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Abstract

We prove the curious identity in the sense of formal power series:
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for m = 0, 1, . . . , where [ym]f(y) denotes the coefficient of ym in the Taylor expan-
sion of f , which arises from applying the saddle-point method to derive Stirling’s
formula. The generality of the same approach (saddle-point method over two dif-
ferent contours) is also examined, together with some applications to asymptotic
enumeration.

Mathematics Subject Classifications: 05A16, 05A15, 41A60

1 Introduction

The following unusual identity was discovered through different manipulations of the
saddle-point method in order to derive Stirling’s formula, which has a huge literature
since de Moivre’s and Stirling’s pioneering analysis almost three centuries ago; see for
example the survey [2] (and the references therein) and the book [10] for five different
analytic proofs. Denote by [ym]f(y) the coefficient of ym in the Taylor expansion of f .

Theorem 1. Let

cm :=
1√
2π

󰁝 ∞

−∞
[ym] exp

󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j!
yj−2

󰀖
dt, (1)
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and

dm :=
1√
2π

󰁝 ∞

−∞
[ym] exp

󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j
yj−2

󰀖
dt. (2)

Then

cm = dm (m = 0, 1, . . . ). (3)

While the identity (3) can be deduced from known expansions for n! (e.g., [4, 24]),
our formulation, as well as the proof given here, is new and of independent interest per
se. More precisely, the essential differences between Theorem 1 and the results in [4]
are: the proofs in [4] rely on Cauchy’s integral representation, as we will do for c2m,
and a Gamma integral for n!, which is in contrast different from ours. Our analysis,
based on Cauchy’s integral representation for Taylor coefficients under two different types
of integration contours, can be systematically extended to more general contexts, and
is of additional instructional value as the same issue has perplexed many and has been
left mostly unaddressed in the literature. We will examine, for simplicity, two simple
frameworks useful for asymptotic enumeration in the next few sections and compare the
numerical differences of the two expansions resulting from these analysis.

When m is odd, cm = dm = 0 because the coefficient of ym contains only odd powers
of t. When m = 2l is even, the identity (3) can be written explicitly as follows:

c2l =
󰁛

1󰃑h󰃑2l

(−1)l+h(2l + 2h)!

(l + h)!2l+h

󰁛
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j1+···+j2l=h

1

j1! · · · j2l! · 3!j14!j2 · · · (2l + 2)!j2l
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󰁛
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(l + h)!2l+h

󰁛
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j1+···+j2l=h

1

j1! · · · j2l! · 3j14j2 · · · (2l + 2)j2l

= d2l.

In particular,

{c2l}l󰃍0 =

󰀝
1,− 1

12
,

1

288
,

139

51840
,− 571

2488320
,− 163879

209018880
, · · ·

󰀞
,

which are modulo sign the coefficients appearing in the asymptotic expansion of Stirling’s
formula; see [9, §1.18] or [23, A001164]:

1

n!
∼ enn−n− 1

2

√
2π

󰁛

m󰃍0

c2mn
−m, or n! ∼

√
2πe−nnn+ 1

2

󰁛

m󰃍0

(−1)mc2mn
−m. (4)

These Stirling coefficients have been extensively studied in the literature; see, e.g., [7,
§8.2], and [3, 16, 24, 19], and the references cited there.
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What if we interchange the integral and the coefficient-extraction operator [ym] in (1)?
Indeed, the integral in (1) without the operator [ym] is divergent for y ∈ R \ {0} due to
periodicity:

󰁝 ∞
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󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j!
yj−2

󰀖
dt =

󰁝 ∞

−∞
exp

󰀕
eity − 1− ity

y2

󰀖
dt;

on the other hand, the integral in (2) without [ym] is absolutely convergent for real |y| < 1:

󰁝 ∞

−∞
exp

󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j
yj−2

󰀖
dt =

󰁝 ∞

−∞

󰀃
1− ity

󰀄−y−2

e−it/y dt.

Proof of Theorem 1. For convenience, we write

fn ≈ gn when fn = gn +O
󰀃
e−εn

󰀄
,

for some generic ε > 0 whose value is immaterial.

The standard asymptotic expansion. We begin with the Cauchy integral represen-
tation for n!−1:

1

n!
=

1

2πi

󰁌

|z|=n

z−n−1ez dz,

where the integration contour is the circle with radius |z| = n. The standard application of
the saddle-point method (see [10, p. 555]) proceeds by first making the change of variables
z 󰀁→ neu, giving

e−nnn

n!
=

1

2πi

󰁝 πi

−πi

en(e
u−1−u) du ≈

1

2πi

󰁝 εi

−εi

en(e
u−1−u) du. (5)

Now by the change of variables u = it√
n
, we have

1

2πi

󰁝 εi

−εi

en(e
u−1−u) du =

1

2π
√
n

󰁝 ε
√
n

−ε
√
n

exp

󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j!
n− 1

2
j+1

󰀖
dt.

If we choose ε = εn = n− 2
5 , say, then nε2n → ∞ and nεjn → 0 for j 󰃍 3, so that the

series on the right-hand side is small on the integration path; we can then expand the
exponential of this series in decreasing powers of n, and then extending the integration
limits to infinity, yielding the expansion (4) with c2m expressed in the formal power series
form (1). See [10, Ex. VIII.3; p. 555 et seq.] for technical details.

On the other hand, a more effective means of computing c2m is to make first the change
of variables eu − 1− u = 1

2
v2 in the rightmost integral in (5), where u = u(v) is positive

when v is, and is analytic in |v| 󰃑 ε; see [27, § 3.6.3]. Then

e−nnn

n!
≈

1

2πi

󰁝 εi

−εi

e
1
2
nv2g(v) dv =

1

2π

󰁝 ε

−ε

e−
1
2
nt2g(it) dt,
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where g(v) := du
dv

is analytic in |v| 󰃑 ε. By the Lagrange inversion formula (see [10,
p. 732]),

gm := [vm]g(v) = [tm]

󰀕 1
2
t2

et − 1− t

󰀖 1
2
(m+1)

(m = 0, 1, . . . ). (6)

Then a direct application of Watson’s Lemma (see [29, §1.5]) gives the asymptotic expan-
sion

1

n!
≈

enn−n

2π

󰁛

m󰃍0

g2m

󰁝 ∞

−∞
e−

1
2
nt2(it)2m dt ≈

enn−n

√
2πn

󰁛

m󰃍0

ḡ2mn
−m, (7)

where

{ḡ2m}m󰃍0 :=
󰁱
g2m

(−1)m(2m)!

m!2m

󰁲

m󰃍0
=

󰁱
1,− 1

12
,

1

288
,

139

51840
,− 571

2488320
, · · ·

󰁲
.

We then obtain the relation

c2m = ḡ2m = g2m
(−1)m(2m)!

m!2m
. (8)

Second asymptotic expansion. It is well known that n!−1 has the alternative Laplace
integral representation (see [28, p. 246]):

1

n!
=

1

2πi

󰁝 R+i∞

R−i∞
z−n−1ez dz (R > 0),

so that, by the change of variables z = R(1 + x), where R = n+ 1,

e−n−1(n+ 1)n

n!
=

1

2πi

󰁝 i∞

−i∞
e−(n+1)(log(1+x)−x) dx

≈
1

2πi

󰁝 εi

−εi

e−(n+1)(log(1+x)−x) dx.

Now by the change of variables x = it√
n+1

, we have

1

2πi

󰁝 εi

−εi

e−(n+1)(log(1+x)−x) dx

=
1

2π
√
n+ 1

󰁝 ε
√
n+1

−ε
√
n+1

exp

󰀕
−t2

2
+
󰁛

j󰃍3

(it)j

j
(n+ 1)−

1
2
j+1

󰀖
dt.

By a similar procedure described above, we then deduce the asymptotic expansion

1

n!
∼ en+1(n+ 1)−n− 1

2

√
2π

󰁛

m󰃍0

d2m(n+ 1)−m, (9)
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where dm is given in (2); compare (7).
On the other hand, by the change of variables log(1 + x) − x = −1

2
y2 (y > 0 when

x > 0), we have

e−n−1(n+ 1)n

n!
≈

1

2πi

󰁝 εi

−εi

e
1
2
(n+1)y2h(y) dy =

1

2π

󰁝 ε

−ε

e−
1
2
(n+1)t2h(it) dt,

where h(y) = dx
dy

is analytic in |y| 󰃑 ε. Again, by the Lagrange inversion formula,

hm := [ym]h(y) = [ym]

󰀕 1
2
y2

y − log(1 + y)

󰀖 1
2
(m+1)

(m = 0, 1, . . . ). (10)

Although the definition of hm looks very different from that of gm (see (6)), their numerical
values coincide except for m = 1:

m 0 1 2 3 4 5 6 7 8 9
gm 1

−1
3 1

12
− 2

135
1

864
1

2835
− 139

777600
1

25515
− 571

261273600
− 281

151559100hm
2
3

We thus deduce the relation

d2m := h2m
(−1)m(2m)!

m!2m
,

which is easily computable by (10).

Equality of the two expansions. We next prove that

gm = hm (m 󰃍 0;m ∕= 1), (11)

where gm and hm are defined in (6) and (10), respectively. Note that for m 󰃍 0

gm = [sm]
ϕ(s)m+1

1 + s
, with ϕ(s) :=

󰀕
s2

2(s− log(1 + s))

󰀖 1
2

, (12)

by a direct change of variables s = et − 1. Thus we show that

[sm]
ϕ(s)m+1

1 + s
= [sm]ϕ(s)m+1

for m ∕= 1, or, equivalently,

[sm−1]
ϕ(s)m+1

1 + s
= 0 (m 󰃍 0,m ∕= 1). (13)

Since m = 0, 1 are easily checked, we assume m 󰃍 2. By the relation

sϕ′(s)

ϕ(s)
= 1− ϕ(s)2

1 + s
,
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we have

[sm−1]
ϕ(s)m+1

1 + s
= [sm−1]

󰀃
ϕ(s)m−1 − sϕ(s)m−2ϕ′(s)

󰀄

= hm−1 − [sm−2]ϕ(s)m−2ϕ′(s).

Now

[sm−2]ϕ(s)m−2ϕ′(s) = [sm−2]
d

ds

ϕ(s)m−1

m− 1
= [sm−1]ϕ(s)m−1 = hm−1,

which proves (13), and in turn (11). Consequently, cm = dm for m 󰃍 0, implying (3).

Motivation. The observation that (see (4))

n! ∼
√
2πe−nnn+ 1

2

󰁛

m󰃍0

(−1)mc2mn
−m

n! =
(n+ 1)!

n+ 1
∼

√
2πe−n−1(n+ 1)n+

1
2

󰁛

m󰃍0

(−1)mc2m(n+ 1)−m

led us to investigate the different scales used in the saddle-point method, which turned
out to correspond to the choice of different contours. Then we discovered the identity (3).

Asymptotics of g2m. It is known that (see [7, §8.2] and [3])

g2m ∼ (−1)l+1
√
2π(4π)−2l ×

󰀫
1
24
l−

3
2 , if m = 2l;

2l−
1
2 , if m = 2l − 1.

This type of asymptotic behaviors is unusual for functions of Lagrangean type; see [14]
or § 3.

2 Asymptotic expansions by the saddle-point method

Quoted from [10, p. 551]

Saddle-point method = Choice of contour + Laplace’s method.

Similar to its real-variable counterpart, the saddle-point method is a general strategy
rather than a completely deterministic algorithm, since many choices are left open
in the implementation of the method concerning details of the contour and choices
of its splitting into pieces.
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2.1 z = reiθ or z = R(1 + it)?

The two uses above (with z = reiθ or z = R(1 + it)) of the saddle-point method for
coefficient integrals of the form

an :=
1

2πi

󰁝

C

z−n−1f(z) dz,

for some contour C are standard in the combinatorial literature and are reminiscent of
the difference between moments ([ym]E(eXy)) and factorial moments ([ym]E(1 + y)X) in
probability; the corresponding saddle-point equations are given by

rf ′(r)

f(r)
= n, and

Rf ′(R)

f(R)
= n+ 1, (14)

respectively. The question is often which one to choose and which one is better (for exam-
ple, numerically)? For definiteness, consider f(z) = ee

z−1 (Bell numbers [23, A000110]);
then we found both uses in the literature:

rer = n ReR = n+ 1
Moser and Wyman [17]
Szekeres and Binet [26]
Odlyzko [21, Ex. 12.2]
Sachkov [25, § 5.8]

de Bruijn [6, § 6.2]
Flajolet and Sedgewick [10, pp. 560–562]

Knuth [15, pp. 422–423]

In particular, Knuth [15, pp. 422–423] considers first an−1 and then changed n − 1 to n
after deriving the corresponding asymptotic approximation.

The question of whether to use r or R in (14) has perplexed many users and is partly
answered in [10, p. 555, footnote]: “the choice being often suggested by computational
convenience.” It is also commented in [21, p. 1184] that the use of r is slightly preferred
because the manipulation of the other version is less elegant.

Apart from computational convenience, the numerical advantages of the expansion (9)
over (7) are visible because they have the same sequence of coefficients and (n + 1)−m

is always smaller than n−m; see also [5] for Stirling’s original expansion for log n! in
decreasing powers of n+ 1

2
. Although the numerical difference is minor for most practical

uses, the same question can naturally be raised more generally for functions f whose
Taylor coefficients are amenable to the saddle-point method (for example, exponential of
Hayman admissible functions; see [22]). Indeed, such a numerical difference was already
observed in the 1960s by Harris and Schoenfeld in their study of idempotent elements
in symmetric semigroups [11] where f(z) = eze

z
. Based on numerical calculations, they

found that the saddle-point approximation

an
n!

:= [zn]eze
z

∼ R−neReR

󰁳
2πReR(R2 + 3R + 1)

with R > 0 solving R(R + 1)eR = n+ 1, (↑)
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is “considerably better than the approximation”

an
n!

∼ r−nere
r

󰁳
2πrer(r2 + 3r + 1)

with r > 0 solving r(r + 1)er = n. (↺)

Surprisingly, this is the only paper we found where such a numerical comparison between
the two versions of the saddle-point approximation was made.

In the same paper [11], Harris and Schoenfeld argued further that the reason that (↑)
outperforms (↺) is (we change their notations to ours) “because the derivation of (↑) uses
a contour which passes through the saddle point of a certain integral for an/n!. However,
Hayman’s proof of the formula yielding (↺) employs a contour passing through r = r(n) =
R(n− 1) and it therefore misses the saddle point at R by R(n)−R(n− 1) ∼ 1/n.”

However, such a comparison is not quite right. In fact, the use of r or R in each
case, after the change of variables, is optimally guided by the saddle-point principle, so
that a different choice of integration contour yields indeed a distinct expansion with non-
identical asymptotic scales. As we will see below in § 2.4, while the dominant term in
(↑) is numerically closer to the true value than that in (↺) under the absolute difference
measure, the use of more terms in the corresponding asymptotic expansions may change
the scenario, and which expansion is numerically more precise depends then on the number
of terms used.

In this section, we first consider the two versions of the saddle-point method for gen-
eral f , giving the corresponding asymptotic expansions with succinct expressions for the
coefficients. Then we discuss some examples, highlighting briefly their numerical differ-
ences.

2.2 Hayman admissible functions

Hayman [13] defined a class of functions whose Taylor coefficients are amenable to the
saddle-point method, and Harris and Schoenfeld [12] later provided sufficient conditions
for deriving an asymptotic expansion for the corresponding Taylor coefficients. These
functions are later referred to as Hayman admissible and Harris-Schoenfeld admissible,
respectively; see [10, 22, 21]. Here we describe only Hayman’s conditions for our use later.

Definition 2. An analytic function f(z) in |z| < R, 0 < R < ∞, is said to be Hayman
admissible if f(z) is real for z real, max|z|=r |f(z)| = f(r) for 0 < R0 < r < R, and there
exists a function δ(r) ∈ (0, π) defined in (R0, R) such that

f(reiθ)

󰀫
∼ f(r)eµ(r)iθ−

1
2
σ(r)2θ2 , uniformly for |θ| 󰃑 δ(r),

= o
󰀃
f(r)σ(r)−

1
2

󰀄
, uniformly for δ(r) 󰃑 |θ| 󰃑 π,

as r → R, where µ(r) = rf ′(r)/f(r) and σ(r)2 = rµ′(r).

In particular, Odlyzko and Richmond showed in [22] that if φ is Hayman admissible,
then the function eφ(z) is Harris-Schoenfeld admissible, or in other words if a function
φ(z) is Hayman admissible, then an asymptotic expansion for the Taylor coefficients of
eφ(z) can be obtained by the saddle-point method.

the electronic journal of combinatorics 30(4) (2023), #P4.3 8



2.3 Two asymptotic expansions by the saddle-point method

We consider in this section the Taylor coefficient

an := [zn]eφ(z) =
1

2πi

󰁌

|z|=r

z−n−1eφ(z) dz,

where φ is Hayman admissible. Asymptotic expansions for an can be derived by the
saddle-point method.

Theorem 3. If φ is Hayman admissible, then we have the two asymptotic expansions

an ∼ r−neφ(r)󰁳
2πκ2(r)

󰁛

m󰃍0

cm(r)κ2(r)
−m,

where r > 0 solves the equation rφ′(r) = n, κ2(r) = rφ′(r) + r2φ′′(r) and

cm(r) = g2m(r)
(−1)m(2m)!

m!2m
, (15)

with

gm(r) = [vm]

󰀕 1
2
κ2(r)v

2

φ(rev)− φ(r)− rφ′(r)v

󰀖 1
2
(m+1)

;

and

an ∼ R−neφ(R)

󰁳
2πλ2(R)

󰁛

m󰃍0

dm(R)κ2(R)−m,

where R > 0 solves Rφ′(R) = n+ 1, and

dm(R) = h2m(R)
(−1)m(2m)!

m!2m
, (16)

with

hm(R) = [ym]

󰀕 1
2
λ2(R)y2

φ(R(1 + y))− φ(R)−Rφ′(R) log(1 + y)

󰀖 1
2
(m+1)

.

Proof. For the integration on the vertical line, the asymptotic expansion follows from
Harris-Schoenfeld admissibility, as guaranteed by Odlyzko and Richmond’s theorem [22,
Theorem 4] (with different expression for the coefficients). Then

dm(R) :=
1√
2π

󰁝 ∞

−∞
e−

1
2
t2 [ym] exp

󰀕󰁛

j󰃍3

λj(r)

j!λ2(r)
(it)jy

1
2
j−1

󰀖
dt,

where

λj(R) = j![sj]
󰀃
−(n+ 1) log(1 + s) + φ(R(1 + s))

󰀄

= (−1)j(j − 1)!Rφ′(R) + j![sj]φ(R(1 + s)).
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Note that λ2(t) = κ2(t). Thus (16) follows.
For the integration on a circle, we carry out the change of variables z 󰀁→ reiθ. Then,

by performing the same procedure as above, we have

cm(r) :=
1√
2π

󰁝 ∞

−∞
e−

1
2
t2 [ym] exp

󰀕󰁛

j󰃍3

κj(r)

j!κ2(r)
(it)jy

1
2
j−1

󰀖
dt,

where

κj(r) := j![sj]
󰀃
−ns+ φ(res)

󰀄
(j = 1, 2, . . . ).

From this we derive (15); see [18, 30] for similar details.

In particular (with κj = κj(r)),

c1(r) =
3κ2κ4 − 5κ2

3

24κ2
2

,

c2(r) = −24κ3
2κ6 − 168κ2

2κ3κ5 − 105κ2
2κ

2
4 + 630κ2κ

2
3κ4 − 385κ4

3

1152κ4
2

;

and (with λj = λj(R))

d1(R) =
3λ2λ4 − 5λ2

3

24λ2
2

,

d2(R) = −24λ3
2λ6 − 168λ2

2λ3λ5 − 105λ2
2λ

2
4 + 630λ2λ

2
3λ4 − 385λ4

3

1152λ4
2

,

the expressions differing from c1(r) and c2(r) by replacing all κj(r) by λj(R).

2.4 Examples.

We begin with Harris and Schoenfeld’s example φ(z) = zez [11] and let an := n![zn]eze
z
,

the number of idempotent mappings from a set of n elements into itself; see also [23,
A000248]. Asymptotic expansions by the saddle-point method can be justified either by
checking the Harris-Schoenfeld admissibility conditions as in [11] or by showing that zez is
a Hayman admissible function (see [13, 22, 10]). We then compute the absolute differences
between the true values and the two asymptotic expansions with varying number of terms:

∆
(c)
n,M :=

nM+1

(log n)M+1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

an
r−nere

r

󰁳
2πκ2(r)

−
󰁛

0󰃑m󰃑M

cm(r)κ2(r)
−m

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

,

∆
(v)
n,M :=

nM+1

(log n)M+1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

an

R−neReR

󰁳
2πκ2(R)

−
󰁛

0󰃑m󰃑M

dm(R)κ2(R)−m

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

,

(17)
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where r > 0 solves r(r + 1)er = n, R > 0 solves R(r + 1)eR = n + 1, and κ2 and
the coefficients cm and dm can be computed by (15) and (16), respectively, with φ(z) =
zez. Note that g(2m)κ2(r)

−m grows in the order n−m(log n)m for m = 0, 1, . . . . From

∆
(v)
n,M

∆
(c)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(c)
n,M

∆
(v)
n,M

Figure 1: ∆
(c)
n,M (in red) vs ∆

(v)
n,M (in blue): 20 󰃑 n 󰃑 200 and M = 0, 1, 2, 3, 4 (in left to

right order).

Figure 1, we see that while (↑) is numerically better than its circular counterpart (↺) (or
M = 0, as already observed in [11]), more terms in the asymptotic expansions show that
both expansions are indeed comparable, and their numerical performance depends on the
number of terms used.

We also observed a very similar pattern (as Figure 1) for Bell numbers when φ(z) =
ez − 1; see [23, A000110].

∆
(v)
n,M

∆
(c)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(c)
n,M

∆
(v)
n,M

Figure 2: ∆
(c)
n,M (in red) vs ∆

(v)
n,M (in blue) in the case of Bell numbers: 15 󰃑 n 󰃑 200 and

M = 0, 1, 2, 3, 4 (in left to right order).

In the case of φ(z) = z
1−z

, an := n![zn]ez/(1−z) enumerates the number of partitions of
{1, . . . , n} into any number of ordered subsets; see [23, A000262]. Although Theorem 3
does not apply because z

1−z
is not Hayman admissible, the justification of an asymptotic

expansion is straightforward and similar to integer partition problems; see for example
[1]. One sees that the circular version is numerically better except for M = 0.

Finally, consider the case φ(z) = z + 1
2
z2, whose coefficients (times n!) enumerate the

number of self-inverse permutations on n elements; see [23, A000085]. Since all coefficients
of φ(z) are positive, an asymptotic expansion by the saddle-point method is possible by
known results of Moser and Wyman in the 1950s [18]; see also [21]. In this case, we plot

the difference ∆
(c)
n,M −∆

(v)
n,M because the two curves are too close to be distinguishable.

In summary, although no general theory is developed here as to which contour of
the saddle-point integral to choose when applying to concrete instances, the expressions
given here can be readily coded, which then provide effective means for further numerical
comparisons. Such a procedure will be of instructional value, in addition to its own
methodological interests.
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∆
(v)
n,M

∆
(c)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(v)
n,M

∆
(c)
n,M

∆
(v)
n,M

Figure 3: ∆
(c)
n,M (in red) vs ∆

(v)
n,M (in blue) in the case of φ(z) = z

1−z
: 10 󰃑 n 󰃑 200 and

M = 0, 1, 2, 3, 4 (in left to right order). Here ∆
(·)
n,M is defined as in (17) but with nM+1

(logn)M+1

there replaced by n
1
2
(M+1).

Figure 4: ∆
(c)
n,M −∆

(v)
n,M in the case of φ(z) = z + 1

2
z2: 100 󰃑 n 󰃑 200 (with step 5) and

M = 0, 1, 2, 3 (in left to right order). Here ∆
(·)
n,M is defined as in (17) but with nM+1

(logn)M+1

there replaced by nM+1.

3 A Lagrangean framework

Consider now the Lagrangean form

[zn]f(z) with f = zG(f),

where G(0) > 0. By the Lagrange inversion relation, the Taylor coefficients satisfy

n[zn]f(z) = [tn−1]G(t)n (n 󰃍 1). (18)

This is one of the rare classes of functions for which both the singularity analysis and
the saddle-point method apply well (see [10, p. 590] and [14]) because of (18). Under the
following sub-criticality conditions:

󰀻
󰁁󰀿

󰁁󰀽

•G is analytic in |z| < ρ, 0 < ρ < ∞;

• [zj]G(z) 󰃍 0 and gcd{j : [zj]G(z) > 0} = 1;

• the equation zG′(z) = G(z) has a unique positive solution ρ0 ∈ (0, ρ)

(19)

it is proved in [14] via singularity analysis that

[zn]f(z) ∼
󰁛

k󰃍0

ck

󰀕
n− k − 3

2

n

󰀖
, with ck =

(−1)k

k
[tk−1]

󰀕
1− (ρ+t)G(ρ)

ρG(ρ+t)

t2

󰀖− 1
2
k

,
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where ρ := r
G(r)

with r > 0 solving the equation rG′(r) = G(r).
Here we examine this framework from the saddle-point method viewpoint. It turns

out that the two asymptotic expressions we obtained above via two different contours
are the same in this framework, and they are related to each other by a direct change of
variables.

Theorem 4. Write φ(z) = logG(z). Under the subcriticality conditions (19),

n[zn]f(z) ∼ R1−nG(R)n√
2πn σ(R)

󰁛

m󰃍0

h2m
(−1)m(2m)!

2mm!
(σ(R)2n)−m, (20)

where R > 0 solves the equation Rφ′(R) = 1, σ(R)2 = Rφ′(R) +R2φ′′(R) and

hm = [vm]

󰀕 1
2
σ(R)2v2

φ(R(1 + v))− φ(R)−Rφ′(R) log(1 + v)

󰀖 1
2
(m+1)

. (21)

The expression for the coefficients in the expansion (20) is much simpler than that
given in [14, Theorem 2].

Proof. We work out the asymptotic expansion in the circular case, the vertical line case
then following from a change of variables. As an asymptotic expansion of the form (20)
can either be justified by the singularity analysis as in [14] or by the standard saddle-point
analysis as in [8], we focus here on the (formal) calculation of the coefficients. By (18)

n[zn]f(z) =
1

2πi

󰁌

|z|=r

z−nG(z)n dz

=
r1−n

2πi

󰁝 πi

−πi

eu(e−uG(reu))n du

≈
r1−nG(r)n

2πσ(r)

󰁝 εi

−εi

e
1
2
nv2g(v) dv,

where σ(r)2 := rφ′(r) + r2φ′′(r), rφ′(r) = 1, g(v) = eu du
dv

= d
dv
eu, and

φ(reu)− φ(r)− rφ′(r)u

σ(r)2
=

v2

2
.

We then deduce that

n[zn]f(z) ∼ r1−nG(r)n√
2πn σ(r)

󰁛

m󰃍0

g2m
(−1)m(2m)!

2mm!
(σ(r)2n)−m, (22)

where

gm = [tm]et
󰀕 1

2
σ(r)2t2

φ(ret)− φ(r)− rφ′(r)t

󰀖 1
2
(m+1)

. (23)

By the change of variables v = et − 1, we obtain the expression (21), which can also be
obtained directly by beginning with the coefficient integral with the change of variables
z = R(1 + v).
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In particular, if φ(z) = z or G(z) = ez, then

n[zn]f(z) =
nn−1

(n− 1)!
= [zn−1]enz,

and we obtain the same expressions as derived above for Stirling’s formula.

3.1 Catalan numbers

For simplicity, we consider only Catalan numbers for which G(z) = (1 − z)−1 or φ(z) =
− log(1− z), so that

[zn]f(z) = [zn]
1−

√
1− 4z

2
=

1

n

󰀕
2n− 2

n− 1

󰀖
.

Then the positive solution of the equation rφ′(r) = 1 is given by r = 1
2
, and from either

the equation (21) or (23), we have the asymptotic expansion (σ(R)2 = 2)

1

n

󰀕
2n− 2

n− 1

󰀖
∼ 4n−1

√
π

󰁛

m󰃍0

h2m
(−1)m(2m)!

4mm!
n−m− 3

2 ,

and the identity

hm := [ym]

󰀕
y2

− log(1− y2)

󰀖 1
2
(m+1)

= [vm]ev
󰀕

v2

− log(2− ev)− v

󰀖 1
2
(m+1)

,

for m 󰃍 0, which follows simply by the change of variables y = ev − 1. Note particularly
that h2l+1 = 0 for l 󰃍 0.

On the other hand, by singularity analysis (see [10])

1

n

󰀕
2n− 2

n− 1

󰀖
= [zn]

1−
√
1− 4z

2
= − 4n

4πi

󰁝
ent

√
1− e−t dt

∼ − 4n

4πi

󰁛

m󰃍0

bm

󰁝

H
enttm+ 1

2 dt ∼ −4n

2

󰁛

m󰃍0

bm
Γ(−m− 1

2
)
n−m− 3

2 ,

where bm = [tm]
󰀃
(1− e−t)/t

󰀄 1
2 . Now by the relation

− 1

Γ(−m− 1
2
)
=

(−1)m(2m+ 2)!√
π(m+ 1)!4m+1

,

we then get

1

n

󰀕
2n− 2

n− 1

󰀖
∼ 4n

2
√
π

󰁛

m󰃍0

bm(−1)m(2m+ 2)!

(m+ 1)!4m+1
n−m− 3

2 . (24)
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It follows that h2m = (2m + 1)bm, which can also be proved directly by a change of
variables.

For large m, it is known (see [20, p. 39]) that

bm ∼
sin(1

2
mπ)

√
π

(2π)−nm− 3
2 ,

implying that the expansion (24) is divergent for n 󰃍 1. Since the right-hand side is zero
when m is even, we can refine the approximation by the same singularity analysis and
obtain

bm ∼ (−1)⌊
1
2
m⌋(2π)−m ×

󰀫
3
√
π

4
m− 5

2 , if m is even;
1√
π
m− 3

2 , if m is odd.

On the other hand, we can improve the asymptotic expansion by noting that

󰀕
1− e−t

t

󰀖 1
2

= e−
1
4
t
󰀓2
t
sinh

t

2

󰀔 1
2
= e−

1
4
t
󰁛

m󰃍0

b′2mt
2m;

thus, by the same singularity analysis

1

n

󰀕
2n− 2

n− 1

󰀖
∼ 4n

2
√
π

󰁛

m󰃍0

b′2m(4m+ 2)!

(2m+ 1)!42m+1

󰀃
n− 1

4

󰀄−2m− 3
2 ,

an expansion containing only even terms.
Yet another way to derive an asymptotic expansion for Catalan numbers is as follows.

Let G(z) = (1 + z)2. Then

1

n+ 1

󰀕
2n

n

󰀖
=

1

n
[tn−1](1 + z)2n,

and we have
1

n+ 1

󰀕
2n

n

󰀖
∼ 4n√

π

󰁛

m󰃍0

h2m
(−1)m(2m)!

m!
n−m− 3

2 ,

where

hm := [vm]

󰀕
v2

4 log
(1+ 1

2
v)2

1+v

󰀖 1
2
(m+1)

.

By a direct change of variables, we also have the expression

h2m = 4−m[ym](2ey − 1)

󰁵
y

1− e−y
.
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