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Abstract

Let G be a finite abelian group. It is well known that every sequence S over G of
length at least |G| contains a zero-sum subsequence of length at most h(S), where
h(S) is the maximal multiplicity of elements occurring in S. It is interesting to study
the corresponding inverse problem, that is to find information on the structure of
the sequence S which does not contain zero-sum subsequences of length at most
h(S). Under the assumption that |

󰁓
(S)| < min{|G|, 2|S| − 1}, Gao, Peng and

Wang showed that such a sequence S must be strictly behaving. In the present
paper, we explicitly give the structure of such a sequence S under the assumption
that |

󰁓
(S)| = 2|S|− 1 < |G|.

Mathematics Subject Classifications: 11B75, 11P70

1 Introduction

Let Z, N and N0 denote the set of integers, positive integers, and nonnegative integers,
respectively. For a, b ∈ Z, let [a, b] = {x ∈ Z : a 󰃑 x 󰃑 b}.

Let G be an abelian group (written additively) and F(G) be the free abelian (multi-
plicative) monoid with basis G. The elements of F(G) are called sequences over G. We
write a sequence S ∈ F(G) in the form

S = g1 · . . . · gr =
󰁜

g∈G

gvg(S),

where r ∈ N0, g1, . . . , gr ∈ G and vg(S) ∈ N0. We call vg(S) the multiplicity of g in S
and |S| = r =

󰁓
g∈G vg(S) ∈ N0 the length of S. The identity of F(G), denoted by 1,

is called the empty sequence, which is simply the sequence having no terms. Denote by
supp(S) = {g ∈ G : vg(S) > 0} the support of S and by h(S) = max{vg(S) : g ∈ G} the
height of S.
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A sequence S1 is called a subsequence of S if S1|S in F(G) (i.e. vg(S1) 󰃑 vg(S) for all
g ∈ G), and called a proper subsequence of S if S1 is a nonempty subsequence of S with
S1 ∕= S. If S1 is a subsequence of S, we use S(S1)

−1 to denote the sequence obtained by
deleting the terms of S1 from S (equivalently, S = (S(S1)

−1) · S1).
For a sequence S as above and k ∈ N, define

• σ(S) =
r󰁓

i=1

gi =
󰁓
g∈G

vg(S)g ∈ G the sum of S;

• Σ(S) = {σ(T ) : T |S, T ∕= 1} the subsum set of S;

• Σ0(S) = Σ(S) ∪ {0};

• Σk(S) = {σ(T ) : T |S, |T | = k} the set of k-term subsums of S;

• Σ󰃑k(S) =
󰁖k

i=1 Σi(S).

A sequence S is called

• zero-sum if σ(S) = 0;

• minimal zero-sum if S is not empty, σ(S) = 0 and σ(T ) ∕= 0 for every proper
subsequence T |S;

• zero-sum free if 0 ∕∈ Σ(S).

As a fundamental result in zero-sum theory, the following theorem has been used in
many papers, see e.g. [4, 5, 7, 12].

Theorem 1 ([1, 3, 15]). Let S ∈ F(G) be a sequence of length 󰃍 |G|, then S contains a
zero-sum subsequence of length in [1, h(S)], that is, 0 ∈

󰁓
󰃑h(S)(S).

The example S =
󰁔

g∈G\{0}
g shows that the lower bound on |S| can not be relaxed.

It is natural to ask what can we say about the structure of S when 0 ∕∈
󰁓

󰃑h(S)(S). In

[6], Gao et al. proved a result on the structure of such S under some additional condition.
To state the main theorem of [6], they introduced a definition which can be viewed as the
modification of [14, Proposition 4] and [8, Definition 5.1.3].

Definition 2 ([6]). Let S ∈ F(G) be a sequence over an abelian group G. S is called
strictly g-behaving (strictly behaving for short) for some g ∈ G if S = (n1g)(n2g) · · · (nrg),
where |S| = r ∈ N, 1 = n1 󰃑 · · · 󰃑 nr 󰃑 ord(g) and nt 󰃑

󰁓t−1
i=1 ni for all t ∈ [2, r].

Clearly, if S ∈ F(G) is strictly g-behaving, then
󰁓

(S) = {g, 2g, . . . , ng} where n =
min{ord(g),

󰁓r
i=1 ni}. Also, if |S| 󰃍 2, then h(S) 󰃍 vg(S) 󰃍 2.

Theorem 3 ([6]). Let G be an abelian group and S ∈ F(G) a sequence such that
〈supp(S)〉 = G, where 〈supp(S)〉 denotes the subgroup of G generated by supp(S). If
0 ∕∈

󰁓
󰃑h(S)(S), then either S is strictly g-behaving for some g ∈ G or |

󰁓
(S)| 󰃍

min{|G|, 2|S|− 1}.
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As shown in [6], a lot of well-known results, including those in [2, 11, 13, 14, 16, 17],
are special cases or corollaries of the theorem.

In the present paper, we take a step forward and give the structure of S such that the
equality in Theorem 3 holds.

Theorem 4. Let G be an abelian group and S ∈ F(G) a sequence with |S| = r and
〈supp(S)〉 = G. Suppose that 0 ∕∈

󰁓
󰃑h(S)(S) and |

󰁓
(S)| = 2r − 1 󰃑 |G| − 1. Then one

of the following holds.

(I) S = (n1a)(n2a) · · · (nra), where S is strictly a-behaving and n1+· · ·+nr = 2r−1 󰃑
ord(a)− 1.

(II) S = ar−1b, where ord(a) 󰃍 r and b ∕∈ {−(r − 2)a, . . . ,−a, 0, a, 2a, . . . , (r − 1)a}.

(III) S = au(a + e)ve, where ord(e) = 2, u 󰃍 v 󰃍 0 and r = u + v + 1 󰃑 ord(a + 〈e〉)
in G/〈e〉.

(IV) S = au(a + e)v, where ord(e) = 2, u 󰃍 v 󰃍 1 and r = u + v 󰃑 ord(a + 〈e〉) in
G/〈e〉.

(V) S = ar−2bc, where ord(a) = r 󰃍 3, b, c ∕∈ 〈a〉, b− c ∈ 〈a〉 \ {0} and b+ c = a.

(VI) S = ar−2b2, where r 󰃍 4, ord(a) = r, b ∕∈ 〈a〉 and 2b = 3a.

(VII) r = 3 and S = (−a)a(2a), where ord(a) 󰃍 6.

(VIII) r = 4 and S = (−2a)2a2 or S = (−2a)(−a)a(2a), where ord(a) 󰃍 8.

(IX) r = 4 and S = (−a)a(−b)b, where ord(a) = 4, b ∕∈ 〈a〉 and 2b ∈ 〈a〉 \ {0}.

(X) r = 6 and S = a3(5a)3, where ord(a) = 12.

If S is a zero-sum free sequence or a subset of G \ {0}, then it is clear that 0 ∕∈󰁓
󰃑h(S)(S). Applying Theorems 3 and 4, it is easy to deduce the following two corollaries,

which generalize Theorem 1.2 of [17] and the main result of [10] respectively.

Corollary 5. Let G be an abelian group and S ∈ F(G) a zero-sum free sequence with
|S| = r and 〈supp(S)〉 = G. Suppose that |

󰁓
(S)| 󰃑 2r − 1. Then one of the following

holds.

(i) S = (n1a)(n2a) · · · (nra), where S is strictly a-behaving and n1+· · ·+nr 󰃑 min{2r−
1, ord(a)− 1}.

(ii) S = ar−1b, where ord(a) 󰃍 r and b ∕∈ {−(r − 1)a, . . . ,−a, 0, a, 2a, . . . , (r − 1)a}.

(iii) S = au(a+ e)ve, where ord(e) = 2, u 󰃍 v 󰃍 0 and r = u+ v + 1 󰃑 ord(a+ 〈e〉) in
G/〈e〉.
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(iv) S = au(a + e)v, where ord(e) = 2, u 󰃍 v 󰃍 1, r = u + v 󰃑 ord(a + 〈e〉) in G/〈e〉
and σ(S) = (u+ v)a+ ve ∕= 0.

(v) S = ar−2bc, where ord(a) = r 󰃍 3, b, c ∕∈ 〈a〉, b− c ∈ 〈a〉 \ {0} and b+ c = a.

Corollary 6. Let S be a generating subset of an abelian group G such that 0 ∕∈ S and
|S| 󰃍 5. Then |

󰁓
(S)| 󰃍 min{|G|, 2|S|}.

2 Some tools

In this section, we collect some useful tools and some technical lemmas, which will be
frequently used in the subsequent sections.

Lemma 7. Let G be an abelian group and S ∈ F(G) such that G = 〈supp(S)〉 and
0 ∕∈

󰁓
󰃑h(S)(S). Then |

󰁓
(S)| 󰃍 |S|, and the equality holds if and only if S = a|S| for

some a ∈ G with |S| < ord(a).

Proof. The case when |S| = 1 is trivial. From now on, assume that |S| 󰃍 2. We will show
that |

󰁓
(S)| 󰃑 |S| if and only if S = a|S| with |S| < ord(a).

First suppose that S = a|S| with |S| < ord(a). Then
󰁓

(S) = {a, 2a, . . . , |S|a} and
hence |

󰁓
(S)| = |S|.

Next suppose that |
󰁓

(S)| 󰃑 |S|. Since 0 ∕∈
󰁓

󰃑h(S)(S), Theorem 1 implies |S| < |G|.
Then we have |

󰁓
(S)| 󰃑 |S| < min{|G|, 2|S| − 1}. Now Theorem 3 implies that S is

strictly a-behaving for some a ∈ G. Let S = (n1a)(n2a) · · · (nra), where |S| = r ∈ N and
ni ∈ [1, ord(a)− 1] for all i ∈ [1, r]. Hence |

󰁓
(S)| = n1 + n2 + · · ·+ nr 󰃍 r. Recall that

|
󰁓

(S)| 󰃑 r. Hence |
󰁓

(S)| = r, which implies that ni = 1 for all i ∈ [1, r]. Therefore
S = ar with r < ord(a).

Lemma 8 ([6, Lemma 2.4]). Let S = S1·S2 ∈ F(G) be a sequence such that Stab(
󰁓

(S)) =
{0}, where Stab(C) := {g ∈ G : g + C = C} denotes the stabilizer of C for C ⊂ G.
Then |

󰁓
(S)| 󰃍 |

󰁓
(S1)| + |

󰁓
0(S2)| − 1. In particular, if 0 ∈

󰁓
(S), then |

󰁓
(S)| 󰃍

|
󰁓

0(S1)|+ |
󰁓

0(S2)|− 1.

Lemma 9. (i) Let S = a1a2a3 be a zero-sum free sequence, where a1, a2, a3 are pairwise
distinct. Suppose that ord(ai) ∕= 2 for all i ∈ [1, 3]. Then |

󰁓
(S)| 󰃍 6 and |

󰁓
0(S)| 󰃍 7.

(ii) Let S = a1a2a3 ∈ F(G \ {0}), where a1, a2, a3 are pairwise distinct and ai+ aj ∕= 0
for all distinct i, j ∈ [1, 3]. Then |

󰁓
0(S)| 󰃑 7 if and only if a3 = ±a1 ± a2.

Proof. Part (i) is the second result of Proposition 5.3.2 of [9].
Now we prove Part (ii). All possible elements of

󰁓
0(S) are listed as follows:

0, a1, a2, a3, a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3.

Then |
󰁓

0(S)| 󰃑 7 if and only if these eight elements are not pairwise distinct. Recall
that a1, a2, a3 are pairwise distinct and ai + aj ∕= 0 for all distinct i, j ∈ [1, 3]. It follows
that |

󰁓
0(S)| 󰃑 7 if and only if one of the following equalities holds:

a3 = a1 + a2, a2 = a1 + a3, a1 = a2 + a3, 0 = a1 + a2 + a3.

Therefore |
󰁓

0(S)| 󰃑 7 if and only if a3 = ±a1 ± a2.
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Lemma 10. (1) Let S = a1a2a3a4 ∈ F(G \ {0}), where a1, a2, a3, a4 are pairwise distinct
and ai + aj ∕= 0 for all distinct i, j ∈ [1, 4]. Let Ti = Sa−1

i for all i ∈ [1, 4]. Suppose that
|
󰁓

0(Ti)| 󰃑 7 for all i ∈ [2, 4]. Then ord(a1) = 3. Suppose further that |
󰁓

0(T1)| 󰃑 7.
Then |

󰁓
(S)| = |〈supp(S)〉|− 1 = 8.

(2) Let S = a1a2a3a4a5 ∈ F(G \ {0}), where a1, a2, a3, a4, a5 are pairwise distinct and
ai + aj ∕= 0 for all distinct i, j ∈ [1, 5]. Then there exists a subsequence T |S of length
|T | = 3 such that |

󰁓
(T ) \ {0}| = 7.

Proof. (1) By Lemma 9 (ii), we have

a1 = λ1a2 + µ1a3, a1 = λ2a2 + µ2a4 and a1 = λ3a3 + µ3a4,

where λi, µj ∈ {1,−1} for all i, j ∈ [1, 3].
If λ1 = λ2, then µ1a3 = µ2a4, that is a3 = a4 or a3 + a4 = 0, a contradiction. Hence

λ1 = −λ2. By the same argument, we have µ1 = −λ3 and µ2 = −µ3. It follows that

3a1 = (λ1 + λ2)a2 + (µ1 + λ3)a3 + (µ2 + µ3)a4 = 0.

Thus ord(a1) = 3. This completes the proof of the first part of (1).
Now suppose further that |

󰁓
0(T1)| 󰃑 7 and let H = 〈supp(S)〉. By the proof above,

we have ord(ai) = 3 for all i ∈ [1, 4]. Since a1, a2, a3, a4 are pairwise distinct and ai+aj ∕= 0
for all distinct i, j ∈ [1, 4], we infer that any two elements of S are independent. Applying
Lemma 9 (ii) to T3 and T4, we have a4 = ±a1 ± a2 and a3 = ±a1 ± a2. Then H = 〈a1, a2〉
and hence |H| = 9.

Finally we calculate the value of |
󰁓

(S)|. Since a3 ∕= a4, a3 + a4 ∕= 0 and the roles of
a3 and a4 are the same, we only need to consider the following four cases:

(a3, a4) = (a1 + a2, a1 − a2), (a1 + a2,−a1 + a2), (−a1 − a2, a1 − a2), (−a1 − a2,−a1 + a2).

Direct calculation shows that
󰁛

0
(S) = H \ {2a2}, H \ {2a1}, H \ {2a1 + a2}, H \ {a1 + 2a2}

in these four cases, respectively. Hence |
󰁓

0(S)| = |H|− 1 = 8.
(2) Suppose to the contrary that such subsequence T does not exist. By Lemma 9 (ii),

we have a3, a4, a5 ∈ {±a1 ± a2}. Hence two elements among a3, a4, a5 are equal or have
sum zero, a contradiction.

Lemma 11. Let S = a2b2 be a zero-sum free sequence. Suppose that S is not strictly
behaving and 2a ∕= 2b. Then |

󰁓
(S)| = 8.

Proof. All possible elements of
󰁓

(S) are

a, b, a+ b, 2a, 2b, 2a+ b, a+ 2b, 2a+ 2b.

The assumption implies that above elements are pairwise distinct. Therefore |
󰁓

(S)| =
8.
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Lemma 12. Let T ∈ F(G) be a strictly a-behaving sequence with |T | = k 󰃍 2, and
let S = T · b be such that S is not strictly a-behaving, |

󰁓
(S)| < |〈supp(S)〉| and 0 ∕∈󰁓

󰃑h(S)(S). Suppose that |
󰁓

(S)| 󰃑 2|S| − 1 = 2k + 1. Then ord(a) > k, T = ak and

b ∕∈ {−(k − 1)a, . . . ,−a, 0, a, . . . , ka}. In this case, |
󰁓

(S)| = 2|S|− 1.

Proof. Since 0 ∕∈
󰁓

󰃑h(S)(S), we have 0 ∕∈
󰁓

󰃑h(T )(T ). Then Theorem 1 implies that

|T | = k < ord(a).
Let T = au(n1a) · · · · · (nva) where 2 󰃑 n1 󰃑 · · · 󰃑 nv, u + v = k, u 󰃍 2 and v 󰃍 0.

Let t = u+ n1 + · · ·+ nv.
First suppose that t 󰃍 ord(a). Since S is not strictly a-behaving, we have b ∕∈ 〈a〉.

Then
󰁓

(S) = 〈a〉 ∪ (b + 〈a〉) and hence |
󰁓

(S)| = 2ord(a) 󰃍 2(k + 1) > 2k + 1, a
contradiction.

Next suppose that t < ord(a). If b ∕∈ {−(t− 1)a, . . . , ta}, then
󰁓

(S) = {a, . . . , ta} ∪
{b, b + a, . . . , b + ta} and |

󰁓
(S)| = 2t + 1. Recall that |

󰁓
(S)| 󰃑 2k + 1. Then k 󰃍 t 󰃍

u+2v = k+ v. Hence v = 0, u = k, t = k and T = ak, as desired. If b ∈ {a, . . . , ta}, then
S is strictly a-behaving, a contradiction. If b ∈ {−(t − 1)a, . . . ,−a, 0}, that is b = −γa
for some γ ∈ [0, t− 1], then

󰁓
(S) = {−γa, . . . , ta}. Since |

󰁓
(S)| < |〈supp(S)〉|, we infer

that |
󰁓

(S)| = t+ γ + 1 < ord(a). Then we have 2k + 1 󰃍 t+ γ + 1 󰃍 u+ 2v + γ + 1 =
2k − u + γ + 1 and so γ 󰃑 u. Note that baγ is a zero-sum subsequence of length γ + 1.
Since 0 ∕∈

󰁓
󰃑h(S)(S), we have γ + 1 > h(S) 󰃍 u and hence γ = u. Since γ 󰃑 t − 1, we

have v 󰃍 1. Since T is strictly a-behaving, we have n1 󰃑 u. Therefore b(n1a)a
u−n1 is a

zero-sum subsequence of length u− n1 + 2 󰃑 u 󰃑 h(S), a contradiction.

Lemma 13 ([13, Theorem 4.5] and [18, Lemma 4.4]). Let G be an abelian group, Y ⊂
X ⊂ G \ {0}, G = 〈X〉 and H = 〈Y 〉. Suppose |H| > m and |G/H| > m, where m ∈ N,
and suppose A ⊂ G satisfies |(A+x)\A| 󰃑 m for all x ∈ X. Then min{|A|, |G\A|} 󰃑 m2.

The following notation will be used.
For S ∈ F(G) and g ∈ G, define

λS(g) =
󰀏󰀏󰀏
󰁛

(S · g) \
󰁛

(S)
󰀏󰀏󰀏 .

Lemma 14 ([6, Lemma 2.8]). λS(g) 󰃑 λSg−1(g) for every g|S.

3 Some special cases

In this section, we prove some special cases of Theorem 4. Throughout the section, we
assume that G is an abelian group, S ∈ F(G) with G = 〈supp(S)〉, 0 ∕∈

󰁓
󰃑h(S)(S) and

|
󰁓

(S)| = 2|S|− 1 󰃑 |G|− 1.

Lemma 15. If |S| 󰃑 3, then Theorem 4 holds.

Proof. Suppose |S| = 1. Then S is strictly behaving and we are done.
Suppose |S| = 2 and let S = a1a2 for some a1, a2 ∈ G. If a1 = a2, then

󰁓
(S) =

{a1, 2a1} and |
󰁓

(S)| = 2 < 2|S|− 1, a contradiction. If a1 ∕= a2, then S satisfies (II).

the electronic journal of combinatorics 30(4) (2023), #P4.21 6



Suppose |S| = 3 and let S = a1a2a3 for some a1, a2, a3 ∈ G. If a1 = a2 = a3, then
|
󰁓

(S)| = 3 < 2|S|− 1, a contradiction. If a1 = a2 and a3 ∕= a1, then
󰁛

(S) = {a1, 2a1} ∪ {a3, a3 + a1, a3 + 2a1}.

Since |
󰁓

(S)| = 2|S| − 1 = 5, we have a3 ∕∈ {−a1, 0, a1, 2a1} and so S satisfies (II). If
a1, a2, a3 are pairwise distinct, then all possible elements of

󰁓
(S) are

a1, a2, a3, a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3.

Note that a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3 are pairwise distinct. Hence
󰁛

(S) = {a1, a2, a3} ∪ {a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3}.

Since |
󰁓

(S)| = 5, there are exactly two elements of {a1, a2, a3}, say a2 and a3, contained
in {a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3}. Then a2 ∈ {a1 + a3, a1 + a2 + a3} and a3 ∈
{a1 + a2, a1 + a2 + a3}. If a2 = a1 + a3 and a3 = a1 + a2, then a1 = a2 − a3 and
2a1 = 0. Hence S = a3a2a1 = a3(a3 + a1)a1, satisfying (III). If a2 = a1 + a3 and
a3 = a1 + a2 + a3, then a1 = −a2 and a3 = a2 − a1 = 2a2. Hence S = (−a2)a2(2a2),
satisfying (VII). If a2 = a1+a2+a3 and a3 = a1+a2, then a1 = −a3 and a2 = 2a3. Hence
S = a1a3a2 = (−a3)a3(2a3), satisfying (VII).

Lemma 16. Let S = aub2, where u 󰃍 2 and a ∕= b. Then Theorem 4 holds.

Proof. Since 0 ∕∈
󰁓

󰃑h(S)(S), we have ord(a) > u and b ∕∈ {−(u − 1)a, . . . ,−a, 0}. If b ∈
{a, . . . , ua}, then S is strictly a-behaving and so S satisfies (I). If b = −ua, then

󰁓
(S) =

{−2ua, (−2u + 1)a, . . . ,−a, 0, a, . . . , ua}. Since
󰁓

(S) ∕= G, we infer that |
󰁓

(S)| =
3u+ 1 < ord(a). Then 2u+ 3 = 2|S|− 1 = |

󰁓
(S)| = 3u+ 1 and so u = 2, which shows

that S satisfies (VIII).
It remains to consider the case when b ∕∈ {−ua, . . . ,−a, 0, a, . . . , ua}. Since

󰁛
(S) = {a, . . . , ua} ∪ (b+ {0, a, . . . , ua}) ∪ (2b+ {0, a, . . . , ua}),

where (b+{0, a, . . . , ua})∩{a, . . . , ua} = ∅ and (b+{0, a, . . . , ua})∩(2b+{0, a, . . . , ua}) =
∅, we have

|{a, . . . , ua} ∪ (2b+ {0, a, . . . , ua})| =
󰀏󰀏󰀏
󰁛

(S)
󰀏󰀏󰀏− |b+ {0, a, . . . , ua}| = u+ 2,

and hence
|{a, . . . , ua} \ (2b+ {0, a, . . . , ua})| = 1,

which implies that 2b ∈ 〈a〉. First suppose ord(a) = u + 1. Then {a, . . . , ua} ⊂ (2b +
{0, a, . . . , ua}), a contradiction. Next suppose ord(a) = u + 2. Then 2b ∈ {a, 2a, 3a}, for
otherwise there is some t ∈ [0, u − 2] such that atb2 is a zero-sum subsequence of length
t+2 󰃑 u 󰃑 h(S). If 2b = a, then S is strictly b-behaving and so S satisfies (I). If 2b = 2a,
then S satisfies (IV). If 2b = 3a, then S satisfies (VI). Finally suppose ord(a) 󰃍 u + 3.
Then 2b = 2a or 2b = −a. If 2b = 2a, then S satisfies (IV). If 2b = −a, then u = 2 and
S = (−2b)2b2, satisfying (VIII).
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Lemma 17. Let S = aubc, where u 󰃍 2 and a, b, c are pairwise distinct. Then Theorem
4 holds.

Proof. Note that
󰁓

(S) is the union of the following sets:

{a, 2a, . . . , ua}, b+ {0, a, 2a, . . . , ua}, c+ {0, a, 2a, . . . , ua}, b+ c+ {0, a, 2a, . . . , ua}.

If b ∈ {a, 2a, . . . , ua}, then aub is strictly a-behaving. Applying Lemma 12, we have S is
strictly a-behaving. If b ∈ {−(u − 1)a, . . . ,−a, 0}, then 0 ∈

󰁓
󰃑h(S)(S), a contradiction.

If b = −ua and ord(a) 󰃑 2u + 1, then
󰁓

(aub) = 〈a〉. Since
󰁓

(S) ∕= G, we have
c ∕∈ 〈a〉 and so |

󰁓
(S)| = 2ord(a) ∕= 2|S| − 1, a contradiction. If b = −ua and ord(a) >

2u + 1, then
󰁓

(aub) = {−ua, . . . ,−a, 0, a, . . . , ua} and λSc−1(c) = 2. Hence c = ±2a.
Note that c = 2a implies that au−1bc is a zero-sum subsequence of length u = h(S),
a contradiction. Also note that c = −2a implies that u = 2 and b = −2a = c, a
contradiction. Therefore we may assume b ∕∈ {−ua, . . . ,−a, 0, a, . . . , ua}. Also we may
assume c ∕∈ {−ua, . . . ,−a, 0, a, . . . , ua} for the same reason.

Set A = (b + {0, a, . . . , ua}) ∪ (c + {0, a, . . . , ua}) and B = {a, . . . , ua} ∪ (b + c +
{0, a, . . . , ua}). The assumptions on b and c show that A ∩ B = ∅. Since 0 ∕∈

󰁓
󰃑h(S)(S),

we have ord(a) 󰃍 u + 1. If ord(a) = u + 1, then |A| ∈ {u + 1, 2u + 2} and |B| ∈
{u + 1, 2u + 1}. So 2u + 3 = |

󰁓
(S)| = |A| + |B| ∈ {2u + 2, 3u + 2, 3u + 3, 4u + 3}, a

contradiction. Now suppose that ord(a) 󰃍 u + 2. Clearly, |A| 󰃍 u + 2 and |B| 󰃍 u + 1.
Since 2u + 3 󰃑 |A| + |B| = |

󰁓
(S)| = 2|S| − 1 = 2u + 3, we obtain |A| = u + 2 and

|B| = u+ 1. That |B| = u+ 1 implies b+ c = a. If ord(a) = u+ 2, then S satisfies (V).
If ord(a) 󰃍 u + 3, it follows from |A| = u + 2 that b = c + a or c = b + a. Together with
b+ c = a, we have 2c = 0 or 2b = 0, which show that S satisfies (III).

4 Proof of Theorem 4

Now we are in the position to complete the proof of Theorem 4.

Proof of Theorem 4. Assume that the theorem is false and let S be a counterexample with
minimal length. Recall the assumptions on S that G = 〈supp(S)〉, 0 ∕∈

󰁓
󰃑h(S)(S) and

|
󰁓

(S)| = 2r− 1 󰃑 |G|− 1. Note that |S| = r 󰃍 4 by Lemma 15 and that |supp(S)| 󰃍 2.
Claim A. Sg−1 is not strictly behaving for all g|S.
Proof of Claim A. Suppose to the contrary that Sg−1 is strictly a-behaving for

some g|S and a ∈ G. Since S is not strictly a-behaving, by Lemma 12 S satisfies (II), a
contradiction.

Claim B. 〈supp(Sg−1)〉 = G for all g|S.
Proof of Claim B. Suppose to the contrary that 〈supp(Sg−1)〉 ∕= G for some g|S.

Clearly,
󰁓

(S) =
󰁓

(Sg−1) ∪ (g +
󰁓

0(Sg
−1)) and

2r − 1 =
󰀏󰀏󰀏
󰁛

(S)
󰀏󰀏󰀏 =

󰀏󰀏󰀏
󰁛

(Sg−1)
󰀏󰀏󰀏+

󰀏󰀏󰀏g +
󰁛

0
(Sg−1)

󰀏󰀏󰀏 󰃍 2
󰀏󰀏󰀏
󰁛

(Sg−1)
󰀏󰀏󰀏 ,

hence |
󰁓

(Sg−1)| 󰃑 r−1 = |Sg−1|. By Lemma 7, Sg−1 is strictly behaving, a contradiction
with Claim A. This proves Claim B.
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Claim C. λSg−1(g) 󰃑 1 for all g|S.
Proof of Claim C. Suppose to the contrary that λSg−1(g) 󰃍 2 for some g|S. Let

T = Sg−1. By Claim B, 〈supp(T )〉 = G. Since 0 ∕∈
󰁓

󰃑h(S)(S), we have 0 ∕∈
󰁓

󰃑h(T )(T ).

Note that |
󰁓

(T )| 󰃑 |
󰁓

(S)| − 2 = 2r − 3 = 2|T | − 1 󰃑 |G| − 3. If |
󰁓

(T )| < 2|T | − 1,
then we can apply Theorem 3 to T and obtain that T is strictly behaving, a contradiction
with Claim A. Thus |

󰁓
(T )| = 2|T | − 1 and λT (g) = 2. By the minimality of |S|, the

main theorem holds for T . Thus we just need to check all possible cases given in the main
theorem. Since T is not strictly behaving, T does not satisfy (I). Since |

󰁓
(T )| 󰃑 |G|− 3,

T does not satisfy (V), (VI), (IX) or (X). If T satisfies (II), then S = ar−1b, S = ar−2b2

or S = ar−2bc, which have been proven in Lemmas 12, 16 and 17.
Suppose T satisfies (III), that is, T = au

′
(a+ e)v

′
e. Note that

󰁛
(T ) = {e, a, a+ e, 2a, 2a+ e, . . . , (u′ + v′)a, (u′ + v′)a+ e},

where 2 󰃑 u′+ v′ 󰃑 ord(a+ 〈e〉)− 2. Since λT (g) = 2, we have |(g+
󰁓

0(T )) \
󰁓

(T )| = 2.
Then we infer that g = a or g = a + e, both of which imply that S satisfies (III), a
contradiction.

Suppose T satisfies (IV), that is, T = au
′
(a+ e)v

′
. Note that

󰁛
(T ) = {a, a+ e, 2a, 2a+ e, . . . , (u′ + v′ − 1)a, (u′ + v′ − 1)a+ e, σ(T )},

where 3 󰃑 u′ + v′ 󰃑 ord(a + 〈e〉) − 1. Again we have |(g +
󰁓

0(T )) \
󰁓

(T )| = 2 and so
g ∈ {e, a, a+e} or g = σ(T ) ∈ {−a,−a+e}. If g = e, then S satisfies (III), a contradiction.
If g ∈ {a, a+ e}, then S satisfies (IV), a contradiction. If g = σ(T ) ∈ {−a,−a+ e}, then
0 ∈

󰁓
󰃑2(S) ⊂

󰁓
󰃑h(S)(S), a contradiction.

Finally suppose that T satisfies (VII) or (VIII). Clearly,
󰁓

(T ) is an arithmetic pro-
gression with difference a and 0 ∈

󰁓
(T ). Recall that |

󰁓
(T )| 󰃑 |G| − 3 = ord(a) − 3.

Since λT (g) = 2, we have g ∈ {2a,−2a}. If T = (−a)a(2a), then g = −2a and
S = (−2a)(−a)a(2a), satisfying (VIII), a contradiction. If T = (−2a)2a2 or T =
(−2a)(−a)a(2a), then 0 ∈

󰁓
󰃑h(S)(S), a contradiction.

This completes the proof of Claim C.
Claim C, together with Lemma 14, implies that λS(g) 󰃑 λSg−1(g) 󰃑 1 for all g|S.
Claim D. |

󰁓
(S)| = |G|− 1.

Proof of Claim D. First suppose that there exists some g|S such that G ∕= 〈g〉. Then
applying Lemma 13 with m = 1, X = supp(S), Y = {g} and A =

󰁓
(S), we obtain that

|
󰁓

(S)| 󰃍 |G|− 1 and hence the equality holds. Therefore we may assume that G = 〈g〉
for all g|S.

Suppose to the contrary that Claim D does not hold, that is, |
󰁓

(S)| 󰃑 |G|−2. Choose
g|S. If λS(g) = 0, then

󰁓
(S) =

󰁓
(S) + 〈g〉 = G, a contradiction. Hence λS(g) = 1 and

so
󰁓

(S) is an arithmetic progression with difference g. Choose another g′|S such that
g′ ∕= g. By Claim C, |(

󰁓
(S) + g′) \ (

󰁓
(S))| 󰃑 λS(g

′) 󰃑 1. Since |
󰁓

(S)| 󰃑 |G| − 2 and󰁓
(S) is an arithmetic progression with difference g, we have g′ = −g. By the arbitrariness

of g′, we infer that supp(S) = {g,−g}. Note that g(−g) is a zero-sum subsequence of S.
Hence h(S) 󰃑 1 and so |S| = 2, a contradiction.
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This completes the proof of Claim D.
From Claim D, it follows that

|S| = r =
|G|
2

and Stab
󰀓󰁛

(S)
󰀔
= {0}. (1)

Also, we have
λS(g) = λSg−1(g) = 1 for all g|S. (2)

Claim E. |
󰁓

0(T )| < |〈supp(T )〉| for any nonempty proper subsequence T |S.
Proof of Claim E. Suppose to the contrary that

󰁓
0(T ) = 〈supp(T )〉 for some

nonempty proper subsequence T |S. First assume that
󰁓

(ST−1) ∩ 〈supp(T )〉 ∕= ∅. Then
0 ∈

󰁓
(S) and so

󰁓
(S) =

󰁓
0(T ) +

󰁓
0(ST

−1) = 〈supp(T )〉+
󰁓

0(ST
−1),

a contradiction with that Stab (
󰁓

(S)) = {0}.
Now let

󰁓
(ST−1) ∩ 〈supp(T )〉 = ∅. Let H = 〈supp(T )〉 and Φ : G → G/H denote

the natural homomorphism modulo H. Consider the sequence Φ(ST−1) ∈ F(G/H).
Since

󰁓
(ST−1) ∩ 〈supp(T )〉 = ∅, Φ(ST−1) is a zero-sum free sequence in F(G/H).

Thus |
󰁓

(Φ(ST−1))| 󰃍 |Φ(ST−1)| = |S| − |T |, where the equality holds if and only if
|supp(Φ(ST−1))| = 1. By Lemma 7, |

󰁓
0(T )| 󰃍 |T |+ 1. We have

2|S|− 1 = |
󰁓

(S)| 󰃍 |
󰁓

(Φ(ST−1))||
󰁓

0(T )|+ |
󰁓

(T )| 󰃍 (|S|− |T |)(|T |+ 1) + |T |,
and hence |T | = |S| − 1 or |T | = 1. If |T | = |S| − 1, it contradicts Claim B. If |T | = 1,
then |H| = |

󰁓
0(T )| = |T |+1 = 2 and supp(Φ(ST−1)) = 1, which implies that S satisfies

(III), a contradiction.
This completes the proof of Claim E.
From Claim E, we may assume that ord(g) 󰃍 vg(S) + 2 󰃍 3 for all g|S.
Now we use a case-by-case method in the subsequent part of the proof.
Case 1. |supp(S)| = 2.
Let S = aubv with u 󰃍 v 󰃍 1. The cases when v = 1, 2 are showed in Lemma 12 and

16. Thus we may assume that v 󰃍 3. If 2a = 2b, then S satisfies (IV), a contradiction.
Thus we may assume 2a ∕= 2b.

First suppose that v = 3. By (2), |
󰁓

(aub2)| = |
󰁓

(S)|− 1 = |G|− 2 = 2u + 4. Also
note that ord(a) 󰃍 u+ 1 and that

󰁓
(aub2) is the union of the following sets:

{a, 2a, . . . , ua}, b+ {0, a, . . . , ua}, 2b+ {0, a, . . . , ua}.

If b ∈ {a, 2a, . . . , ua}, then S is strictly behaving, a contradiction. If b ∈ {−(u −
1)a, . . . ,−a, 0}, then b+ ta = 0 for some t ∈ [0, u− 1] and so 0 ∈

󰁓
󰃑h(S)(S), a contradic-

tion. If b = −ua, then
󰁓

(aub2) = {−2ua, . . . ,−a, 0, a, . . . , ua} is an arithmetic progres-
sion. By (2), we obtain b ∈ {a,−a}, a contradiction. If b ∕∈ {−ua, . . . ,−a, 0, a, . . . , ua},
then (b+{0, a, . . . , ua})∩{a, 2a, . . . , ua} = ∅ and (b+{0, a, . . . , ua})∩(2b+{0, a, . . . , ua}) =
∅. Thus 2b ∈ 〈a〉, |(2b + {0, a, . . . , ua}) \ {a, 2a, . . . , ua}| = 3 and ord(a) 󰃍 u + 3. Since
ord(a)|2u + 6, we have ord(a) ∈ {u + 3, 2u + 6}. If ord(a) = u + 3, then

󰁓
(aub2) =

the electronic journal of combinatorics 30(4) (2023), #P4.21 10



〈a〉 ∪ (b + {0, a, . . . , ua}) and
󰁓

(S) = G, a contradiction. If ord(a) = 2u + 6, then
2b ∈ {3a,−2a}. Since |G| is even, we infer that 2b ∕= 3a. Hence 2b = −2a, which implies
u = 3, ord(a) = 12, b = 6a− a = 5a and S satisfies (X), a contradiction.

Next suppose that v 󰃍 4. By Lemma 8 and 11, we have

|
󰁓

(au−2bv−2)| 󰃑 |
󰁓

(S)|+ 1− |
󰁓

0(a
2b2)| = 2|S|− 9 = 2|au−2bv−2|− 1,

in particular,
󰁓

(au−2bv−2) < |G| − 1. If au−2bv−2 is strictly behaving, then so is S, a
contradiction. By Theorem 3, |

󰁓
(au−2bv−2)| = 2|au−2bv−2| − 1. By the minimality of

|S|, we can apply the main theorem to au−2bv−2. It is clear that au−2bv−2 does not satisfy
(II), (III) and (V). Since au−2bv−2 is not strictly behaving, it does not satisfy (I). Since
2a ∕= 2b, it does not satisfy (IV). Since

󰁓
(au−2bv−2) < |G| − 1, it does not satisfy (VI)

and (X). Since au−2bv−2 does not contain zero-sum subsequences of length at most 4, it
does not satisfy (VII), (VIII) and (IX). This completes the proof of this case.

Case 2. h(S) = 1.
Let S = a1a2 · · · ar with r 󰃍 4. Suppose there exists a subsequence T |S such that

|T | = 3 and |
󰁓

0(T )| 󰃍 8, then by Lemma 8,

1 󰃑 |
󰁓

(ST−1)| 󰃑 |
󰁓

(S)|− |
󰁓

0(T )|+ 1 󰃑 2r − 8 = 2|ST−1|− 2.

In particular, we have |ST−1| 󰃍 2. By Claim E,

|
󰁓

(ST−1)| 󰃑 |
󰁓

0(ST
−1)| < |〈supp(ST−1)〉|.

Hence by Theorem 3, ST−1 is strictly behaving of length at least 2. Then h(ST−1) 󰃍 2,
a contradiction. Therefore we may assume that such a subsequence does not exist.

Now suppose that S contains a subsequence U = b1b2b3b4 such that bi + bj ∕= 0 for
all distinct i, j ∈ [1, 4]. By Lemma 10 (1), |

󰁓
(U)| = |〈supp(U)〉| − 1 = 8 > 2|U | − 1.

Thus U is a proper subsequence of S. Take g|SU−1. By Lemma 10 (2), g = −bi for some
i ∈ [1, 4]. Hence

󰁓
(Ug) = 〈supp(Ug)〉, a contradiction to Claim E.

It remains to consider the following cases:

S = a(−a)b(−b)c(−c), a(−a)b(−b)c, a(−a)bc or a(−a)b(−b),

where a, b, c,−a,−b,−c are pairwise distinct. Firstly assume that S = a(−a)b(−b)c(−c).
Recall that the orders of a, b and c are all greater than 2. Without loss of generality, a+b+
c ∕= 0, for otherwise we may change the roles of a and−a. Hence abc and (−a)(−b)(−c) are
both zero-sum free. By Lemma 9 (i), we have |

󰁓
0(abc)| = |

󰁓
0((−a)(−b)(−c))| 󰃍 7. By

Lemma 8, |
󰁓

(S)| 󰃍 |
󰁓

0(abc)|+|
󰁓

0((−a)(−b)(−c))|−1 󰃍 13 > 2|S|−1, a contradiction.
Secondly assume that S = a(−a)b(−b)c. The same as above, we have |

󰁓
0(abc)| 󰃍 7. Note

that |
󰁓

0((−a)(−b))| = 4. By Lemma 8 again, |
󰁓

(S)| 󰃍 |
󰁓

0(abc)|+ |
󰁓

0((−a)(−b))|−
1 󰃍 10 > 2|S| − 1, a contradiction. Thirdly assume that S = a(−a)bc. The same
as above, we have |

󰁓
0(abc)| 󰃍 7. Note that |

󰁓
0(−a)| = 2. By Lemma 8 again,

|
󰁓

(S)| 󰃍 |
󰁓

0(abc)| + |
󰁓

0(−a)| − 1 󰃍 8 > 2|S| − 1, a contradiction. Finally assume
that S = a(−a)b(−b). Now |G| = 8. If ord(a) = ord(b) = 8, then S = a(3a)(5a)(7a) and
so

󰁓
(S) = G, a contradiction. Therefore we may assume that ord(a) = 4. Then b ∕∈ 〈a〉

and so S satisfies (IX), a contradiction.
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Case 3. h(S) 󰃍 2 and |supp(S)| 󰃍 4.
Let a|S be a term such that va(S) = h(S) 󰃍 2. Choose arbitrarily bcd|S such that

h(abcd) = 1. Claim E shows that ord(a) 󰃍 4. By Lemma 10 (1), there exist two terms
in b, c, d, say b, c, such that |

󰁓
0(abc)| 󰃍 8. By Lemma 8, |

󰁓
(S(abc)−1)| 󰃑 |

󰁓
(S)| −

|
󰁓

0(abc)| + 1 = 2|S| − 1 − 8 + 1 = 2|S(abc)−1| − 2. By Claim E, |
󰁓

(S(abc)−1)| 󰃑
|
󰁓

0(S(abc)
−1)| < |〈supp(S(abc)−1)〉|. Hence it follows from Theorem 3 that S(abc)−1 is

strictly behaving. Since a|S(abc)−1, we have S(bc)−1 is strictly behaving. Let S(bc)−1 =
(n1h)(n2h) · · · (nr−2h) be strictly h-behaving, where h ∈ G and 1 = n1 󰃑 · · · 󰃑 nr−2.
Since |supp(S)| 󰃍 4, we have |supp(S(bc)−1)| 󰃍 2 and so

m := n1 + · · ·+ nr−2 󰃍 r − 1 =
|G|
2

− 1. (3)

Note that |
󰁓

0(S(bc)
−1)| = {0, h, . . . ,mh}. By Claim E, ord(h) > m + 1 󰃍 |G|/2, which

implies ord(h) = |G|. Let b = αh and c = βh, where α, β ∈ [1, |G| − 1]. By Claim
A, Sc−1 is not strictly behaving and so α ∕∈ [1,m]. If α = m + 1, then

󰁓
(Sc−1) =

{h, 2h, . . . , (2m+ 1)h} and so

|
󰁛

(Sc−1)| 󰃍 min{|G|, 2m+ 1} 󰃍 min{2r, 2(r − 1) + 1} = 2r − 1,

a contradiction with the equality (2). Hence α ∈ [m + 2, |G| − 1]. Since α + m 󰃍
m+ 2 +m 󰃍 |G|, we have

󰁛
(Sc−1) = {h, 2h, . . . ,mh,αh, (α + 1)h, . . . , |G|h}

and so |
󰁓

(Sc−1)| = m+ |G|−α+1 = 2r−(α−m−1). By the equality (2), |
󰁓

(Sc−1)| =
|
󰁓

(S)|− 1 = 2r− 2. Thus α−m− 1 = 2 and so α = m+ 3. By the same argument, we
also infer β = m+ 3. It follows that b = c, a contradiction.

Case 4. h(S) 󰃍 2 and |supp(S)| = 3.
Let S = aubvct and T = S(abc)−1 = au−1bv−1ct−1, where u 󰃍 v 󰃍 t 󰃍 1. By Lemma

17, we may assume that v 󰃍 2.
First suppose that u 󰃍 3. Then abc is zero-sum free. By Claim E, every term of

S has order at least 3. Hence |
󰁓

0(abc)| 󰃍 7 by Lemma 9 (i). Then by Lemma 8,
|
󰁓

(T )| 󰃑 |
󰁓

(S)|−|
󰁓

0(abc)|+1 󰃑 2r−7 = 2|T |−1. By Claim E, |
󰁓

(T )| < |〈supp(T )〉|.
Hence we may apply Theorem 3 or the main theorem to T by the minimality of |S|. If
T is strictly behaving, then Sc−1 is strictly behaving, a contradiction to Claim A. If T
satisfies (III), then S contains some term of order 2, a contradiction to Claim E. If T
satisfies (IV), then ord(a − b) = 2 and S = aubvc. Hence |

󰁓
(Sc−1)| = |

󰁓
(aubv)| 󰃑

2(u+ v)− 1 = 2r− 3 < |
󰁓

(S)|− 1, a contradiction to the equality (2). If T satisfies (V),
(VI), (IX) or (X), then |

󰁓
(T )| = |〈supp(T )〉|− 1. So

󰁓
(Sc−1) =

󰁓
(Tab) = 〈supp(T )〉,

a contradiction to Claim E. If T satisfies (VII) or (VIII), then 0 ∈
󰁓

󰃑3(T ) ⊂
󰁓

󰃑h(S)(S),
a contradiction.

Now let T satisfy (II), then u = r− 3, T = au−1b and S = aub2c. Since Sc−1 = aub2 is
not strictly behaving by Claim A, we have b ∕∈ {a, 2a, . . . , ua}. Since 0 ∕∈

󰁓
󰃑h(S)(S), we
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have b ∕∈ {−(u−1)a,−(u−2)a, . . . ,−a, 0}. Note that |G| = 2|S| = 2u+6 by the equality
(1), |

󰁓
(aub2)| = |

󰁓
(S)|−1 = 2u+4 by the equality (2) and ord(a) 󰃍 u+2 by Claim E.

Since ord(a) is a divisor of 2u+6, we have ord(a) ∈ {u+3, 2u+6}. If ord(a) = u+3, then
b ∕∈ 〈a〉 and

󰁓
(aub2) = 〈a〉 ∪ (b + {0, a, . . . , ua}). Since |

󰁓
(S)| = |

󰁓
(aub2)| + 1 by the

equality (2), we have c ∈ {a,−a}, a contradiction. Hence we may assume that ord(a) =
2u+ 6. Since b ∕∈ {−(u− 1)a, . . . , 0, . . . , ua}, we have b = (u+ γ)a for some γ ∈ [1, 6]. If
γ = 1, then

󰁓
(aub2) = {a, 2a, . . . , (3u+ 2)a} and so |

󰁓
(aub2)| = min{ord(a), 3u+ 2} >

2u+ 4, a contradiction. If γ = 4, then 2b = 2a and
󰁓

(aub2) = {a, . . . , (u+ 2)a} ∪ {(u+
4)a, . . . , (2u+ 4)a}. So |

󰁓
(aub2)| = u+ 2 + u+ 1 = 2u+ 3 < 2u+ 4, a contradiction. If

γ = 5, then 2b = 4a and
󰁓

(aub2) = {a, . . . , (2u+ 5)a}. So |
󰁓

(aub2)| = 2u+ 5 > 2u+ 4,
a contradiction. If γ ∈ {2, 3, 6}, then 2b+2a = 0, 2b = 0 or b+ua = 0. Hence 0 ∈

󰁓
(S).

By Lemma 8, |
󰁓

0(T )| 󰃑 |
󰁓

(S)|− |
󰁓

0(abc)|+1 󰃑 2r− 1− 7+ 1 = 2|T |− 1 = |
󰁓

(T )|,
which implies

󰁓
(T ) =

󰁓
0(T ). Then 0 ∈

󰁓
(T ) and so b ∈ {−(u − 1)a, . . . ,−a, 0}, a

contradiction.
Finally it remains to consider the case when u = 2, that is S = a2b2c2 or S = a2b2c. We

claim that |
󰁓

0(abc)| 󰃍 7. If a+b+c ∕= 0, then abc is zero-sum free. Note that every term
of S has order at least 3 by Claim E. So |

󰁓
0(abc)| 󰃍 7 by Lemma 9 (i). If a+ b+ c = 0,

then a ∕= b+c, b ∕= a+c and c ∕= a+b, for otherwise S contains some term of order 2. Hence
a, b, c, a+ b, a+ c, b+ c, 0 are pairwise distinct and so |

󰁓
0(abc)| 󰃍 7. This completes the

proof of the claim. First let S = a2b2c2. By Lemma 8, |
󰁓

(S)| 󰃍 |
󰁓

(abc)|+ |
󰁓

0(abc)|−
1 󰃍 6 + 7 − 1 = 12 > 2|S| − 1, a contradiction. Now let S = a2b2c. If 0 ∈

󰁓
(S), then

|
󰁓

(S)| 󰃍 |
󰁓

0(abc)|+ |
󰁓

0(ab)|− 1 󰃍 7 + 4− 1 = 10 > 2|S|− 1, a contradiction. Hence
we may assume that S is zero-sum free. If ord(a) = ord(b) = |G| = 10, then b = 3a
or b = −3a. Hence

󰁓
(S) = {a, 2a, . . . , 8a} or

󰁓
(S) = {−6a, . . . ,−a} ∪ {a, 2a}. Since

0 ∕∈
󰁓

(S), we have c = a or c = −3a = b, a contradiction. Hence we may assume a
or b, say a, has order less than 10. Since ord(a) 󰃍 va(S) + 2 = 4 by Claim E, we have
ord(a) = 5. Then b ∕∈ 〈a〉 and

󰁓
(a2b2) ⊂ ({0, b, 2b} + {0, a, 2a}) ⊂ 〈a〉 ∪ (b + {0, a, 2a}).

Since |
󰁓

(a2b2)| = |
󰁓

(S)| − 1 = 8, we have
󰁓

(a2b2) = 〈a〉 ∪ (b + {0, a, 2a}) and so
0 ∈

󰁓
(a2b2), a contradiction.

Now all the possibilities have been considered. Therefore we have completed the proof
of the theorem.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11301556
and 11671153), the Specialized Research Fund for the Doctoral Program of Higher Edu-
cation (20130171120008) and Guangdong Basic and Applied Basic Research Foundation
(2022A1515010389).

References

[1] N. Alon, Subset sums, J. Number Theory 27 (1987) 196–205.

the electronic journal of combinatorics 30(4) (2023), #P4.21 13



[2] M. Freeze and W.W. Smith, Sumsets of zerofree sequence, Arab. J. Sci. Eng. Sect.
C Theme Issues 26 (2001) 97–105.

[3] W. Gao, Addition theorems for finite abelian groups, J. Number Theory 53 (1995)
241–246.

[4] W. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58
(1996) 100–103.

[5] W. Gao and I. Leader, Sums and k-sums in abelian groups of order k, J. Number
Theory 120 (2006) 26–32.

[6] W. Gao, J. Peng and G. Wang, Behaving sequences, J. Combin. Theory Ser. A 118
(2011) 613–622.

[7] W. Gao, J. Zhuang, Sequences not containing long zero-sum subsequences, European
J. Combin. 26 (2005) 1053–1059.

[8] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial
Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.),
Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86.
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