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Abstract

We show that almost every matroid contains at least one of the rank-3 whirlW3

and the complete-graphic matroid M(K4) as a minor.

Mathematics Subject Classifications: 05B35, 05A16

1 Introduction

A matroid is called sparse paving if and only if its nonspanning circuits are hyperplanes
as well.1 Sparse paving matroids, relatively benign objects compared to general matroids,
play an important role in matroid enumeration problems, as it is widely believed that
almost every matroid is sparse paving (see [MNWW11] and references therein). May-
hew, Newman, Welsh and Whittle [MNWW11] conjectured that sparse paving matroids
are ubiquitous in another sense as well, namely that any fixed sparse paving matroid is
contained as a minor in almost every matroid.

Conjecture 1 (Mayhew–Newman–Welsh–Whittle). Let N be a sparse paving matroid.
Almost every matroid has an N -minor; i.e. the fraction of matroids on ground set E that
do not have an N -minor tends to 0 as |E| → ∞.

Various special cases of Conjecture 1 have been verified, including the case where N is
a uniform matroid [PvdP18] or one of the six-element matroids P6, Q6 and R6 [PvdP15a].2

In particular, Conjecture 1 has been verified for each sparse paving matroid of rank 3 on
6 elements, except the whirlW3 and the complete graphic matroid M(K4) (see Figure 1).

Department of Applied Mathematics, University of Twente, Enschede, The Netherlands. The
research presented in this paper was carried out while the author was with the University of
Waterloo, Waterloo, Ontario, Canada.

1Equivalently, a matroid M is sparse paving if both M and M∗ are paving. Yet another equivalent
definition is that a matroid is sparse paving if and only if no nonbasis (a nonspanning set whose
cardinality is equal to the rank of the matroid) can be transformed into another by exchanging a single
element.

2Throughout this paper, matroid terminology and names for named matroids follow Oxley [Oxl11].
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If Conjecture 1 holds for those two cases, it would do so less overwhelmingly than
for the rank-3 cases for which the conjecture is known to hold: [PvdP15a] construct a
large class of M(K4)-free matroids and present an argument due to Blokhuis that relates
W3-free matroids to the affine capset problem, a notoriously hard problem in additive
combinatorics (see [EG17] for a recent breakthrough on the affine capset problem due to
Ellenberg and Gijswijt).

In this paper, we make progress towards proving the conjecture for N = W3 and
N = M(K4) by proving that almost every matroid contains at least one of those two
matroids as a minor.

Theorem 2. Almost every matroid has an M(K4)- or W3-minor.

(A) The whirl W3. (B) The graphic matroid M(K4).

Figure 1: Geometric representations of the two matroids that appear in Theorem 2.

At the heart of the proof of Theorem 2 lies an analysis of the number of rank-3 matroids
that do not have W3 or M(K4) as a restriction.3

Theorem 3. The number of rank-3 {W3,M(K4)}-free matroids on ground set [n] is
2o(n2).

A version of Theorems 2 and 3 for sparse paving matroids was proved earlier on the
Matroid Union blog [vdP20]. The sparse paving version of Theorem 3, which appears as
Lemma 9 below, is a counting version of the Ruzsa–Szemerédi (6,3)-Theorem [RS78].

The remainder of this paper is structured as follows. In Section 2, we review known
results about matroid enumeration and prove our main technical tool, which allows us to
bound the size of a class of matroids in terms of its low-rank members. In Section 3, we
prove the sparse paving versions of Theorems 2 and 3, after which the full theorems are
proved in Section 4. Finally, in Section 5, we comment on replacing M(K4) by F7 in the
two main theorems of this paper.

2 Matroid enumeration

In this section, we review known results on matroid enumeration and prove a lemma which
allows us to conclude that a contraction-closed class M of matroids is “small” based on
the number of rank-s matroids that it contains.
3The set [n] denotes {1, 2, . . . , n}. Asymptotic notation will always refer to the regime n → ∞. Loga-
rithms are taken with respect to base 2.

the electronic journal of combinatorics 30(4) (2023), #P4.23 2



2.1 Notation

Throughout this paper, m(n) and s(n) denote the number of matroids and sparse paving
matroids on ground set [n], respectively. Similarly, m(n, r) and s(n, r) are the number of
matroids (sparse paving matroids) on ground set [n] of rank r.

When discussing classes of matroids, we will use subscripts for the corresponding
numbers in this class; for example, sM(n, r) denotes the number of rank-r sparse paving
matroids on ground set [n] in the class M.

We say that almost every matroid satisfies property P if the classM of matroids that
do not satisfy P is small in the sense that mM(n) = o(m(n)); in practice, this often means
showing that mM(n) = o(s(n)).

In this paper, the main class of interest isM = X , where X = Ex(W3,M(K4)) is the
class of {W3,M(K4)}-free matroids; thus, Theorem 2 is equivalent to the statement that
mX (n) = o(m(n)), while Theorem 3 states that mX (n, 3) = 2o(n2).

2.2 Lower bound

The following lower bound on the number of (sparse paving) matroids on ground set [n]
is due to a construction by Graham and Sloane [GS80].

Lemma 4. logm(n) > log s(n) > 1
n

(
n

n/2

)
.

2.3 Bounding a class in terms of its rank-s members

The following lemma, which is a straightforward extension of the main technical result
in [BPvdP14], first appeared on the Matroid Union blog [PvdP16].

Lemma 5. Let M be a class of matroids that is closed under contraction. For all t 6
r 6 n,

log(1 + mM(n, r))(
n
r

) 6
log(1 + mM(n− t, r − t))(

n−t
r−t

) .

Let s > 3 be a fixed integer. Applying Lemma 5 with t = r − s provides an upper
bound on mM(n, r) in terms of mM(n− r+s, s). Note that the upper bound provided by
the next lemma is in terms of s(n); this facilitates use of the lemma to prove statements
of the form “almost every sparse paving matroid satisfies P” as well as those of the form
“almost every matroid satisfies P”.

Lemma 6. Let M be a class of matroids that is closed under contraction, and let s > 3
be an integer. If there exist c < 1/2 and n0 such that logmM(n, s) 6 c

n

(
n
s

)
for all n > n0,

then mM(n) = o(s(n)); in particular, then almost every matroid is not in M.

Proof. Let c′ and c′′ be such that c < c′ < c′′ < 1/2. For positive integers n, define
Rn =

[
n
2
−
√
n, n

2
+
√
n
]
∩ Z and Rc

n = {0, 1, . . . , n} \ Rn. Let n1 > n0 be so large that
for all n > n1 we have c′/(1− 2/

√
n) < c′′, and, for all r ∈ Rn,

s 6 r 6 n, n− r + s > n0 and 1 + 2
c

n−r+s(
n−r+s

s ) 6 2
c′

n−r+s(
n−r+s

s ).
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For n > n1 and r ∈ Rn, an application of Lemma 5 gives

logmM(n, r) 6
c′

n− r + s

(
n

r

)
6

c′

n
2
−
√
n

(
n

n/2

)
6

2c′′

n

(
n

n/2

)
. (1)

By [PvdP15b, Theorem 16] (and the observation that mM(n, r) 6 m(n, r)),∑
r∈Rcn

mM(n, r) 6
∑
r∈Rcn

m(n, r) = o(s(n)).4 (2)

Combining (1) and (2),

mM(n) =
∑
r∈Rn

mM(n, r) +
∑
r∈Rcn

mM(n, r)

6 (2
√
n + 1)2

1−δ
n ( n

n/2) + o(s(n)) = o(s(n)),

where the final step follows from the lower bound on s(n) from Lemma 4.

3 Sparse paving matroids without M(K4)- or W3-minor

In this section, we prove the sparse paving versions of Theorems 2 and 3. The contents
of this section appeared before on the Matroid Union blog [vdP20].

Theorem 7. Almost every sparse paving matroid contains W3 or M(K4) as a minor, i.e.
sX (n) = o(s(n)).

Our starting point will be sparse paving matroids of rank 3 on ground set [n], where
we assume that n > 4. Pairs of circuit-hyperplanes of such matroids intersect in at most
one point. Conversely, any collection of 3-element subsets of [n] that pairwise intersect
in at most one point forms the collection of circuit-hyperplanes of a rank-3 sparse paving
matroid. Thus, sparse paving matroids of rank-3 can be thought of as linear 3-uniform
hypergraphs.

A rank-3 sparse paving matroid is {W3,M(K4)}-free if and only if its corresponding
hypergraph has the property that the subgraph induced by any six vertices spans at
most two edges (equivalently, such a hypergraph does not contain a linear 3-cycle, i.e.
the hypergraph corresponding to W3, as a subgraph). We call such a hypergraph a
Ruzsa–Szemerédi hypergraph, and write rs(n) for the maximum number of edges in a
Ruzsa–Szemerédi hypergraph on n vertices. The following result is known as the (6, 3)-
Theorem.

Theorem 8 (Ruzsa–Szemerédi, [RS78]). rs(n) = o(n2).

4Although [PvdP15b, Theorem 16] states only that
∑

r∈Rc
n
m(n, r) = o(m(n)), its proof implies the

statement that is used here.
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The following result, a counting version of the (6, 3)-Theorem, is by no means new; in
the context Ruzsa–Szemerédi hypergraphs, it was mentioned by Balogh and Li [BL20] as
an extension of a result of Erdős, Frankl and Rödl [EFR86]. We include a proof for the
sake of completeness.

Lemma 9. sX (n, 3) = 2o(n2).

Proof. Let H be a Ruzsa–Szemerédi hypergraph on n vertices, and let ∂H be its 2-shadow,
i.e. the (ordinary) graph on the same vertex set in which two vertices are adjacent if and
only if they appear in the same edge of H.

Since H does not contain a linear 3-cycle, ∂H has the property that each edge appears
in a unique triangle. This implies that H 7→ ∂H is injective.

As H has at most rs(n) edges, ∂H has at most 3rs(n) edges. It follows that the number
of possible ∂H, and hence the number of Ruzsa–Szemerédi hypergraphs, on n vertices is
at most ∑

i63rs(n)

((n
2

)
i

)
6 2H (3rs(n)/(n2))(

n
2).

Here, H denotes the binary entropy function, which has the property that H (ε) ↓ 0 as
ε ↓ 0. The lemma now follows as rs(n)/

(
n
2

)
= o(1) by Theorem 8.

Proof of Theorem 7. LetM be the class of sparse paving matroids in X , so we can write
sX (n, 3) = mM(n, 3). By Lemma 9, logmM(n, 3) 6 0.49

n

(
n
3

)
for sufficiently large n. It

follows from Lemma 6 that sX (n) = mM(n) = o(s(n)).

Due to a construction of Behrend’s [Beh46], the exponent 2 in the statement of The-
orem 8 can not be replaced by 2 − ε for any ε > 0 (see [RS78]). Since the property of
being a Ruzsa–Szemerédi hypergraph can not be destroyed by removing edges, the same
construction implies that sX (n, 3) = 2Ω(n2−ε) for all ε > 0.

4 From sparse paving to general matroids: Proof of Theorem 2

We now turn to proving the main result, Theorem 2.

4.1 From sparse paving to paving matroids

A paving matroid is one in which the only interesting flats are the hyperplanes: all smaller
flats are independent. Equivalently, a matroid M is paving if and only if each of its circuits
has cardinality r(M) or r(M) + 1. Every sparse paving matroid is paving, but there are
paving matroids that are not sparse paving.

The goal of this section is to extend the bound on sX (n, 3) in Lemma 9 to a bound
on pX (n, 3), the number of rank-3 {W3,M(K4)}-free paving matroids on ground set [n].
We use a technique by Pendavingh and Van der Pol [PvdP17] to encode each rank-3
paving matroid as a pair of rank-3 sparse paving matroids (the technique works in greater
generality, but here it suffices to specialise to the rank-3 case). If the paving matroid
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is {W3,M(K4)}-free, then so are the two sparse paving matroids, which will show that
pX (n, 3) is at most (sX (n, 3))2.

Let M be a rank-3 paving matroid on a ground set E, and assume that E is linearly
ordered by <. The matroid M can be reconstructed from the collection

V(M) =
⋃

H∈H(M)

V(H),

where H(M) is the set of hyperplanes of M , and for each hyperplane H, the elements
of V(H) are the consecutive triples in H:

V(H) =

{
V ∈

(
H

3

)
: there are no v, v′ ∈ V and h ∈ H \ V such that v < h < v′

}
.

The linear order on E induces a linear order on V(H), which means that we can write

V(H) = {V 0
H , V

1
H , . . . , V

|H|−2
H } such that V i

H < V j
H for all i < j and |V i

H ∩ V j
H | = 2 if and

only if |i− j| = 1.
Define

V0(H) = {V i
H : i is even}, V1(H) = {V i

H : i is odd},

and
V0(M) =

⋃
H∈H(M)

V0(H), V1(M) =
⋃

H∈H(M)

V1(H).

Theorem 10 (Pendavingh–Van der Pol, [PvdP17]). For k ∈ {0, 1}, the set Vk(M) is the
set of circuit-hyperplanes of a rank-3 sparse paving matroid on E. Moreover, the map
M 7→ (V0(M),V1(M)), defined on rank-3 paving matroids on ground set E, is injective.

We will refer to the two sparse paving matroids corresponding to M as M0 and M1.
The original matroid M is a weak-map image of both M0 and M1 (i.e. if D is dependent
in M0 or in M1, then it is dependent in M); as M is paving, this implies the following
lemma.

Lemma 11. If M is {W3,M(K4)}-free, then so are M0 and M1.

The following lemma is the paving version of Theorem 3.

Lemma 12. pX (n, 3) = 2o(n2).

Proof. By Theorem 10 and Lemma 11, every rank-3 {W3,M(K4)}-free paving matroid
on ground set [n] can be described by a pair of rank-3 {W3,M(K4)}-free sparse paving
matroids on [n]. This immediately implies pX (n, 3) 6 (sX (n, 3))2. The conclusion now
follows from Lemma 9.
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4.2 From paving to general matroids

We are now ready to prove Theorem 3, the upper bound on mX (n, 3).
Any rank-3 matroid M on ground set [n] with k rank-1 flats can be described by

a rank-3 paving matroid on ground set [k] (which is isomorphic to the simplification
of M), together with an ordered set partition (X0, X1, . . . , Xk) of [n], such that X0 gives
the set of loops of M , and X1, X2, . . . , Xk describe the parallel classes of M . If M is
{W3,M(K4)}-free, then so is its associated paving matroid.

Proof of Theorem 3. The number of ordered partitions of [n] into k + 1 parts is at most
nn. Summing over k, we obtain

mX (n, 3) 6
n∑

k=3

nnpX (k, 3) 6 nn+1pX (n, 3).

As nn+1 = 2o(n2), the result follows from the bound on pX (n, 3) in Lemma 12.

Finally, we prove Theorem 2, which is readily implied by the following result.

Theorem 13. mX (n) = o(s(n)).

Proof. By Theorem 3, logmX (n, 3) 6 0.49
n

(
n
3

)
for sufficiently large n. The result now

follows from an application of Lemma 6.

5 Does almost every matroid contain W3 or F7 as a minor?

It is natural to ask if the following strengthening of Theorem 2 holds: Does almost every
matroid have W3 or F7 as a minor? In this section, we show that the corresponding
version of the Ruzsa–Szemerédi (6, 3)-Theorem fails. As in Section 3, it will be useful to
think of rank-3 sparse paving matroids as linear 3-uniform hypergraphs.

Let G be a family of 3-uniform linear hypergraphs. In this section, we write exlin(n,G)
for the linear Turán number, i.e. the maximum number of edges in an n-vertex linear
3-uniform hypergraph that does not contain a copy of any member of G as a subgraph.
Similarly, we write exind

lin (n,G) for the linear induced Turán number : the maximum number
of edges in an n-vertex 3-uniform linear hypergraph that does not contain a copy of any
member of G as an induced subgraph. When G = {G} has but a single member, we shall
write exlin(n,G) = exlin(n,G). In these terms, the Ruzsa–Szemerédi (6, 3)-Theorem states
that

rs(n) = exind
lin (n, {W3,M(K4)}) = exlin(n,W3) = o(n2).

Let F be the 3-fan or sail ; i.e. the hypergraph on vertices {1, 2, 3, 4, 5, 6, 7} with edges
{1, 2, 3}, {1, 4, 5}, {1, 6, 7} and {3, 5, 7} (see Figure 2A). Füredi and Gyárfás studied the
linear Turán number for F -free 3-uniform hypergraphs and showed the following tight
bound.

Theorem 14 (Füredi–Gyárfás, [FG17]). exlin(n, F ) 6 n2

9
.
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(A) The 3-fan or sail F . (B) The Fano plane F7.

Figure 2: Two hypergraphs that appear in Section 5.

For r > 2, let Br be the linear 3-uniform hypergraph on vertices {x ∈ Fr
2 : (x1, x2) 6=

(0, 0)}, in which three distinct vertices x, y and z form a hyperedge if and only if x+y+z =
0 in Fr

2. The sparse paving matroid corresponding to Br is the rank-3 truncation of the
rank-r binary Bose–Burton geometry that is obtained from PG(r − 1, 2) by removing a
flat of rank r − 2. Alternatively, the edges of Br form the blocks of a transversal design
with three groups, where two vertices of Br are in the same group when they coincide on
their first two coordinates.

The hypergraph Br has n = 3 · 2r−2 vertices and 22(r−2) = n2

9
edges and was shown by

Füredi and Gyárfás [FG17] to be maximal F -free. Using the geometric construction of Br,
it can be shown that these hypergraphs are not only F -free, but induced-{W3, F7}-free
as well; the following result shows that they are in fact maximal induced-{W3, F7}-free.

Theorem 15. exind
lin (n, {W3, F7}) 6 n2

9
. Equality holds infinitely often.

Proof. Let H be a linear 3-uniform hypergraph that contains neither W3 nor F7 as an
induced subgraph. We claim that H does not contain the 3-fan F as a subgraph. Suppose,
for the sake of contradiction, that H contains edges {v1, v2, v3}, {v1, v4, v5}, {v1, v6, v7}
and {v3, v5, v7}, where the seven vertices are distinct. Let V = {v1, v2, . . . , v7} and let
S = {2, 4, 6}. For each s ∈ S, the subgraph H[V \ {vs}] contains a copy of W3; as such
a subgraph cannot be induced, V spans each of the edges {v2, v4, v6}4{vs, vs+1}, s ∈ S.
But this means that H contains a copy of F7: a contradiction, so H does not contain a
copy of F . It follows that

exind
lin (n, {W3, F7}) 6 exlin(n, F ) 6

n2

9
,

where the final inequality follows from Theorem 14.
For each r > 2, the hypergraph Br provides an example for which the upper bound is

attained.

Let f(n) = sEx(W3,F7)(n, 3) be the number of linear 3-uniform hypergraphs without
induced W3 or F7. A trivial upper bound on f(n) is

f(n) 6

n2

9∑
i=0

((n
3

)
i

)
= 2O(n2 logn).
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We end this section with a question.

Question 16. Is f(n) = 2Θ(n2)?

A sufficiently strong upper bound on f(n) may be a first step toward proving that
almost every matroid has aW3- or F7-minor. However, even in that case, additional ideas
are required, as the {W3, F7}-version of Lemma 11 fails.
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