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Abstract

The Burning Number Conjecture claims that for every connected graph G of
order n, its burning number satisfies b(G) 󰃑 ⌈

√
n ⌉. While the conjecture remains

open, we prove that it is asymptotically true when the order of the graph is much
larger than its growth, which is the maximal distance of a vertex to a well-chosen
path in the graph. We prove that the conjecture for graphs of bounded growth
reduces to a finite number of cases. We provide the best-known bound on the
burning number of a connected graph G of order n, given by b(G) 󰃑

󰁳
4n/3 + 1,

improving on the previously known
󰁳

3n/2+O(1) bound. Using the improved upper
bound, we show that the conjecture almost holds for all graphs with minimum degree
at least 3 and holds for all large enough graphs with minimum degree at least 4.
The previous best-known result was for graphs with minimum degree 23.

Mathematics Subject Classifications: 05C05, 05C12

1 Introduction

Graph burning is a simplified model for the spread of influence in a network. Associated
with the process is a parameter introduced in [BJR14, BJR16, Ros16], the burning num-
ber, which quantifies the speed at which the influence spreads to every vertex. Graph
burning is defined as follows. Given a graph G, the burning process on G is a discrete-time
process. At the beginning of the first round, all vertices are unburned. In each round,
first all unburned vertices that have a burned neighbour become burned, and then one
new unburned vertex is chosen to burn, if such a vertex is available. If at the end of round
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k every vertex of G is burned, then G is k-burnable. The burning number of G, written
b(G), is defined to be the least k such that G is k-burnable.

As a graph with n isolated vertices is not (n − 1)-burnable, we instead focus on
connected graphs. Paths are an interesting special case. For a path Pn on n vertices, it
was shown in [BJR16] that b(Pn) = ⌈

√
n⌉. In [BJR16], it was conjectured that the path on

n vertices is one of the graphs with the largest burning number among connected graphs.

Burning Number Conjecture (or BNC): For a connected graph G of order n,

b(G) 󰃑 ⌈
√
n ⌉.

For any connected graph G and any spanning tree T of G, we have b(G) 󰃑 b(T ).
Therefore it is sufficient to prove that the conjecture holds for trees.

The BNC has resisted attempts at its resolution, although various upper bounds on
the burning number are known. In [BBJ+18], it was proved that for every connected
graph G of order n that

b(G) 󰃑
󰁴

12
7
n+ 3.

These bounds were improved in [LL16], who proved, up until this paper, the best-known
upper bound:

b(G) 󰃑
󰀛√

24n+ 33− 3

4

󰀜
=

󰁵
3

2
n+O(1).

In the present paper, we improve this by showing that any tree of order n can burn

in
󰁴

4
3
n+ 1 rounds.

Theorem 1. For a connected graph G of order n, we have that

b(G) 󰃑
󰁯󰁴

4
3
n
󰁰
+ 1.

While the BNC is open for general graphs, it is known to hold for a number of graph
classes. For example, in [BL19], it is proven that the conjecture holds for spiders, which
are defined as trees with at most one vertex of degree at most 3. In [KMZ20], it was proven
that any graph with minimum degree δ 󰃍 23 satisfy the conjecture. Using Theorem 1,
we prove that the conjecture almost holds for all connected graphs of minimum degree at
least 3, and also holds for those of minimum degree at least 4 that are of a large enough
order.

Theorem 2. For any connected graph G on n vertices, if every vertex in G has degree at
least 3, then b(G) 󰃑 ⌈

√
n ⌉+ 2.

Theorem 3. For any connected graph G on n vertices, if every vertex in G has degree at
least 4 and n is sufficiently large, then b(G) 󰃑 ⌈

√
n ⌉ .
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Our second main result concerns trees that have bounded growth. The growth of a
connected graph G is the smallest integer k such that all vertices in G are within distance
k of some path P in G. Trees of growth 1 are known also as the class of caterpillars
and by extension trees of growth k are often referred to as k-caterpillars. As proven in
Hiller, Triesch, and Koster [HTK19] and independently in [LHH20], caterpillars satisfy
the conjecture, and the conjecture has also been confirmed for 2-caterpillars (or lobsters)
in [HTK19]. We refer the reader to a survey on graph burning for further details [Bon21].
Note that any result on trees of bounded growth immediately applies to graphs of bounded
growth, by considering an appropriate spanning tree. We remark that the notion of growth
in this context matches that of path-length (see eg [KMZ20]).

In this paper, we present two theorems about trees of bounded growth. The first one
states that in order to prove the BNC for k-caterpillars, it suffices to verify it for a finite
number of them. It would be interesting to find ways to go further and transform this
into a practical way for the BNC to be verified for k-caterpillars (for say k = 10). The
statement currently suggests unreasonably many cases, which seems unnecessary.

Theorem 4. For any k ∈ N, if the BNC holds for all k-caterpillars on at most (4k2 +
5k − 2)2 vertices, then it holds for all k-caterpillars.

The second gives an approximation of the BNC for all k-caterpillars.

Theorem 5. For any k ∈ N and every tree T of growth at most k on n vertices

b(T ) 󰃑
󰁳

n+ (4k2 + 5k − 2)2.

In fact both will be direct consequences of the more general statement below (by taking
c = 0 or c = (4k2 + 5k − 2)2).

Theorem 6. Let k and c be two integers. If b(T ) 󰃑
󰁳

|V (T )|+ c holds for every k-
caterpillar T of order at most (4k2 + 5k − 2)2 − c, then it holds for all k-caterpillars.

Before closing this introduction, we present a reformulation of the conjecture that we
will use in the rest of the paper, and allows us to propose a stronger conjecture. If we
denote by vi the vertex chosen to burn at the end of round i in a burning process, then the
set of vertices that are burned after p rounds is simply ∪i=1,...,pB(vi, p− i) where B(v, r)
is the set of the vertices at distance at most r from v. Therefore, the statement of the
BNC can be reformulated as the fact that the vertex set of any graph on n vertices can
be covered by balls of radius 0, 1, . . . , ⌈

√
n⌉−1. One can therefore wonder now which sets

of radii are enough to cover any n vertex graph.
A graph G is R-burnable for some finite set of R = {r1, . . . , rp} ⊆ N if there exist

vertices v1, . . . , vp of G such that
󰁖

i∈{1,...,p} B(vi, ri) = V (G). Note that multisets are
not eligible, which is crucial in later arguments. As referenced earlier, the BNC states
that every graph on n vertices is {0, 1, . . . , ⌈

√
n⌉ − 1}-burnable. We propose the stronger

following conjecture.

Conjecture 7. Let T be a tree of growth k and of order n. If R is a finite set of integers
such that {0, 1, . . . , k} ⊆ R and

󰁓
r∈R(2r + 1) 󰃍 n, then T is R-burnable.
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The intuition behind this conjecture comes from the idea that for a path, supposedly
one of the worst example for the burning number, the ball of radius r covers at most 2r+1
vertices. Therefore, radii in R would cover

󰁓
r∈R(2r+1) vertices. Moreover, observe that

⌈
√
n⌉−1󰁛

r=0

(2r + 1) = ⌈
√
n⌉2 󰃍 n,

thus Conjecture 7 is stronger than the BNC.
The article is organized as follows. In Section 2, we prove Theorem 1 and its two

corollaries Theorem 2 and Theorem 3. In Section 3, we prove Theorem 6. The concluding
section describes further directions.

All graphs we consider are simple, finite, and undirected. The distance between ver-
tices u and v is denoted by d(u, v). The diameter of a graph G is denoted by diam(G). For
a vertex v and an integer r, we denote by B(v, r) the ball of radius r centered on v; that
is, the set of vertices at distance at most r from v. We will use the notation radius(G)
for the radius of a graph, that is the smallest integer r such that there exists a vertex x
of G with V (G) = B(x, r). For background on graph theory, see [Wes01].

2 General bounds

2.1 Improved upper bound on the burning number

The goal of this section is to prove Theorem 1. The proof relies heavily on the following
lemma.

Lemma 8. For every tree T and nonempty and finite R ⊆ N, there exists r ∈ R such
that either radius(T ) 󰃑 r or there exists a subtree T ′ of T such that

1. T \ T ′ is connected,

2. radius(T ′) 󰃑 r, and

3. |V (T ′)| 󰃍 r + |R|/2.

We first show how to quickly derive Theorem 1 assuming that the lemma holds.

Proof of Theorem 1. Given a tree T on n vertices and an integer p, we repeatedly apply
Lemma 8 to obtain that T is {0, 1, . . . , p}-burnable unless

n >

p󰁛

i=0

i+

p󰁛

i=0

i/2 =
3p(p+ 1)

4
.

We therefore have that p 󰃑
󰁯󰁴

4
3
n
󰁰
+ 1, as desired.
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Proof of Lemma 8. Let T be a tree and R ⊆ N satisfying its hypotheses. We consider a
maximum length path P = (t0, t1, . . . , tℓ) of T , and root T in tℓ. For 0 󰃑 i 󰃑 ℓ, we define
Ti to be the subtree of T rooted in ti, containing all descendants of ti including itself. For
0 󰃑 i 󰃑 ℓ, we also define:

φ(i) = max{j : Tj ⊆ B(ti, i)}.
It is straightforward to notice that i 󰃑 φ(i) 󰃑 2i. Further, if φ(r) = ℓ for some r, then
T = Tℓ ⊆B(tr, r) so we have the first possible outcome of the lemma. We therefore assume
from now on that φ(r) < ℓ for every r ∈ R. For any r ∈ R, note that the tree T ′ = Tφ(r)

satisfies the two first conditions required by the second outcome of the lemma, so we may
also assume that for any r ∈ R, Tφ(r) contains strictly less than r + |R|/2 vertices. In
particular, since vertices t0, t1, . . . , tφ(r) belong to Tφ(r), we have that φ(r) < r+ |R|/2− 1
for every r ∈ R.

Let R′ be the set of the N = ⌈|R|/2⌉ largest elements of R and r ∈R′. A straightfor-
ward but crucial consequence of the fact that R is not a multiset is that r 󰃍 |R|−N 󰃍
|R|/2−1 and hence φ(r) < 2r. Further, by the definition of φ(r) and since φ(r) < ℓ, there
exists a vertex xr ∈ Tφ(r)+1 \ Tφ(r) such that d(tr, xr) = r + 1. The inequality φ(r) < 2r
implies that xr lies outside P and we observe that because of the distance condition,
xr ∕= x′

r for distinct r and r′ in R′. Note that φ(ri) > φ(rj) implies that xrj ∈ Tφ(ri).
Denote by r1 < r2 < · · · < rN the elements of R′, and let m the smallest index such

that φ(rm) 󰃍 φ(rN). By the preceding discussion, Tφ(rm) contains all vertices xri for every
i < m and contains also at least rN + 1 vertices from P . Hence, it has order at least

m+ rN 󰃍 m+ rm + (N −m) = rm +N 󰃍 rm + |R|/2

since the ri are distinct integers, which yields the result.

2.2 Graphs of minimum degree 3 and 4

Using Theorem 1, we are now ready to argue that the BNC almost holds for graphs of
minimum degree at least 3, and obtain Theorems 2 and 3. We use the following two
convenient theorems.

Theorem 9. [KW91] Every connected graph on n vertices each of degree at least 3 admits
a spanning tree with at least n

4
+ 2 leaves.

Theorem 10. [GW92] Every connected graph on n vertices each of degree at least 4
admits a spanning tree with at least 2n+8

5
leaves.

Proof of Theorem 2. Let G be a connected graph on n vertices each of degree at least 3.
By Theorem 9, there is a spanning tree T with at least n

4
+ 2 leaves. Let T ′ be the tree

obtained from T by deleting all leaves. Note that b(T ) 󰃑 b(T ′) + 1. By Theorem 1, we
have that

b(T ′) 󰃑
󰀩󰁶

4

3
·
󰀕
3

4
n− 2

󰀖󰀪
+ 1.

We derive that b(G) 󰃑 b(T ) 󰃑 ⌈
√
n ⌉+ 2.
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Proof of Theorem 3. Let G be a connected graph on n vertices each of degree at least 4.
By Theorem 10, there is a spanning tree T with at least 2n+8

5
leaves. Let T ′ be the tree

obtained from T by deleting all leaves. Note that b(T ) 󰃑 b(T ′) + 1. By Theorem 1, we
have that

b(T ′) 󰃑
󰀩󰁶

4

3
·
󰀕
3n− 8

5

󰀖󰀪
+ 1.

We derive that b(G)󰃑 b(T )󰃑 ⌈
√
n ⌉ when n is large enough (for example, if n󰃍 325).

3 Caterpillars Result

This section is devoted to the proof of Theorem 4. We start with another inductive result
similar to Lemma 8, that will be of use in the final step of the proof.

3.1 Inductive Lemmas

Lemma 11. For every k-caterpillar T and any integer r, either radius(T ) 󰃑 r or there
exists a subtree T ′ of T such that

1. T \ T ′ is connected,

2. radius(T ′) 󰃑 r, and

3. |V (T ′)| 󰃍 2r + 1− k.

Proof. The proof is based on an analogous argument as the one of Lemma 8: we consider
a maximum length path P = (t0, t1, . . . , tℓ) of T , we consider T to be rooted in tℓ, and
define Ti to be the subtree rooted in ti. We also define φ(r) to be the maximum i such
that Ti is contained in B(tr, r). Either φ(r) = 2r + 1, or there exists a vertex v ∕∈ P such
that

1. The closest vertex from v on P is tφ(r)+1, and

2. d(tφ(r)+1, v) = 2r − φ(r).

Since T is a k-caterpillar and P a maximum path, every vertex is at distance at most k
from P , and so 2r − φ(r) 󰃑 k. The latter inequality implies the desired result since Tφ(r)

contains at least the vertices t0, t1, . . . , tφ(r).

By applying repeatedly the previous lemma radius by radius we obtain the following
result for k-caterpillars.

Corollary 12. Let T be a tree of growth k and of order n. If R is a set of integers such
that

󰁓
r∈R(2r + 1− k) 󰃍 n, then T is R-burnable.
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Before starting the proof of the theorem, we state a final inductive lemma. The goal of
this lemma is to burn a large part of the caterpillar with the ball of maximum radius. This
part can either be a long path where all vertices attached are close to the path (d(u, v)
large and k small in the following statement) or the opposite, that is, a short path with
some vertices quite far away from the path (d(u, v) small and k large).

Lemma 13. Let R be a finite set of integers and denote by R its maximum element. Let
T be a tree and P a path in T with two endpoints u and v. Denote by Tu (respectively,
Tv) the connected component of T \ (P \ {u, v}) containing u (respectively, v), and define
k =maxx ∕∈V (Tu∪Tv) d(P, x). If Tu∪Tv+uv is (R\{R})-burnable and d(u, v)󰃑 2R−2k+2,
then T is R-burnable.

Proof. Define R′ =R\{R}, T ′ = (Tu∪Tv+uv) and TP = T \ (Tu∪Tv). By hypothesis, T ′

is R′-burnable so let us consider a set of vertices (xr)r∈R′ such that the balls BT ′(xr, r)r∈R′

cover T ′. We want to keep in T the same balls centered in the same vertices and add a
ball of radius R that covers every vertex not covered by those balls. Since T is a tree,
it is sufficient to show that no two non-covered vertices are at distance more than 2R
(centering the ball at the middle of a longest path in T between non-covered vertices
covers all of them).

Define W = V (T ) \ ∪r∈R′BT (xr, r) and assume for a contradiction that there exists
(x, y) ∈ W 2 such that dT (x, y) > 2R. We first define Ru = {r ∈ R′ : xr ∈ Tu}, similarly
Rv = R′ \ Ru, and:

rv = max
r∈Rv

(r − dT (xr, v)) and ru = max
r∈Ru

(r − dT (xr, u)).

It is evident that max(ru, rv) < R and observe also that any vertex w in W satisfies
d(w, u) > ru and d(w, v) > rv. Therefore, if z ∈ Tu ∩W , we derive that ru < d(z, u) < rv.
Hence, ru < rv and so Tu ∩W or Tv ∩W is empty.

Without loss of generality, assume that ru 󰃑 rv, so that Tv ∩ W = ∅. In particular,
neither x nor y can belong to Tv. Moreover, for any w ∈ W ∩ TP , observe that

d(w, u) + rv < d(w, u) + d(w, v) = d(u, v) + 2d(w, P ) 󰃑 2R + 2.

We are now able to derive a contradiction in every possible case:

1. If (x, y) ∈ T 2
P , then d(x, y) 󰃑 d(x, P ) + d(y, P ) + d(u, v)− 2 󰃑 2R.

2. If (x, y) ∈ T 2
u , then d(x, y) 󰃑 d(x, u) + d(y, u) 󰃑 2rv < 2R.

3. If (x, y) ∈ Tu × TP , then d(x, y) = d(x, u) + d(y, u) < rv + d(y, u) < 2R + 2.

The proof follows.
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3.2 Proof of Theorem 6

Let k and c be integers, and define f(k) = 4k2 + 5k− 2. If Theorem 6 is false, then there
exists a k-caterpillar T such that b(T )> ⌈

󰁳
|V (T )|+ c⌉> f(k), so let us assume now that

T is a minimum order such k-caterpillar.
To simplify notation, we will in the following denote n = |V (T )|, R = ⌈

√
n+ c ⌉ − 1

and R the set of integers {0, 1, . . . , R}, so that T is not R-burnable and R 󰃍 f(k).

Here is a simple claim on T that we will use often.

Claim 14. There is no integer R′ < R and subtree T ′ of T such that T \ T ′ is covered by
balls with radii between R′ and R such that |V (T ) \ V (T ′)| 󰃍

󰁓R
r=R′(2r + 1).

Proof. Since |V (T )|+ c 󰃑
󰁓R

r=0(2r + 1), we have that

|V (T ′)|+ c 󰃑
R′−1󰁛

r=0

(2r + 1).

Therefore, T ′ would be a smaller order counterexample contradicting the minimality of
T .

We now consider a spine S of T ; that is, a path of maximum length, so that every
vertex not in the path is at distance at most k from the path. We arbitrarily choose
s0 to be one endpoint of S, and for two vertices s′ and s′′ of S, we write s′ < s′′ if
d(s0, s

′) < d(s0, s
′′). In particular, s′ and s′′ are distinct.

Let us denote by R1 = {r ∈ R, (R + k)/2 < r 󰃑 R}. We now define the main object
in our approach. A sequence of pairs (ci, ri) ∈ V (S)×R1 for 1 󰃑 i 󰃑 t is admissible if

1. For all i < j, ri ∕= rj,

2. For all i, ci < ci+1 and d(ci, ci+1) = ri + ri+1 + 1,

3. For all i, Vi = V \ (∪j󰃑iB(cj, rj)) induces a connected subtree Ti of T , and

4. For all i, S ∩ Vi is a spine of Ti.

Phrased differently, we pack balls along the spine without disconnecting the tree nor
changing the spine.

Claim 15. Let C be an admissible sequence (ci, ri) for 1 󰃑 i 󰃑 t such that the sequence of
radii (r1, r2, . . . , rt) is lexicographically maximal. We then have that

1. t > |R1|− 2k, and

2. |∪t
i=1 B(ci, ri)| 󰃍

󰁓t
i=1(2ri + 1) + 2k2.
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Note that the maximality condition implies that this maximal sequence may obtained
by a process where at each step, we chose the largest remaining radii that keeps the se-
quence admissible.

Let us prove first that this claim implies our result. Let T ′ the subtree induced by
V \∪t

i=1B(ci, ri). SinceR′ =R1\{ri ∈R1, 1󰃑 i󰃑 t} contains less than 2k elements by the
first item of the claim, we can apply 2k times Lemma 11 to obtain a subtree T ′′ such that
T ′ \ T ′′ is covered by balls with radius in R′ and |V (T ′) \ V (T ′′)| 󰃍

󰁓
r∈R′(2r + 1)− 2k2.

Overall, T \T ′′ is coverable by balls of radius in R1 and |V (T ) \V (T ′′)| 󰃍
󰁓

r∈R1
(2r+1),

which is impossible by Claim 14.

Proof of Claim 15. Consider C as in the statement and fix some integer j 󰃑 t. Denote
V ′ = V \ ∪i󰃑jB(ci, ri). Note that T ′ = T [V ′] is a k-caterpillar, and that by assumption
S ′ = S ∩ V ′ is a spine of T ′. Let s′0 < s′1 < . . . < s′p the vertices of S ′. For a vertex v not
in the spine, we will say that v is pending to s′i if s

′
i is the closest vertex to v on the spine.

Let R′ =R1 \{ri ∈R1, 1 󰃑 i 󰃑 j}. Now by maximality of C we have that if r ∈R′, then:

1. Either j < t and r 󰃑 rj+1, or

2. The removal of B(s′r, r) disconnects T
′, or

3. The vertices s′2r+1, s
′
2r+2, . . . , s

′
p are no longer a spine of T ′ \B(sr, r).

If j = t or r > rj+1, then this implies that there is a vertex vr ∕∈ S ′ such that:

1. Either vr is in the subtree pending to s′i for some 2r−k󰃑 i󰃑 2r and d(s′0, vr) = 2r+1,
as vr is not covering it, or

2. The vertex vr is in the subtree pending to s′i for some 2r < i󰃑 2r+k and d(s′0, vr) =
2i− 2r, as the distance from s′i to that node must be 1 plus the distance to the last
node covered by s′2r+1.

We want to prove that all such vr are distinct. Let us say that vr is type 1 of it corre-
sponds to the first case above, and of type 2, otherwise. See Figure 3.1 for representation
of the two possibilities.

The distance to s′0 condition implies that elements of type 1 are pairwise distinct, and
same for elements of type 2. We conclude that the parity of this distance is odd in one
case and even in the other, which also forbids an element of type 1 to be equal to an
element of type 2.

If j = t, then this implies that we have at least |R′| vertices outside the spine such that
each of them are pending to some s′i for i between min{2r−k, r ∈R′}󰃍 3k (remember all
elements in R1 are at least (R+ k)/2 󰃍 2k) and max{2r + k, r ∈ R′} 󰃑 2R+ k. We now
use Lemma 13 applied to u = s′3k−1 and v = s′2R+k+1. We have that d(u, v) = 2R− 2k+2
and since T is not R-burnable, the tree T ′ denoted Tu + Tv + uv in the statement of
the lemma should not be R \ {R}-burnable. By the minimality of T , this implies that
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s00

type 1 type 2

s0i s0i

Figure 3.1: Vertices of type 1 and 2.

T \ T ′ contains at most 2R elements, which in turn implies that R′ contains less than 2k
elements, which is exactly the first item of the claim.

If j < t− 1, then we denote by R′′ the set {r ∈ R′, r > rj+1}. When R′′ is not empty,
we denote by r′′ the largest element of R′′. The discussion above implies that there are at
least |R′′| vertices outside the spine that are pending between s′2rj+1−k and s′2r′′+1+k. By

the definition of R1 = {r ∈ R, (R + k)/2 < r 󰃑 R}, we have that

2r′′ + 1 + k 󰃑 2R + k + 1 < 2rj+1 + 2rj+2 + 1− k,

implying that all those vertices outside the spine will be included into either B(cj+1, rj+1)
or B(cj+2, rj+2). In fact, they cannot be included in B(cj+1, rj+1) as for any r ∈ R′′,
d(s′0, vr) = 2r + 1 > 2rj+1 + 1, therefore they are only included in B(cj+2, rj+2) and are
not counted twice.

The total number of vertices outside the spine that will be included into the union of
the balls in our sequence is at least the number of times balls in R1 are rejected for a
smaller ball in the process. We claim that this number is at least R−mini󰃑t ri.

We let mj = mini󰃑j ri and observe first that at any time of the process, {ri, 1 󰃑 i 󰃑 j}
is never equal to the interval [mj, R] by Claim 14. Hence, there is at least one radius of
size greater that mj that has been rejected. Now consider each step j where we pick a
new minimum, that is mj = rj. We have rejected at least mj−1 − mj radii (at least 1
greater than mj−1 and mj−1−mj − 1 between mj and mj−1). Overall, this gives that the
number of total rejections is at least R−mt as claimed and this concludes the proof since

R−mt 󰃍 t 󰃍 |R1|− 2k + 1 󰃍 (R− k)/2− 2k + 1 󰃍 2k2,

where the last inequality comes from the assumption R 󰃍 f(k).

4 Conclusion and Further Directions

We provided the best known upper bound for the burning number of a connected graphs,
and have shown that the burning graph conjecture is asymptotically true for k-caterpillars.
We can in fact prove that this extends to Conjecture 7 with analogous arguments, though
we do not go into details. In this case, we can also do a finer analysis to modify the bound
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in Theorem 6 from O(k4) to O(k2), though it did not seem to us enough to justify an
additional few pages of proofs.

The two proofs of Theorem 1 and Theorem 6 may seem similar in approach: in both
cases, we consider a maximum order path and try to place large balls centered on the
path in a greedy fashion. However, the induction makes a big difference: in the case of
Theorem 6, we pick a maximum path initially and all balls chosen will be centered on the
path, whereas in the proof the Theorem 1, at each step we take a new maximum path
before removing a ball centered on it, so that in the next step, the new maximum path
might not be a subpath of the previous one. In this proof, the set of centers constructed
may not lie on a common path. One might wonder if the BNC could be true with the
additional requirement that all balls are centered along some path. This is not the case,
as can be seen by considering the graph obtained from a star with p leaves by subdividing
each edge p times.

Theorem 4 states that, for a fixed value of k, there are a finite number of graphs that
could be counterexample of the BNC. As it is now, the statement induces a large number
of cases, it would be interesting to reduce this number enough to obtain a computer-based
proof of the BNC for small values of k.

Addendum

Since the publication and advertisement of the present contribution, Norin and Turcotte
solved The Burning Number Conjecture asymptotically [NT22], using radically new ideas.
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