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Abstract

Denote by F5 the 3-uniform hypergraph on vertex set {1, 2, 3, 4, 5} with hy-
peredges {123, 124, 345}. Balogh, Butterfield, Hu, and Lenz proved that if p >
K log n/n for some large constant K, then every maximum F5-free subhyper-
graph of G3(n, p) is tripartite with high probability, and showed that if p0 =
0.1

√
log n/n, then with high probability there exists a maximum F5-free subhy-

pergraph of G3(n, p0) that is not tripartite. In this paper, we sharpen the upper
bound to be best possible up to a constant factor. We prove that if p > C

√
log n/n

for some large constant C, then every maximum F5-free subhypergraph of G3(n, p)
is tripartite with high probability.

Mathematics Subject Classifications: 05C65, 05C80

1 Introduction

In this paper, a (hyper)graph is maximum with respect to a property if it has the max-
imum number of (hyper)edges among the (hyper)graphs satisfying the given property.
Throughout the paper, all logarithms are in base e.

One of the first results in extremal graph theory is Mantel’s Theorem [9], which states
that every triangle-free graph on n vertices has at most ⌊n2/4⌋ edges. Additionally, the
complete bipartite graph whose part sizes differ by at most one is the unique maximum
triangle-free graph. Later, Turán [13] generalized Mantel’s Theorem for all complete
graphs. Denote by Ks the complete graph on s vertices and by Ts(n) the complete
s-partite graph on n vertices where the sizes of the parts differ by at most 1. Turán’s
Theorem states that Ts−1(n) is the unique maximum Ks-free graph on n vertices. Turán’s
Theorem can also be understood as a property of Kn. Namely, it claims that every
maximum Ks-free subgraph of Kn is (s− 1)-partite.

Let G(n, p) be the standard binomial model of random graphs, where each edge in
Kn is chosen independently with probability p. We say that an event occurs with high
probability (w.h.p.) if its probability goes to 1 as n goes to infinity. A question related to
Turán’s Theorem arises when G(n, p) replaces the role of Kn, that is, for what p = p(n)
we have that w.h.p. every maximum Ks-free subgraph of G(n, p) is (s− 1)-partite.
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This question was first raised by Babai, Simonovits, and Spencer [1], who gave an
affirmative answer when p = 1

2
and s = 3. Later, DeMarco and Kahn [6] determined

the correct order of p for s = 3. They [6] showed that if p > K
󰁳

log n/n for some large
constant K, then w.h.p. every maximum triangle-free subgraph of G(n, p) is bipartite,
while if p = 0.1

󰁳
log n/n, then this does not hold w.h.p. Finally, DeMarco and Kahn [7]

answered this question up to a constant factor for every s 󰃍 3.

Figure 1: The hypergraph F5.
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Figure 2: The hypergraph K−
4 .
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Similar problems were also considered for hypergraphs. Denote by K−
4 the hyper-

graph obtained from the complete 3-uniform hypergraph on four vertices by removing
one hyperedge. Let F5, which is often called the generalized triangle, be the hypergraph
on vertex set {1, 2, 3, 4, 5} with hyperedges {123, 124, 345}. Denote by S(n) the complete
3-partite 3-uniform hypergraph on n vertices whose parts have sizes ⌊n/3⌋, ⌊(n+ 1)/3⌋,
and ⌊(n+ 2)/3⌋, and let s(n) := ⌊n/3⌋ · ⌊(n+ 1)/3⌋ · ⌊(n+ 2)/3⌋ be the number of hy-
peredges in S(n). Bollobás [4] proved that S(n) is the unique maximum {K−

4 , F5}-free
n-vertex hypergraph. Frankl and Füredi [8] proved that, for n 󰃍 3000, the maximum
number of hyperedges in an n-vertex F5-free 3-uniform hypergraph is s(n).

The random version of this theorem was first studied by Balogh, Butterfield, Hu,
and Lenz [2]. Let G3(n, p) be the random 3-uniform hypergraph on vertex set [n] :=
{1, 2, . . . , n}, where each triple is included with probability p independently of each other.
Note that when p is very small, G3(n, p) itself is tripartite and hence F5-free w.h.p.
Therefore, the interesting case is when p is sufficiently large. In [2], it was proved that
if p > K log n/n for some large constant K, then w.h.p. every maximum F5-free sub-
hypergraph of G3(n, p) is tripartite, and it was conjectured that it suffices to require
only p > C

√
log n/n for some large constant C. In this paper, we verify this conjecture.

This is best possible up to the constant factor, as it was also shown in [2] that when
p = 0.1

√
log n/n, then w.h.p. there is a maximum F5-free subhypergraph of G3(n, p) that

is not tripartite.

Theorem 1. There exists a constant C > 0 such that if p > C
√
log n/n, then w.h.p. every

maximum F5-free subhypergraph of G3(n, p) is tripartite.

Our approach will follow the general structure of the proof of the main result of [2].
Several key lemmas are improved and adapted for this smaller p. In particular, in [2],
an easier version of codegree concentration was proved using Chernoff’s bound with the
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larger p. Here, for the smaller p, we need a stronger statement, not only using Chernoff’s
bound (cf. Lemmas 6 and 7). As typical with the probabilistic method, one must fight
to avoid applying the union bound when the concentration is not strong enough. This
is the most challenging and technical part of the proof, see Remarks 10 and 19 for more
details on that. We trust that the new ideas used in the proof could be useful for other
problems when one has to beat the union bound.

The rest of the paper is structured as follows. In Section 2, we will introduce the
notation and lemmas needed. In Section 3, we give the proof of Theorem 1.

2 Preliminaries

To improve readability, as it is standard in the literature, we will usually pretend that
large numbers are integers to avoid using essentially irrelevant floor and ceiling symbols.
We often use the standard upper bound

󰀃
n
k

󰀄
󰃑 ( en

k
)k for binomial coefficients. We will

use xy to stand for set {x, y} and xyz to stand for set {x, y, z}. We write x = (1 ± c)y
for (1− c)y 󰃑 x 󰃑 (1 + c)y.

We use G for G3(n, p) hereinafter and denote by t(G) the number of hyperedges in a
maximum tripartite subhypergraph of G.

We will always assume that the hypergraphs are on vertex set [n] = {1, . . . , n}, so
we can identify a hypergraph H by its hyperedges, and |H| stands for the number of
hyperedges of H. We use π = (V1, V2, V3) for a 3-partition of [n]. We say a 3-partition
π is balanced if every part has size (1± 10−10)n/3. Denote by Kπ the set of triples with
exactly one vertex in each part of π. Let Gπ := G ∩Kπ. For a hypergraph H ⊆ G, let
Hi := {e ∈ H : |e ∩ Vi| 󰃍 2} for i = 1, 2, 3. Let Hπ := H ∩Kπ and H̄π := Gπ \Hπ. We
will call hyperedges in Hπ the crossing hyperedges of H, and the hyperedges in H̄π the
missing crossing hyperedges of H.

For a hypergraph H, a partition π = (V1, V2, V3) of [n], vertices v, v
′ ∈ [n], and subsets

of vertices S, T ⊆ [n], let

• NH
S,T (v) := {yz : y ∈ S, z ∈ T, vyz ∈ H} be the link graph of v between S and T ,

• dHS,T (v) := |NH
S,T (v)| be the degree of v between S and T ,

• NH
S (v, v′) := {z : z ∈ S, vv′z ∈ H} be the set of neighbors of v and v′ in S,

• dHS (v, v
′) := |NH

S (v, v′)| be the codegree of v and v′ in S, and

• LH
S,T (v, v

′) := NH
S,T (v) ∩NH

S,T (v
′) be the common neighborhood of v and v′ between

S and T .

When S or T is [n] or H = G, we omit to write S, T , or G when there is no ambiguity.
When S or T is Vi, we often just use i in the subscript to stand for Vi. For example, d(x)
is just the degree of x in G and NH

1 (y, z) is the neighbors of y and z in V1 in H. Finally,
define Q(π) := {xy ⊂ V1 : |L2,3(x, y)| < 0.8p2n2/9}.

The first proposition we need is the following result from [2], which is a special case
of a general transference result of Conlon and Gowers [5], and as Samotij observed [10],
of Schacht [12]. It was also proved by the hypergraph container method [3, 11].
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Proposition 2. For every δ > 0, there exist ε > 0 and C > 0 such that if p > C/n,
then the following statement is true. Let H be a maximum F5-free subhypergraph of
G and π be a 3-partition of [n] maximizing |Hπ|. Then, we have that π is balanced,
|H| 󰃍 (2/9− ε)p

󰀃
n
3

󰀄
, and |H \Hπ| 󰃑 δpn3.

The following concentration results are also used in [2]. Lemma 3 is the standard
Chernoff’s bound. Lemmas 4 and 5 are standard properties of random hypergraphs,
which are direct applications of Lemma 3 and the union bound.

Lemma 3. Let Y be the sum of mutually independent indicator random variables, and
let µ = E[Y ]. For every ε > 0, we have

P[|Y − µ| > εµ] < 2e−cεµ,

where cε = min
󰀋
− log

󰀃
eε(1 + ε)−(1+ε)

󰀄
, ε2/2

󰀌
.

Lemma 4. For every ε > 0, there exists a positive constant C such that if p > C log n/n2,
then w.h.p. for every vertex v, we have d(v) = (1± ε)pn2/2.

Lemma 5. For every ε > 0, there exists a positive constant C such that if p > C/n,
then w.h.p. for every 3-partition π = (V1, V2, V3) with |V2|, |V3| 󰃍 n/20 and every vertex
v ∈ V1, we have d2,3(v) = (1± ε)p|V2||V3|.

We also need the following concentration results.

Lemma 6. There exists a positive constant C such that if p > C
√
log n/n, then w.h.p. for

every pair of vertices x, y, we have d(x, y) 󰃑 pn
√
log n/ log log n.

Proof. For every pair of vertices xy, the probability that d(x, y) 󰃍 pn
√
logn

log logn
is at most

󰀃 n
pn

√
logn

log logn

󰀄
p

pn
√
logn

log logn . There are
󰀃
n
2

󰀄
pairs of vertices, so by using a union bound, the proba-

bility that there exists a pair of vertices xy such that d(x, y) 󰃍 pn
√
logn

log logn
is at most

󰀕
n

2

󰀖󰀕
n

pn
√
logn

log logn

󰀖
p

pn
√
logn

log logn 󰃑 n2

󰀣
enp

pn
√
logn

log logn

󰀤 pn
√
logn

log logn

󰃑 n2

󰀕
e log log n√

log n

󰀖 C logn
log logn

󰃑 exp

󰀕
2 log n+

C log n

log log n
log

e log log n√
log n

󰀖
= exp

󰀕󰀕
2 +

C log(e log log n)

log log n
− C

2

󰀖
log n

󰀖
,

where the last expression is o(1) for sufficiently large C.

Lemma 7. There exists a constant C > 0 such that if p > C
√
log n/n, then w.h.p. for

every subset S ⊆ [n], we have

|{xy ⊆ [n] \ S : dS(x, y) 󰃍 3pn}| 󰃑 n2e−
√
logn.

Proof. First, consider a fixed set S. For every pair of vertices xy ⊆ [n]\S, the probability
that dS(x, y) > 3pn is at most q =

󰀃 |S|
3pn

󰀄
p3pn. For different pairs x1y1, x2y2 ⊆ [n] \ S,

random variables dS(x1, y1) and dS(x2, y2) are independent. Hence, given a family of
n2e−

√
logn pairs of vertices in [n] \S, the probability that dS(x, y) 󰃍 3pn for every pair in
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this family is at most qn
2e−

√
logn

. Then, by a union bound over all the families containing
pairs of vertices not in S with size n2e−c

√
logn, we get

P
󰀓
|{xy ⊆ [n] \ S : dS(x, y) 󰃍 3pn}| > n2e−

√
logn

󰀔
󰃑

󰀕
n2

n2e−
√
logn

󰀖
qn

2e−
√
logn

.

Finally, using a union bound over all the choices of S, the probability of failure is at most

2n
󰀕

n2

n2e−
√
logn

󰀖󰀕󰀕
n

3pn

󰀖
p3pn

󰀖n2e−
√
logn

󰃑 2n
󰀕
e1+

√
logn

󰀓e
3

󰀔3pn
󰀖n2e−

√
logn

= o(1).

In our proof of Theorem 1, we will repeatedly use the following lemma to show that
for some given vertex v and vertex set S, the number of pairs that are in the link graph
of v and have a large neighborhood in S is small.

Let s = s(n, p), r = r(n, p), i = i(n, p) be positive integers depending on n and p,
where s 󰃑 n, r 󰃑

󰀃
n
2

󰀄
, and i 󰃑 n. Let Es,r,i be the event that for every vertex v ∈ [n]

and vertex set S ⊆ [n], where v /∈ S and |S| = s, we have |{yz ⊆ [n] \ S : vyz ∈
G, dS(y, z) 󰃍 i}| 󰃑 r, see Figure 3. Define g(p, s, r, i) := n

󰀃
n
s

󰀄󰀃
n2

r

󰀄 󰀃
p
󰀃
s
i

󰀄
pi
󰀄r
, and let O

be the set of (s, r, i) such that g(p, s, r, i) = o(n−5) given p > C
√
log n/n. Let E be the

event
󰁗

(s,r,i)∈O
Es,r,i.

Figure 3: A pair of vertices ykzk satisfies that vykzk ∈ G and dS(yk, zk) 󰃍 i. The event
Es,r,i is that for every vertex v and vertex set S ⊆ [n] \ {v} with size s, there are at most
r such pairs of vertices.

v

xi+1x2x1

ykzk

. . .

S

Lemma 8. E happens with high probability.

Proof. For distinct vertices v, y, z ∈ [n] and vertex set S ⊂ [n] where v, y, z /∈ S and
|S| = s, we have P(vyz ∈ G) = p and P(dS(y, z) 󰃍 i) 󰃑

󰀃
s
i

󰀄
pi. Note that these two events

are independent since v /∈ S. Hence,

P(vyz ∈ G, dS(y, z) 󰃍 i) 󰃑 p

󰀕
s

i

󰀖
pi.

For fixed v and S, events vyz ∈ G, dS(y, z) 󰃍 i are independent for different pairs yz, so

P(|{yz ⊆ [n] \ S : vyz ∈ G, dS(y, z) 󰃍 i}| > r) 󰃑
󰀕
n2

r

󰀖󰀕
p

󰀕
s

i

󰀖
pi
󰀖r

.
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Then, using a union bound over all choices of v ∈ [n] and S ⊂ [n] of size s, we get that

P(Ēs,r,i) 󰃑 n

󰀕
n

s

󰀖󰀕
n2

r

󰀖󰀕
p

󰀕
s

i

󰀖
pi
󰀖r

= g(p, s, r, i),

where Ēs,r,i is the complement of the event Es,r,i. Now we have

P(Ē) = P

󰀣
󰁞

(s,r,i)∈O

Ēs,r,i

󰀤
󰃑

󰁛

(s,r,i)∈O

P(Ēs,r,i) 󰃑 |O| · o(n−5) 󰃑 n

󰀕
n

2

󰀖
n · o(n−5) = o(1).

Finally, we will use the following lemma to give lower bounds on the number of copies
of F5. For fixed vertex v, vertex set A ⊆ [n] \ {v}, subset T of N[n]\A,[n]\A(v), and subset
E of {vxw ∈ G : x ∈ A} satisfying that for every x ∈ A, there exists e ∈ E such that
x ∈ e, define

K(v, E,A, T ) := {xyz : x ∈ A, yz ∈ T, there exists e ∈ E such that x ∈ e, y /∈ e, z /∈ e},

and G(v, E,A, T ) := K(v, E,A, T ) ∩ G. We have that

E(|G(v, E,A, T )|) = p|K(v, E,A, T )|;

note that here the randomness in this expectation is of the hyperedges in {xyz : x ∈
A, yz ∈ T} being or not in G. Also note that the events of the hyperedges in {xyz : x ∈
A, yz ∈ T} being or not in G are independent of the events of hyperedges containing v
being in G. For every xyz ∈ G(v, E,A, T ) with x ∈ A, yz ∈ T , we can find a copy of
F5 = {yzv, yzx, vxw} in G where vxw ∈ E, see Figure 4. The condition y /∈ e, z /∈ e in
the definition of K(v, E,A, T ) guarantees that we indeed find an F5 instead of an K−

4 .

Figure 4: A copy of F5 from xyz ∈ G(v, E,A, T ).

v

x

y

z

w ∈ E

A
T

Lemma 9. For any constants ε, ε1, ε2 > 0, there exists a constant C > 0 such that if
p > C

√
log n/n, then w.h.p. for every choice of v, E,A, T as above with |A| 󰃍 ε1n/

√
log n

and |T | 󰃍 ε2pn
2, we have |G(v, E,A, T )| = (1± ε)p|A||T |.

The proof of Lemma 9 follows the same lines as the proof of Proposition 9 in [2].
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Proof. For every choice of v, E,A, T as above, we reveal the randomness in two phases.
We first reveal the hyperedges containing v. Let [A, T ] := {xyz : x ∈ A, yz ∈ T}.
For vertex x ∈ A, let [x, T ] := {xyz : yz ∈ T}, dE(x) := |{e ∈ E : x ∈ e}|, and
Tx := {yz ∈ T : vxy ∈ E or vxz ∈ E}. Note that [A, T ] ⊇ K(v, E,A, T ). If dE(x) 󰃍 3,
choose vxw1, vxw2, vxw3 arbitrarily from E. For every yz ∈ T , there exists some i ∈
{1, 2, 3} such that y ∕= wi and z ∕= wi. Hence, by the definition of K(v, E,A, T ), we have

[x, T ] ⊆ K(v, E,A, T ). If dE(x) 󰃑 2, then by Lemma 6, we have |Tx| 󰃑 2 · pn
√
logn

log logn
and

[x, T \ Tx] = {xyz : yz ∈ T \ Tx} ⊆ K(v, E,A, T ). Therefore,

|[A, T ]|− |K(v, E,A, T )| 󰃑
󰁛

x: x∈A, dE(x)󰃑2

|Tx| 󰃑 |A| · 2pn
√
log n

log log n
.

We have |[A, T ]| = |A||T | 󰃍 |A|ε2pn2, so |K(v, E,A, T )| = (1 − o(1))|A||T | with high
probability.

Then, we reveal the hyperedges in [A, T ]. Let

µ = E(G(v, E,A, T )) = p|K(v, E,A, T )| = (1− o(1))p|A||T |.

By Lemma 3, we have

P(||G(v, E,A, T )|− µ| > εµ) < 2e−cεµ.

Now, we apply the union bound over all possible choices of (v, E,A, T ). We have at
most n choices for v and at most

󰀃
n
a

󰀄
choices for sets A with size a. With high probability

we have that for every a, t > 0, given |A| = a and |T | = t, there are at most 2apn
√
logn

log logn

choices for E (by Lemma 6) and at most
󰀃
pn2

t

󰀄
choices for T (by Lemma 4). By the union

bound, the probability that the statement in the lemma does not hold is at most

󰁛

a󰃍 ε1n√
logn

󰁛

t󰃍ε2pn2

n

󰀕
n

a

󰀖
2apn

√
logn

log logn

󰀕
pn2

t

󰀖
· 2e−cε·atp/2 + o(1)

󰃑
󰁛

a󰃍 ε1n√
logn

󰁛

t󰃍ε2pn2

n exp
󰀓
a log

en

a

󰀔
2apn

√
logn

log logn exp

󰀕
t log

pn2

t

󰀖
· 2e−cε·atp/2 + o(1)

󰃑2
󰁛

a󰃍 ε1n√
logn

󰁛

t󰃍ε2pn2

exp

󰀥
log n+ a log

󰀕
e

ε1

󰁳
log n

󰀖
+

apn

√
log n log 2

log log n
+ t log

1

ε2
− cεatp

2

󰀦
+ o(1)

󰃑 2
󰁛

a󰃍 ε1n√
logn

󰁛

t󰃍ε2pn2

exp (−cεatp/4) + o(1) 󰃑 2n3 exp(−n
󰁳

log n) + o(1) = o(1).

Remark 10. Lemma 6 shows one of the differences when p is only at least C
√
log n/n,

whereas in [2] it is proved that w.h.p. we have d(x, y) 󰃑 2pn for every pair of vertices x, y
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when p > K log n/n. Note that with a direct application of the Chernoff’s inequality, one
can only conclude that d(x, y) 󰃑 pn

√
log n, without the log log n factor. As we will see in

Section 3, this log log n factor plays a vital role in the proof of Theorem 1 (see Remark
19).

Remark 11. Lemmas 7 and 8 are similar, and one may hope that we can still keep the
e−

√
logn factor, by proving (s, pn2e−

√
logn, 3ps) ∈ O for every 1 󰃑 s 󰃑 n. Unfortunately,

this is not necessarily true. In the proof of Lemma 7, we have n2e−
√
logn in the exponent,

which can beat the number of choices of S, whereas here pn2e−
√
logn is not necessarily

larger than n. However, we have (s, pn2/ log n, 3pn) ∈ O, see Claim 25.

3 Proof of the Main Theorem

We first give an outline of the proof. Recall that for a hypergraph H and a partition
π = (V1, V2, V3) of [n], we defined in Section 2 that

H̄π = Gπ \Hπ,

Hi = {e ∈ H : |e ∩ Vi| 󰃍 2} for i ∈ {1, 2, 3}, and

Q(π) = {uv ⊂ V1 : |L2,3(u, v)| < 0.8p2n2/9}.

Assume that H is a maximum F5-free subhypergraph of G3(n, p). Let π = (V1, V2, V3)
be a partition of [n] maximizing |Hπ|. Let e = x1x2v be a hyperedge in H where x1, x2 ∈
V1. For every yz ∈ L2,3(x1, x2) where y ∕= v and z ∕= v, at least one hyperedge from
{yzx1, yzx2} cannot be in H, since otherwise hyperedges {yzx1, yzx2, x1x2v} form a copy
of F5. For those x1x2 /∈ Q(π), there are at least 0.8p2n2/9−d(x1, v)−d(x2, v) = Ω(log n)
such pairs yz. Hence, the existence of e will cause H to lose Ω(log n) hyperedges. Since
H is maximum, one can expect that H should not contain such hyperedges with more
than one vertex in any part of π, so H is tripartite. Proposition 12 confirms this idea.
We also need handle Q(π). A control over |Q(π)| will be given by Proposition 13, which
states that if Q(π) is large, then t(G) will be much larger than |Gπ|. Theorem 1 will be
a simple corollary of Propositions 12 and 13.

For a 3-uniform hypergraph H, the shadow graph of H is the graph on the same vertex
set, where xy is an edge if and only if there exists another vertex z such that xyz is a
hyperedge in H.

Proposition 12. Let H be an F5-free subhypergraph of G and π = (V1, V2, V3) be a
balanced partition maximizing |Hπ|. Then there exist positive constants C and δ such
that if p > C

√
log n/n and if the following conditions hold:

1. |H1|, |H2|, |H3| 󰃑 δpn3/3,

2. the shadow graph of H1 is disjoint from Q(π),

then with high probability |H̄π| 󰃍 3|H1|, where equality is possible only if H is tripartite.

Proposition 13. There exist positive constants C and δ such that if p > C
√
log n/n and

the 3-partition π is balanced, then with high probability

t(G) 󰃍 |Gπ|+ |Q(π)|δn2p2,

where equality is possible only if Q(π) = ∅.
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Based on Propositions 12 and 13, Theorem 1 easily follows, whose proof is similar to
the proof of the main theorem in [2].

Proof of Theorem 1. Let H be a maximum F5-free subhypergraph of G. We have |H| 󰃍
t(G), since F5 is not tripartite. Let π = (V1, V2, V3) be a 3-partition of [n] maximizing |Hπ|.
Without loss of generality, we may assume |H1| 󰃍 |H2|, |H3|. Besides, by Proposition 2,
we know that π is balanced and

󰁓3
i=1 |Hi| 󰃑 δpn3/3, where δ is a constant smaller than

the δ’s in Propositions 12 and 13. Now let

B(π) := {e ∈ G : there exists uv ∈ Q(π) such that uv ⊂ e}

and H ′ := H \ B(π), so the shadow graph of H ′
1 is disjoint from Q(π). Since B(π)

consists of only non-crossing hyperedges of H, π is still a partition maximizing |H ′
π| and

|H ′
1|, |H ′

2|, |H ′
3| 󰃑

󰁓3
i=1 |H ′

i| 󰃑
󰁓3

i=1 |Hi| 󰃑 δpn3/3. Hence, H ′ satisfies the assumptions
in Proposition 12. Now, we have w.h.p.

|H| 󰃑 |Hπ|+ 3|H1| = |H ′
π|+ 3|H ′

1|+ 3|H ∩B(π)|
󰃑 |H ′

π|+ 3|H ′
1|+ 3|B(π)|

󰃑 |Gπ|+ 3|B(π)| (1)

󰃑 |Gπ|+ 3|Q(π)|pn
󰁳

log n/ log log n (2)

󰃑 |Gπ|+ |Q(π)|δp2n2 (3)

󰃑 t(G). (4)

Here we use Proposition 12 for (1), Lemma 6 for (2), the assumption p > C
√
log n/n

for (3), and Proposition 13 for (4). |H| cannot be strictly smaller than t(G), so all the
inequalities must hold with equality. By Propositions 12 and 13, H ′ is tripartite and
Q(π) is empty. Then, we conclude that H = H ′ is tripartite.

The proof of Proposition 13 is exactly the same as the one in [2], where it is assumed
that p > K log n/n. It can be easily checked that all the arguments still work verbatim
with p > C

√
log n/n, and hence we do not include its proof here. It remains to prove

Proposition 12.
Clearly, we can assume that |H1| 󰃍 |H2|, |H3|. Let δ be small enough so that the

following arguments work, and fix three small positive constants ε1, ε2, and ε3 such that

1

72ε1
󰃍 30,

1

20
· 1

2ε2
󰃍 10,

1

10
− ε2 󰃍

1

20
,

100δ

ε1
󰃑 ε3 󰃑 ε1,

1
4
ε1ε2

3ε3
󰃍 20.

For example, we can set

δ = 10−100, ε1 =
1

3000
, ε2 =

1

400
, ε3 = 10−10.

Denote by J the induced subgraph of the shadow graph of H1 on the vertex set V1 and
use NJ(x), dJ(x) for neighborhood and degree of x in graph J , respectively. Call a 4-set
{w1, w2, y, z} an F̂5 if w1yz, w2yz ∈ Gπ and there exists e ∈ H such that w1, w2 ∈ e∩ V1,
y, z /∈ e. Note that w1w2 ∈ J and {w1yz, w2yz, e} forms a copy of F5 in G, so at least
one of w1yz and w2yz has to be in H̄π.

We next count copies of F̂5 to lower bound the number of missing crossing hyperedges
|H̄π|, based on the size of (a subgraph of) J . First, we prove the following claim, which
will be used in the proofs of the next few lemmas.

the electronic journal of combinatorics 30(4) (2023), #P4.22 9



Figure 5: The set {w1, w2, y, z} is an F̂5 if there exists an edge e ∈ H1 as below.

w1

w2

e ∈ H1

y

z

V1

V2

V3

Claim 14. If p > C
√
log n/n, then w.h.p. for every edge x1x2 ∈ J \ Q(π), there are at

least p2n2/12 choices of (y, z) where y ∈ V2, z ∈ V3 such that {x1, x2, y, z} spans an F̂5.

Proof. Since x1x2 is in J , there exists v0 such that x1x2v0 ∈ H. Since x1x2 is not
in Q(π), there exist at least 0.8p2n2/9 choices of (y, z) such that y ∈ V2, z ∈ V3, and

x1yz and x2yz are both in Gπ. By Lemma 6, we know d(x1, v0) is at most pn
√
logn

log logn
, so

there can be at most pn
√
logn

log logn
vertices v such that x1v0v ∈ Gπ. Therefore, there are at

least 0.8p2n2/9 − pn
√
logn

log logn
󰃍 p2n2/12 choices of (y, z) such that x1yz, x2yz ∈ Gπ and

v0 ∕∈ {y, z}. For every such (y, z), {x1, x2, y, z} forms an F̂5.

Lemma 15. Suppose the assumptions of Proposition 12 hold. Let J ′ be a subgraph of J
and denote by ∆(J ′) the maximum degree of J ′. If ∆(J ′) 󰃑 ε1n, then w.h.p. we have

|H̄π| 󰃍 30pn|J ′|.

If further ∆(J ′) 󰃑 ε1n/
√
log n, then w.h.p. we have

|H̄π| 󰃍 20pn|J ′|
√
log n

log log n
.

Proof. For each wx ∈ J ′, we get wx /∈ Q(π) by the assumption of Proposition 12, so there
are at least p2n2/12 choices of (y, z) such that {w, x, y, z} spans an F̂5, by Claim 14. Then

there are at least 1
12
|J ′|p2n2 = 1

2

󰁓
x∈V1

dJ
′
(x)p

2n2

12
copies of F̂5 in total.

Now consider missing crossing hyperedges xyz ∈ H̄π with x ∈ V1. Call xyz ∈ H̄π bad
if

dJ
′
(x) 󰃑 ε1n√

log n
and |N(y, z) ∩NJ ′

(x)| 󰃍 pn log log n

500
√
log n

, or

ε1n√
log n

< dJ
′
(x) 󰃑 ε1n and |N(y, z) ∩NJ ′

(x)| 󰃍 3ε1pn.

Otherwise, call xyz good. We will show that the number of copies of F̂5 that contain a
good hyperedge from H̄π is at least 1

4

󰁓
x∈V1

dJ
′
(x)p

2n2

12
. For x ∈ V1, let nx be the number
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of copies of F̂5 that contain vertex x and a bad hyperedge e ∈ H̄π such that x ∈ e, and let
rx be the number of (y, z) such that y ∈ V2, z ∈ V3, and xyz is bad. We will repeatedly
use Lemma 8 for some choices of (s, r, i) ∈ O to give upper bounds for rx and then obtain
upper bounds for nx. For every x ∈ V1, we consider the following two cases.

Case 1: dJ
′
(x) 󰃑 ε1n√

logn
. If dJ

′
(x) = 0, then nx is trivially 0. For every positive

integer s 󰃑 ε1n√
logn

, r = pn√
logn

s, and i = pn log logn
500

√
logn

, we have (s, r, i) ∈ O (see Claim 23 in the

Appendix for the proof). Hence, by Lemma 8, we get rx 󰃑 pn√
logn

dJ
′
(x). By Lemma 6,

we can assume every pair of vertices has codegree at most pn
√
logn

log logn
in G. We conclude

nx 󰃑 pn

√
log n

log log n
· pn√

log n
dJ

′
(x) 󰃑 p2n2

100
dJ

′
(x).

Case 2: ε1n√
logn

< dJ
′
(x) 󰃑 ε1n. For every integer s ∈ ( ε1n√

logn
, ε1n], r = pn

500
s, and

i = 3ε1pn, we have (s, r, i) ∈ O (see Claim 24 in the Appendix for the proof). Hence, by
Lemma 8, we have rx 󰃑 pn

500
dJ

′
(x). By Lemma 6, we can assume every pair of vertices

has codegree at most pn
√
logn

log logn
in G. Besides, we have (s, pn2/ log n, 3pn) ∈ O for every

1 󰃑 s 󰃑 n (see Claim 25 in the Appendix for the proof), so by Lemma 8, there are at
most pn2/ log n pairs (y, z) where y ∈ V2, z ∈ V3 such that |N(y, z)∩NJ ′

(x)| 󰃍 3pn. We
conclude

nx 󰃑 pn2

log n
· pn

√
log n

log log n
+ 3rxpn 󰃑 p2n2

log log n
· n√

log n
+

3p2n2

500
dJ

′
(x) 󰃑 p2n2

100
dJ

′
(x).

Recall that a copy of F̂5 contains at least one hyperedge from H̄π, which is either bad
or good. Thus, the number of copies of F̂5 that contain a good hyperedge from H̄π is at
least

1

2

󰁛

x∈V1

dJ
′
(x)

p2n2

12
−

󰁛

x∈V1

p2n2

100
dJ

′
(x) 󰃍 1

4

󰁛

x∈V1

dJ
′
(x)

p2n2

12
=

1

24
|J ′|p2n2. (5)

If ∆(J ′) 󰃑 ε1n, every good missing crossing hyperedge is in at most 3ε1pn copies of F̂5

estimated in (5), so

|H̄π| 󰃍
1
24
|J ′|p2n2

3ε1pn
󰃍 pn|J ′|

72ε1
󰃍 30pn|J ′|.

If further ∆(J ′) 󰃑 ε1n/
√
log n, then every good missing crossing hyperedge is in at most

pn log logn
500

√
logn

copies of F̂5 estimated in (5), so

|H̄π| 󰃍
1
24
|J ′|p2n2

pn log log n/(500
√
log n)

󰃍 20pn|J ′|
√
log n

log log n
.

Now, we divide the rest of the proof into two cases according to the size of H̄π. The
notations and calculations are similar in both cases.

3.1 |H̄π| 󰃑 δpn3/ logn

Define

S := {x ∈ V1 : dJ(x) 󰃍 ε1n/
󰁳

log n},
S1 := {x ∈ S : dH2,3(x) 󰃍 ε2pn

2}, and S2 := S \ S1.
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For the following lemmas, we always assume that |H̄π| 󰃑 δpn3/ log n and the assumptions
of Proposition 12 hold.

Lemma 16. With high probability |S| 󰃑 ε3n/
√
log n.

Proof. For each wx ∈ J , we get wx /∈ Q(π) by the assumption of Proposition 12, so there
are at least p2n2/12 choices of (y, z) such that {w, x, y, z} spans an F̂5, by Claim 14.
Then there are at least 1

12
|J |p2n2 copies of F̂5 in total. On the other hand, at least one

of wyz and xyz must be in H̄π. For xyz where dV1(y, z) 󰃑 3pn, xyz can be in at most
3pn copies of F̂5. Hence the number of copies of F̂5 containing a pair (y, z) ∈ V2 × V3

with dV1(y, z) 󰃑 3pn is at most 3|H̄π|pn. By Lemma 7, there can be at most n2e−
√
logn

pairs (y, z) with dV1(y, z) 󰃍 3pn, and by Lemma 6, for every pair (y, z), we can assume

dV1(y, z) 󰃑 d(y, z) 󰃑 pn
√
logn

log logn
. Hence the number of copies of F̂5 containing a pair

(y, z) ∈ V2×V3 with dV1(y, z) 󰃍 3pn is at most n2e−
√
logn

󰀓
pn

√
logn

log logn

󰀔2

. Therefore, we get

n2e−
√
logn

󰀕
pn

√
log n

log log n

󰀖2

+ |H̄π| · 3pn 󰃍 |J |p2n2

12
. (6)

Note that n2e−
√
logn

󰀓
pn

√
logn

log logn

󰀔2

󰃑 δp2n4

logn
. By the assumption |H̄π| 󰃑 δpn3

logn
, we have

|H̄π| ·3pn 󰃑 3δp2n4

logn
. Hence, we get |J | 󰃑 48δn2

logn
. Every vertex in S has degree at least ε1n√

logn

in J , so ε1n√
logn

|S| 󰃑 2|J | 󰃑 96δn2

logn
, which confirms that |S| 󰃑 100δ

ε1
· n√

logn
󰃑 ε3n√

logn
.

Lemma 17. With high probability |H̄π| 󰃍 20pn2|S1|.

Proof. We can assume that |S1| > 0, since otherwise this inequality is trivial. For every
vertex x ∈ S1, define

Tx := {yz : y ∈ V2, z ∈ V3, xyz ∈ H, dS1\{x}(y, z) 󰃑 3ε3pn/
󰁳

log n}.

By Lemma 16, we know that w.h.p. |S1| 󰃑 |S| 󰃑 ε3n/
√
log n. For every s 󰃑 ε3n/

√
log n,

we have (s, ε2pn
2/2, 3ε3pn/

√
log n) ∈ O (see Claim 26 in the Appendix for the proof),

so by Lemma 8, there can be at most ε2pn
2/2 pairs of (y, z) such that xyz ∈ G and

dS1\{x}(y, z) 󰃍 3ε3pn/
√
log n. By the definition of S1, we have dH2,3(x) 󰃍 ε2pn

2 for every
x ∈ S1. Thus, we get |Tx| 󰃍 ε2pn

2/2.
Now, we count the copies of F̂5 = {x, w, y, z} where x ∈ S1, w ∈ NJ(x), and {y, z} ∈

Tx. Note that wyz must be in H̄π, since xyz ∈ H. We have that |NJ(x)| 󰃍 ε1n/
√
log n

by the definition of S, and we just confirmed |Tx| 󰃍 ε2pn
2/2. Applying Lemma 9 by

setting v = x, E = {e ∈ H1 : x ∈ e}, A = NJ(x), and T = Tx, we get the number of such
copies of F̂5 is w.h.p. at least

󰁛

x∈S1

1

2
p|NJ(x)||Tx| 󰃍

󰁛

x∈S1

1

2
p · ε1n√

log n
· 1
2
ε2pn

2 󰃍 ε1ε2p
2n3|S1|

4
√
log n

. (7)

Every wyz ∈ H̄π can be in at most 3ε3pn/
√
log n copies of F̂5 evaluated in (7), because

x is assumed to be in S1 and dS1(y, z) 󰃑 3ε3pn/
√
log n. Therefore,

|H̄π| 󰃍
1
4
ε1ε2p

2n3|S1|/
√
log n

3ε3pn/
√
log n

󰃍 20pn2|S1|.
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Lemma 18. With high probability |H̄π| 󰃍 1
20
pn2|S2|.

Proof. For every vertex x ∈ S2, we have dH2,3(x) < ε2pn
2 by the definition of S2, but by

Lemma 5, d2,3(x) 󰃍 pn2/10. Thus, there are at least pn2/20 hyperedges in H̄π containing
x, so |H̄π| 󰃍 |S2|pn2/20.

Finally, we deduce Proposition 12 assuming |H̄π| 󰃑 δpn3/ log n.

Proof of Proposition 12. We will show that with high probability |H̄π| 󰃍 3|H1|, by using
the lower bounds in Lemmas 15, 17, and 18. Partition H1 into the following three sets.

• H1(1) = {e ∈ H1 : |e ∩ S| 󰃍 2 or |e ∩ (V1 \ S)| 󰃍 2}.

• H1(2) = {e ∈ H1 \H1(1) : |e ∩ S1| = 1}. Hence, H1(2) contains those hyperedges
in H1 with exactly one vertex in S1, one vertex in V1 \S, and one vertex in [n] \V1.

• H1(3) = H1 \ (H1(1) ∪H1(2)). Hence, H1(3) contains those hyperedges in H1 with
exactly one vertex in S2, one vertex in V1 \ S, and one vertex in [n] \ V1.

There are three cases needed to be handled.
Case 1: 3|H1(1)| 󰃍 |H1|.
Let J ′ := J [S]∪ J [V1 \ S], where J [S] and J [V1 \ S] are the induced subgraph of J on

S and V1 \S separately. By Lemma 6, |H1(1)| 󰃑 |J ′|pn
√
log n/ log log n. For every vertex

x ∈ S, dJ
′
(x), the degree of x in J ′, is at most |S| − 1 󰃑 ε3n/

√
log n 󰃑 ε1n/

√
log n, by

Lemma 16. For every vertex x ∈ V1 \ S, we have dJ
′
(x) 󰃑 dJ(x) 󰃑 ε1n/

√
log n, by the

definition of S. Hence, ∆(J ′) 󰃑 ε1n/
√
log n. Then, by Lemma 15,

|H̄π| 󰃍
20pn|J ′|

√
log n

log log n
󰃍 20|H1(1)| 󰃍 3.3|H1|.

Case 2: 3|H1(2)| 󰃍 |H1|.
For every vertex x ∈ S1, there are at most 2pn2 hyperedges in H1 \H1(1) containing

it, by Lemma 4. Hence, |H1(2)| 󰃑 2pn2|S1|. Then, by Lemma 17,

|H̄π| 󰃍 20pn2|S1| 󰃍 10|H1(2)| 󰃍 3.3|H1|.

Case 3: 3|H1(3)| 󰃍 |H1|.
By the definition of S2, every vertex x ∈ S2 has dH2,3(x) 󰃑 ε2pn

2. Recall that π
maximizes |Hπ|, so dH1,2(x), d

H
1,3(x) 󰃑 ε2pn

2. Hence, |H1(3)| 󰃑 2ε2pn
2|S2|. Then, by

Lemma 18,

|H̄π| 󰃍
1

20
pn2|S2| 󰃍

1

20
· |H1(3)|

2ε2
󰃍 10|H1(3)| 󰃍 3.3|H1|.

Thus, we have |H̄π| 󰃍 3.3|H1| 󰃍 3|H1|, where the equality is possible only if |H1| =
0. Recalling our assumption that |H1| 󰃍 |H2|, |H3|, we have that |H1| = 0 implies󰁓3

i=1 |Hi| = 0, which means H is tripartite.

Remark 19. The log log n factor in Lemma 6 plays an important role in the case 3|H1(1)| 󰃍
|H1|. Without this factor, we would need to conclude |H̄π| 󰃍 20pn|J ′|

√
log n from

Lemma 15, which we can only obtain when ∆(J ′) 󰃑 ε1n/ log
1/2+c n for some constant

c > 0. Then, we would need to modify the definition of S to be {x ∈ V1 : dJ(x) 󰃍
ε1n/ log

1/2+c n}. However, the assumption of Lemma 9 is no longer valid for sets A of
smaller size. Therefore, we would not be able to use Lemma 9 in the proof of Lemma 17.
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3.2 |H̄π| > δpn3/ logn

All the notation and theorems here are similar to those in Section 3.1, so we will just
point out the necessary modifications. Define

S ′ := {x ∈ V1 : d
J(x) 󰃍 ε1n},

S ′
1 := {x ∈ S ′ : dH2,3(x) 󰃍 ε2pn

2}, and S ′
2 := S ′ \ S ′

1.

For the following lemmas, we always assume that |H̄π| > δpn3/ log n and the assump-
tions of Proposition 12 hold. Note that by the assumption in Proposition 12, we have
|H1|, |H2|, |H3| 󰃑 δpn3/3. If |H̄π| 󰃍 3|H1|, then we are done, so we can assume that
|H̄π| < 3|H1| 󰃑 δpn3.

Lemma 20. With high probability |S ′| 󰃑 ε3n.

Proof. Inequality (6) still holds, and now we get |J | 󰃑 48δn2. Every vertex in S ′ has
degree at least ε1n in J , so ε1n|S ′| 󰃑 2 · 48δn2, which gives |S ′| 󰃑 100δ

ε1
n = ε3n.

Lemma 21. With high probability |H̄π| 󰃍 20pn2|S ′
1|.

Proof. We can assume that |S ′
1| 󰃍 1, since otherwise this inequality is trivial. For each

x ∈ S ′
1, define

T ′
x := {yz : y ∈ V2, z ∈ V3, xyz ∈ H, dS′

1\{x}(y, z) 󰃑 3ε3pn}.

By Lemma 20, |S ′
1| 󰃑 |S ′| 󰃑 ε3n. For every s 󰃑 ε3n, we have (s, ε2pn

2/2, 3ε3pn) ∈ O (see
Claim 27 in the Appendix for the proof). Then by Lemma 8 and the definition of S ′

1, we
get that |T ′

x| 󰃍 1
2
ε2pn

2. Now we count those copies of F̂5 = {x, w, y, z} where x ∈ S ′
1,

w ∈ NJ(x), and {y, z} ∈ T ′
x. By Lemma 9, the number of such copies of F̂5 is at least

1
4
ε1ε2p

2n3|S ′
1|. Every wyz ∈ H̄π can be in at most 3ε3pn such copies of F̂5, because x is

assumed to be in S ′
1 and dS′

1
(y, z) 󰃑 3ε3pn. Therefore,

|H̄π| 󰃍
1
4
ε1ε2p

2n3|S ′
1|

3ε3pn
󰃍 20pn2|S ′

1|.

Lemma 22. With high probability |H̄π| 󰃍 1
20
pn2|S ′

2|.

Proof. Exactly the same as the proof of Lemma 18.

We are now able to conclude the proof of Proposition 12 for the remaining case that
δpn3

logn
< |H̄π| 󰃑 δpn3.

Proof of Proposition 12. Similarly to the proof in Section 3.1, we define H ′
1(1) = {e ∈

H1 : |e ∩ S ′| 󰃍 2 or |e ∩ (V1 \ S ′)| 󰃍 2}, H ′
1(2) = {e ∈ H1 \ H ′

1(1) : |e ∩ S ′
1| = 1} and

H ′
1(3) = H ′

1 \ (H ′
1(1) ∪H ′

1(2)).
We still split the proof into three cases. The cases 3|H ′

1(2)| 󰃍 |H1| and 3|H ′
1(3)| 󰃍 |H1|

follow with the same proof as in Section 3.1. For the case 3|H ′
1(1)| 󰃍 |H1|, now let

J ′ = J [S ′] ∪ J [V1 \ S ′]. By Lemmas 6 and 7,

|H ′
1(1)| 󰃑 |J ′| · 3pn+ n2e−

√
logn · pn

√
log n

log log n
. (8)
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Recall we have the assumptions that 3|H1| 󰃍 |H̄π|, so 3|H ′
1(1)| 󰃍 |H1| 󰃍 δpn3/(3 log n).

Hence by (8), we have that 0.99|H ′
1(1)| 󰃑 |J ′|·3pn. Then, by Lemma 20 and the definition

of S ′, we get that ∆(J ′) 󰃑 ε1n. Finally, by Lemma 15, |H̄π| 󰃍 30pn|J ′| 󰃍 9.9|H ′
1(1)| 󰃍

3.3|H1|.
Thus, similarly as in Section 3.1, we get |H̄π| 󰃍 3.3|H1| 󰃍 3|H1|, where the equality

is possible only if H is tripartite.
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Appendix: Final computations

Recall that g(p, s, r, i) = n
󰀃
n
s

󰀄󰀃
n2

r

󰀄 󰀃
p
󰀃
s
i

󰀄
pi
󰀄r

and O is the set of (s, r, i) where g(p, s, r, i) =
o(n−5) given p > C

√
log n/n. In this appendix, we give the proof for the claims made in

the proof of Theorem 1 that certain (s, r, i) is in O.

Claim 23. For every positive integer s 󰃑 ε1n√
logn

, r = pn√
logn

s, and i = pn log logn
500

√
logn

, we have

(s, r, i) ∈ O.

Proof. We have

g(p, s, r, i) = n

󰀕
n

s

󰀖󰀕
n2

pn√
logn

s

󰀖󰀣
p

󰀕
s

pn log logn
500

√
logn

󰀖
p

pn log logn
500

√
logn

󰀤 pn√
logn

s

󰃑 n
󰀓en
s

󰀔s
󰀣
epn2

√
log n

pns

󰀕
500eps

√
log n

pn log log n

󰀖 pn log logn
500

√
logn

󰀤 pn√
logn

s

󰃑 n
󰀓en
s

󰀔s
󰀣
en

√
log n

s

󰀕
500es

√
log n

n log log n

󰀖 pn log logn
500

√
logn

󰀤 pn√
logn

s

. (9)

There are three cases depending on s.
Case 1: 1 󰃑 s 󰃑 √

n. In this case, (9) is at most

n(en)s

󰀣
en

󰁳
log n

󰀕√
log n√
n

󰀖C log logn
500

󰀤Cs

󰃑 n(en)s
󰀕
1

n

󰀖Cs

= o(n−5).

Case 2:
√
n < s < n

logn
. In this case, we have n

s
󰃍 log n >

󰀓
500e

√
logn

log logn

󰀔2

and then

󰀕
500es

√
log n

n log log n

󰀖 pn log logn
500

√
logn

󰃑
󰀕
s

n
· 500e

√
log n

log log n

󰀖log logn

󰃑
󰀓 s

n

󰀔 1
2
log logn

󰃑
󰀓 s

n

󰀔100

.

Therefore, (9) is at most

n
󰀓en
s

󰀔s
󰀕
en

√
log n

s

󰀓 s

n

󰀔100
󰀖 pn√

logn
s

󰃑 n
󰀓en
s

󰀔s 󰀓 s

n

󰀔 pn√
logn

s

󰃑 n
󰀓en
s

󰀔s 󰀓 s

n

󰀔Cs

󰃑 n
󰀓 s

n

󰀔s

󰃑 n

󰀕
1

log n

󰀖√
n

= o(n−5).

Case 3: n
logn

󰃑 s 󰃑 ε1n√
logn

. In this case, (9) is at most

n(e log n)s

󰀣
e log3/2 n

󰀕
500eε1
log log n

󰀖C log logn
500

󰀤 pn√
logn

s

󰃑n(e log n)s

󰀣󰀕
1

log log n

󰀖log logn
󰀤Cs

󰃑 n

󰀕
1

log n

󰀖s

󰃑 n

󰀕
1

log n

󰀖 n
logn

= o(n−5).
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Claim 24. For every positive integer s ∈
󰀃

ε1n√
logn

, ε1n
󰀆
, r = pn

500
s, and i = 3ε1pn, we have

(s, r, i) ∈ O.

Proof. We have that g(p, s, r, i) is

n

󰀕
n

s

󰀖󰀕
n2

pn
500

s

󰀖󰀕
p

󰀕
s

3ε1pn

󰀖
p3ε1pn

󰀖 pn
500

s

󰃑 n
󰀓en
s

󰀔s
󰀣
500pn2

pns

󰀕
eps

3ε1pn

󰀖3ε1pn
󰀤 pn

500
s

=

n
󰀓en
s

󰀔s
󰀣
500n

s

󰀕
es

3ε1n

󰀖3ε1pn
󰀤 pns

500

󰃑 n

󰀕
e
√
log n

ε1

󰀖s 󰀕
500

√
log n

ε1

󰀓e
3

󰀔3ε1C
√
logn

󰀖Cs
√
logn

󰃑 n

󰀕
e
√
log n

ε1

󰀖s 󰀓
2−

√
logn

󰀔Cs
√
logn

󰃑 n2−s 󰃑 n2
− ε1n√

logn = o(n−5).

Claim 25. For every positive integer s 󰃑 n, we have
󰀓
s, pn2

logn
, 3pn

󰀔
∈ O.

Proof. We have that g(p, s, r, i) is

n

󰀕
n

s

󰀖󰀕
n2

pn2

logn

󰀖󰀕
p

󰀕
s

3pn

󰀖
p3pn

󰀖 pn2

logn

󰃑 n2n
󰀕

n2

pn2

logn

󰀖󰀕
p

󰀕
n

3pn

󰀖
p3pn

󰀖 pn2

logn

󰃑 n2n

󰀣
epn2 log n

pn2

󰀕
enp

3pn

󰀖3pn
󰀤 pn2

logn

󰃑 n2n
󰀕
e log n

󰀓e
3

󰀔3pn
󰀖 pn2

logn

󰃑 n2n
󰀕
e log n

󰀓e
3

󰀔3C
√
logn

󰀖 Cn√
logn

󰃑 n2n
󰀕󰀓e

3

󰀔√
logn

󰀖 Cn√
logn

= n2n
󰀓e
3

󰀔Cn

= o(n−5).

Claim 26. For every positive integer s 󰃑 ε3n√
logn

, we have
󰀓
s, ε2pn

2

2
, 3ε3pn√

logn

󰀔
∈ O.

Proof. We have that g(p, s, r, i) is

n

󰀕
n

s

󰀖󰀕
n2

1
2
ε2pn2

󰀖󰀣
p

󰀕
s

3ε3pn√
logn

󰀖
p

3ε3pn√
logn

󰀤 1
2
ε2pn2

󰃑 n

󰀕
n
ε3n√
logn

󰀖󰀕
n2

1
2
ε2pn2

󰀖󰀣
p

󰀕 ε3n√
logn

3ε3pn√
logn

󰀖
p

3ε3pn√
logn

󰀤 1
2
ε2pn2

󰃑 n

󰀕
en

√
log n

ε3n

󰀖 ε3n√
logn

󰀣
2epn2

ε2pn2

󰀕
eε3pn

3ε3pn

󰀖 3ε3pn√
logn

󰀤 1
2
ε2pn2

= n

󰀕
e
√
log n

ε3

󰀖 ε3n√
logn

󰀕
2e

ε2

󰀓e
3

󰀔 3ε3pn√
logn

󰀖 1
2
ε2pn2

󰃑 n

󰀕
e
√
log n

ε3

󰀖 ε3n√
logn

2−
1
2
ε2pn2 󰃑 n

󰀕
e
√
log n

ε3

󰀖 ε3n√
logn

2−
1
2
ε2Cn

√
logn = o(n−5).

Claim 27. For every positive integer s 󰃑 ε3n, we have
󰀓
s, ε2pn

2

2
, 3ε3pn

󰀔
∈ O.
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Proof. We have that g(p, s, r, i) is

n

󰀕
n

s

󰀖󰀕
n2

1
2
ε2pn2

󰀖󰀕
p

󰀕
s

3ε3pn

󰀖
p3ε3pn

󰀖 1
2
ε2pn2

󰃑 n

󰀕
n

ε3n

󰀖󰀕
n2

1
2
ε2pn2

󰀖󰀕
p

󰀕
ε3n

3ε3pn

󰀖
p3ε3pn

󰀖 1
2
ε2pn2

󰃑 n

󰀕
en

ε3n

󰀖ε3n
󰀣
2epn2

ε2pn2

󰀕
eε3pn

3ε3pn

󰀖3ε3pn
󰀤 1

2
ε2pn2

= n

󰀕
e

ε3

󰀖ε3n 󰀕2e

ε2

󰀓e
3

󰀔3ε3pn
󰀖 1

2
ε2pn2

󰃑 n2−n
√
logn = o(n−5).
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