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Abstract

For an integer k > 2, a tree is called a k-ended tree if it has at most k leaves.
It was shown that some σk+1(G) conditions assure the existence of a spanning k-
ended tree in a connected K1,p-free graph G for the pairs (p, k) with p 6 4, or p = 5
and k = 4, 6, where σk+1(G) is the minimum degree sum of pairwise non-adjacent
k + 1 vertices of G. In this paper, we extend those results to the case with any
integer p > 3 by proving that for any k > 2 and p > 3, there exists a constant
f(p, k) depending only on k and p such that if a connected K1,p-free graph satisfies
σk+1(G) > |G| + f(p, k), then G has a spanning k-ended tree. The coefficient 1 of
|G| in the σk+1(G) condition is best possible.

Mathematics Subject Classifications: 05C05, 05C35

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple
edges. Let G be a graph with vertex set V (G) and edge set E(G). We write |G| for
the order of G, that is, |G| = |V (G)|. For a vertex v of G, let NG(v) and dG(v) denote
the neighborhood and the degree of v in G, respectively. Let α(G) be the independence
number of G. For an integer k > 2, a tree is called a k-ended tree if it has at most k
leaves. For an integer k with α(G) > k, we define

σk(G) = min
{∑

x∈S

dG(x) : S is an independent set of G of order k
}

and σk(G) =∞ if α(G) < k.
A Hamiltonian path of a graph is a path which passes through all vertices of the

graph. By adding the K1,3-free condition, Matthews and Sumner [10] weakened the

condition of Dirac’s theorem [4] which says that if a connected graph G satisfies δ(G) > |G|
2

(resp. δ(G) > |G|−1
2

), then G has a Hamiltonian cycle (resp. a Hamiltonian path).
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Theorem 1 (Matthews and Sumner). Let G be a connected K1,3-free graph. If δ(G) >
|G|−2

3
, then G has a Hamiltonian path. In addition, if G is 2-connected, then G has a

Hamiltonian cycle.

Since a spanning 2-ended tree is equivalent to a Hamiltonian path, we can consider
the existence of a spanning k-ended tree as an extension of Hamiltonian properties. In
this point of view, the following series of studies have been done.

Theorem 2. Let k and p be integers with k > 2 and p > 3, and let G be a connected
K1,p-free graph. If G satisfies one of the following conditions, then G has a spanning
k-ended tree.

• p = 3, and σk+1(G) > |G| − k [Kano, Kyaw, Matsuda, Ozeki, Saito and Yamashita
[5], Salamon [12]],

• p = 4, k = 3, and σ4(G) > |G| − 1 [Kyaw [6]],

• p = 4, k 6= 3, and σk+1(G) > |G| − k
2

[Kyaw [7]],

• p = 5, k = 4, and σ5(G) > |G| − 4
3

[Chen, Ha and Hanh [3]],

• p = 5, k = 6, and σ7(G) > |G| − 2 [Sun and Liu [13]].

Note that each of the condition on σk+1(G) in Theorem 2 is best possible, see below.
As we can see in Theorem 2, many researchers are interested in the following statement

“for every connected K1,p-free graph G, if σk+1(G) > |G| + f(p, k), where
f(p, k) is a constant depending only on k and p, then G has a spanning k-
ended tree”,

and proved the statement for some pairs (k, p). However, all results in Theorem 2 assume
p to be at most 5, and k = 4, 6 in the case p = 5. With this situation in mind, the purpose
of this paper is to prove the statement above for all pairs (k, p) with k > 2 and p > 3, as
follows.

Theorem 3. Let k and p be integers with k > 2 and p > 3, and let G be a connected
K1,p-free graph. If σk+1(G) > |G| + (k + 1)(p − 1) min{p − 2, k}, then G has a spanning
k-ended tree.

Las Vergnas [8] proved the following: For an integer k with k > 2, if a connected graph
G satisfies σ2(G) > |G| − k + 1, then G has a spanning k-ended tree. (See also [2].) In
addition, considering bipartite graphs Km,m+k for m > 1, we see that the σ2(G) condition
is best possible. Compared with this, Theorem 3 guarantees the existence of a spanning
k-ended tree in a connected K1,p-free graph by a much weaker degree sum condition.

The following example shows that we cannot replace σk+1(G) with σt(G) with t > k+2,
and the coefficient 1 on |G| in the σk+1(G) condition with a constant smaller than 1.

At first, we show that in the case k > p− 1. Let k, l, m and p be integers such that
l > 1, m > 2, p > 3 and k = (p− 2)m− 1. For 1 6 i 6 m, let Hi be a graph consisting of
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Table 1: Sufficient conditions on σk+1(G) for a connected K1,p-free graph G to have a
spanning k-ended tree. The values with “?” are conjectured as in Conjecture 4.

k \ p 3 4 5 6
2

|G| − k

|G| (Kyaw [7]) |G| (this paper) |G|?3 |G| − 1 (Kyaw [6])
4

|G| − k
2

|G| − k
3

(Chen et al. [3])
5 |G| − k

3
(this paper)

|G| − k
4
?6 (Kano et al. [5], |G| − k

3
(Sun and Liu [13])

> 7 Salamon [12]) (Kyaw [7]) |G| − k
3

(this paper)

p− 2 complete graphs of order l+ 1 that share only one vertex, say ui. Let G be a graph
such that V (G) =

⋃
16i6m V (Hi) and E(G) = (

⋃
16i6mE(Hi)) ∪ {uiuj : 1 6 i < j 6 m}.

Then G is a connected K1,p-free graph which satisfies σk+1(G) = l(k + 1) = |G| − k+1
p−2 ,

and σk+2(G) =∞, but G does not have a spanning k-ended tree. Next, we show the case
k 6 p− 2. Let k, l and p be integers such that k, l > 1 and p > 3, and let G be a graph
consisting of k+ 1 complete graphs of order l+ 1 that share only one vertex. Then G is a
connected K1,p-free graph which satisfies σk+1(G) = l(k+ 1) = |G| − 1 and σk+2(G) =∞,
but G does not have a spanning k-ended tree.

By the examples above, the coefficient 1 at |G| in the σk+1(G) condition of Theorem
3 is best possible. However, the constant may be able to be reduced. Considering the
above examples again, we pose the following conjecture.

Conjecture 4. Let k and p be integers with k > 2 and p > 3. Then there exists an
integer N0 = N0(k, p) such that for a connected K1,p-free graph G with |G| > N0, if G
satisfies the following conditions, then G has a spanning k-ended tree.

σk+1(G) >

|G| if k 6 p− 2,

|G| − k

p− 2
if k > p− 1.

For the convenience, we display known results in Theorem 2 and Conjecture 4 in Table
1.

There are some small connected K1,p-free graphs G satisfying the σk+1(G) condition
in Conjecture 4 but having no spanning k-ended tree. For example, consider k = 2, p = 5
and G = K2,4, which is a connected K1,5-free graph satisfying σ3(G) = 6 = |G|, but
having no spanning 2-ended tree (i.e. Hamiltonian path). This is the reason why we need
the assumption on N0 in Conjecture 4.

For the Hamiltonicity, Markus [9] investigated a minimum degree condition for the
existence of a Hamiltonian cycle in a K1,p-free graph for p > 4, which is an extension of
the second half of Theorem 1.

Theorem 5 (Markus). Let p > 4 be an integer, and let G be a 2-connected K1,p-free
graph. If G satisfies one of the following conditions, then G has a Hamiltonian cycle.
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• p = 4 and δ(G) > |G|+2
3

,

• p > 5, |G| > 2p− 2 and δ(G) > |G|+p−3
3

.

Therefore, following Theorem 5 one may think that it is easy to generalize Theorems
1 and 2 to K1,p-free graphs. However, we point out that the proof strategy of Theorem 5
may not be used to our purpose. The key idea of the proof in [9] is to use the result by

Nash-Williams [11] that for every 2-connected graph G if δ(G) > |G|+2
3

and δ(G) > α(G),
then G has a Hamiltonian cycle. Under the assumption that G is K1,p-free, |G| > 2p− 2

and δ(G) > |G|+p−3
3

, we can show that δ(G) > α(G), and hence Nash-Williams’ theorem
immediately implies the existence of a Hamiltonian cycle.

In order to use this strategy to prove Theorem 3, we need an analog of Nash-Williams’
theorem for a spanning k-ended tree. In particular, if we would have the following state-
ment, then we may use the same strategy: “for every connected graph G, if σk+1(G) >
|G| + A(k) and δ(G) > α(G) + B(k) for some constants A(k) and B(k), then G has a
spanning k-ended tree”. However, we do not know whether such a statement holds.

Therefore, we employ a different proof strategy in this paper, using so-called a system
of a graph. In Section 2, we give its definition together with basic properties, and in
Section 3, we prove Theorem 3.

Before proceeding to the next section, we give some basic terminology used in this
paper. Throughout this paper, we regard a connected subgraph with one or two vertices
also as a (reduced) cycle. Thus, when we say a cycle, it means either a connected 2-regular
subgraph in an ordinary sense, or a connected subgraph isomorphic to K1 or K2.

To each cycle and each path, we give an arbitrary orientation. (For K2, we give both
directions to the unique edge.) Let P be a path. For each pair of vertices x, y in P , we
denote by P [x, y] the subpath from x to y. For a vertex x in P , we denote the successor
and the predecessor of x on P by x+ and x−, respectively. Similarly, for a pair of vertices
x, y in a cycle C, we define C[x, y] as the subpath from x to y along C, and x+ and x−

are the successor and the predecessor of x on C, respectively. Note that when a cycle
C is isomorphic to K2, then both x+ and x− are the vertex in C other than x; when C
is isomorphic to K1, then x+ = x− = x. In either case, both C[x+, x] and C[x, x−] are
Hamiltonian paths of C.

For two paths P and Q in a graph G, if the terminal vertex of P is adjacent to the
initial vertex of Q, then we let PQ be the path obtained by the concatenation of P and
Q.

2 A minimal system

In our proof, a system of a graph, which was defined by Win [14], plays a central role.
Thus, we give the definitions of a system and show their properties in this section.

A system of a graph G is a set of pairwise vertex-disjoint paths and cycles such that
their union contains all vertices in G. We often view a system as the subgraph formed by
the union of its members. Let S be a system of a graph G. We denote by |S| the number
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of members in S. We denote Path(S) = {S ∈ S : S is a path of length at least 2} and
Cyc(S) = {S ∈ S : S is a cycle}. Recall that we regard a path of length at most 1 as a
cycle. Thus, Path(S) and Cyc(S) form a partition of S. For S ∈ S, let

f(S) =

{
2 if S ∈ Path(S),

1 if S ∈ Cyc(S).

We give each path P ∈ Path(S) an orientation, and then let aP and bP be the initial and
terminal vertex of P , respectively. We define V (S) =

⋃
S∈S V (S) and f(S) =

∑
S∈S f(S).

For each S ∈ S, define

End(S) =

{
{aP , bP} if S ∈ Path(S),

V (S) if S ∈ Cyc(S).

In [14], Win gave the following lemma which shows that a system is useful in the study
of spanning k-ended trees.

Lemma 6 (Win [14]). Let k > 2 be an integer, and G be a connected graph. If G has a
system S such that f(S) 6 k, then G has a spanning k-ended tree.

By Lemma 6, to prove Theorem 3, it suffices to find a system S with f(S) 6 k, instead
of a spanning k-ended tree.

Let k be an integer with k > 2, and let G be a connected graph. We call a system S
of G which satisfies the following conditions (S1) and (S2) a minimal system.

(S1) f(S) is as small as possible, and

(S2) |Path(S)| is as large as possible, subject to (S1).

In this section, we fix a minimal system S of a graph G, and show its properties. The
following lemma is a direct consequence of the conditions (S1) and (S2), but useful for
the later arguments.

Lemma 7. For any T ⊆ S, there exists no system T ′ of G with V (T ′) = V (T ) such that
it satisfies one of the following conditions.

(i) f(T ′) < f(T ), or

(ii) f(T ′) = f(T ) and |Path(T ′)| > |Path(T )|.

We use the following basic properties on a system. Since the proof is not difficult and
can be found in the textbook [1, Lemma 8.24], we omit it.

Lemma 8. The following hold.

(i) For any S1, S2 ∈ S with S1 6= S2, no vertex in End(S1) is adjacent with a vertex in
End(S2).
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(ii) For any P ∈ Path(S), the vertices aP and bP are not adjacent.

For any C ∈ Cyc(S), a vertex v in C is said to be insertible with respect to S, or
simply insertible if v satisfies the following condition:

There exists P ∈ Path(S) and x ∈ V (P )\{bP} such that x, x+ ∈ NG(v).

Lemma 9. Any C ∈ Cyc(S) contains a non-insertible vertex.

Proof. Suppose that there exists an element C ∈ Cyc(S) such that all vertices in C are
insertible. Let C = v1v2 . . . vtv1, where t = |V (C)|. Since v1 is insertible, there exist
P ∈ Path(S) and x ∈ V (P ) such that x, x+ ∈ NG(v1). Let ix be the maximum index
with 1 6 ix 6 t such that x, x+ ∈ NG(vix). Such an index ix exists. Then we can insert
the subpath C[v1, vix ] into P by replacing the edge xx+ with the path xC[v1, vix ]x+. If
ix = t, then by replacing C,P in S with the above new path, we obtain a system whose
value on f is smaller by one than f(S), contradicting the condition (S1).

Thus, we have ix < t, but even in this case, we can continue the similar procedure:
Since vix+1 is insertible with respect to S, there exist P ′ ∈ Path(S) and x′ ∈ V (P ′) such
that x′, x′+ ∈ NG(vix+1). By the maximality of ix, we have x′ 6= x. Then we let ix′ be
the maximum index with ix + 1 6 ix′ 6 t such that x′, x′+ ∈ NG(vix′ ), and we can insert
the subpath C[vix+1, vix′ ] into P ′ by replacing the edge x′x′+. Since all vertices in C are
insertible, we can keep this procedure until all vertices in C are inserted. However, this
contradicts the condition (S1).

Let dC be a non-insertible vertex in C for each C ∈ Cyc(S), which exists by Lemma
9, and let

LM(S) =
⋃

P∈Path(S)

{aP , bP} ∪
⋃

C∈Cyc(S)

{dC}.

By Lemma 8, we can obtain the following lemma.

Lemma 10. LM(S) is an independent set.

For a minimal system S of G, let

XS = {x ∈ V (G) : x ∈ NG(d1) ∩NG(d2) for some d1, d2 ∈ LM(S) with d1 6= d2}.

If there is no confusion, we abbreviate XS as X. By Lemma 8 (i), we can also obtain the
following lemma.

Lemma 11. X ⊆ V (Path(S)).

For each x ∈ X, let Px ∈ Path(S) be the path such that x ∈ V (Px).

Lemma 12. For any x ∈ X and z ∈ LM(S), the following statements hold.

(i) There exists no minimal system S ′ of G such that LM(S ′) = (LM(S) \ {z}) ∪ {x}.
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(ii) x− 6∈ NG(bPx) and x+ 6∈ NG(aPx).

Proof. Suppose that there exists a minimal system S ′ of G such that LM(S ′) = (LM(S)\
{z}) ∪ {x}. By Lemma 10, LM(S ′) is an independent set. Thus, x 6∈ NG(z′) for any
z′ ∈ LM(S) \ {z}. However, this contradicts the definition of X. Hence statement (i)
holds.

Suppose that x− ∈ NG(bPx). Let P ′ = Px[aPx , x
−]Px[bPx , x] and S ′ = (S\{Px})∪{P ′}.

Then S ′ is a minimal system such that LM(S ′) = (LM(S)\{bPx})∪{x}, which contradicts
statement (i). Hence x− 6∈ NG(bPx). In the same way, we can also see x+ 6∈ NG(aPx).

Lemma 13. x−x+ 6∈ E(G) holds for any x ∈ X.

Proof. Suppose that there exists x ∈ X such that x−x+ ∈ E(G). Then there exist
d1, d2 ∈ LM(S) with d1 6= d2 such that x ∈ NG(d1) ∩ NG(d2). Let Q1, Q2 ∈ S be
such that d1 ∈ V (Q1) ∩ LM(S) and d2 ∈ V (Q2) ∩ LM(S). Suppose d1 = bPx . Let
P ′ = Px[aPx , x

−]Px[x+, bPx ]x and S ′ = (S\{Px}) ∪ {P ′}. Then S ′ is a minimal system
such that LM(S ′) = (LM(S) \ {bPx}) ∪ {x}, which contradicts Lemma 12 (i). Thus,
we have d1 6= bPx . By symmetry, we further obtain {d1, d2} ∩ {aPx , bPx} = ∅. Hence
Q1, Q2 6= Px. Let P ′′ = Px[aPx , x

−]Px[x+, bPx ]. Suppose that Q1 ∈ Path(S). We may
assume that bQ1 = d1. Let Q′1 = Q1[aQ1 , bQ1 ]x and S ′′ = (S\{Px, Q1}) ∪ {P ′′, Q′1}. Then
S ′′ is a minimal system such that LM(S ′′) = (LM(S) \ {bQ1}) ∪ {x}, which contradicts
Lemma 12 (i). Hence, by symmetry, we may assume that Q1, Q2 ∈ Cyc(S). Then, for
the path R = Q1[d

+
1 , d1]xQ2[d2, d

−
2 ], we have V (P ′′) ∪ V (R) = V (Px) ∪ V (Q1) ∪ V (Q2),

f({P ′′, R}) = 4 = f({Px, Q1, Q2}) and |Path({P ′′, R})| = 2 > 1 = |Path({Px, Q1, Q2})|,
which contradicts Lemma 7 (ii).

Lemma 14. For any x ∈ X, x+ /∈ NG(z) holds for any z ∈ LM(S) \ {bPx} and x− /∈
NG(z) holds for any z ∈ LM(S)\{aPx}. In particular, no two vertices in X are consecutive
on any path in Path(S).

Proof. Let x ∈ X and suppose that x+ ∈ NG(z) for some z ∈ LM(S) \ {bPx}. By Lemma
12 (ii), we have z 6= aPx . Thus, there exists Qz ∈ S with Qz 6= Px and z ∈ V (Qz). We
obtain a contradiction considering the following two cases:

• Suppose that Qz ∈ Path(S). By the symmetry, we may assume that z = bQz . Let
P ′ = Px[aPx , x], Q′ = QzPx[x+, bPx ] and S ′ = (S \ {Px, Qz}) ∪ {P ′, Q′}. Then S ′ is
a minimal system such that LM(S ′) = (LM(S) \ {bQz}) ∪ {x}, which contradicts
Lemma 12 (i).

• Suppose that Qz ∈ Cyc(S). Since x ∈ X, there exists z′ ∈ LM(S) with z′ 6= aPx

and x ∈ NG(z′). Recall that z is not insertible by the choice of LM(S). Thus,
we have z′ 6= z. If z′ = bPx , then P ′ = P [aPx , x]P [bPx , x

+]Qz[z, z
−] is a path

with V (P ′) = V (Px) ∪ V (Qz) and f({P ′}) = 2 < 3 = f({Px, Qz}), contradicting
Lemma 7 (i). Thus, z′ 6= bPx , and there exists Rz′ ∈ S with Rz′ 6= Px and z′ ∈
V (Rz′). Since z′ 6= z and Qz is a cycle, we see Rz′ 6= Qz. Suppose that Rz′ ∈
Path(S), say z′ = aRz′

by symmetry. Then for the two paths P ′ = Px[aPx , x]Rz′
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and Q′ = Qz[z
+, z]Px[x+, bPx ], we have f({P ′, Q′}) = 4 < 5 = f({P,Qz, Rz′}),

which contradicts Lemma 7 (i). Hence Rz′ ∈ Cyc(S). Then for the two paths
P ′ = Px[aPx , x]Rz′ [z

′, z′−] and Q′ = Qz[z
+, z]Px[x+, bPx ], we have f({P ′, Q′}) =

4 = f({P,Qz, Rz′}), and |Path({P ′, Q′})| = 2 > 1 = |Path({P,Qz, Rz′})|, which
contradicts Lemma 7 (ii).

This completes the first part of the proof of Lemma 14.
Suppose that there are two consecutive vertices x, y ∈ X on some P ∈ Path(S). By

symmetry, we may assume that y = x+. Since y ∈ X, there exists z ∈ LM(S)\{bP} such
that y ∈ NG(z), but this is a contradiction.

3 Proof of Theorem 3

In order to prove Theorem 3, we need the following theorem.

Theorem 15 (Win [14]). Let k and n be integers with n > 1 and k > 2, and let G be an
n-connected graph with α(G) 6 n+ k − 1. Then G has a spanning k-ended tree.

Proof of Theorem 3

Let f(k, p) = (k + 1)(p − 1) min{p − 2, k}, and let G be a connected K1,p-free graph
which satisfies the assumptions of Theorem 3. Suppose that G does not have a spanning
k-ended tree. By Theorem 15, we have α(G) > k + 1. We first prove that G does not
have a large independent set.

Claim 16. α(G) < (k + 1)(p− 1).

Proof. Let S be a maximum independent set of G, i.e. |S| = α(G) > k + 1. We count
eG(S,G \ S), which is the number of edges between S and G \ S, in two ways. First, by
the σk+1(G) condition for every (k + 1)-element subset of S, we have(

|S|
k + 1

)
σk+1(G) 6

(
|S| − 1

k

)
eG(S,G \ S),

or eG(S,G \ S) >
σk+1(G)

k + 1
|S| > |G|+ f(k, p)

k + 1
α(G) >

|G|
k + 1

α(G).

On the other hand, since G is K1,p-free,

eG(G \ S, S) 6 (p− 1)|G \ S| = (p− 1)(|G| − α(G)) < (p− 1)|G|.

Hence we obtain α(G) < (k + 1)(p− 1).

We use the same terminology as in Section 2. Let S be a minimal system of G. Recall
that

X =
{
x ∈ V (G) : x ∈ NG(d1) ∩NG(d2) for some d1, d2 ∈ LM(S) with d1 6= d2

}
.
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Let

Y =
{
x ∈ X : there is a vertex u in V

(
Px[x+, b−Px

]
)

with u /∈ NG(bPx)
}

and Y = X \ Y.

By the definition, any x ∈ Y satisfies V
(
Px[x+, bPx ]

)
⊆ NG(bPx) ∪ {bPx}, see Figure 1.

Figure 1: The definition of Y and Y .

Claim 17. For any P ∈ Path(S), |V (P ) ∩ Y | 6 1. In particular, |Y | 6 1
2
|LM(S)|.

Proof. Suppose that |V (P ) ∩ Y | > 2 holds for some P ∈ Path(S). Then let x, y be two
distinct vertices in V (P ) ∩ Y that appear in P in that order. By Lemma 14, we have
y 6= x+. This implies that y− ∈ V

(
P [x+, bP ]

)
. Since x ∈ Y , we have y− ∈ NG(bP ), which

contradicts Lemma 12 (ii). Therefore, |V (P )∩Y | 6 1 for any P ∈ Path(S). This implies
|Y | 6 |Path(S)| 6 1

2
|LM(S)|.

For each x ∈ Y , let ux be the first vertex in Px[x+, b−Px
] with ux 6∈ NG(bPx). Let

Y ′ = {ux : x ∈ Y }.

Claim 18. ux 6= uy for any x, y ∈ Y with x 6= y. In particular, |Y | = |Y ′|.

Proof. Suppose that ux = uy for some x, y ∈ Y with x 6= y. We may assume that x and y
are arranged in this order along Px. By Lemma 14, we have y 6= x+. By the definition of
ux, we have y− ∈ V (Px[x+, u−x ]) ⊆ NG(bPx). However, this contradicts Lemma 12 (ii).

Claim 19. For any x ∈ Y and z ∈ LM(S), ux 6∈ NG(z).

Proof. Suppose that there exists a vertex x ∈ Y such that ux ∈ NG(z) for some z ∈
LM(S). By the definition of ux, we have z 6= bPx . By Lemma 14, we have ux 6= x+. Since
ux is the first vertex in Px[x+, b−Px

] with ux 6∈ NG(bPx), we have u−x ∈ NG(bPx). If z = aPx ,
then C ′ = Px[aPx , u

−
x ]Px[bPx , ux]aPx is a cycle with V (C ′) = V (Px), and hence f({C ′}) =

1 < f({Px}), which contradicts Lemma 7(i). Otherwise, the path Px[aPx , u
−
x ]Px[bPx , ux]

can be extended by connecting Qz through the edge uxz, where Qz ∈ S with z ∈ V (Qz).
Let P ′ be the obtained path. Then f({P ′}) = 2 < f({Px, Qz}), which contradicts Lemma
7(i). In either case, we obtain a contradiciton, and this completes the proof of Claim
19.

The following claim is directly obtained from the definition of Y ′.

Claim 20. Y ′ ∩ LM(S) = ∅.
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For x ∈ Y , we say that x is exceptional if x has exactly two neighbors in LM(S) and
satisfies one of the following properties:

(i) x ∈ NG(aPx) ∩NG(bPx), and x 6∈ NG(z) for any z ∈ LM(S)\{aPx , bPx},

(ii) x ∈ NG(aPx)∩NG(dC) for some C ∈ Cyc(S), and x 6∈ NG(z) for any z ∈ LM(S)\{aPx , dC},

(iii) x ∈ NG(bPx)∩NG(dC) for some C ∈ Cyc(S), and x 6∈ NG(z) for any z ∈ LM(S)\{bPx , dC}.

An exceptional vertex x ∈ Y is said to be of Type (i), (ii) and (iii), if x satisfies (i), (ii)
and (iii), respectively. Let

Yex = {x ∈ Y : x is exceptional}, Ynon-ex = Y \Yex,
Y ′ex = {ux : x ∈ Yex} and Y ′non-ex = {ux : x ∈ Ynon-ex}.

By Claim 18, we obtain the following claim.

Claim 21. |Y ′ex| = |Yex| and |Y ′non-ex| = |Ynon-ex|.

Claim 22. Y ′non-ex ∪ LM(S) is an independent set.

Proof. Suppose not. By Lemma 10 and Claim 19, there exist u, v ∈ Y ′non-ex with u 6= v
and uv ∈ E(G). Choose x, y ∈ Ynon-ex so that ux = u and uy = v. We divide the proof
into two cases according as whether Px = Py or not.

Case 1. Px 6= Py.

Recall that either u−x ∈ NG(bPx) or u−x = x by the definition of ux, and the same
holds for uy. We first claim that u−x = x and u−y = y. In fact, the other cases lead to a
contradiction as follows.

• Suppose that u−x ∈ NG(bPx) and u−y ∈ NG(bPy). Let

P ′ = Px[aPx , u
−
x ]Px[bPx , ux]Py[uy, bPy ]Py[u

−
y , aPy ].

Then V (P ′) = V ({Px, Py}) and f({P ′}) = 2 < 4 = f({Px, Py}), which contradicts
Lemma 7 (i).

• Suppose that u−x = x and u−y ∈ NG(bPy). Let

P ′ = Px[aPx , x], Q′ = Py[aPy , u
−
y ]Py[bPy , uy]Px[ux, bPx ]

and S ′ = (S\{Px, Py})∪{P ′, Q′}. Then S ′ is a minimal system such that LM(S ′) =
(LM(S)\{bPy}) ∪ {x}, which contradicts Lemma 12 (i).

• The case that u−x ∈ NG(bPx) and u−y = y is symmetric to the previous case.

Therefore, we have u−x = x and u−y = y, as claimed.
Since x ∈ X, we have x ∈ NG(z) for some z ∈ LM(S)\{aPx}. We divide the proof as

follows:
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• Suppose that z = bPx . Let P ′ = Px[aPx , x]Px[bPx , ux]Py[uy, bPy ], Q′ = Py[aPy , y] and
S ′ = (S\{Px, Py}) ∪ {P ′, Q′}. Then S ′ is a minimal system such that LM(S ′) =
(LM(S)\{bPx}) ∪ {y}, which contradicts Lemma 12 (i).

• Suppose that z = aPy . Let P ′ = Px[aPx , x]Py[aPy , y], Q′ = Px[bPx , ux]Py[uy, bPy ] and
S ′ = (S\{Px, Py}) ∪ {P ′, Q′}. Then S ′ is a minimal system such that LM(S ′) =
(LM(S)\{aPy}) ∪ {y}, which contradicts Lemma 12 (i).

• Suppose that z = bPy . Let P ′ = Px[aPx , x]Py[bPy , uy]Px[ux, bPx ], Q′ = Py[aPy , y] and
S ′ = (S\{Px, Py}) ∪ {P ′, Q′}. Then S ′ is a minimal system such that LM(S ′) =
(LM(S)\{bPy}) ∪ {y}, which contradicts Lemma 12 (i).

• Suppose that z = aR or bR for some R ∈ Path(S)\{Px, Py}. By symmetry, we
may assume that z = aR. Let R1 = Px[aPx , x]R[aR, bR], R2 = Py[aPy , y], R3 =
Px[bPx , ux]Py[uy, bPy ] and S ′ = (S\{Px, Py, R})∪{R1, R2, R3}. Then S ′ is a minimal
system such that LM(S ′) = (LM(S)\{aR})∪{y}, which contradicts Lemma 12 (i).

Therefore, we have z ∈ V (C) for some C ∈ Cyc(S). By the symmetry of x and y, we
have y ∈ NG(z′) for some z′ ∈ V (C ′)∩LM(S) with C ′ ∈ Cyc(S). Since x /∈ Yex, there are
two choices for such a cycle C, and hence we can choose C and C ′ with C 6= C ′. Then there
exist three paths S1, S2, S3 such that S1 = Px[aPx , x]C[z, z−], S2 = Py[aPy , y]C ′[z′, z′−]
and S3 = Px[bPx , ux]Py[uy, bPy ]. Note that f({S1, S2, S3}) = 6 = f({Px, Py, C, C

′}), and
|Path({S1, S2, S3})| = 3 > 2 = |Path({Px, Py, C1, C2})|, which contradicts Lemma 7 (ii).
This complets the proof of Case 1.

Case 2. Px = Py.

For convenience, let P = Px = Py. We may assume that x and y are arranged in this
order along P . For the proof, we first claim the following.

(∗) There exists a subgraph Q with V (Q) = V (P [x+, bP ]) such that either Q
is a cycle or a path connecting y and bP .

Recall that either x+ = ux or x+ ∈ NG(bP ) by the definition of ux. Similarly, either
u−y ∈ NG(bP ) or u−y = y. The statement (∗) can be shown by considering the following
cases:

• Suppose x+ ∈ NG(bP ). In this case, Q = P [x+, bP ]x+ is a cycle desired in (∗).

• Suppose x+ = ux and u−y ∈ NG(bP ). Then, Q = P [x+, u−y ]P [bP , uy]x
+ is a cycle

desired in (∗).

• Suppose x+ = ux and y+ = uy. Then, Q = P [y, x+]P [uy, bP ] is a path connecting y
and bP , as desired in (∗).

This shows the statement (∗), as claimed.
Since x 6∈ Yex, there exists z1 ∈ LM(S) with x ∈ NG(z1) and z1 /∈ V (P ). Suppose first

that z1 = aP1 or bP1 for some P1 ∈ Path(S)\{P}. We may assume that z1 = aP1 . Let
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P ′ = P [aP , x]P1[aP1 , bP1 ] and let S ′ = (S\{P, P1})∪{P ′, Q}. If Q is a cycle, then f(S ′) =
f(S)− 1, contradicting the condition (S1). On the other hand, if Q is a path connecting
y and bP , then S ′ is a minimal system such that LM(S ′) = (LM(S)\{aP1})∪ {y}, which
contradicts Lemma 12 (i).

Thus, we have z1 ∈ V (C) for some C ∈ Cyc(S). Note that P ′ = P [aP , x]C[z1, z
−
1 ] is

a path such that one of its end vertices is aP . Since y /∈ Yex, y is not exceptional of type
(iii), which means that there exists z2 ∈ LM(S) with y ∈ NG(z2) and z2 6= bP , z1. We
divide the remaining proof according as z2 = aP or not.

• Suppose z2 = aP . Then by concatenating P ′ and Q through the edge aPy, and
deleting an edge incident with y in the case when Q is a cycle, we obtain a path,
say R, with V (R) = V (P ) ∪ V (C). Then f({R}) = 2 < 3 = f({P,C}), which
contradicts Lemma 7 (i).

• Suppose z2 6= aP . Let R ∈ S with z2 ∈ V (R). Then by connecting Q and R
through the edge yz2, and deleting an edge incident with y and/or an edge incident
with z2 if necessary, we obtain a path, say Q′, with V (Q′) = V (Q) ∪ V (R). Then
f({P ′, Q′}) = 4 6 f({P,C,R}). Thus, if f(R) = 2, then this contradicts Lemma
7 (i). Otherwise, that is, if f(R) = 1, then f({P ′, Q′}) = 4 = f({P,C,R}) and
|Path({P ′, Q′})| = 2 > 1 = |Path({P,C,R})|, contradicting Lemma 7 (ii).

This completes the proof of Claim 22.

Claim 23. |X| − |Yex| > (k + 1)(p− 1).

Proof. Let I ⊆ LM(S) with |I| = k+ 1. Since G is K1,p-free and I is an independent set
of order k + 1, we have |{z ∈ I : x ∈ NG(z)}| 6 min{p − 1, k + 1} for each x ∈ X \ Yex.
Note that |{z ∈ I : x ∈ NG(z)}| 6 2 for each x ∈ Yex and by Lemma 10 and Claim 19,
we have

⋃
z∈I NG(z) ⊆ V (G) \ (LM(S)∪ Y ′ex). Hence by Claims 20, 21 and 22, we obtain

|G|+ f(k, p) 6 σk+1(G)

6
∑
z∈I

dG(z)

6 (|G| − |LM(S)| − |Y ′ex|)− |X|+ (2|Yex|+ min{p− 1, k + 1}
(
|X| − |Yex|

)
)

= |G| − |LM(S)| − (|X| − |Yex|) + min{p− 1, k + 1}
(
|X| − |Yex|

)
< |G|+ min{p− 2, k}

(
|X| − |Yex|

)
,

that is, |X| − |Yex| >
f(k, p)

min{p− 2, k}
= (k + 1)(p− 1).
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By Claims 16, 17, 20, 21, 22 and 23, we obtain

(k + 1)(p− 1) > α(G)

> |Y ′non-ex|+ |LM(S)|
= (|Y | − |Yex|) + |LM(S)|
= (|X| − |Yex| − |Y |) + |LM(S)|

>

(
(k + 1)(p− 1)− 1

2
|LM(S)|

)
+ |LM(S)|

> (k + 1)(p− 1),

a contradiction. This completes the proof of Theorem 3.
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