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Abstract

The DP-coloring problem is a generalization of the list-coloring problem in which
the goal is to find an independent transversal in a certain topological cover of
a graph G. In the online DP-coloring problem, the cover of G is revealed one
component at a time, and the independent transversal of the cover is constructed
in parts based on incomplete information. Kim, Kostochka, Li, and Zhu asked
whether the chromatic numbers corresponding to these two graph coloring problems
can have an arbitrarily large difference in a single graph. We answer this question
in the affirmative by constructing graphs for which the gap between the online
DP-chromatic number and the offline DP-chromatic number is arbitrarily large.

Mathematics Subject Classifications: 05C15

1 Introduction

We consider several graph coloring problems. In the list coloring problem, we have a
graph G and a list L(v) of colors at each vertex v ∈ V (G). In this setting, we say that an
L-coloring of G is a proper coloring ϕ : V (G)→

⋃
v∈V (G) L(v) of G in which ϕ(v) ∈ L(v)

for every vertex v ∈ V (G). If G always has an L-coloring whenever |L(v)| = f(v) for
each vertex v ∈ V (G), then we say that G is f -choosable. If f is a constant function
f(v) = k, then we say that the list-chromatic number (or choosability) of G is at most k,
and we write χ`(G) 6 k.

The DP-coloring problem is a generalization of the list coloring problem introduced by
Dvořák and Postle [3], defined as follows. Given a graph G and a function f : V (G)→ N,
an f -fold cover of G is a graph H obtained by the following process:

• For each vertex v ∈ V (G), add a clique Kf(v) to H, and write L(v) for the vertex
set of this clique.

• For each edge uv ∈ E(G), add a matching between L(u) and L(v).

Then, we say that an independent set in H of size |V (G)| is a DP-coloring of G with
respect to H. If G always has a DP-coloring for every f -fold cover H of G, then we say
that G is DP-f -colorable. If f is a constant function f(v) = k, then we say that H is a
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k-fold cover of G, and if G always has a DP-coloring for every k-fold cover H of G, then
we say that the DP-chromatic number of G is at most k, and we write χDP (G) 6 k. Given
a cover H of G, we often refer to the vertices of H as colors, and if c ∈ L(v) for a vertex
v ∈ V (G), then we say that the color c is above v. Note that when f(v) = k is a constant
function, if the cliques in H corresponding to vertices in G are replaced with independent
sets, and if each matching between sets L(u) and L(v) is a perfect matching, then H is
a k-sheeted covering space of G, and a DP-coloring of G is equivalent to an independent
transversal of the fibers in H above the vertices of G (see [4] for an introduction to graphs
as topological spaces).

Every list-coloring problem can be transformed into a DP-coloring problem as follows.
Given a graph G with a color list L′(v) at every vertex v ∈ V (G), we construct a cover
H of G by adding a clique with vertex set L(v) for every vertex v ∈ V (G), with elements
of L(v) corresponding to colors in L′(v). Then, we consider each edge uv ∈ E(G), and
we add an edge in H between each pair (c, c′) ∈ L(u) × L(v) for which c and c′ both
correspond to a common color from L′(u) ∩ L′(v). When H is constructed this way, a
DP-coloring of G with respect to H is equivalent to an L′-coloring of G. Therefore, it
holds that χ`(G) 6 χDP (G).

We also consider two online graph coloring problems. The online DP-coloring problem
takes place in the form of a DP-coloring game between two players, called Lister and
Painter. The game is played on a graph G with a function f : V (G) → N. At the
beginning of the game, each vertex v ∈ V (G) has f(v) tokens. On each turn i, Lister
removes some number mi(v) (possibly zero) of tokens from each vertex v ∈ V (G) and
then reveals a clique Kmi(v) above each vertex v. Furthermore, for each edge uv ∈ E(G),
Lister reveals a matching between the revealed cliques above u and v. The cliques and
matchings revealed on this turn i form a cover Hi of G. After Hi is revealed, Painter
chooses an independent set from the vertices of Hi. The game ends when G has no more
tokens for Lister to remove. Painter wins the game if she manages to choose at least one
color above each vertex of G before the game is over; otherwise, Lister wins. If Painter
always has a winning strategy in the DP-coloring game on a graph G when each vertex
v ∈ V (G) begins with k tokens, then we say that the online DP-chromatic number (or
DP-paintability) of G is at most k, and we write χDPP (G) 6 k. Observe that if each
vertex of G begins with k tokens, then Lister has the option of revealing a k-fold cover
H of G on the first turn and asking Painter to find a DP-coloring of G with respect to
H, and therefore χDP (G) 6 χDPP (G).

If, in the DP-coloring game, Lister is only allowed to remove at most one token from
each vertex of G during each turn and must always reveal edges wherever possible, then
we call this variant of the game the list-coloring game. For the list-coloring game, we
may equivalently imagine that on each turn i, Lister reveals a single color ci above each
vertex of some induced subgraph G′i of G, and Painter must choose some independent
set Ii of G′i and color each vertex in Ii with ci. In this equivalent setting, each vertex
v ∈ V (G) still begins with f(v) tokens, and a single token is removed from v whenever
Lister reveals a color above v. In this setting, Painter wins the game if and only if she
can color every vertex of G before the game ends. If Painter always has a strategy to win
the list-coloring game on a graph G when each vertex v ∈ V (G) begins with f(v) tokens,
then we say that G is f -paintable. If f is a constant function f(v) = k, then we say that
G is k-paintable, and we write χP (G) 6 k. The online list-coloring game was originally

the electronic journal of combinatorics 30(4) (2023), #P4.24 2



invented using this framework of revealing colors above vertices independently by Schauz
[7] and Zhu [8].

At the end of the list-coloring game on G with a constant function f(v) = k, the
colors revealed at each vertex v form a set L(v) of k colors, and if Painter wins the game,
then Painter completes a proper L-coloring of G. Since Lister is free to form any list
assignment L on the vertices of G, it follows that if G is k-paintable, then G is also k-
choosable, and hence χ`(G) 6 χP (G). Also, since the online list-coloring game is at least
as difficult for Lister as the DP-coloring game, it also follows that χP (G) 6 χDPP (G).

After putting all of the inequalities between these parameters together, we obtain two
inequality chains:

χ`(G) 6 χDP (G) 6 χDPP (G);

χ`(G) 6 χP (G) 6 χDPP (G).

Given these inequality chains, it is natural to ask whether the differences between adjacent
parameters can be arbitrarily large. For three out of these four differences, we find an
affirmative answer by letting G = Kn,n. Indeed, Bernshteyn [1] showed that a graph G

of average degree d satisfies χDP (G) = Ω
(

d
log d

)
, implying that χDP (Kn,n) = Ω

(
n

logn

)
.

Since it is known that χ`(Kn,n) 6 χP (Kn,n) = log2 n+O(1) [2], this shows that

χDP (Kn,n)− χ`(Kn,n) = Ω

(
n

log n

)
and χDPP (Kn,n)− χP (Kn,n) = Ω

(
n

log n

)
.

Duraj, Gutowski, and Kozik [2] also showed that

χP (Kn,n)− χ`(Kn,n) = Ω(log log n).

Therefore, by letting G = Kn,n, we achieve an arbitrarily large difference for each adja-
cent pair of parameters except for χDPP (G) − χDP (G). For this final difference, Kim,
Kostochka, Li, and Zhu [5] showed there exist graphs G for which χDPP (G)− χDP (G) >
χP (G)− χDP (G) > 1, and they asked whether the difference χDPP (G)− χDP (G) can be
arbitrarily large.

In this note, we generalize the ideas from the construction of [5] to construct a graph
Gt for each t > 2 that satisfies χDPP (Gt) − χDP (Gt) > χP (Gt) − χDP (Gt) > t. Thus,
we give an affirmative answer to the question of Kim, Kostochka, Li, and Zhu [5]. By

combining this equality with the fact that χDP (Kn,n) − χP (Kn,n) = Ω
(

n
logn

)
, we also

see that the difference χDP (G)− χP (G) can achieve both positive and negative values of
arbitrarily large magnitude.

2 The construction

For each integer t > 2, we construct a graph Gt that satisfies χP (Gt)− χDP (Gt) > t. As
we are concerned with showing that the paintability of each graph Gt is large enough,
we begin with an observation about the online list-coloring game. If Lister and Painter
play the online list-coloring game on a graph G with some initial token assignment, then
Lister wins if and only if he can reach a position in which each uncolored vertex v ∈ V (G)
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has some g(v) remaining tokens, and the uncolored subgraph of G is not g-choosable. In
the original paper of Kim, Kostochka, Li, and Zhu [5], the authors take advantage of
this idea in order to construct a graph G satisfying χP (G) > χDP (G) + 1. In order to
show that their graph G has a large enough paintability, they show that in the online
list-coloring game on their graph G, Lister always has a strategy to create an uncolored
K1,k subgraph of G in which each leaf ` has g(`) = 1 token and the center vertex v has
g(v) = k tokens. Since K1,k is not g-choosable, it follows that Lister has a strategy to
win the online list-coloring game on their graph G.

In our construction, we use a similar idea. We first fix an integer t > 2 and a value
k = 28t3 . (With more careful calculation, our proof works with a smaller value of k, but
we use this larger value for clearer presentation.) In our graph Gt, we will show that
Lister can always create an uncolored Kt,kt subgraph in which each t-degree vertex u has
g(u) = t tokens and each kt-degree vertex v has g(v) = k tokens. The following lemma
shows that if Lister manages to create such an uncolored subgraph of Gt, then Lister
wins the online list-coloring game.

Lemma 1. Given the function g : V (Kt,kt)→ N defined above, Kt,kt is not g-choosable.

Proof. We let the t vertices v1, . . . , vt of degree kt have pairwise disjoint color lists
L(v1), . . . , L(vt) of size k. Then, for each of the kt elements L ∈ L(v1)×· · ·×L(vt), we as-
sign L as the color list of a vertex of degree t. Then, for each L-coloring of v1, . . . , vt, some
vertex of degree t has no available color in its list, and hence Kt,kt is not g-choosable.

The most important piece of our construction of Gt is the following gadget Ht. We
construct our gadget Ht along with a function h : V (Ht) → N as follows. We let Ht

contain (t+ 1)kt copies K1, . . . , K(t+1)kt of the clique Kt+1, and we write u`1, . . . , u
`
t+1 for

the vertices of each clique K`. We write U for the set of all of these vertices of the form
u`j; in other words, we let U consist of all vertices that we have introduced so far. Then,
for each value 1 6 j 6 t+ 1, we add t independent vertices x1j , . . . , x

t
j, and we make each

of these vertices adjacent to u1j , u
2
j , . . . , u

(t+1)kt

j . We write X for the set consisting of all

of these vertices of the form xij. For each vertex u`j ∈ U , we let h(u`j) = t + 1, and for
each vertex xij ∈ X, we let h(xij) = k − t+ 1. We now prove two lemmas that show that
under appropriate circumstances, winning the online list-coloring game on Ht as Painter
is harder than finding a DP-coloring on Ht.

Lemma 2. Ht is not (h+ t− 1)-paintable.

Proof. We give each vertex v ∈ V (Ht) exactly h(v) + t − 1 tokens, and we show that
Painter cannot win the list-coloring game on Ht.

On each of the first t turns, Lister reveals a color at each vertex of each cliqueK`. After
these first t turns, each clique K` has an uncolored vertex u`j with exactly h(u`j)− 1 = t
tokens. Furthermore, since we have (t+ 1)kt cliques K`, each with at least one uncolored
vertex, there exists some value 1 6 j∗ 6 t+1 for which at least kt vertices of the form u`j∗
are uncolored. We let A be a set of kt uncolored vertices of the form u`j∗ . Then, the set A
along with the t vertices x1j∗ , . . . , x

t
j∗ induce an uncolored Kt,kt subgraph of Ht in which

each t-degree vertex v has only g(v) = t remaining tokens, and each kt-degree vertex v
has only g(v) = k remaining tokens. Lemma 1 shows that this Kt,kt subgraph of Ht is
not g-choosable, so Lister has a strategy to win the game.
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Lemma 3. Ht is DP-h-colorable.

Proof. Consider an h-fold cover H ′ of Ht. Recall that given a vertex v ∈ V (Ht), we say
that v corresponds to a clique Kh(v) in H ′ with a vertex set L(v), and we say that L(v)
contains h(v) colors. Using this terminology, we say that each color in H ′ appears above
only one vertex of Ht, as the sets L(v) forming the cliques of H ′ are pairwise disjoint.

We first color the vertices xij ∈ X. For each vertex xij ∈ X and color c ∈ L(xij), we
define a set Sc ⊆ [(t+ 1)kt] consisting of those indices ` for which L(u`j) contains a color
adjacent to c. We will color the t(t + 1) vertices of X using t(t + 1) colors c1, . . . , ct(t+1)

that correspond to a family S = {Sc1 , . . . , Sct(t+1)
} such that for each value 1 6 q 6 t+ 1,

the following property holds:

The intersection of any q sets of S contains at most bkt−
qt
t+1 c − 1 elements. (?)

In particular, the intersection of any t+ 1 sets of S is empty.
We show that we may greedily color each vertex of X while satisfying (?). Suppose we

wish to color some vertex x ∈ X and that we have already colored some subset Y ⊆ X
while satisfying (?). To color x in a way that satisfies (?), we must choose a color c ∈ L(x)
such that for each subset A ⊆ Y of some size q ∈ [0, t] whose vertices are colored with
colors a1, . . . , aq,

|Sc ∩ Sa1 ∩ · · · ∩ Saq | 6 bkt−
(q+1)t
t+1 c − 1. (•)

We aim to show that a color c ∈ L(x) exists which satisfies (•) for each subset A ⊆ Y
of size at most t. To this end, we fix a subset A ⊆ Y of some size q ∈ [0, t] whose vertices
have colors a1, . . . , aq, and we construct a bipartite graph B with partite sets L(x) and
Sa1 ∩ · · · ∩ Saq . If A is empty, so that q = 0, then we consider this intersection to be
equal to [(t+ 1)kt]. For each color c ∈ L(x) and value ` ∈ Sa1 ∩ · · · ∩Saq , we add an edge
in B from c to ` if and only if ` ∈ Sc. We observe that as h(u`j) = t + 1 for each vertex
u`j ∈ U , each value ` ∈ Sa1 ∩ · · · ∩ Saq has degree at most (t + 1) in B. Furthermore,

|Sa1 ∩ · · · ∩ Saq | 6 bkt−
qt
t+1 c by (?) when q > 1, and |Sa1 ∩ · · · ∩ Saq | = (t + 1)kt when

q = 0. Thus, it follows that in all cases, |E(B)| 6 (t+ 1)2kt−
qt
t+1 . Therefore, the number

of colors c ∈ L(x) with degree at least bkt−
(q+1)t
t+1 c in B is at most

(t+ 1)2kt−
qt
t+1⌊

kt−
(q+1)t
t+1

⌋ < 2(t+ 1)2k
t

t+1 .

Now, a color c ∈ L(x) violates (•) for our fixed subset A if and only if c has degree at

least bkt−
(q+1)t
t+1 c in B, so at most 2(t + 1)2k

t
t+1 colors c ∈ L(x) violate (•) for the subset

A. As fewer than 2t(t+1) subsets A ⊆ Y exist, the number of colors c ∈ L(x) that violate
(•) for some subset A ⊆ Y is less than

2t(t+1)+1(t+ 1)2k
t

t+1 = 2t(t+1)+1+ 8t4

t+1 (t+ 1)2

= 2t
2+t+1+8(t3−t2+t−1+ 1

t+1
)(t+ 1)2

< 28t3−t

< k − t+ 1 = h(x).
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Therefore, some color c ∈ L(x) satisfies (•) for every subset A ⊆ Y of size q ∈ [0, t], and
hence we can color x with c while satisfying (?).

Now, with every vertex xij ∈ X colored, and with (?) satisfied, no index ` ∈ [(t+ 1)kt]
belongs to the intersection of more than t sets Sc ∈ S. Hence, after coloring the vertices
in X, at most t colors are unavailable at each clique K`. Therefore, the vertices of each
clique K` can be ordered so that the first vertex has at least one available color, the
second vertex has at least two available colors, and so forth, until the last vertex has
t + 1 available colors. Therefore, each remaining clique K` can be DP -colored with its
available colors, and the lemma is proven.

Now, we construct our graph Gt. First, we make kk−2t copies of the graph Ht, and
we index these copies by the (k − 2t)-tuples in [k]k−2t. We also add k − 2t vertices
y1, . . . , yk−2t that are adjacent to all vertices of U in each copy of Ht. We write Ũ for this
set of neighbors of y1, . . . , yk−2t, that is, the set of vertices belonging to a set U in some
copy of Ht. The following two theorems show that χP (Gt)− χDP (Gt) > t.

Theorem 4. χDP (Gt) 6 k − t+ 1.

Proof. We give Gt a DP-coloring with lists of size (k−t+1) as follows. First, we arbitrarily
color the vertices y1, . . . , yk−2t. Next, we observe that the vertices in Ũ have lost at most
k − 2t available colors, so for each vertex v in a copy of Ht, v has at least h(v) available
colors remaining. Therefore, by Lemma 3, we finish our DP-coloring of Gt by giving each
remaining copy of Ht a DP-h-coloring.

Theorem 5. χP (Gt) > k.

Proof. Suppose that the online list-coloring game is played on Gt with k tokens at each
vertex. We show that the following strategy is winning for Lister. For each pair (i, j)
satisfying 1 6 i 6 k and 1 6 j 6 k − 2t, Lister executes the following command. When
Lister executes this command for a given pair (i, j), we say that this takes place on turn
(i, j).

Reveal a color ci,j above yj and above each vertex of Ũ that belongs to a copy
of Ht indexed by a (k − 2t)-tuple with the value i in the jth coordinate.

For each value j ∈ [k − 2t], we write L(yj) = {c1,j, . . . , ck,j} for the set of colors revealed
above yj.

For each j ∈ [k − 2t], we may assume that for some value ij ∈ [k], Painter colors yj
during turn (ij, j) and hence does not color any vertex of Ũ during turn (ij, j). Indeed,
if this is not the case, then yj is never colored, and Painter will not have another chance
to color yj. Therefore, for each value j ∈ [k − 2t], we assume that no vertex in a copy of
Ht indexed by a (k − 2t)-tuple with an ij entry in the jth coordinate is colored using a
color in L(yj).

Now, let H be the copy of Ht indexed by the (k − 2t)-tuple (i1, . . . , ik−2t). By our
observation above, no vertex of H has been colored by a color in L(y1) ∪ · · · ∪ L(yk−2t),
and hence no vertex of H has been colored. Furthermore, since k − 2t tokens have been
removed from each vertex in Ũ ∩ V (H), it follows that for each vertex v ∈ V (H), only
h(v) + t− 1 tokens remain at v. Therefore, Lister can follow the strategy in Lemma 2 on
H in order to win the game, and thus χP (Gt) > k.
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3 Conclusion

While we have shown for each positive integer t the existence of a graph Gt for which
χP (Gt)− χDP (Gt) > t, it is still open whether there exists a sequence {Gt}t>1 of graphs
for which

lim
t→∞

χDPP (Gt)

χDP (Gt)
> 1 or lim

t→∞

χP (Gt)

χ`(Gt)
> 1.

On the other hand, it is unknown whether χP (G) can be bounded above by a linear or even
polynomial function of χ`(G), and it is unknown whether χDPP (G) can be bounded above
by a linear function of χDP (G). Duraj, Gutowski, and Kozik [2] have pointed out that
currently, the best known bound for χP (G) in terms of χ`(G) comes from the relationship
between a graph’s choosability and minimum degree. Namely, a result of Saxton and
Thomason [6] states that a graphG of minimum degree δ satisfies χ`(G) > (1+o(1)) log2 δ.
Writing d for the degeneracy of a graph G, we observe that G has a subgraph of minimum
degree d, and hence we use this result to observe that

χP (G) 6 d+ 1 6 2(1+o(1))χ`(G).

For χDPP (G), we may use a result of of Bernshteyn showing that a graph G of minimum

degree δ satisfies χDP (G) > δ/2
log(δ/2)

in order to bound χDPP (G) in terms of χDP (G) in a
similar way. Using the same observation as above, if d is the degeneracy of G, then

χDPP (G) 6 d+ 1 6 (2 + o(1))χDP (G) logχDP (G).

It is likely that a deeper understanding of these coloring parameters is necessary to
determine tight bounds between them.
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