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Abstract

A subgraph of an edge-coloured graph is called rainbow if all of its edges have
distinct colours. An edge-colouring is called locally k-bounded if each vertex is
incident with at most k edges of the same colour. Recently, Montgomery, Pokrovskiy
and Sudakov showed that for large n, a certain locally 2-bounded edge-colouring
of the complete graph K2n+1 contains a rainbow copy of any tree with n edges,
thereby resolving a long-standing conjecture by Ringel: For large n, K2n+1 can
be decomposed into copies of any tree with n edges. In this paper, we employ
their methods to show that any locally k-bounded edge-colouring of the complete
bipartite graph Kn,n contains a rainbow copy of any tree T with (1 − o(1))n/k
edges. We show that this implies that every tree with n edges packs at least n times
into Kn+o(1),n+o(1). We conjecture that for large n, Kn,n can be decomposed into n
copies of any tree with n edges.

Mathematics Subject Classifications: 05C70, 05C05, 05B40

1 Introduction

1.1 History and context of the paper

A subgraph of an edge-coloured graph is called rainbow if all of its edges have distinct
colours. An edge-colouring is called locally k-bounded if each vertex is incident with at
most k edges of the same colour. This paper deals with edge-colourings exclusively, which
is why the term colouring always refers to edge-colouring from here on. If such a colouring
is locally 1-bounded, it is also called a proper colouring.

The theories of rainbow substructures go back to Euler and his work on Latin Squares,
arrays of n×n cells where each cell is coloured by one of n colours so that no colour occurs
twice in any row or column. Latin Squares are in fact intimately related to coloured
bipartite graphs: A Latin Square can be represented as a properly coloured instance of
the complete bipartite graph Kn,n with vertex classes {u1, . . . , un} and {v1, . . . , vn}, where
the edge between ui and vj represents the cell of the Latin Square in the i-th row and
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j-th column. Conversely, each proper colouring of Kn,n using exactly n colours defines a
Latin Square.

In 1847, Kirkman [6] showed that the complete graph on n vertices Kn can be de-
composed into copies of a triangle if and only if n ≡ 1, 3 modulo 6. Problems like these,
on graph decompositions, sparked interest among recreational and professional mathe-
maticians and eventually helped inspire the theories of Steiner triple systems and design
theory (see e.g. [14]).

In 1963, Ringel [10] posed the conjecture that K2n+1 can be decomposed into 2n + 1
copies of any tree with n edges. Early progress on this was done by Kotzig (accord-
ing to [12]), who considered a specific colouring of the complete graph known as the
nearest-distance-colouring (or ND-colouring). This colouring derives its name from its
construction, which is as follows: Order 2n+ 1 vertices in the plane such that they form
the vertices of regular (2n+1)-gon and connect any pair of vertices with an edge where two
edges have the same colour if and only if the Euclidean distances between the connected
vertices are equal. Combinatorically, this corresponds to labelling the edge between the
i-th and j-th vertex with colour k ∈ {1, . . . , n} if either i = j + k or j = i + k with
addition modulo 2n + 1. Kotzig conjectured that the ND-coloured complete graph on
2n + 1 vertices contains a rainbow copy of any tree with n edges. This implies Ringel’s
conjecture: If one finds a rainbow copy of an n-edge tree T in the ND-coloured K2n+1,
then by rotating the tree 2n times, each time by the angle 2π/(2n+ 1), one ends up with
2n+ 1 edge-disjoint rainbow copies of the tree.

In subsequent years, Ringel’s conjecture could be proved for certain small classes of
trees (e.g. caterpillars, trees with at most 4 leaves, firecrackers, and more, see [3]) and, in
a breakthrough in 2018, for large bounded degree trees (see [5]).

Also in 2018, Montgomery, Pokrovskiy and Sudakov [8] proved an asymptotic version
of the two conjectures. Building on their methods, they could finally prove Ringel’s
conjecture by way of proving Kotzig’s conjecture in 2020 (see [9]).

The methods they used are mostly of probabilistic nature, related to the famous
probabilistic method, which was popularized by the work of Erdős and Rényi in 1959
in [1] (although earlier examples dating back as far as 1943 exist, see [13]). They also
employed different instances of absorption, a technique which was initiated by Erdős,
Gyárfás and Pyber in [2] and Krivelevich in [7] and adapted e.g. by Rödl, Rucińsky and
Szemerédi (see [11]).

1.2 Presentation of main results

In this paper, we work with the methods developed in [8] to show a similar result in the
setting of complete bipartite graphs. We obtain:

Theorem 1. Let ε > 0, k, n ∈ N such that 0 < 1
n
� 1

k
, ε. Let T be a tree on at most

(1−ε)n/k vertices. Then any locally k-bounded colouring of Kn,n contains a rainbow copy
of T .

The precise definition of � we use is given in the preliminaries section.
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From this first theorem, it follows that asymptotically, Kn,n can be decomposed into
n copies of any tree with n edges:

Theorem 2. Let 0 < 1
m
� ε and n = dm(1 + ε)e. Let T be a tree with m edges, then T

packs at least n times into Kn,n.

In order to conclude Theorem 2 from Theorem 1, we use a shifting argument similar to
that of Kotzig above, utilizing the symmetry properties of a particular proper colouring
of Kn,n, which we call difference-colouring (or D-colouring). It is defined as follows:
Enumerate the vertices of one class of Kn,n by u1, u2, . . . , un and those of the other class
by v1, v2, . . . , vn. Now colour the edge between ui and vj in the colour k, if i − j ≡ k
modulo n. This yields a proper colouring of Kn,n using n colours.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Figure 1: The D-Colouring for n = 5.

Note that in Theorem 1, the only restriction on the colouring of Kn,n is that it is
locally k-bounded, so we can apply the theorem to this colouring, setting k = 1.

Proof of Theorem 2. By Theorem 1, we can find a rainbow copy S1 of T in a D-coloured
instance of Kn,n. For i ∈ {1, . . . , n − 1}, let Si+1 be the tree that is the result of i
applications of the colour-preserving graph endomorphism which maps uj to uj+1 and vj
to vj+1 for j + 1 6 n and which maps un to u1 and vn to v1. Now, S1, . . . , Sn are n
edge-disjoint rainbow copies of T .

This paper adapts the results from [8] from the setting of complete graphs to complete
bipartite graphs, which works quite smoothly without much additional work. The authors
of [8] went on to prove Ringel’s conjecture in [9]: For large n, K2n+1 can be decomposed
into n copies of any tree with n edges. It therefore seems reasonable to propose the
following:

Conjecture 3. Let T be a tree with n edges. Then Kn,n can be decomposed into n copies
of T .

We did, however, not succeed in directly translating the methods from the proof of
Ringel’s conjecture in [9] to the bipartite case to prove this. The main difference between
the two cases is in the structure of the colouring in question: The D-colouring is a proper
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colouring, as opposed to the ND-colouring of K2n+1 being locally 2-bounded. The fact that
the ND-colouring is locally 2-bounded allows for more flexibility in finding a rainbow copy
of some trees, namely those that consist mainly of large stars, roughly speaking. More
precisely, the proof of Theorem 2.8 in Chapter 6 of [9] can seemingly not be translated to
the case of complete bipartite graphs and the D-colouring.

The rest of this paper is structured as follows: The next section lists notations, def-
initions and preliminary results used for the proof. Section 3 then presents a result on
the decomposition of a given tree, and explains how this result shapes the proof of The-
orem 1. Section 4 collects a number of lemmas which are required to carry out the
proof as lined out in Section 3. This includes many results from [8]: Some are cited in
their original form, some have been adapted to the context of complete bipartite graphs
and the adapted proofs are given. Section 5 then gives a proof of Theorem 1 using the
preliminaries, Section 6 concludes.

2 Notation and Preliminaries

As usual, for n ∈ N, let [n] denote the discrete interval {1, . . . , n}.
For the complete bipartite graph Kn,n, denote the two vertex classes by V1(Kn,n) and

V2(Kn,n).
For lack of other colourings in this paper, an edge-colouring will also be referred to

as a colouring. A colouring is called locally k-bounded if for any colour, each vertex in
G is incident with at most k edges of that colour. A locally 1-bounded colouring is also
referred to as a proper colouring.

Let G be a coloured graph. We will denote by C(G) the set of colours of G and by
c(e) the colour of the edge e ∈ E(G). |G| denotes the number of vertices of G.

In a coloured graph G, for C ⊂ C(G) and V ⊂ V (G), denote by NC(V ) the set of
vertices that share an edge of a colour in C with a vertex in V . If V = {v} is a singleton,
we will also write NC(V ) = NC(v) and call the elements of this set the colour-C neighbours
of v. For a vertex u, we use NC(u, V ) to specify NC(u) ∩ V .

We refer to a subgraph of G as rainbow if no two of its edges have the same colour.
We will make use of the following asymptotic notation conventions: Let f and g be

real-valued functions on N. We say that f = o(g) and g = ω(f), if limn7→∞
f(n)
g(n)

= 0. We

say f = O(g) and g = Ω(f), if there is a constant C > 0 such that f(n) 6 Cg(n) for all
n.

We write x � y, if there is a positive continuous function f on (0, 1] for which the
remainder of the proof works with x� y replaced by x 6 f(y).

We say that an event occurs with high probability, if it occurs with probability 1−o(1).
For events A,B, denote P (A) the probability of A, P (A|B) the probability of A given B.
For a real random variable X, denote by E[X] the expected value of X.

Lemma 4. [Chernoff’s concentration inequality, [4]] Let X ∼ Bin(n, p) and 0 < ε < 3
2
,

then:

P (|X − E[X]| > εE[X]) 6 2 exp

(
−ε

2E[X]

3

)
.
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A random variable is called k-Lipschitz, if changing ω ∈
∏n

i=1 Ωi in any one coordinate
changes X(ω) by at most k.

Lemma 5. [Azuma’s concentration inequality, [4]] Let X be a k-Lipschitz random variable
on
∏n

i=1 Ωi, then:

P (|X − E[X]| > t) 6 2 exp

(
− t2

k2n

)
.

3 Tree Decomposition and Sketch of the Proof of Theorem 1

The following decomposition is at the heart of the proof of Theorem 1. The remaining
sections will be dealing with embedding parts of the decomposition of a given tree in
rainbow fashion in a coloured Kn,n.

Definition 6. A bare path in a tree T is a path whose interior vertices all have degree 2
in T .

Definition 7. We say that L is a set of non-neighbouring leaves of a tree T , if L ⊂ V (T )
is a set of leaves such that no two vertices in L share a neighbour.

Lemma 8. [Lemma 4.2 from [8]] Given integers D and n, µ > 0 and a tree T with at
most n vertices, there are integers ` 6 104Dµ−2 and j ∈ {2, . . . , `} and a sequence of
subgraphs T0 ⊂ T1 ⊂ · · · ⊂ T` = T such that:

1. For each i ∈ [`]\{1, j}, Ti is formed from Ti−1 by adding a set of non-neighbouring
leaves,

2. Tj is formed from Tj−1 by adding at most µn vertex-disjoint bare paths of length 3,

3. T1 is formed from T0 by adding vertex-disjoint stars with at least D leaves each, and

4. |T0| 6 µn.

At this point, it is appropriate to give a very brief sketch of the proof of Theorem 1
which will be presented in Section 4. Finding a rainbow copy of a tree T in a coloured
instance of Kn,n will be done by embedding the members of the sequence T0 ⊂ T1 ⊂ · · · ⊂
T` = T existing for T by Lemma 8 sequentially as rainbows. Lemma 8 states that to
extend a rainbow copy of Ti in Kn,n to a rainbow copy of Ti+1 for i ∈ {0, . . . , `− 1}, one
will have to do one of three things: add large stars, add a matching of non-neighbouring
leaves or add bare paths of length 3. In the next subsections, we will develop tools for
each of these tasks and for embedding a rainbow copy of T0, using random subsets of the
vertex and colour set of Kn,n with carefully chosen distributions for each step.

The proof of Theorem 1 will then consist of showing that we can carefully choose a
partition of the vertex and colour set of a coloured instance of Kn,n such that a rain-
bow copy of T0 can be found with high probability and each of the extension steps can
subsequently be carried out successfully with high probability, as well. By using vertices
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and colours from different sets of the partitions for each step, we are making sure that
the copy of the subforest of T attained after each step is indeed rainbow. Knowing that
an algorithm that succeeds with high probability for such a random partition exists, we
can then deduce that there must be some initial partitions of the vertices and colours for
which the algorithm indeed succeeds and hence we know for sure that there must be a
rainbow copy of T .

4 Finding Rainbow Structures

4.1 Embedding Small Structures as Rainbows

Using the notation from Lemma 8, the following lemma gives us the means to find a
rainbow copy of the center piece T0 of a tree.

Lemma 9. [Proposition 10.1 from [8]] Suppose we have an m-vertex tree T and a graph
G with a locally k-bounded colouring in which the minimum degree of G, δ(G), satisfies
δ(G) > 3km. Then, there is a rainbow copy of T in G.

4.2 Finding Rainbow Stars in Coloured Graphs

The following lemma is the technical result needed to add large stars to the center piece.
It is Corollary 8.4 from [8] with the small change that they define G to be an n-vertex
graph. The proof they give is also valid if we relax this condition to n being an upper
bound on the maximum degree. The proof is purely deterministic, it uses a switching
argument. It should be noted that the bound on the size of the union of all stars cannot
be dropped using this technique, which provides a serious obstacle when trying to extend
the result to the non-asymptotic case of Theorem 1 (Conjecture 3).

Lemma 10. Let 0 < ε < 1
100

and ` 6 ε2 n
2
. Let G be a graph with minimum degree at

least (1 − ε)n and maximum degree at most n which contains an independent set on the
distinct vertices v1, . . . , v`. Let d1, . . . , d` > 1 be integers satisfying

∑
i∈[`] di 6 (1− 3ε)n

k
,

and suppose G has a locally k-bounded edge-colouring. Then, G contains disjoint stars
S1, . . . , S` so that, for each i ∈ [`], Si is a star centered at vi with di leaves, and

⋃
i∈[`] Si

is rainbow.

4.3 Edge Concentration in Randomized Rainbow Subgraphs

In the next subsections, we will consider graphs that arise as subgraphs of a coloured
Kn,n by including each vertex at random with some probability p and all edges of a given
colour with some probability q. The following lemmas collect some simple properties of
such subgraphs.

Definition 11. Let B be any set and p ∈ [0, 1]. A random subset A ⊂ B is called
p-random if A is formed by including each element of B independently with probability
p.
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Definition 12. Let A be a p-random sub of some finite set and B be a q-random subset
of some finite set. We say that A and B are independent, if the choices for A and B are
made independently, that is, if P (A = A0 ∧ B = B0) = P (A = A0)P (B = B0) for any
outcomes A0 and B0 of A and B.

Lemma 13. Let 0 < 1
n
� 1

k
, p, q and suppose Kn,n has a locally k-bounded colouring. Let

V ⊂ V (Kn,n) and C ⊂ C(Kn,n) be independent and p-random and q-random, respectively.
With probability 1− o(n−1), each vertex has at least pqn

2
colour-C neighbours in V .

Proof. This goes along the lines of the proof of Proposition 9.1 in [8].
Fix v ∈ V (Kn,n), then for any other vertex u not in the same class of the bipartition as

v, we have P (u ∈ NC(v)∩V ) = pq by the independence of V and C. Because |NC(v)∩V |
is a function of 3n−1 random variables (all the n colours that could be present in the class
of the bipartition not containing v, and all the 2n vertices except v) and is k-Lipschitz as
the colouring is locally k-bounded (changing a vertex changes the integer in question by
at most one, changing a colour by at most k), we have by Lemma 5, that

P
(
|NC(v) ∩ V | 6 pqn

2

)
6 2 exp

(
−p2q2n
1000k2

)
= o(n−2).

This is a result for a single vertex v. Taking the union bound over all of the 2n vertices
then shows that the statement of the lemma does not hold with probability o(n · n−2),
hence it holds with probability 1− o(n−1) as claimed.

Lemma 14. Let 0 < 1
n
� ε, k and let p > n−1/100, and ε 6 1. Let Kn,n have a locally k-

bounded colouring and suppose G is a subgraph of Kn,n chosen by including all of the edges
of a random subset of the colours, where each colour is included independently at random
with probability p. Then, with probability 1−o(n−1), for any two sets A ⊂ V1(Kn,n)∩V (G)
and B ⊂ V2(Kn,n) ∩ V (G) with |A|, |B| > n3/4:

|eG(A,B)− p|A||B|| 6 εp|A||B|.

Note that p|A||B| is the expected number of such edges, so we are essentially asking
about the about the deviation of the random variable that counts the edges of G between
A and B from its expected value.

Proof. This goes along the lines of the proof of Lemma 5.1 in [8].

Let ` = d
√
2kn
ε2p2
e, so that ` 6 n0.52+o(1) 6 n0.6+o(1) by the choice of the parameters.

The key to the proof is to show that there exist partitions A = A1 ∪ A2 ∪ · · · ∪ A`,
B = B1 ∪ B2 ∪ · · · ∪ B`, such that for fixed i and j, there are few edges between Ai and
Bj that share their colour with another edge between the same Ai and Bj. This is the
first claim in this proof. Once this is established, we will then assign each pair (Ai, Bj)
to one of two classes, depending on whether there are many different colours between Ai
and Bj or not. The result then follows by counting edges between pairs in both classes.

Let us specify the assertion about the existence of a partition as mentioned above.
Let w.l.o.g. |A| > |B|, then:
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Claim 15. There are partitions A = A1 ∪ A2 ∪ · · · ∪ A`, B = B1 ∪ B2 ∪ · · · ∪ B`, such

that there are at most ε2p2|A||B|
100

edges ab between A and B for which there is another edge
a′b′ with c(ab) = c(a′b′) and ab, a′b′ ∈ E(Kn,n[Ai, Bj]) for some i, j ∈ [`].

Proof. Pick such partitions at random by choosing the class of each element of A and
B, respectively, independently and uniformly at random. Observe the following: Fix any
colour-c edge e, and let Ai, Bj be the classes it goes between. Then the probability that
there is another colour-c edge between Ai and Bj sharing a vertex with e is at most
2(k − 1)/` (by independence and as by local k-boundedness, e touches at most 2(k − 1)
other colour-c edges). The probability that there is a colour-c edge that is vertex-disjoint
from e between Ai and Bj is at most kn/`2 (since there are at most kn colour-c edges in
total, each edge is incident to two vertices and i and j are both fixed). By adding up and

noting 2(k−1)
`

6 2kl
`2

6 kn
`2

(for n large enough), we see that the probability that there is
another colour-c edge between Ai and Bj is at most

2(k − 1)

`
+
kn

2`2
6

2kn

`2
6
ε2p2

100

by the choice of `, and since ε 6 1. Thus, as there are |A||B| edges between A and B
in Kn,n, the expected number of edges which have non-unique colour across their classes
is at most ε2p2|A||B|/100. By applying the usual reasoning for the probabilistic method,
there must exist a partition with the desired property.

We now introduce the following property:
Two sets X ⊂ V1(Kn,n) and Y ⊂ V2(Kn,n) satisfy the property P, if

P1 |X|, |Y | > n1/10, and

P2 There are at least
(
1− εp

8

)
|X||Y | different colours between X and Y in Kn,n

This essentially tells us whether or not there are many different colours present between
X and Y , which we will use to classify the pairs (Ai, Bj) from above. For pairs satisfying
P, we get:

Claim 16. With probability 1−o(n−1), the following holds. Whenever X ⊂ V1(Kn,n) and
Y ⊂ V2(Kn,n) satisfy P, then

|eG(X, Y )− p|X||Y || 6 εp|X||Y |
2

.

Proof. For any such sets X and Y , we can select a rainbow subgraph R of Kn,n[X, Y ]
with

(
1− εp

8

)
|X||Y | edges. Notice that e(R∩G) ∼ Bin

(
(1− εp

8
)|X||Y |, p

)
. By Lemma 4

applied with εp
8

for ε, with probability at least 1− exp
(
− ε2p3|X||Y |

103

)
, we have(

1− εp

4

)
p|X||Y | 6 e(R ∩G) 6

(
1 +

εp

4

)
p|X||Y |.
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In combination with e(Kn,n[X, Y ]−R) 6 εp|X||Y |
8

, this implies that the equation from the
claim holds for X and Y with the above probability. To simplify the latter, note that by
|X|, |Y | > n1/10 and p > n−

1
100 , we have p3|Y | > n7/100 = ω(log n). Hence, the equation

from the claim holds for X and Y with probability at least 1 − exp(−max{|X|, |Y |} ·
ω(log n)). Summing over possible sizes of X and Y yields that the equation from the
claim holds with probability at least

1−
n∑

b=n1/10

n∑
a=b

(
n

a

)(
n

b

)
exp(−a · ω(log n)) = 1− o(n−1).

Fix partitions of A = A1 ∪A2 ∪ · · · ∪A` and B = B1 ∪B2 ∪ · · · ∪B` like in the above
Claim 15.

Next, we will need to look at pairs not satisfying P. Let the subgraph H of Kn,n[A,B]
be defined as follows: Start with Kn,n and remove all the edges between the pair Ai and
Bj if the pair (Ai, Bj) does not satisfy P.

Claim 17. To obtain H from Kn,n[A,B], one has to delete at most εp|A||B|
4

edges.

Proof. By deleting edges between pairs that don’t satisfy P1, we delete at most

`n1/10(|A|+ |B|) 6 n0.7+o(1)(|A|+ |B|) 6 εp|A||B|
8

edges.
Let I denote the set of pairs of indices of pairs that do not satisfy P2, but do satisfy

P1. Note that we have ∑
(i,j)∈I

εp|Ai||Bj|
8

6
ε2p2|A||B|

100

by Claim 15.
By multiplication with 8

εp
, we see that

∑
(i,j)∈I

|Ai||Bj| 6
εp|A||B|

8
.

In total, to obtain H from Kn,n[A,B], one has to delete at most

εp|A||B|
8

+
εp|A||B|

8
=
εp|A||B|

4

edges.

Lastly, we put Claim 16 to work. Denote by I ′ the set of pairs of indices of the pairs
that satisfy P, hence between which all of the initial edges are also in H. Then, with

the electronic journal of combinatorics 30(4) (2023), #P4.28 9



probability 1− o(n−1), we have

|eG∩H(A,B)− peH(A,B)| =

∣∣∣∣∣∣
∑

(i,j)∈I′
eG(Ai, Bj)− p|Ai||Bj|

∣∣∣∣∣∣
6
∑

(i,j)∈I′
|eG(Ai, Bj)− p|Ai||Bj||

6
∑

(i,j)∈I′
εp|Ai||Bj|/2.

The first inequality is the triangle inequality, then we use Claim 16, which we can as P is
true for all pairs in the sum (this is how we constructed H).

Thus, as A and B are partitioned by the Ai, Bj respectively, with probability 1−o(n−1)
we get

|eG∩H(A,B)− peH(A,B)| 6 εp|A||B|/2. (1)

We can finally prove the claim of the lemma:

|eG(A,B)− p|A||B|| 6 |eG(A,B)− eG∩H(A,B)|+ p|eH(A,B)− |A||B||
+ |eG∩H(A,B)− peH(A,B)|

holds by the triangle inequality. By applying (1) to the last term, Claim 16 to the second
term and noting that
EG(A,B)\EG∩H(A,B) ⊂ EKn,n(A,B)\EH(A,B) implies the inequality
|eG(A,B)− eG∩H(A,B)| 6 |eH(A,B)− |A||B||, we get:

|eG(A,B)− p|A||B|| 6 2|eH(A,B)− |A||B||+ εp|A||B|
2

,

and hence

|eG(A,B)− p|A||B|| 6 εp|A||B|,

as desired.

4.4 Finding Rainbow Bare Paths

Next, we will look for rainbow paths between given end-points with internal vertices
inside a fixed random set. This will be needed for the step in the proof of Theorem 1
where we add bare paths to Tj−1 to obtain Tj, where Tj−1 and Tj are the corresponding
elements in the sequence of subgraphs provided by Lemma 8. To find such paths, we
employ Lemma 14 from the previous subsection. We will be looking for collections of
internally vertex disjoint collectively C-rainbow u, v-paths for given vertices u and v, i.e.
a set S of paths between u and v with the property that S is C-rainbow and any two
paths in S do not share an internal vertex.
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Lemma 18. Let 0 < 1
n
� µ � 1

k
, p and suppose Kn,n has a locally k-bounded colouring.

Let X ⊂ V (Kn,n) and C ⊂ C(Kn,n) be independent and p-random subsets. With high
probability, for each pair of distinct vertices u ∈ V1(Kn,n)\X, v ∈ V2(Kn,n)\X there are
at least µn internally vertex-disjoint collectively C-rainbow u, v-paths with length 3 and
internal vertices in X.

Proof. This goes along the lines of the proof of Lemma 9.2 in [8].
Create a random partition C = C1 ∪ C2 by assigning each colour in C uniformly at

random to either C1 or C2. By Lemma 13, we get that with high probability,

Q1 Each vertex has at least 100k2µ1/3n colour-C1 neighbours in X.

By the choice of k and µ, we have that 20kµ1/3n > n3/4, which means that we can
apply Lemma 14 to get the following with high probability:

Q2 Between every pair of disjoint subsets A ⊂ V1(Kn,n), B ⊂ V2(Kn,n) with |A|, |B| >
20kµ1/3n, there are at least p|A||B|/3 > 4kµn2 colour-C2 edges.

Now, for a contradiction, suppose that we have u ∈ V1(Kn,n), v ∈ V2(Kn,n) and less
than µn internally vertex-disjoint paths of length 3 with internal vertices in X that are
collectively C-rainbow. Let P denote a maximal set of such paths and let U denote the
set of their internal vertices, so that by assumption, U ⊂ X. Further, denote by C ′ the
set of edge colours in P . We have |U | < 2µn and |C ′| < 3µn. Now, by applying Q1, we
find that

|NC1\C′(u,X\U)| > 100k2µ1/3m− 2µn− 3kµn > 20kµ1/3n.

Let A ⊂ NC1\C′(u,X\U) such that |A| = 20kµ1/3n and let C ′′ be the set of colours
between u and A. Using Q1 again, we have

|NC1\(C′∪C′′)(v,X\(U ∪ A))| > 100k2µ1/3m− 2µn− 3kµn− |A| − k|A| > 20kµ1/3n.

Now let B ⊂ NC1\(C′∪C′′)(v,X\(U ∪A)) satisfy |B| = 20kµ1/3n. By Q2, there are at least
4kµn2 colour-C2 edges between A and B, at most kn|C ′| 6 3kµn2 of which have their
colour in C ′. This contradicts the maximality of P , as there must then be some x ∈ A,
y ∈ B such that uxyv is a (C\C ′)-rainbow path with internal vertices in X\U !

Lemma 19. [Proposition 10.3 from [8]] Suppose we have a graph G with a locally k-
bounded colouring containing the disjoint vertex sets X1 = {x1, . . . , xm} ⊂ V (G), X2 =
{x′1, . . . , x′m} ⊂ V (G) and Y such that, for each i ∈ [m], there are at least 10m internally
vertex-disjoint collectively-rainbow xi, x

′
i-paths of length three with interior vertices in Y .

Then, there is a vertex-disjoint set of collectively rainbow xi, x
′
i-paths, Pi, i ∈ [m], of

length three with interior vertices in Y .
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4.5 Finding Rainbow Matchings

We will lastly need to address the problem of finding rainbow matchings from a set
A ⊂ Vj(Kn,n) for j ∈ [2] into a random set X ∈ V (Kn,n) such that A is covered by
the matching. Lemma 20 deals with covering almost all of a not-too-large such set A
while Lemma 24 specifies a simple condition under which such almost-covering matchings
can be finished to cover all of A using some set-aside colours and vertices. This is preparing
for an absorption argument in the proof of Theorem 1. The arguments in this subsection
are similar to those in Sections 6 and 7 in [8].

Lemma 20. Let 0 < 1
n
� ε, k, and suppose Kn,n has a locally k-bounded colouring and

p > n−1/10
4
. Let j ∈ [2] and let X ⊂ Vj(Kn,n) and C ⊂ C(Kn,n) be p-random, allowing

for dependence between colours and vertices. Then, with probability 1 − o(n−1), for each
set A ⊂ V3−j(Kn,n) with |A| 6 pn

k
and j ∈ [2], there is a C-rainbow matching in Kn,n of

size at least |A| − εpn between A and X.

The following proposition establishes the existence of almost-covering matchings in
certain bipartite graphs where not too few colours appear between any two subsets of
sufficient size.

Proposition 21 (Lemma 7.2 from [8]). Let 0 < 1
n
� η � ε. Let G be a bipartite graph

with classes X and Y , |X| = n and |Y | = kn which has a locally k-bounded colouring.
Suppose that between any two subsets A ⊂ X and B ⊂ Y with size at least ηn there are
at least (1 − η)|B|/k colours in G which appear between A and B. Then, there exists a
rainbow matching in G with at least (1− ε)n edges.

In order to leverage Proposition 21, we construct a bipartite graph of the form given
in the proposition inside our coloured Kn,n, which is essentially achieved by the following
result:

Proposition 22. Let k ∈ N, ε > 0, and p > n−1/10
4
. Let Kn,n have a locally k-bounded

colouring. Let j ∈ [2], X ⊂ Vj(Kn,n) and C ⊂ C(Kn,n) be p- and q-random subsets
respectively, where the events {x ∈ X} might depend on the events {c ∈ C}, i.e. are not
necessarily independent. Then, with probability 1− o(n−1), for each A ⊂ V3−j(Kn,n) and
B ⊂ X with |A| > (2n)3/4 and |B| > 2εpn, there are at least (1 − ε)|B|/k colours in C
which appear between A and B.

In order to prove Proposition 22, we need the following result:

Proposition 23. [Lemma 6.1 from [8]] Let k ∈ N and ε > 0 be constant, and p > n−1/10
4
.

Let Kn have a locally k-bounded colouring. Let X ⊂ V (Kn) and C ⊂ C(Kn) be random
subsets where, for each x ∈ V (Kn) and c ∈ C(Kn), P (x ∈ X) = P (c ∈ C) = p, all
the events {x ∈ X} are independent and all the events {c ∈ C} are independent (but the
event {x ∈ X} might depend on the events {c ∈ C}). Then, with probability 1 − o(n−1),
for each A ⊂ V (Kn) \ X and B ⊂ X with |A| > n3/4 and |B| > εpn, there are at least
(1− ε)|B|/k colours in C which appear between A and B in Kn.
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Proof of Proposition 22. For a given locally k-bounded colouring Kn,n, add a rainbow
set of edges with new colours to it to obtain a coloured instance of K2n. Since the
used colours are distinct and new, this colouring of K2n is also locally k-bounded. Since
p > n−1/10

4
> (2n)−1/10

4
, we can apply Proposition 23 to this colouring of K2n and derive

that with probability 1−o(n−1), for each A ⊂ Vj(Kn,n)\X and B ⊂ X ∩V3−j(Kn,n) with
|A| > (2n)3/4 and |B| > 2εpn, there are at least (1− ε)|B|/k colours in C which appear
between A and B in K2n. By the definition of this colouring K2n, these edges between A
and B in K2n are also edges between A and B in Kn,n: Only edges connecting vertices in
the same component were added, but A and B lie in different components!

Proof of Lemma 20. Let η be a fixed constant not dependent on n which satisfies 0 <
η � ε. With probability 1− o(n−1), by Proposition 22 applied with η

4k
for ε, we get:

Q For each A ⊂ V3−j(Kn,n) and B ⊂ X with |A|, |B| > ηpn
2k

> (2n)3/4, there are at

least (1−η)|B|
k

colours in C between A and B.

Also, With probability 1− o(n−1), by Lemma 4, we have

(1− η/2)pn 6 |X| 6 (1 + η/2)pn.

We claim that the property in the lemma holds. Let A ⊂ Vj(Kn,n) with |A| 6 pn/k.
Add vertices to A from Vj(Kn,n), or delete vertices from A, to get a set A′ with |A′| =
b(1 − η

2
)pn
k
c =: m and |A\A′| 6 η pn

k
6 εpn

2
. Let X ′ be a subset of X of size km. Since

ηm > η pn
2k

, we can apply Q to see that for any subsets A′′ ⊂ A′ and B ⊂ X ′ with

|A′′|, |B| > ηm, there are at least (1 − η) |B|
k

colours in C between A′′ and B. Thus, by
Proposition 21, there is a C-rainbow matching with at least (1− ε

2
)m > |A′| − εpn

2
edges

between A′ and X ′. As |A\A′| 6 εpn
2

, at least |A| − εpn of the edges in this C-rainbow
matching must lie between A and X.

Lemma 24. [Proposition 10.2 in [8]] Suppose we have a graph G with a locally k-bounded
colouring and disjoint sets X, Y, Z ⊂ V (G) and disjoint sets of colours C,C ′ ⊂ C(G), such
that there is a C-rainbow matching with at least |X| −m edges from X into Y , and each
vertex in G has at least 2km colour-C ′ neighbours in Z. Then, there is a (C∪C ′)-rainbow
matching with |X| edges from X into Y ∪ Z which uses at most m colours in C ′ and at
most m vertices in Z.

5 Proving Theorem 1

The following proof goes along the lines of the proof of Theorem 1.1 in [8].

Proof of Theorem 1. Let 0 < 1/n� µ� ε, 1/k.
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Step 1: Splitting up T using Lemma 8.

With the parameters we just chose, Lemma 8 guarantees that there exists some ` 6
104Dµ−2, such that we can find a sequence of forests T0 ⊂ T1 ⊂ · · · ⊂ T` satisfying the
following properties:

1. T0 has at most µn vertices.

2. T1 can be obtained from T0 by adding a collection of large vertex-disjoint stars with
centers in T0, large meaning that each of them has at least D = dlog10 ne leaves.

3. For i ∈ {2, . . . , j − 1}, Ti is obtained from Ti−1 by adding a set of non-neighbouring
leaves.

4. We can add a small set of vertex disjoint bare paths of length 3 to connect the
components of Tj−1 to obtain a tree, Tj. Small means that there are at most µn
such paths.

5. For i ∈ {j + 1, . . . , `}, again Ti is obtained from Ti−1 by adding a set of non-
neighbouring leaves.

6. T` = T .

Step 2: Providing sets X0, C0 for later absorption.

Set p0 := ε
400k

and choose X0 ⊂ V (Kn,n) and C0 ⊂ C(Kn,n) p0-randomly. These are our
vertex and colour reserves for the more delicate tasks of the proof. We will later embed
T0 as C0-rainbow in X0. We will also use X0 and C0 to find the connecting bare paths of
length 3 to get Tj from Tj−1 and we will use them to finish off some the matchings we are
adding, using Lemma 24.

Collection of Properties:

Lemma 13 guarantees that with high probability, we have

R1 Each vertex in V (Kn,n) has at least
p20n

2
> 10kµn colour-C0 neighbours in X0.

By Lemma 18, with high probability, we have

R2 For each pair of vertices u ∈ V1(Kn,n), v ∈ V2(Kn,n), there are at least 20µn in-
ternally vertex-disjoint collectively C0-rainbow u, v-paths with length 3 and interior
vertices in X0.

Furthermore, by Lemma 4, with high probability, we get |X0|, |C0| 6 2 ε|V (Kn,n)|
400k

= εn
100k

,
and hence any vertex is contained in at most εn

100
edges with colour in C0 (as there are at

most k edges of each colour incident to any vertex). Thus, the following holds with high
probability:

R3 If G is the subgraph of Kn,n of the edges with colour in C(Kn,n)\C0, with any edges
inside X0 removed, then δ(G) > (1− ε

100
− ε

100k
)n > (1− ε

50
)n.
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Step 3: Embed T0.

Now we embed T0 into X0 in a rainbow fashion, using colours from C0. This is achieved
by Lemma 9 in essence, but we need to make sure that we embed the different components
of T0 in such a way that we do not end up with two vertices that need to be connected in
the same vertex class of Kn,n in the bare-path-adding-step. So, pick a C0-rainbow copy,
S0 say, of T0 in X0 in such a way that T0 can be extended to T within Kn,n. Practically,
that this works can be seen e.g. as follows: Pick a root vertex in each component of T0
and fix the embedding ι : T0 → T . Add an edge between two such root vertices in T0 if the
unique path between these vertices’ images in T under ι is of of odd length to get a graph
(not necessarily a tree) T ′0 with |T ′0| = |T0|. R1 guarantees that we can apply Lemma 9
to find a C0-rainbow copy of T ′0 in X0 as a C0-rainbow - then we just delete the images of
the added edges to get a C0-rainbow copy S0 of T0 in X0 with all the components in the
right place to be able to extend S0.

Step 4: Find large rainbow stars.

In a next step, for the appropriate integers m 6 n
D

and d1, . . . , dm > D, let v1, . . . , vm ∈
V (S0) be such that S0 can be made into a copy of T1 by adding di new leaves at vi, for
each i ∈ [m]. Let d =

∑m
i=1 di = |T1| − |T0| 6 |T | = (1 − ε)n

k
. For each i ∈ [m], let

ni =
⌈(

1− ε
8

)
ndi
kd

⌉
. Note that

m∑
i=1

ni 6
(

1− ε

8

) n
k

+m 6
(

1− ε

10

) n
k
.

Using R3 and Lemma 10, find disjoint subsets Yi ⊂ V (Kn,n)\X0, i ∈ [m], so that |Yi| = ni
and {viy : i ∈ [m], y ∈ Yi} is (C(Kn,n)\C0)-rainbow.

Note that all of this was a purely deterministic process and also that ni > di, so we
have found stars that are larger than required. We will later randomize this result by
taking the intersection of these large stars with a random subset of V (Kn,n) such that
stars of the correct sizes remain with high probability. After that, we also want a random
set of colours C1 which is used exclusively for the stars, but this will have to depend on the
vertices put aside for the stars to make sure we have enough colours in C1 that actually
appear as colours of edges connecting S0 with the stars. We achieve this by establishing
the following correspondence: For each vertex x in some set Yi, pair x with the colour c
of vix, noting that, as viy : i ∈ [m], y ∈ Yi is rainbow, each colour or vertex is in at most
one pair. We will later (Step 6 and 7) choose sets X1 and C1 in such a way that, for a
vertex x paired with a colour c, we have x ∈ X1 if and only if c ∈ C1. In order to have a
nice distribution of the set C1, we will also add some more random colours, see step 7.

As a side remark: This step is a severe obstruction when trying to apply the developed
methods to a tree of size n

k
in a balanced k-bounded colouring as would be sufficient to

prove Ringel’s conjecture (which has been achieved in [9] by finding a completely new,
deterministic method to embed trees that consist largely of large stars). In that case, one
would need to use all of the colours and, if e.g. T is a union of large stars, it wouldn’t be
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possible to find collectively rainbow stars larger than these. Also, this step is the reason
why in some of the above lemmas, it is necessary to allow the vertices and colours to
depend on each other.

Step 5: Choose probabilities pi

. We want to set aside sets of vertices and colours for each of the extension steps of our
forest. We will choose these sets as pi-random subsets of V (Kn,n) and C(Kn,n) respectively.
For each i ∈ [`], Let mi = |Ti| − |Ti−1|, and note that m1 = d. For each i ∈ [`− 1], let

pi =
(

1 +
ε

4

) kmi

n
+

ε

4`
> n−1/10

4

.

The inequality follows as ` 6 104Dµ−2 = O(log10 n). For p`, we have the residual term

p` = 1− p0 −
∑
i∈[`−1]

pi

= 1− ε

400
−
(

1 +
ε

4

)
k
|T | −m` − |T0|

n
− ε(`− 1)

4`

> 1−
(

1 +
ε

4

)
k

(1− ε)n/k −m`

n
− ε

4

> n−1/10
4

.

Step 6: Choose X1.

Pick X1 ⊂ V (Kn,n)\X0 by including each vertex independently at random with probabil-
ity p1/(1− p0). Recall that m1 = d. We have, for each i ∈ [m], that

p1|Yi| = p1ni >
(

1 +
ε

4

)
k
m1

n

(
1− ε

8

) ndi
kd

=
(

1 +
ε

4

)(
1− ε

8

)
di >

(
1 +

ε

16

)
di > log10 n.

Thus, by Lemma 4, for each i ∈ [m], P (|X1 ∩ Yi| > di) = exp(−Ω(ε2 log10 n)) = o(n−1).
This means that with high probability, the following property holds:

R4 For each i ∈ [m], |X1 ∩ Yi| > di.

This was the previously described randomization process for the stars added to obtain T1
from T0! Note, for later, that each vertex x ∈ V (Kn,n) appears in X1 independently at
random with probability (1− p0) · p1

1−p0 = p1.

Step 7: Choose C1.

Let Cpaired be the set of colours which appear between vi and Yi for some i ∈ [m], and
let Cunpaired = C(Kn,n)\Cpaired be the set of colours which never appear between any vi
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and Yi. We define a random set of colours C1 as follows. For any colour c ∈ Cpaired, c is
included in C1 whenever the vertex paired with c is in X1, i.e. when c appears between
vi and X1 ∩ Yi for some i ∈ [m]. For any colour c ∈ Cunpaired\C0, c is included in C1

independently at random with probability p1
1−p0 . Thus, C1 contains each colour paired

with a vertex in X1 and each unpaired colour outside C0 is included independently at
random. Thus, each colour appears in C1 with the same probability: p1. Whether a
colour is included is independent of any other colour’s in- or exclusion.

Step 8a: Choose X2, . . . , X`.

Randomly partition V (Kn,n)\(X0∪X1) as X2∪· · ·∪X` so that, for each x ∈ V (Kn,n)\(X0∪
X1), the class of x is chosen independently at random with P (x ∈ Xi) = pi

1−p0−p1 for each

2 6 i 6 `. Note that, for each i ∈ {0, 1, . . . , `}, each x ∈ V (Kn,n) appears in Xi with
probability pi, and the location of each vertex in V (Kn,n) is independent of the location
of all the other vertices.

Step 8b: Choose C2, . . . , C`.

Randomly partition C(Kn,n)\(C0∪C1) as C2∪ · · · ∪C` so that, for each c ∈ C\(C0∪C1),
the class of c is chosen independently at random with P (c ∈ Ci) = pi

1−p1−p0 for each

2 6 i 6 `. Note that, for each 0 6 i 6 `, each colour c ∈ C(Kn,n) appears in Ci with
probability pi, and the location of each colour in C(Kn,n) is independent of the location
of all the other colours.

Step 9: Establish rainbow matching properties.

By the definitions of the probabilities, it is straightforward to see that we have mi 6 pi
n
k

for all i ∈ [`]. For A ⊂ V (Kn,n)\Xi, set qAi,j =
|A∩Vj(Kn,n)|

|A| (i ∈ [`], j ∈ [2]). Then pick

Xi,j ⊂ Xi, Ci,j ⊂ Ci q
A
i,3−j-random (i ∈ [`], j ∈ [2]) and note that if |A| = mi:

|A∩Vj(Kn,n)| = qAi,j|A| = qAi,jmi 6 qAi,j
pin
k

. By Lemma 20, we find a Ci,1-rainbow matching
from A∩V1(Kn,n) to Xi,2 of size at least |A∩V1(Kn,n)|−µpiqAi,1n = miq

A
i,1−µpiqAi,1n and a

Ci,2-rainbow matching from A∩V2(Kn,n) to Xi,1 of size at least |A∩V2(Kn,n)|−µpiqAi,2n =
miq

A
i,2 − µpiqAi,2n, so that by combining these matchings, using qAi,1 + qAi,2 = 1, we get with

probability 1− o(n−1):

R5 For each i ∈ [`] and subset A ⊂ V (Kn,n)\Xi with |A| = mi 6 pi
n
k

there is a
Ci-rainbow matching with at least mi − µpin edges from A to Xi.

Step 10: Extend S0 to a copy of T1 by adding stars.

For each i ∈ [m], use R4 to add di leaves from X1 ∩ Yi to vi in S0 and call the resulting
graph S1. Note that these additions add leaves from X1 using colours from C1. Thus,
S1 ⊂ Kn,n[X0 ∪X1] is a (C0 ∪ C1)-rainbow copy of T1 with at most |T0| 6 µn colours in
C0 and at most µn vertices in X0.
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Step 11: Extend to a copy of T2, . . . , Tj−1 by adding non-neighbouring leaves.

Iteratively, for each 2 6 i 6 j − 1, we now extend Si−1 to Si ⊂ Kn,n[X0 ∪ · · · ∪ Xi].
To carry out this step, note that Ti is obtained from Ti−1 by adding a matching (i.e. a
collection of non-neighbouring leaves). Let Ai ⊂ Si−1 be the vertex set to which we need
to attach the edges of the matching. Then we can first apply R5 to sets Ai, Xi and the set
of colours Ci to find a matching of size |Ai| −µpin and then use R1 and Lemma 24 twice
to finish the matching. We apply Lemma 24 with G as the subgraph of Kn,n of colour-
((C0\C(Si−1)) ∪ Ci) edges, C = Ci, C

′ = C0\C(Si−1), Y = Xi, Z = X0\(V (Si−1)) and
with X = Ai∩V1(Kn,n) in the first instance, then in the second with the same arguments
except X now set to X = Ai ∩ V2(Kn,n). This finds a rainbow matching covering the
whole set Ai and thus completing the extension step. Si is a (C0 ∪ · · · ∪Ci)-rainbow copy
of Ti with |C(Si) ∩ C0| 6 µn +

∑i
i′=2 µpi′n and |V (Si) ∩ X0| 6 µn +

∑i
i′=2 µpi′n. Note

that |C(Si) ∩ C0| 6 2µn and |V (Si) ∩ X0| 6 2µn, because we have used at most µpin
colours and vertices to finish the matching, as is guaranteed by R5.

Step 12: Extend to a copy of Tj by adding bare paths of length 3.

Using new vertices in X0 and new colours in C0, extend this copy of Tj−1 to Sj ⊂ Kn,n[X0∪
· · · ∪ Xj], a (C0 ∪ · · · ∪ Cj)-rainbow copy of Tj with |C(Sj) ∩ C0| 6 4µn +

∑j
i′=1 µpi′n

and |V (Sj) ∩ X0| 6 3µn +
∑j

i′=1 µpi′n. Note that, per path, we are using 3 additional
colours from C0 and 2 additional vertices from X0, which explains the constants 4 and 3
in the last two inequalities. This is possible by R2, and Lemma 19 applied with G as the
subgraph of Kn,n of colour-(C0\C(Sj−1)) edges and Y = X0\V (Sj−1).

Step 13: Extend to a copy of Tj+1, . . . , T`.

Finally, for each i ∈ j + 1, . . . , `, use R1, R5 and two applications of Lemma 24 as before
to extend Si−1 to Si ⊂ Kn,n[X0 ∪ · · · ∪Xi], a (C0 ∪ · · · ∪ Ci)-rainbow copy of Ti with at
most 4µn+

∑i
i′=2 µpi′n colours in C0 and at most 3µn+

∑i
i′=2 µpi′n vertices in X0. When

this is finished, we have a rainbow copy of T` = T , as required.

Step 14: Concluding the proof.

For the random partitions of V (Kn,n) = X0 ∪ · · · ∪ X` and C(Kn,n) = C0 ∪ · · · ∪ C` we
chose, we have seen after Step 2 that R1-R3 hold with high probability. Furthermore, if
R1-R3 hold, there exist vertex sets Y1, . . . , Ym such that R4 holds with high probability,
as was remarked after Step 6. Finally, if R1-R4 hold, we were able to show after Step 9
that R5 holds for each 2 6 i 6 ` with probability 1− o(` · n−1) = 1− o(1).

All in all, this shows that R1-R5 all collectively hold with high probability for par-
titions of the vertex and colours sets of our coloured Kn,n chosen from the distributions
given in the proof. Since that is the case, there must be some such partitions that R1-R5
do in fact hold, which proves that a rainbow copy of T can be found.

It is important to note that this is a non-standard application of the probabilistic
method, because some of the sets in the partition are not independent of each other and
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because the properties R1-R5 are interlinked: R4 may only hold if R1-R3 hold and R5
only holds if all other properties hold. For a detailed analysis of this particular way of
reasoning, we refer to Section 10.2 in [8].

6 Conclusion

We have shown that for any given tree T with n
k
·(1−o(1)) edges, we can find a rainbow copy

of T in any locally k-bounded colouring of Kn,n. Going through the steps one by one, the
reader will notice that the mathematical machinery to prove this is kept relatively simple
and that most of the work was done by cleverly combining concentration inequalities. The
proof rests mainly on two ideas: Finding a decomposition of T into large stars, a few bare
paths of length 3 and a lot of matchings and finding a partition of the vertex and colour set
of Kn,n that allows us to find disjoint rainbow copies of all the parts of the decomposition
of T with vertices in different vertex classes and colours from different colour classes to
then connect them to get a rainbow copy of the entire tree T . We did not find the vertex
and colour decomposition needed explicitly, but used a randomized decomposition of the
colours and vertices of Kn,n and showed that for any given such setup, we could find
a rainbow copy of T with high probability. This probabilistic argument was enriched
by an instance of the absorption technique. By introducing the locally 1-bounded D-
colouring of Kn,n, we could show that our main theorem (Theorem 1) implies that Kn,n

can asymptotically be decomposed into n copies of any tree with n edges. Overall, the
methods used differ only in details from those used in [8] to show that one can find a
rainbow copy of any tree with n · (1− o(1)) edges in the locally 2-bounded ND-colouring
of K2n+1, from which follows that K2n+1 can asymptotically be decomposed into copies
of any tree with n edges. In the latter case, the authors were able to follow up on their
arguments and show a much stronger result in [9]: For large n, K2n+1 can be decomposed
into n copies of any tree with n edges. As elaborated in the introduction, a similar result
for complete bipartite graphs cannot be proved by using the methods of [9]. The problems
can be summarized as follows: Using the probabilistic arguments expanded upon above
hinge on the fact that for most trees T , the decomposition algorithm for the tree in
question (cf. Lemma 8) has a lot of steps that consist of deleting non-neighbouring leaves.
This is favourable for arguments of the type we use here because, roughly speaking, there
is a lot of freedom when re-adding sets of non-neighbouring leaves via edges of unused
colours to a rainbow subforest of Kn,n. For some trees, however, the decomposition does
not have such a structure. This is the case if the tree in question contains of a few very
large stars. In that case, one needs an additional argument to find a rainbow copy of
such a tree. In the asymptotic case, a simple switching argument is sufficient to deal with
the problematic class of trees, but this fails in the exact case. For the ND-colouring of a
complete graph, Montgomery et al. found a way to work around this issue by giving a
completely unrelated deterministic algorithm to deal with the problematic class of trees.
Their algorithm depends heavily on the fact that each vertex in an ND-coloured Kn has
exactly two neighbours connected via an edge of a given colour. In the here-introduced
D-colouring, each vertex has only one neighbour connected via an edge of a given colour,
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which presents an additional obstacle that we were not able to overcome. We do, however,
believe that other methods may succeed in proving Conjecture 3.
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