mained unsolved until recently. In 1890 Heawood pointed out the error and proved a
5-color theorem [27]. Moreover, he observed the following:

Proposition 1. The torus admits a decomposition into 7 countries (each being a topo-
logical disc, actually an abstract hexagon) that are mutually adjacent along pieces of their
borders. So any coloring requires 7 colors.

For a picture see [49, p.3].

Based on that observation the map color problem for closed surfaces was formulated.
Heawood did not solve it; he just showed a necessary condition involving what we now
call the Heawood number of a surface, see below. The solution to the problem covers the
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Figure 1: The unique 7-vertex triangulation of the torus

entire book [49], compare also [25, 44, 59]. Here we focus on the possible generalizations
explained in the subsequent sections. Sarkarias’s approach [51] to Heawood inequalities
is somewhat different.

If we put a vertex into the interior of each country and if we join two such vertices if
and only if the two countries are adjacent, we obtain an embedding of a graph into the
same surface, in the torus case it is the complete graph K7 on 7 vertices. In general this
duality principle transforms the problem of coloring a map into the equivalent problem of
coloring an embedded graph such that two adjacent vertices get distinct colors. In this
setting it is quite plausible that attaching a “handle” in form of a “bridge” or a “cylinder”
to a surface will change the situation and make it possible to add further edges, namely,
such using this bridge. However, it turns out that any intuition is practically impossible
how many bridges one needs for attaching a certain number of edges. Attaching one
bridge to the plane or the sphere enables us to add 6 edges to the spherical situation
since a triangulated 2-sphere with 7 vertices has 15 edges and since

(

7

2

)

= 21 which is
realized by the torus. In fact, the possible genus of the surface grows quadratically with
the number of vertices, see below.

At this point we can see that the usual standard model for surfaces in topology “an
orientable surface of genus g is represented as a 4g-gon in the plane with certain identi-
fications on the boundary” does not allow to draw a complete graph of the appropriate
maximum size within this 4g-gon. Instead, many edges of the graph with have to cross
the edges of this 4g-gon which, in fact, are not used as edges. However, for the torus this
is still possible: The graph K7 can be drawn within a planar square or a hexagon, see
Fig. 1. Any graph embeddable into the torus can be drawn by straight edges in such a
planar fundamental domain [43], usually a quadrilateral or a hexagon. In the case of K7

in the torus any embedding is triangular meaning that its complement consists of abstract
triangles only, so it induces a triangulation of the torus, see Fig. 1.

Such a triangulation with a complete edge graph is also called 2-neighborly because
any two vertices are direct neighbors to one another in the sense that they are joined by
an edge. A 2-neighborly triangulation of a surface has the minimum possible number of
vertices: if we want to remove one vertex then we would have to include more edges than
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pairs of vertices are avaiable. This is impossible for a (simplicial) triangulation since there
can be at most one edge between two vertices.

In the torus case we see from Fig. 1 that in an appropriate quotient of the triangular
tessellation {3, 6} of the euclidean plane (a flat torus) the full automorphism group of
order 42 acts by euclidean symmetries: 7 translations and 6 rotations around each vertex,
compare Fig. 1. The group can be interpreted as the affine group A(1,Z7). This structure
is unique, it has been known already to Cayley [15] and Möbius around 1850, and it is an
important example in various branches of geometry and combinatorics like block designs,
convex polytopes, tight embeddings of surfaces and regular maps [36]. In particular it
separates the boundary complex of the cyclic 4-polytope [60] with 7 vertices into two solid
tori that are isomorphic but not identical, a fact further exploited in [7] for obtaining a 4-
dimensional triangulation. A projection of this boundary complex onto euclidean 3-space
leads to Császár’s torus [17], a polyhedron in 3-space without diagonals, compare [8].

Motivating classical problems:

1. Find the coloring number of a given surface, i.e., the smallest number of colors that
is sufficient for coloring any given map on that surface.

2. Find the smallest number of vertices that is necessary for a (simplicial) triangulation
of a given surface.

3. Find the maximal n such that the complete graph Kn can be embedded into a given
surface.

It turns out that the solutions to all three problems lead to the same number, namely,
the so-called Heawood number listed already in [27]. Before stating the results we describe
the heart of the argument in an elementary way:

The simplest example of a complete graph in a surface is the K4 in the sphere. Obvi-
ously one needs all

(

4

2

)

= 6 edges for obtaining a triangulation, the tetrahedron. Already in
a 5-vertex triangulation we have one missing edge, and the number of missing edges grows
with the number of vertices by the classical Euler formula V −E+F = 2 which is equiva-
lent to V − E

3
= 2 and to

(

V

2

)

−E =
(

V−3

2

)

. On a closed surfaceM with Euler characteristic

χ(M) the same consideration reads as V − E
3
= χ(M) and

(

V

2

)

−E =
(

V−3

2

)

+3
(

χ(M)−2
)

.
Since the number of missing edges cannot be negative this implies the solution to Problem
2:

Proposition 2. (First Heawood inequality)
For any n-vertex triangulation of a surface M the inequality

(

n− 3

2

)

> 3(2− χ(M))

holds with equality if and only if the are no missing edges, i.e., if the number E of edges
satisfies E =

(

n

2

)

.
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On the other hand, if we start with an embedding of the complete graph Kn into M ,
then the complement M \Kn consists of a number F of open countries (each connected
but not necessarily simply connected). Each country Fi is bounded by ci > 3 edges and
has χ(Fi) 6 1 which in turn implies the inequality χ(M \Kn) 6 F . On the other hand
we have 2

(

n

2

)

=
∑

i ci > 3F since every edge occurs in the boundary of precisely two
countries. This implies

χ(M) = n−
(

n

2

)

+χ(M \Kn) 6 n−
(

n

2

)

+F 6 n− 1

3

(

n

2

)

=
n

6
(7−n) = −1

3

(

n− 3

2

)

+2

or, equivalently, the solution to Problem 3:

Proposition 3. (Second Heawood inequality)
If a surface M admits an embedding of the complete graph Kn then the inequality

(

n− 3

2

)

6 3(2− χ(M))

holds with equality if and only if the embedding is triangular, i.e., its complement consists
only of triangles.

The Heawood inequalities differ only by their direction, therefore the case of equality
is most interesting: These are triangulations with a complete edge graph or, equivalently,
triangular embeddings of the complete graph [25, 49]. These are also called the regular
cases in the Heawood problem where the equation

(

n−3

2

)

= 3(2 − χ(M)) is algebraically
equivalent to

n =
1

2

(

7 +
√

49− 24χ(M)
)

=
1

2

(

7 +
√

1 + 24β1(M)
)

, (1)

where β1(M) is the first Z2-Betti number ofM , similarly for the two Heawood inequalities.
The right hand expression of Equation (1) is called the Heawood number of M 2. It grows
like the square root of the genus. A necessary condition for the regular cases is, of course,
the integrality of the Heawood number. The first regular cases are listed in the following
table where g = 2β1 refers to the genus in the orientable cases with n ≡ 0, 3, 4, 7 (12):

χ 2 1 0 −3 −5 −10 −13 −20 −24 −33 −38

g 0 1 6 11 13 20

n 4 6 7 9 10 12 13 15 16 18 19

Already with 19 vertices one can triangulate an orientable surface of genus 20, for the
construction see Section 5. So it is not uninteresting that even for polyhedral surfaces

2Often the largest integer not greater than that expression is called the Heawood number; this difference
is not important here.
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embedded into ordinary 3-space the number n of vertices can be smaller than the genus
of the surface: There is an example of genus 577 with n = 576 vertices [42].

The results by G.Ringel and many others [49, 48, 31] show the following (for the
method compare also Section 6):

Theorem 4. The first Heawood inequality is sharp for all topological types of surfaces
except for the Klein bottle, the real projective plane with one handle, and the orientable
surface of genus 2.

The second Heawood inequality is sharp for all topological types of surfaces except for
the Klein bottle.

In the exceptional case of the Klein bottle the complete graph K6 can be embedded,
and at least 8 vertices are required for a triangulation. Surprisingly, there is no 9-vertex
triangulation of the orientable surface of genus 2 although the Heawood number n =
1
2

(

7 +
√
49 + 24 · 2

)

lies between 8 and 9 and since there is a 9-vertex triangulation of a
2-dimensional complex which is homotopy equivalent to this surface [9]. An embedding
of the complete graph K8 appears as part of a 9-vertex triangulation of a pinched surface
of the same genus [35, p.37], [36].

Open Problem. [36] Decide in which cases the Heawood number can be realized by
triangulations of pinched surfaces with given numbers and multiplicities of pinch points.

In the case of the simply pinched surface of genus 2 we have χ = −3, so this is a
regular case with n = 9. The Heawood number depends only on the Euler characteristic.

Obviously, the realization of a triangulated surface by an embedded polyhedron in
3-space is much more restrictive: Depending on the positions of the vertices, edges and
triangles can intersect in their interiors. So one has to be very careful to avoid that.

Open Problem. How can one decide in a geometric or combinatorial way – besides using
oriented matroids [52] – whether a given abstract triangulation of a surface is realizable
in 3-space with straight edges and planar triangles?

In particular, for triangulated surfaces with a small number of vertices near the Hea-
wood number this is a difficult problem. Already the regular case n = 12, g = 6 turned
out to be nonrealizable by a polyhedron with straight edges and planar triangles:

Theorem 5. (Császár, Bokowski, Brehm, Hougardy, Lutz, Zelke, Schewe)
1. The torus with 7 vertices is realizable in 3-space [17, 8], especially in the Schlegel
diagram of the cyclic 4-polytope with 7 vertices.

2. All vertex-minimal triangulations of orientable surfaces of genus 3 (with 10 vertices)
and genus 4 (with 11 vertices) are realizable in 3-space [28].

3. Some 12-vertex triangulations of the orientable surface of genus 5 are realizable in
3-space [28].

4. None of the 59 combinatorially distinct 12-vertex triangulation of the orientable
surface of genus 6 is realizable in 3-space [52].
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The missing case of genus 2 is not interesting since there is no (abstract) 9-vertex
triangulation. With 10 vertices it is realizable because even genus 3 is realizable. It is a
long-standing conjecture [19] that every triangulated torus is realizable in 3-space. Tri-
angulations with a small number n 6 23 of vertices have been enumerated by F.H.Lutz
using a computer program. For surfaces with boundary this is completely different: It was
shown by Brehm [10] that a certain triangulated Möbius band is not realizable as a poly-
hedron in 3-space with straight edges. In contrast, the (smallest) 5-vertex triangulation
of the Möbius band is realizable in the Schlegel diagram of the 4-simplex.

Finally, the solution to Problem 1 turns out to be equivalent to the solution to Problem
3:

Theorem 6. (G.Ringel [49, Thm.2.4])
The coloring number of a surface M coincides with the maximum n such that the complete
graph Kn admits an embedding into M .

The case of the 2-sphere is not included in Ringel’s result, in fact, the celebrated
4-color problem on the sphere (or the plane) was solved much later with a huge effort.
Nevertheless, K4 admits an embedding into the plane, K5 does not, and 4 happens to be
also the coloring number.

2 The Heawood number of a 4-manifold

Higher dimensional generalizations can be considered for pure hypergraphs instead of
graphs or higher dimensional manifolds instead of surfaces. Hypergraphs can also be con-
sidered as simplicial complexes. In higher dimensions Problem 2 makes sense as stated
since it is plausible that any topologial type of a manifold defines the miminum number
of vertices that is possible for a triangulation of that manifold. An a priori bound can be
found in [11].

On the other hand: Any graph admits an embedding into any 3-manifold, and any
3-manifold admits a 2-neighborly triangulation with arbitrarily large number of vertices
[50], so neither Problem 1 nor Problem 3 make sense as stated. Instead we have to find
a higher dimensional analogue that admits generalized Heawood inequalities. A natural
obstruction to a triangulation with a small number of vertices is the fact that few edges,
few triangles and so on cannot realize a complicated topology or large Betti numbers. A
natural obstruction to a small coloring number is the occurrence of many neighbors of
many countries.

There is the similar concept of balanced triangulations of d-dimensional complexes ad-
mitting a (d+1)-coloring of the edge graph [56]. However, for odd-dimensional manifolds
the Euler characteristic always vanishes, so it is impossible to obtain direct analogues of
the Heawood inequalities. Therefore we start with even-dimensional manifolds.

Embedding the 1-skeleton of a simplex into manifolds is easy in higher dimensions,
but embedding the 2-skeleton of a simplex into a 4-manifold will not be possible in general
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because two triangles can intersect in their interiors, see Theorem 21 below for the case of
the 4-sphere. This indicates that we can expect a natural obstruction for embedding the
k-skeleton of a simplex into a given 2k-manifold, compare Section 4. This is related to
the following question: How many triangles can an n-vertex triangulation of a 4-manifold
have?

Notation. In the sequel we denote the number of i-dimensional faces of a simplicial
complex by fi. Altogether they form the f -vector where often formally f−1 = 1 is used in
notations. We also use n = f0 if this is convenient.

The 4-dimensional sphere can be triangulated with any number n > 6 of vertices and
f1 =

(

n

2

)

edges. However, the number of triangles then behaves like the number of edges
in a surface. The f -vector satisfies the so-called Dehn-Sommerville equations

n− f1 + f2 − f3 + f4 = χ(M)

2f1 − 3f2 + 4f3 − 5f4 = 0

2f3 − 5f4 = 0

By eliminating f3 and f4 we see that the f -vector is completely determined by f0, f1, f2,
and these satisfy:

10n− 4f1 + f2 = 10χ(M) = 20

Under the assumption f1 =
(

n

2

)

this in turn implies that the number of missing triangles
is

0 6

(

n

3

)

− f2 =

(

n

3

)

− 4

(

n

2

)

+ 10n− 20 =

(

n− 4

3

)

.

Consequently, for n > 7 there are necessarily missing triangles, just as we had to expect
missing edges in the case of the 2-sphere. A refinement of this argument with χ(M)
instead of χ(S4) = 2 leads to the following:

Proposition 7. (Kühnel [35, Thm.4.9])
For any n-vertex triangulation of a closed 4-manifold M the inequality

(

n− 4

3

)

> 10
(

χ(M)− 2
)

(2)

holds with equality if and only if f2 =
(

n

3

)

. This absense of missing triangles is also called
3-neighborliness. Equality is possible only if M is simply connected.

3-neighborliness of a manifold of dimension d > 4 can also be interpreted as follows:
In the dual map each vertex appears as a “country”, each edge as a pair of adjacent
countries, normally with a (d − 1)-dimensional intersection. So 3-neighborliness means
that any three countries have a non-empty intersection along their boundaries (normally
(d− 2)-dimensional). In this sense any three countries are simulteneously “neighbors” of
each other. Especially in dimension 4 the dual complex has the same number of 2-faces
as the original complex, and that is

(

n

3

)

for 3-neighborly triangulations with n vertices.
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Equality in Proposition 7 implies that M is simply connected: Any loop can be de-
formed into the 2-skeleton, and this space is simply connected. Conversely, if for a simply
connected 4-manifold M we denote by β2(M) = χ(M) − 2 the second Betti number of
M , then this number is a kind of a “genus” of the manifold. In this case the Heawood
inequality transforms into

(

n−4

3

)

> 10β2 or, equivalently,

(n− 5)3 − (n− 5)− 60β2 > 0.

By Cardano’s formula for the roots of a cubic polynomial this is equivalent to

n > 5 + 3
√
z0 +

1

3 3
√
z0

(3)

with z0 = 30β2 +
√

900β2
2 − 1

27
satisfying the equation z20 − 60β2z0 +

1
27

= 0, so we can

call the right hand side of inequality (3) the 4-dimensional Heawood number.

For β2 = 1 we obtain z0 = 30 +
√

24299
27

, hence 3
√
z0 +

1
3 3
√
z0

= 4 and n > 9. In other

words: The 4-dimensional Heawood number of the complex projective plane is 9. This is
the next case of equality after the boundary of a 5-simplex according to the following:

Corollary 8. For a simply connected 4-manifold the 4-dimensional Heawood number n
is an integer if and only if

n ≡ 0, 1, 4, 5, 6, 9, 10, 14, 16 (20).

This follows by considering divisors of
(

n−4

3

)

. The equality
(

n−4

3

)

= 10(χ(M) − 2) =
10β2 requires 10 to be a divisor. The corresponding second Betti number is the quotient:

β2 =
1

10

(

n− 4

3

)

Therefore (n− 4)(n− 5)(n− 6) must be divisible by 20. The sequence of possible integer
values starts with β2 = 0, 1, 2, 12, 22, 56 within the range 6 6 n 6 20. �

Corollary 9. The (theoretical) minimum number of vertices for a triangulation of M
according to inequality (2) is given in the following table:

M n β2 equality (3-neighborly) reference

S4 6 0 yes, unique ∂∆5

CP 2 9 1 yes, unique [37]

S2 × S2 10 2 no [37]

CP 2#(±CP 2) 10 2 no [37]

(S2 × S2)#6 14 12 ? Sect. 5

K3 surface 16 22 yes [14]

(S2 × S2)#11 16 22 ?

(S2 × S2)#28 20 56 ?
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A general reference for small triangulations is the computer aided enumeration in [40]
including the cases of S2 × S2 and (S2 × S2)#(S2 × S2). For a 16-vertex triangulation of
(S2 × S2)#7 containing all triangles of the 8-dimensional cross polytope (the generalized
octahedron) see [21]. There are two natural 10-vertex triangulations of CP 2, necessarily
with missing edges and/or missing triangles [6, 7].

Open Problem. Decide the cases indicated by a question mark in the table above.

As in the case of surfaces, the opposite inequality can be conjectured to constitute
a necessary condition for the embeddability of the complete 2-skeleton of an (n − 1)-
dimensional simplex into a simply connected 4-manifold M with second Betti number
β2(M) (see Section 4 for details):

(

n− 4

3

)

6 10
(

χ(M)− 2
)

= 10 β2(M) (4)

3 Lower bounds for the number of vertices

Definition 10. A simplicial complex with n vertices is called k-neighborly if the number
of (k − 1)-dimensional simplices equals

(

n

k

)

.

2-neighborliness means that any vertex is joined with any other by an edge. A
triangulation of a closed 2-dimensional surface M is 2-neighborly if and only if n =
1
2

(

7 +
√

49− 24χ(M)
)

with the Heawood number as above, and 3-neighborliness of a
triangulated 4-manifold was discussed in Section 2.

Just as two edges in a 2-manifold can intersect each other, so two triangles in a
4-manifold can intersect each other, two k-dimesional simplices in a (2k)-manifold can in-
tersect each other, therefore in general the higher dimensional analogue of 2-neighborliness
for surfaces will be (k+1)-neighborliness for 2k-manifolds. The idea is: If a triangulation
is saturated in the sense that with these vertices no additional edges, triangles etc. can
be inserted, then the number of vertices will be smallest possible. The following result is
not hard to obtain:

Proposition 11. Let M be a closed (k − 1)-connected 2k-manifold with a triangulation
with n vertices which is k-neighborly. Then the generalized Heawood inequality

(

n− k − 2

k + 1

)

> (−1)k
(

2k + 1

k + 1

)

(

χ(M)− 2
)

holds with equality if and only if the triangulation is (k + 1)-neighborly.

With the notation nk+1 = n(n− 1) · · · (n− k) this inequality can be written as

(n− k − 2)k+1 > (2k + 1)k+1 · (−1)k
(

χ(M)− 2
)

.

the electronic journal of combinatorics 30(4) (2023), #P4.17 9



Sketch of proof. The proof uses the Dehn-Sommerville equations and the Vandermonde
convolution formula for binomial coefficients, see [35, p.65]. For a proof of the Dehn-
Sommerville equations see [60]. In the case of a 2k-manifold M these equations are the
following:

n− f1 + f2 − f3 + f4 − f5 + f6 − f7 + f8 − · · ·+ f2k = χ(M)
(

2

1

)

f1 −
(

3

1

)

f2 +
(

4

1

)

f3 −
(

5

1

)

f4 +
(

6

1

)

f5 −
(

7

1

)

f6 + · · · −
(

2k+1

1

)

f2k = 0
(

4

3

)

f3 −
(

5

3

)

f4 +
(

6

3

)

f5 −
(

7

3

)

f6 + · · · −
(

2k+1

3

)

f2k = 0
(

6

5

)

f5 −
(

7

5

)

f6 + · · · −
(

2k+1

5

)

f2k = 0

...
(

2k−2

2k−3

)

f2k−3 −
(

2k−1

2k−3

)

f2k−2 +
(

2k

2k−3

)

f2k−1 −
(

2k+1

2k−3

)

f2k = 0

2f2k−1 − (2k + 1)f2k = 0

By eliminating the variables fk+1, . . . , f2k one obtains one equation between the other
variables n, f1, . . . , fk and χ(M). If one puts in f1 =

(

n

2

)

, f2 =
(

n

3

)

, . . . , fk−1 =
(

n

k

)

then
the assertion of Proposition 11 boils down to the obvious inequality fk 6

(

n

k+1

)

. �

Example 12. We know the following cases of (k + 1)-neighborly triangulations of 2k-
manifolds:

1. k = 1: Examples for any n 6≡ 2(3), see Section 1.

2. k = 2: The unique 9-vertex triangulation of CP 2 [35, Sect.4B], [3], [53] and a
16-vertex triangulation of the K3-surface [14].

3. k = 3: Several 13-vertex triangulations of S3 × S3 [40].

4. k = 4: Several 15-vertex triangulations of the quaternionic projective plane HP 2

[12, 24].

5. k = 8: Many 27-vertex triangulations of a 16-manifold “like the octonionic plane”,
see [22].

The hard question is: Does Proposition 11 remain valid without the assumption of
k-neighborliness? This has been posed as Conjecture B in [35, p.61] and in [34]. A
direct proof attempt runs into the problem of finding a sharp bound for an alternating
sum. However, for n > k2 + 4k + 2 it follows from a simple comparison of the number
of missing k-simplices and missing (k − 1)-simplices [35, p.66]. This is typical also for
the Upper Bound Problem [60, Sect.8.4] for polytopes and spheres and its solution. The
general case requires serious algebraic methods. These grew out of 50 years development
of understanding face-vectors of simplicial polytopes and spheres:
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Theorem 13. (Novik and Swartz [46, Thm.4.4])
Let M be a closed 2k-manifold, triangulated with n vertices. Then the generalized Heawood
inequality

(

n− k − 2

k + 1

)

> (−1)k
(

2k + 1

k + 1

)

(

χ(M)− 2
)

(5)

holds with equality if and only if the triangulation is (k+1)-neighborly. The latter implies
that M is (k − 1)-connected and (−1)k(χ(M)− 2) = βk(M) (the kth Betti number).

Here the notion (k− 1)-connected is understood in the topological sense, i.e., that the
homotopy groups πj(M) vanish for 1 6 j 6 k − 1. Then βk can be regarded as a kind of
“genus” of the manifold.

Consequently, we can define a generalized Heawood number for M as the n realizing
equality in Equation (5). By analogy with the 4-dimensional case in Section 2 we re-
strict ourselves to the case of (k − 1)-connected (2k)-manifolds. For the other cases see
Conjecture 3.9.

Definition 14. The generalized Heawood number Hk for a (k− 1)-connected 2k-manifold
M with kth Betti number βk is the largest (real) root of the polynomial

Pk(n) =

(

n− k − 2

k + 1

)

−
(

2k + 1

k + 1

)

βk.

There is always a positive real root since for βk = 0 we have Pk(2k + 2) = 0 and since
Pk(n) is monotonically increasing in n and decreasing in βk.

Corollary 15. Any n-vertex triangulation of a (k − 1)-connected 2k-manifold satisfies

n > Hk

with equality if and only if the triangulation is (k + 1)-neighborly.

Proof. The inequality is equivalent to the inequality (5) since (−1)k(χ− 2) = βk, and
the discussion of equality if the same as in Theorem 13. �

In particular we have Hk = 3k + 3 for (−1)k(χ − 2) = βk = 1 and Hk = 3k + 4 for
(−1)k(χ − 2) = βk = 2. These values coincide with the a priori bounds in [11]. This
number Hk is an algebraic number although in general no explicit algebraic expression is

possible. For k = 1 we have H1 =
1
2

(

7 +
√

49− 24χ(M)
)

= 1
2

(

7 +
√

1 + 24β1(M)
)

, for

a simply connected 4-manifold with second Betti number β2 we have

H2 = 5 +
3

√

30β2 +
√

900β2
2 − 1

27
+

(

3
3

√

30β2 +
√

900β2
2 − 1

27

)

−1

,

see Sect.1 and Sect. 2.
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For k = 3 the polynomial H3 is biquadratic, and therefore for a 2-connected 6-manifold
with third Betti number β3 we have

(n− 5)(n− 6)(n− 7)(n− 8) > 840β3

or with x = n− 13
2

(x2 − 9
4
)(x2 − 1

4
) > 840β3

and

H3 =
1

2

(

13 +

√

5 + 4
√

1 + 840β3

)

.

Corollary 16. For every k there are infinitely many possible integer pairs (n, βk) such
that n = Hk for a candidate (2k)-manifold with middle Betti number βk, possibly admitting
a (k+1)-neighborly triangulation with n vertices. For fixed k the possible integers n = Hk

occur with a periodicity, and the associated βk grows polynomially in n.

Proof. The polynomial growth is obvious from the case of equality in the formulas
above. The possible values for n = Hk can be seen by considering the prime factors of
the binomial coefficients

(

n−k−2

k+1

)

and
(

2k+1

k+1

)

that are involved. In particular we have:

k = 1: n 6≡ 2 (3)

k = 2: n 6≡ 3 (4) and n 6≡ 2, 3 (5), together n ≡ 0, 1, 4, 5, 6, 9, 10, 14, 16 (20).

k = 3: n 6≡ 4 (5) and n 6≡ 2, 3, 4 (7), together
n ≡ 0, 1, 5, 6, 7, 8, 12, 13, 15, 20, 21, 22, 26, 27, 28, 33 (35).

k = 4: n 6≡ 4, 5 (7), n 6≡ 3, 5 (8) and
n ≡ 0, 1, 6, 7, 8, 9, 10, 15, 16, 18, 19, 24, 25 (27), altogether with period 1512.

This continues in an obvious way, so for any k there is such a period. It gives only a
necessary integer condition and does not mean anything further about existence of such
a triangulation or the topology of such a manifold. �

The first relevant cases besides the standard cases n = 3k + 3 and n = 3k + 4 are the
following:

k = 2: n = 14, 16, 20, 21 with βk = 12, 22, 56, 68
k = 3: n = 15, 20, 21, 22 with βk = 6, 39, 52, 68
k = 4: n = 24, 28, 34, 36 with βk = 68, 209, 780, 1131.

However, the cases β3 = 1 and β3 = 39 cannot occur for topological reasons: There are
no 2-connected 6-manifolds with an odd intersection form. Moreover, an odd number βk

can occur only in the dimensions 2k = 2, 4, 8, 16 [57].

Open Problem. Find more n-vertex triangulations of 2k-manifolds satisfying the Hea-
wood equality in (5), i.e., where n equals the generalized Heawood number. Such manifolds
are necessarily (k−1)-connected and the triangulations are necessarily (k+1)-neighborly,
i.e., they contain the k-skeleton of an (n− 1)-dimensional simplex.

the electronic journal of combinatorics 30(4) (2023), #P4.17 12



A necessary condition is that the Heawood number is an integer. Then one has to look
for manifolds realizing the appropriate topology. Natural candidates are the following:

14-vertex triangulation of (S2 × S2)#6,
(

10

3

)

= 12
(

5

3

)

(not possible with a vertex transitive automorphism group)

16-vertex triangulation of (S2 × S2)#11,
(

12

3

)

= 22
(

5

3

)

15-vertex triangulation of (S3 × S3)#3,
(

10

4

)

= 6
(

7

4

)

16-vertex triangulation of S4 × S4,
(

10

5

)

= 2
(

9

5

)

28-vertex triangulation of S8 × S8,
(

18

9

)

= 2
(

17

9

)

A further generalization: Although Theorem 13 holds for any 2k-manifold, it is
not useful if the Euler characteristic is too small. In this case one has to find other
inequalities specifically adapted to the topology of M . An example is the lower bound
n > (k+1)2 for triangulat́ıons of CP k [2] whereas the Euler characteristic is χ = k+1 with
the consequence that (−1)k

(

χ−2
)

= (−1)k(k−1) leading to a rather weak inequality (5)
(trivial for odd k).

For manifolds that are not highly connected or are odd-dimensional, there are similar
inequalities, motivated by examples and by a certain interpolation between the parameters
(at least as conjectures). These inequalities can be presented in a Pascal-like triangle
depending on the dimension d and a parameter j with 1 6 j 6 d

2
as follows:

d = 2 :
(

n−3

2

)

> 1
2

(

4

2

)

β1

d = 3 :
(

n−4

2

)

>
(

5

2

)

β1

d = 4 :
(

n−5

2

)

>
(

6

2

)

β1

(

n−4

3

)

> 1
2

(

6

3

)

β2

d = 5 :
(

n−6

2

)

>
(

7

2

)

β1

(

n−5

3

)

>
(

7

3

)

β2

d = 6 :
(

n−7

2

)

>
(

8

2

)

β1

(

n−6

3

)

>
(

8

3

)

β2

(

n−5

4

)

> 1
2

(

8

4

)

β3

d = 7 :
(

n−8

2

)

>
(

9

2

)

β1

(

n−7

3

)

>
(

9

3

)

β2

(

n−6

4

)

>
(

9

4

)

β3

d = 8 :
(

n−9

2

)

>
(

10

2

)

β1

(

n−8

3

)

>
(

10

3

)

β2

(

n−7

4

)

>
(

10

4

)

β3

(

n−6

5

)

> 1
2

(

10

5

)

β4

The factor 1
2
reflects the fact that for even d the weight of the middle Betti number is

only half of the weight of the others since βk = βd−k in all other cases. This ”triangle of
conjectures” is motivated by the fact that it is actually true for β1 = 1 and arbitrary d [11]
and for d = 3 and arbitrary β1 [41]. Furthermore in even dimensions the last inequality
in each row is equivalent to the generalized Heawood inequality above if the manifold is
(k−1)-connected. So the Pascal-like triangle fits in as a kind of very natural interpolation
between these cases. For products of two spheres it also coincides with the a priori bound
in [11].
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Example 17. We know the following cases of equality:

1. β1 = 1: (d− 1)-sphere bundles over S1 for any d [4, 16].

2. d = 3: Many examples, see [41], [13].

3. d = 4, β1 = 3: See [5].

4. d = 4: See [13].

5. d = 5, β2 = 1: A 12-vertex triangulation of S2 × S3 [40].

6. j = d
2
: See Example 12.

7. An infinite series with increasing d and

n = d2 + 5d+ 5, β1 =
(

n−d−1

2

)

/
(

d+2

2

)

= (d+ 3)(d+ 2) = n+ 1 [18].
So the first Betti number is larger than the number of vertices.

Conjecture 18. Let M be a closed d-manifold and let j be any integer between 1 and
d
2
, βj denotes the corresponding Betti number of M with coefficients in a field (Z2 as the

standard case). Then for any n-vertex triangulation of M the following inequalities are
satisfied:

(

n− d+ j − 2

j + 1

)

>

(

d+ 2

j + 1

)

βj for 1 6 j <
d

2
(6)

(

n− d+ j − 2

j + 1

)

>
1

2

(

d+ 2

j + 1

)

βj for j =
d

2
(7)

Remarks: (a) In a recent article by Adiprasito [1] the inequality (6) is proved by sophis-
ticated algebraic methods. These go far beyond the algebraic methods that were needed
for the proof of Theorem 13.

(b) Inequality (7) coincides with inequality (5) if d = 2k and if M is (k−1)-connected
since 1

2

(

2k+2

k+1

)

=
(

2k+1

k+1

)

and βk = (−1)k
(

χ(M)−2
)

. If inequality (7) is true then Corollary
3.6 can be improved: One could omit the assumption about the (k − 1)-connectivity in
the definition of the Heawood number.

(c) For βj = 0 (and fixed j) the inequalities are trivial, the case of equality is n = d+2,
realized only by the boundary of a (d+ 1)-simplex.

(d) Coming back to the case of CP k for k > 3 with β2 = 1, the inequality (6) takes
the form

(

n−2k

3

)

>
(

2k+2

3

)

and, consequently, n > 4k + 2. This bound is better than the
bound from Theorem 13 for even k but it is still far from being sharp: It is known that
n > (k + 1)2 [2].

The case of equality leads to further numbers of Heawood type and can be conjectured
as follows:
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Conjecture 19. For any fixed j equality in the inequality above implies that

1. the triangulation is (j + 1)-neighborly,

2. βj+1 = βj+2 = · · · = βd−j−1 = 0.

The (j + 1)-neighborliness in the first line implies also β1 = β2 = · · · = βj−1 = 0 and –
by duality – βd−j+1 = βd−j+2 = · · · = βd−1 = 0. In other words: βj and βd−j are the
only non-vanishing Betti numbers besides β0 and βd. So for 1 6 j < d

2
M has the same

Z2-homology as a connected sum of βj copies of S
j × Sd−j.

The converse of this conjecture is not true, as the example of a 3-neighborly 13-
vertex triangulation of M ∼= SU(3)/SO(3) shows [40]. This has β2(M ;Z2) = 1 and thus
the same Z2-homology as S2 × S3 which does admit a 3-neighborly triangulation with
n = 12 vertices, thus realizing equality in the inequality (6), see Examples 3.8. Equality
for d = 3 and j = 1 is the case of tight-neighborly triangulations [13]. These have the
minimum possible number of vertices and, in addition, they are tight triangulations [41].
Recently, the notion of a tight triangulation – introduced in [35] – has been shown to
be equivalent to a purely algebraic property of the Stanley-Reisner ring [29]. So far all
known triangulations satisfying equality in any of the inequalites in Conjecture 18 are
tight triangulations.

Special cases where the conjectures were proved before [1] are the following:

1. For d = 2 the first conjecture coincides with the Heawood inequality (1) including
the discussion of equality.

2. For (k − 1)-connected 2k-manifolds it coincides with the result of Theorem 13.

3. Both conjectures are true for d = 3 [41, Thm.5], [13, Sect.2.3].

4. For (j−1)-connected manifolds with βj = 1 and arbitrary d > 3 the first conjecture
follows from the a priori bound in [11].

5. Moreover, for j = 1, β1 = 1 and arbitrary d > 4 also the second conjecture follows
from the uniqueness of the examples of (twisted) sphere products of S1 and Sd−1

with the minimum number 2d + 3 of vertices shown in [4, Thm.4], [16, Thm.3.6].
These examples can be described as follows: Let n = 2d + 3 and consider the Zn-
orbit of the (d+ 1)-simplex (0 1 2 3 . . . d+ 1) which is a 2-neighborly triangulation
of a 1-handle, orientable if d is even, nonorientable otherwise. Then the example is
the boundary of this 1-handle: a sphere product S1×Sd−1 if d is even and a twisted
product otherwise.

Corollary 20. The conjectures above suggest that theoretically a vertex minimal trian-
gulation of Sk × Sm with 2 6 k 6 m should have n = k + 2m + 4 vertices and should
be (k + 1)-neighborly. At least in the case k = m = 2 this bound is not attained, see
Corollary 9. It is attained for k = 2,m = 3 and for k = m = 3 [40]. The same bound
(without neighborliness) follows also from [11].

Open Problem. Find more examples for equality in any of the inequalities (6).
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4 van Kampen – Flores problems

It is easy to see that the complete graph K5 cannot be embedded into the 2-plane or
2-sphere: The embedding of a K3 is unique: three edges forming a cycle. A fourth vertex
can be inserted into any of the two resulting open triangles in the complement. But then
a fifth vertex can be joined to at most three of the other vertices but not to the fourth
one. This follows from the Jordan curve theorem: Any embedded closed curve decomposes
the plane or the sphere into two disjoint open components. This embeddability problem
can be formulated in another terminology as follows:

The 1-skeleton of an (n− 1)-dimensional simplex can be embedded into the 2-sphere if
and only if n 6 4.

A direct generalization to higher dimensions is known as the van Kampen - Flores
theorem:

Theorem 21. (van Kampen and Flores, [26, Sect.11.2])
The k-skeleton of an (n − 1)-dimensional simplex can be embedded into the 2k-sphere if
and only if n 6 2k + 2.

As a common generalization of this theorem and the Heawood inequality (2) we pro-
posed the following

Conjecture 22. (Kühnel [34])
If the k-skeleton of an (n − 1)-dimensional simplex can be embedded into a (k − 1)-
connected 2k-manifold M then the generalized Heawood inequality

(

n− k − 2

k + 1

)

6 (−1)k
(

2k + 1

k + 1

)

(

χ(M)− 2
)

=

(

2k + 1

k + 1

)

βk(M) (8)

holds. In terms of the Heawood number from Definition 14 this reads as n 6 Hk.

In other words: As in the case of surfaces in Section 1, the maximum possible n
in comparison to a given “genus” βk is given by the generalized Heawood number ac-
cording to Theorem 13, and again the case of equality is most interesting. These are
(k + 1)-neighborly triangulations of 2k-manifolds or n-vertex triangulations containing
the complete k-skeleton of the (n − 1)-dimensional simplex (the regular cases). For ex-
amples see Sect. 3. In particular the 2-skeleton of the 8-simplex embeds into the complex
projective plane and the 4-skeleton of the 14-simplex embeds into the quaternionic pro-
jective plane. Moreover the 8-skeleton of the 26-simplex embeds into certain manifolds
“like the Cayley plane” [22].

Recently new approaches were made for proving at least weaker versions of Conjec-
ture 22 by cohomological methods, see [23, 47]. One can define a so-called van Kampen
obstruction to embeddability in terms of a certain cohomology class which is induced by
a mapping of a simplicial complex K into a 2k-manifold or the induced mapping on the
level of chain complexes. The vanishing of the obstruction is then shown to be a necessary
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condition for embeddability. The best bounds in [23, Thm.5] are n 6 2k+1+(k+1)βk(M)
and, if the intersection form is skew symmetric, n 6 2k + 1 + 1

2
(k + 2)βk(M). These co-

incide with Conjecture 22 in the cases of βk = 1 and – in the skew-symmetric case – also
βk = 2.

Corollary 23. ([23, Thm.5])
Conjecture 22 is true for k = 1 (by Section 1) and for the projective planes over C,H
and the Cayley numbers and their “look-alikes” [33]. Moreover it is true for all sphere
products Sk × Sk with odd k and all Sk-bundles over Sk with the same intersection form
(

0 −1

1 0

)

.

Open Problems. Can the 2-skeleton of the 8-simplex or of the 9-simplex be embedded
into S2 × S2 ? There is no 10-vertex triangulation with a complete 2-skeleton, compare
Corollary 9 above.

Can the 4-skeleton of the 15-dimensional simplex be embedded into S4 × S4 or into
any other S4-bundle over S4 ?

Theorem 24. (Adiprasito [1, Sect.4.6])
Conjecture 22 is true in general under the extra assumption that the embedding of the
k-skeleton can be extended to a triangulation of M .

It seems to be an open question whether for k > 2 there are embeddings of the
complete k-skeleton of the (n − 1)-dimensional simplex which cannot be extended to a
triangulation. In the regular cases one can also ask if there are such embeddings that
cannot be the k-skeleton of an n-vertex triangulation of the same manifold. Possible
candidates are embeddings containing knotted 2-spheres in a 4-manifold since the 2-
skeleton of a simplex is always a wedge product of a number of 2-spheres.

5 Centrally-symmetric versions

There are centrally symmetric versions of the various inequalities of Heawood type. A
triangulated manifold is regarded as centrally symmetric if it admits an involution without
fixed points that preserves the triangulation. In this case the k-skeleton of the simplex is
replaced by that of the cross polytope (generalized octahedron).

We first discuss the case of surfaces. For a centrally symmetric triangulation the
number of vertices is always an even number n = 2m, and it has at most

(

n

2

)

−m = 4
(

m

2

)

edges. Then the Euler formula 2m − f1 + f2 = χ(M) is equivalent to 2m − f1
3
= χ(M),

and the number of missing edges satisfies

4

(

m

2

)

− f1 = 2m(m− 1)− 3(2m− χ(M)) = 2(m− 1)(m− 3) + 3
(

χ(M)− 2
)

.

Since the number of missing edges cannot be negative this implies:
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Proposition 25. (First centrally symmetric Heawood inequality)
For any centrally symmetric 2m-vertex triangulation of a surface M the inequality

2(m− 1)(m− 3) > 3(2− χ(M))

holds with equality if and only if the are no missing edges except for the m diagonals, i.e.,
if the number of edges satisfies f1 =

(

2m

2

)

−m.

On the other hand, if we start with an embedding of the edge graph G of the m-
dimensinal cross polytope with

(

2m

2

)

−m = 4
(

m

2

)

edges into a surface M , then the com-
plement M \ G consists of a number F of countries (each connected but not necessarily
simply connected). Each country Fi is bounded by ci > 3 edges and has χ(Fi) 6 1. on
the other hand we have 8

(

m

2

)

=
∑

i ci > 3F since every edge occurs in the boundary of
precisely two countries. This implies

χ(M) = 2m−4

(

m

2

)

+χ(M\G) 6 2m−4

(

m

2

)

+F 6 2m−4

3

(

m

2

)

= −2

3
(m−1)(m−3)+2.

Proposition 26. (Second centrally symmetric Heawood inequality)
If a surface M admits an embedding of the edge graph of the m-dimensional cross polytope
then the inequality

2(m− 1)(m− 3) 6 3(2− χ(M))

holds with equality if and only if the embedding is triangular, i.e., its complement consists
only of triangles. In this case of equality the triangulations can be embedded into the
2-skeleton of the m-dimensional cross polytope. However, it is not necessarily centrally
symmetric but for any m 6≡ 2 (3) there are centrally symmetric examples [30].

Again these Heawood inequalities differ only by their direction, therefore the case
of equality is most interesting: These are (2m)-vertex triangulations whose edge graph
coincides with that of the m-dimensional cross polytope. These are also called the regular
cases where the equation 2(m− 1)(m− 3) = 3(2− χ(M)) is equivalent to

m = 2 + 1
2

√

16− 6χ(M) = 2 + 1
2

√

4 + 6β1(M), (9)

where β1(M) is the first Z2-Betti number of M . This leads to the centrally symmetric
Heawood number of M . It grows like the square root of the genus. One regular case is the
unique 8-vertex centrally symmetric torus (for a figure see [36]). The regular cases cover
all m 6≡ 2 (3) with associated β1 =

2
3
(m− 1)(m− 3).

In higher dimensions we have the following quite natural generalization:

Definition 27. A centrally symmetric triangulation with 2m vertices is called nearly k-
neighborly if it contains all possible simplices of dimension k−1 except those which would
contain one of the m diagonals.
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Theorem 28. (Klee and Novik [32, Prop.5.6], conjectured by Sparla [54])
For any centrally symmetric 2m-vertex triangulation of a (k − 1)-connected 2k-manifold
M the generalized Heawood inequality

2(m− 1)(m− 3)(m− 5) · · · (m− 2k − 1) > (2k + 1)(2k − 1)(2k − 3) · · · · 3 · βk (10)

holds with equality if and only if the triangulation is nearly (k + 1)-neighborly.

Similarly, for an appropriate class of manifolds one can define a centrally symmetric
Heawood number as the largest root of the polynomial

P c
k (m) = 2(m− 1)(m− 3)(m− 5) · · · (m− 2k − 1)− (2k + 1)(2k − 1)(2k − 3) · · · · 3 · βk,

or, with the notation xk;2 := x(x− 2) · · · (x− 2(k − 1)):

P c
k (m) = 2(m− 1)k+1;2 − (2k + 1)k+1;2 · βk

Note, however, that the centrally symmetric Heawood number does not indicate the min-
imum number of vertices but only half of it. The case k = 1 was discussed above.

For k = 2 we have to consider the inequality

2(m− 1)(m− 3)(m− 5) > 15β2

or, after substitution x = m− 3,

2x(x2 − 4) > 15β2.

Ths leads to the inequality

m > 3 + 3

√

15
4
β2 +

√

225
16
β2
2 − 64

27
+ 4

3

(

3

√

15
4
β2 +

√

225
16
β2
2 − 64

27

)

−1

whenever β2 > 1. For β2 = 2 (this is the case of S2 × S2) we obtain x = 3 and m = 6.
The special case β2 = 0 directly implies m > 5, equality is obtained for the boundary of
the 5-dimensional cross polytope.

For k = 3 we have the inequality

2(m− 1)(m− 3)(m− 5)(m− 7) > 105β3.

By introducing x = m− 4 we obtain

(x2 − 9)(x2 − 1) >
105

2
β3

with the explicit inequalities

x2
> 5 +

√

16 + 105
2
β3 and m > 4 +

√

5 +
√

16 + 105
2
β3.

Equality in the case β3 = 2 is realized by two 16-vertex triangulations of S3 × S3 [40].
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Example 29. We know the following cases of equality in the inequality (10):

1. Centrally symmetric surfaces [30].

2. The boundary of the (2k + 1)-dimensional cross polytope with βk = 0 (the 2k-
sphere).

3. Sparla’s centrally symmetric 12-vertex triangulations of S2 × S2, one of them with
a symmetry group isomorphic to A5 of order 60.

4. In general for any k a product of type Sk × Sk with βk = 2 as a subcomplex of the
(2k + 2)-dimensional cross polytope constructed by Klee and Novik [32].

5. A 4-manifold of type (S2×S2)#7 with β2 = 14 as a subcomplex of the 8-dimensional
cross polytope [21].

Open Problem. Find more centrally symmetric triangulations of 2k-manifolds satisfying
the Heawood equality, i.e., where m equals the centrally symmetric Heawood number.

A necessary condition is that the Heawood number is an integer. Then one has to look
for manifolds realizing the appropriate topology. Natural candidates are the following:

k = 2,m = 10: 20-vertex triangulation of (S2 × S2)#21

k = 2,m = 11: 22-vertex triangulation of (S2 × S2)#32

k = 3,m = 10: 20-vertex triangulation of (S3 × S3)#9

k = 3,m = 12: 24-vertex triangulation of (S3 × S3)#33

k = 4,m = 28: 56-vertex triangulation of (S4 × S4)#230

By analogy with Conjecture 18 one can ask for similar inequalities involving single
Betti numbers β1, β2, . . . that apply to centrally-symmetric triangulations. One might
conjecture the following Pascal-like triangle of inequalities:

d = 2 : (m− 1)2;2 > 32;2 · 1
2
β1

d = 3 : (m− 1)2;2 > 42;2 · β1
d = 4 : (m− 1)2;2 > 52;2 · β1 (m− 1)3;2 > 53;2 · 1

2
β2

d = 5 : (m− 1)2;2 > 62;2 · β1 (m− 1)3;2 > 63;2 · β2
d = 6 : (m− 1)2;2 > 72;2 · β1 (m− 1)3;2 > 73;2 · β2 (m− 1)4;2 > 74;2 · 1

2
β3

d = 7 : (m− 1)2;2 > 82;2 · β1 (m− 1)3;2 > 83;2 · β2 (m− 1)4;2 > 84;2 · β3
d = 8 : (m−1)2;2 > 92;2·β1 (m−1)3;2 > 93;2·β2 (m−1)4;2 > 94;2·β3 (m−1)5;2 > 95;2· 12β4

The examples by Klee and Novik [32] of type Sj×Sd−j realize equality in each of these
inequalities with βj = 1 for j < d

2
and βk = 2 for d = 2k. For j = 2 also the examples of

Wang and Zheng [58] realize equality. For βj = 0 (and fixed j) the inequalities are trivial
but equality cannot be attained except for j = d

2
and the boundary of the cross polytope

itself.
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6 Construction of examples

G.Ringel [49] described methods for constructing 2-neighborly triangulations of surfaces,
in particular such with a vertex transitive cyclic automorphism group. If the vertices are
regarded as the integers modulo n then the first key observation is that any difference
1, 2, 3, . . . modulo n has to occur precisely twice in the set of Zn-orbits of triples. The
second key observation is that the link of the vertex 0 (or any other) must be a cycle of
length n−1. Both conditions are combined in a graph satisfying Kirchhoff’s Current Law
where the link of 0 is called the log [49]. The simplest example is the 7-vertex torus with
the log (1 3 2 -1 -3 -2) modulo 7, see Fig. 1.

Another interesting instance is the 19-vertex triangulation of an orientable surface of
genus 20 given by the very simple scheme in [49, Fig.2.1]. In this case the link of 0 is the
cycle (9 7 4 -2 -9 -1 5 -3 -7 2 6 1 -8 -5 -6 -4 3 8) modulo 19, see [49, 2.10]. Then the cyclic
shift x 7→ x+ 1 mod 19 will lead to the other vertex links and thus to the entire surface.
This elegant solution (which works for any n ≡ 7 (12)) was one of the first cases solved
by G.Ringel in 1961. Another presentation of the same object is given by the following
table that shows a kind of “double partition” of the possible unoriented differences 1, ..
9 into six triples:

1 5 6
1 8 9

2 4 6
2 7 9

3 4 7
3 5 8

An oriented version determines such a log, the log above can be described by the
following oriented triples:

1 5 -6 -1 -8 9 -4 -2 6 7 2 -9 4 3 -7 -5 -3 8

This scheme of oriented triples contains each number between 1 and 9 twice but with op-
posite signs. It generates all triangles in the vertex star of 0 if the numbers are interpreted
as oriented differences modulo 19 along the three oriented edges of the triangle. So 7 2
-9 generates the oriented triangles 0 7 9, 0 2 -7 and 0 -9 -2, just by considering the
Z19-orbit of a triangle realizing these three differences 7, 2, -9 in this order and picking
those three items containing 0 as a vertex. The oriented edges 9 0 and 0 -9 force the next
triple -1 -8 9 to the three oriented triangles 0 9 8, 0 -1 -9 and 0 -8 1. Inductively the
log above follows.

However, another orientation can lead to another log. So the oriented triples

6 -5 -1 1 8 -9 2 4 -6 -2 -7 9 -4 -3 7 3 5 -8
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lead to the log (7 9 1 6 2 -7 -4 -6 -5 -8 -9 -2 4 -3 5 -1 8 3) which is essentially different.

With these methods G.Ringel and others were able to show that both Heawood in-
equalities (i.e., in both directions) are actually sharp with very few exceptions, where the
main exception is the Klein bottle which does not admit an embedding of K7 and requires
8 vertices for a triangulation [35, Sect.2C]. See also Theorem 4 in Sect. 1.

A 3-dimensional analogue would be given by the following unoriented quadruples of
differences 1 1 2 4, 1 2 1 4, 2 1 1 4 modulo 10 leading to the four generating oriented
tetrahedra 0 1 2 4, 0 1 4 3, 0 2 3 4. Then the cyclic Z10-symmetry leads to 12
oriented triangles in the link of 0:

1 2 4, 1 4 3, 2 3 4,
-1 1 3, -1 3 2, -2 2 1,
-2 -1 2, -4 -3 -1, -3 1 -1,
-4 -2 -3, -3 -2 1, -4 -1 -2.

This is a triangulated 2-sphere with 8 vertices as an analogue of the log above. The Z10-
action produces all the other links. The same procedure is possible for any n > 9 but the
manifold is nonorientable for odd n. The manifold is 2-neighborly for n = 9 and centrally
symmetric and nearly 2-neighborly for n = 10.

In more generality, there are infinite families of similar cyclic triangulations (examples
in [38]) also in higher dimensions but these are at most 2-neighborly, so they do not fit into
Section 2 or 3. For 3-manifolds 2-neighborliness means that in an n-vertex triangulation
the link of 0 has n−1 vertices and, therefore, 2n−6 triangles. The analogue of Kirchhoff’s
current law would be that any triangle (x y z) in the link of 0 implies the presence of
(−x y−x z−x), (−y x−y z−y), (−z x−z y−z) also, all numbers modulo n. If
this is satisfied and if the link of 0 is a 2-sphere then the Zn-action leads to a 2-neighborly
3-manifold. So there is a method to construct a triangulated manifold from the possible
link of one vertex. In principle, a 2-neighborly 3-sphere as link can lead to a 3-neighborly
4-manifold.

Unfortunately, in higher dimensions no systematic and efficient principles for con-
structing (k + 1)-neighborly triangulations of 2k-manifolds are known. One possibility is
the assumption of a certain vertex-transitive automorphism group and a computer-aided
check on the class of the orbits [40]. Nevertheless we know only a few sporadic exam-
ples, besides the 4-dimensional ones already mentioned in Corollary 9 and the centrally-
symmetric versions in Section 5 these are:

1. Several asymmetric triangulations of S3 ×S3 with 13 vertices found by F.Lutz [40].

2. Three distinct triangulations of the quaternionic projective plane HP 2 with 15 ver-
tices [12, 24], among them one with a vertex transitive group action of A5.

3. Many 27-vertex triangulations of a manifold “like the projective Cayley plane”,
among them such with a vertex transitive automorphism group of order 351 found by
A.Gaifullin [22]. This is remarkable because of the huge f -vector with f16 = 100386.
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Cyclic group actions can be often used for constructing examples of various kinds in-
cluding neighborly and tight triangulations [13], but for (k+1)-neighborly (2k)-manifolds
this does not seem to be the right approach. It has been checked that there is no 14-vertex
3-neighborly triangulation of any 4-manifold with χ = 14 admitting a vertex transitive
automorphism group Z14. However, there is a 4-dimensional pseudomanifold with the
same properties otherwise and with singularities precisely along an embedded Klein bot-
tle [39]. Besides the trivial case of the simplex itself, so far we know only one example
with a twofold transitive group: the 16-vertex triangulation of the K3 surface [14]. For
small n all n-vertex triangulations with a vertex transitive group action were enumerated
in [40]. On the other hand it is quite plausible that many more such examples will exist
(possibly in all even dimensions) but they will be complicated and will have a large num-
ber of vertices and – presumably – only a small automorphism group. In any case the
inequalities in Theorem 13 and in Conjecture 22 can be expected to be sharp in principle
in the sense that equality is possible and occurs not only rarely and sporadically.

Open Problem. Find a method for constructing an infinite family of triangulations
of 2k-manifolds for some fixed k > 2 satisfying the Heawood equality in (5) and (8),
i.e., where the number of vertices always equals the generalized Heawood number of the
manifold.
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