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Abstract

Consider the following variant of Rock, Paper, Scissors (RPS) played by two
players Rei and Norman. The game consists of 3n rounds of RPS, with the twist
being that Rei (the restricted player) must use each of Rock, Paper, and Scissors ex-
actly n times during the 3n rounds, while Norman is allowed to play normally with-
out any restrictions. Answering a question of Spiro, we show that a certain greedy
strategy is the unique optimal strategy for Rei in this game, and that Norman’s
expected score is Θ(

√
n). Moreover, we study semi-restricted versions of general

zero sum games and prove a number of results concerning their optimal strategies
and expected scores, which in particular implies our results for semi-restricted RPS.

Mathematics Subject Classifications: 91A05

1 Introduction

1.1 Rock, Paper, Scissors

The game Rock, Paper, Scissors, or RPS for short, is a popular game whose first known
usage dates back to China nearly 2000 years ago. A round of RPS consists of two players
simultaneously selecting to play either Rock, Paper, or Scissors; where Rock beats Scissors,
Scissors beats Paper, and Paper beats Rock. If a player uses a move which beats their
opponents move, then that player gains a point and their opponent loses a point, with
the match resulting in a draw if both players select the same move.

RPS, while fun to play, is not particularly interesting from a mathematical perspective.
As a symmetric zero-sum game, both players have an expected score of 0, and it is easy
to show that the unique optimal strategy for both players is to choose each of the three
options with uniform probability; see for example [12, Chapter 17]. In this paper we study
a non-trivial variant of RPS, inspired by similar games introduced by Fukumoto [4] and
Spiro [11], called semi-restricted RPS.

Semi-restricted RPS is a perfect-information zero-sum game played by two players
named Rei and Norman. The game consists of 3n rounds of RPS, with the twist being
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that Rei must use each of Rock, Paper, and Scissors exactly n times during the 3n rounds,
while Norman is allowed to play normally without any restrictions. It is clear that Norman
has an advantage in this game, since in particular he is guaranteed to win the last round
of the game (assuming he is paying attention and has a good memory). However, it is
unclear how much more Norman is expected to win over Rei when both play optimally,
and it is also unclear what the optimal strategies are for either player.

One simple strategy that Rei can implement is what we call the greedy strategy. Under
this strategy, if Rei can still play each of Rock, Paper, and Scissors, she selects each option
with probability 1/3, regardless of how many actions remain of each option. If she can
only play, say, Rock and Paper, then she chooses Paper with probability 2/3 and Rock
with probability 1/3. More generally, if she has two options remaining, she will choose the
option which beats the other with probability 2/3 and the other option with probability
1/3. And of course, if only one option remains, she plays this with probability 1.

This strategy is “greedy” because with this strategy, Rei minimizes her expected loss
for any given round. Indeed, if she has all three options remaining, then playing each with
probability 1/3 makes it so that, regardless of what Norman does, Rei is just as likely
to win as she is to lose. Similarly if only Rock and Paper remains, then Norman should
only ever play Paper or Scissors (since Rock is guaranteed not to win). If Rei follows
the greedy strategy and Norman plays Paper, then Rei will lose with probability 1/3. If
Norman plays Scissors, then Rei will lose with probability 2/3 but win with probability
1/3. Thus regardless of what Norman does, Rei will expect to lose 1/3 points each round
under the greedy strategy, and one can show that this is best possible.

While the greedy strategy is optimal if Rei is only concerned about a given round, it
is far from clear that this is a good strategy overall. Indeed, say the game reaches the
point where Rei can play 100 Rocks, 100 Papers, and just 1 Scissors. Intuitively, in this
scenario Rei should not play Scissors with high probability, as doing so will severely limit
her remaining options for the rest of the game. As such the following may come as a bit
of a surprise.

Theorem 1. The greedy strategy is the unique optimal strategy for Rei in semi-restricted
RPS. Moreover, if the game consists of 3n rounds with both players playing optimally,
then Norman’s expected score is Θ(

√
n).

Here and throughout the paper we make use of standard asymptotic notation, see
Subsection 1.3 for precise definitions.

1.2 A More General Setting

The problem of studying semi-restricted RPS was first proposed by Spiro [11]. In [11], a
semi-restricted version of another classical zero-sum game, Matching Pennies, was intro-
duced. This semi-restricted game was motivated by a certain card guessing game studied
by Diaconis and Graham [2] which has recently received a fair amount of attention, see
for example [1, 3, 6, 7, 9].

While it is easy to generalize these examples to study “semi-restricted versions” of
arbitrary simultaneous zero-sum games, for simplicity we will focus on games which come
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from digraphs. However, most of our results hold in broader generality. Recall that a
directed graph (digraph shortly) D consists of a set of vertices V (D) together with a set of
ordered pairs of vertices E(D) called arcs. We will sometimes denote arcs (u, v) as u → v
or uv. Throughout this paper we will only consider digraphs without self-loops and which
have at most one arc between a given pair of vertices.

Given a digraph D, we define the D-game by having two players simultaneously select
a vertex of D. If the selected vertices are u, v and uv ∈ E(D), then the player who
chose u gains a point and the player who chose v loses a point, and nothing happens if
uv, vu /∈ E(D). For example, if D is the circuit of length 3, i.e. the 3-vertex digraph with
arcs 1 → 2 → 3 → 1, then the D-game is equivalent to RPS. Observe that the D-game is
always a symmetric zero-sum game.

We will say that a vector r is a restriction vector (with respect to a digraph D) if it
is a vector of non-negative integers indexed by V (D). Given a digraph D and restriction
vector r, we define the semi-restricted D-game with parameter r by having two players Rei
and Norman iteratively play the D-game for a total of

󰁓
u ru rounds with the restriction

that Rei must select each u ∈ V (D) exactly ru times. We let1 SD(r) denote the expected
score for Norman when both players play optimally in the semi-restricted D game with
parameter r, and throughout we let 1 denote the all 1’s vector of dimension |V (D)|. For
example, Theorem 1 says SD(n · 1) = Θ(

√
n) when D is the circuit of length 3.

Determining optimal strategies for semi-restricted D-games in full generality seems
impossible. Nevertheless, we are able to obtain effective bounds on SD(r) for all D. To
state these results, given a digraph D and v ∈ V (D), we define the out-neighborhood
N+(v) = {u : (v, u) ∈ E(D)}, and similarly we define the in-neighborhood N−(v) = {u :
(u, v) ∈ E(D)}. We let d+(v) = |N+(v)| and d−(v) = |N−(v)| denote the out-degree and
in-degree of v, respectively.

A basic observation is that for all vertices v ∈ V (D), we have

SD(n · 1) 󰃍 (d+(v)− d−(v))n.

Indeed, if Norman uses the deterministic strategy of playing v every round, then he will
win exactly d+(v)n rounds and lose exactly d−(v)n rounds, so he can achieve an expected
score of at least (d+(v) − d−(v))n with this strategy. It turns out that this trivial lower
bound is close to best possible.

Theorem 2. For all digraphs D and n 󰃍 1, we have

max
v

{d+(v)− d−(v)}n 󰃑 SD(n · 1) 󰃑 max
v

{d+(v)− d−(v)}n+OD(
√
n).

Similar bounds hold for general restriction vectors r, though in this case our bound
on the error term is weaker.

Theorem 3. For all digraphs D and restriction vectors r, we have

max
v

󰀫
󰁛

u∈N+(v)

ru −
󰁛

u∈N−(v)

ru

󰀬
󰃑 SD(r) 󰃑 max

v

󰀫
󰁛

u∈N+(v)

ru −
󰁛

u∈N−(v)

ru

󰀬
+OD(M

2/3),

1We will define these terms more formally in Section 2.
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where M = maxv rv.

The bounds of Theorem 2 are asymptotically tight except when d+(v) = d−(v) for
all v, and when this happens we say that D is Eulerian. A class of Eulerian digraphs
that are of particular interest to us are Eulerian tournaments, where a tournament is a
digraph such that either uv ∈ E(D) or vu ∈ E(D) is in D for all distinct u, v ∈ E(D)
(equivalently, tournaments are orientations of complete graphs). For example, the circuit
of length 3 is an Eulerian tournament. More generally, any reasonable extension of RPS
(such as “Rock, Paper, Scissors, Lizard, Spock” or the infamous “RPS-25” consisting of
25 different options) will have a corresponding digraph which is an Eulerian tournament.

By Theorem 1, we know that semi-restricted Rock, Paper, Scissors has a simple greedy
strategy for Rei which is optimal, and given this, it is not too hard to determine the
expected score when both players play optimally. Unfortunately, it turns out that Rei
does not have a “simple” optimal strategy in the semi-restricted D-game for almost every
Eulerian tournament D, see Theorem 18 for a precise statement. Despite this significant
hurdle, we can still determine the expected score when both players play optimally.

Theorem 4. If D is a non-empty Eulerian tournament, then

SD(n · 1) = ΘD(
√
n).

In fact, we will show more generally that SD(n · 1) = ΘD(
√
n) whenever D is an

Eulerian digraph satisfying certain spectral conditions, see Theorem 11.
Lastly, it is natural to consider not just semi-restricted games where one player is

restricted, but also games where both players are restricted. Indeed, several games of
this form appeared in the manga Tobaku Mokushiroku Kaiji [4], and one such game was
studied by Spiro [11]. It turns out that these games are much simpler to analyze. In
particular, in every such game, it is optimal for both players to uniformly at random
choose from their multiset of available actions each round, see Appendix C for more on
this.

1.3 Organization and Notation

The remainder of this paper is organized as follows. In Section 2 we provide a more
formal definition of SD(r) and determine the optimal strategies for every semi-restricted
D-game when D has at most 3 vertices, in particular proving the first half of Theorem 1.
In Section 3 we prove general bounds on SD(r) and prove Theorems 2, 3, 4 and the
second half of Theorem 1. In Section 4 we show that almost every (Eulerian) tournament
does not have a “simple” optimal strategy for Rei. We end with some open problems in
Section 5.

We recall the following standard asymptotic notation. For two functions f, g depending
on n, we write g = O(f) to mean there exists some C > 0 such that g(n) 󰃑 Cf(n) for
all n. Similarly g = Ω(f) indicates g(n) 󰃍 cf(n) for some c > 0, and g = Θ(f) means
g = O(f) and g = Ω(f). We write, for example, g = OD(f) to indicate that there is
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some C > 0 depending on the parameter D such that g(n) 󰃑 Cf(n) for all n. We write

g = o(f) to indicate limn→∞
g(n)
f(n)

= 0.

Given a vector r, we define the support supp(r) to be the set of v with rv > 0.
Similarly given a random variable X, we define its support supp(X) to be the set of x
with Pr(X = x) > 0. Given an event A we let (A) denote the indicator function which
is 1 if A occurs and 0 otherwise.

2 Optimal Strategies

In this section we prove several results about optimal strategies. We begin by establishing
formal definitions for some of the terms that were informally defined in the introduction.

Given a digraph D, a strategy for Norman in the semi-restricted D-game is a function
N from restriction vectors to random variables such that supp(N (r)) ⊆ V (D) for all r.
A strategy for Rei is a function R from restriction vectors to random variables such that
supp(R(r)) ⊆ supp(r) for all r. Informally, this simply says that Norman is allowed to
play any vertex of D, while Rei can only play vertices in supp(r).

We let δv be the vector which has a 1 in the position corresponding to v ∈ V (D)
and 0’s everywhere else. Given strategies N ,R for Norman and Rei respectively and a
restriction vector r, we define the score (for Norman) SD(r;N ,R) recursively by setting
SD(r;N ,R) = 0 if r = (0, . . . , 0), and otherwise having

SD(r;N ,R) =

󰀻
󰁁󰀿

󰁁󰀽

1 + SD(r − δR(r);N ,R) if R(r) ∈ N+(N (r)),

−1 + SD(r − δR(r);N ,R) if R(r) ∈ N−(N (r)),

SD(r − δR(r);N ,R) otherwise.

Informally, this says Norman and Rei play a round of the semi-restricted D-game with
parameter r, record the change in score based on whether Norman’s choice beats Rei’s
or not, and then the game continues with one action of R(r) removed for Rei. Note
that SD(r;N ,R) is a random variable. We define the expected score SD(r;N ,R) :=
E[SD(r;N ,R)].

For r a restriction vector and R a Rei’s strategy, we define

SD(r;R) = max
N

SD(r;N ,R) and SD(r) = min
R

SD(r;R),

where the maximum and minimums run through all possible strategies of Norman and
Rei as appropriate. The fact that these maximums and minimums exist can be seen,
for instance, by observing that the space of possible strategies forms a compact set.
Intuitively, SD(r;R) is Norman’s score if he plays optimally and Rei uses strategy R and
has restriction vector r. If R is such that SD(r) = SD(r;R) for all vectors r, then we say
that R is an optimal strategy for Rei2.

We start with a basic fact about the behavior of SD.

2As defined, it is not immediately clear that Norman can achieve a score of SD(r) without knowing that
Rei is using some given optimal strategy. But this follows from von Neuman’s famed minimax theorem
for finite two player zero-sum games.
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Fact 5. Let R be a strategy for Rei. If r is a restriction vector and pu = Pr(R(r) = u)
for each u ∈ V (D), then

SD(r;R) = max
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
+
󰁛

u

puSD(r − δu;R).

Intuitively, this result says that if Rei is playing according to strategy R, then Norman
should always play the vertex v which maximizes his expected score for each round, i.e.
the v such that

󰁓
u∈N+(v) pu −

󰁓
u∈N−(v) pu is as large as possible. A close analog of this

is proven in Spiro [11, Lemma 2.1]. One can easily give a formal proof of this results by
adjusting the corresponding proof in [11].

The key lemma we need for this section is the following. Roughly speaking, it says that
in any semi-restricted D-game, the optimal expected score will not change dramatically
if among all the remaining options of Rei, one action of u is changed into one action of v.

Lemma 6. Given u, v ∈ V (D) and a restriction vector r with ru, rv 󰃍 1, we have

SD(r − δu) 󰃑 SD(r − δv) + α(u, v), (1)

where

α(u, v) :=

󰀻
󰁁󰀿

󰁁󰀽

2 if N+(u) ∩N−(v) ∕= ∅,
0 if N+(u) ∪N−(v) = ∅,
1 otherwise.

Moreover, we have strict inequality in (1) when either N−(u) ∕= ∅ or α(u, v) = 2.

We note that this inequality can be sharp, for example if u is an isolated vertex and
N−(v) = ∅, but typically it will not be (e.g. if N−(u) ∕= ∅ or α(u, v) = 2).

Proof. We first assume the condition N−(u) ∕= ∅ and prove the strict inequality

SD(r − δu) < SD(r − δv) + α(u, v).

After its proof we briefly discuss the other scenarios of this theorem, i.e. when α(u, v) = 2
or when we conclude non-strict inequalities.

Suppose for contradiction that there is some r with SD(r− δu) 󰃍 SD(r− δv)+α(u, v),
and choose this r with

󰁓
rw as small as possible. Let R be an optimal strategy for Rei,

and let pw = Pr(R(r − δv) = w). The idea now is for Rei to consider a different (and
possibly suboptimal strategy) R′ which has Rei acting as if her restriction vector is r− δv
whenever it is r−δu. That is, we would like to chooseR′ such that Pr(R′(r−δu) = w) = pw
for all w. However, this can cause issues when ru = 1, since in this case R′ may choose u
with positive probability despite r− δu having no copies of u available for her to play. We
get around this by having R′ select v whenever R would have selected u. More precisely,
we define a strategy R′ by having R′(r′) = R(r′) if r′ ∕= r − δu, and otherwise setting
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p′w := Pr(R′(r − δu) = w) =

󰀻
󰁁󰀿

󰁁󰀽

pu + pv w = v,

0 w = u,

pw w ∕= u, v.

Observe that R′ is always a strategy for Rei (i.e. R′(r′) ⊆ supp(r′) for all r′) since rv > 0
and R is a strategy for Rei.

First assume pu = 1, which means the optimal strategy R always has Rei choosing u
at r − δv. By Fact 5, our assumption N−(u) ∕= ∅, and the fact D has no self-loops, we
have

SD(r − δv) = 1 + SD(r − δu − δv). (2)

The possibly suboptimal strategy R′ always has Rei choosing v at r−δu, so Fact 5 implies

SD(r − δu;R′) =

󰀫
1 + SD(r − δu − δv), if N−(v) ∕= ∅
SD(r − δu − δv), if N−(v) = ∅

. (3)

Hence, if N−(v) = ∅, we have

SD(r − δu) 󰃑 SD(r − δu;R′) < SD(r − δv) 󰃑 SD(r − δv) + α(u, v),

where the first inequality used that R′ is possibly suboptimal, the second used (2) and
(3), and the last used that α(u, v) 󰃍 0 always. If N−(v) ∕= ∅, we have

SD(r − δu) 󰃑 SD(r − δu;R′) = SD(r − δv) < SD(r − δv) + α(u, v),

since in this case α(u, v) > 0. Either way contradicts our assumption, so we must have
pu ∕= 1.

Define ew =
󰁓

w′∈N+(w) pw′ −
󰁓

w′∈N−(w) pw′ , which is the expected score when one
round is played at r − δv when Rei follows R and Norman picks w. By Fact 5 and R
being optimal, we have

SD(r − δv) = max
w

ew +
󰁛

w

pwSD(r − δv − δw). (4)

Similarly, we define e′w =
󰁓

w′∈N+(w) p
′
w′ −

󰁓
w′∈N−(w) p

′
w′ . By definition of p′w (which

differs by either 0 or ±pu from pw), we have

e′w − ew =
󰁫 󰁛

w′∈N+(w)

p′w′ − pw′

󰁬
−

󰁫 󰁛

w′∈N−(w)

p′w′ − pw′

󰁬

=
󰀅
pu (v ∈ N+(w))− pu (u ∈ N+(w))

󰀆
−

󰀅
pu (v ∈ N−(w))− pu (u ∈ N−(w))

󰀆

󰃑 pu (v ∈ N+(w)) + pu (u ∈ N−(w))

= pu (w ∈ N−(v)) + pu (w ∈ N+(u)) 󰃑 puα(u, v),
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where this last step uses the definition of α(u, v). Using this together with Fact 5 gives

SD(r−δu;R′) 󰃑 max
w

ew+puα(u, v)+
󰁛

w ∕=u,v

pwSD(r−δu−δw)+(pu+pv)SD(r−δu−δv), (5)

where implicitly we used that SD(r− δu − δw;R′) = SD(r− δu − δw) since R′ agrees with
the optimal strategy R for every vector except r− δu. Since SD(r− δu) 󰃑 SD(r− δu;R′),
we can combine (4) and (5) and obtain

SD(r − δu)− SD(r − δv) 󰃑 SD(r − δu;R′)− SD(r − δv)

󰃑 puα(u, v) +
󰁛

w ∕=u

pw(SD(r − δu − δw)− SD(r − δv − δw))

< puα(u, v) +
󰁛

w ∕=u

pwα(u, v) (6)

= α(u, v),

where the inequality (6) used the assumptions that pu ∕= 1 (so pw > 0 for some w ∕= u) and
that r was a minimum counterexample to the desired strict inequality. As this contradicts
our assumption, we conclude our desired strict inequality.

This completes the proof in the case N−(u) ∕= ∅. If N−(u) = ∅ but α(u, v) = 2, the
condition pu = 1 implies the following identity, which is slightly different from (2),

SD(r − δv) = SD(r − δv − δu).

The identity (3) still holds for pu = 1. Together they imply |SD(r − δu)− SD(r − δv)| 󰃑
1 < α(u, v). So pu = 1 still contradicts the assumption for r, and when pu ∕= 1 we can
argue as above and conclude (1) with a strict inequality. If we are in the situation where
N−(u) = ∅ and α(u, v) ∕= 2, then the same argument as above gives (6) with a non-strict
inequality, giving the desired result.

We can use Lemma 6 to establish the optimal strategies for Rei for every digraph on
at most 3 vertices. Most of these cases are trivial. Indeed, recall that a vertex v in a
digraph is called a source if N−(v) = ∅. If there is a source v such that N+(v) contains
all of the non-source vertices, then an optimal strategy for Norman is to always choose v
(which will allow him to win every round that Rei does not play a source, and Norman
can only draw when Rei plays a source). Facing this strategy of Norman, every strategy
of Rei gives the same outcome, hence is trivially optimal. One can check that such a
source exists in every digraph with at most 3 vertices except for the circuit on 3 vertices
and the directed path on 3 vertices, so it remains to address these two cases.

Recall that if D is the directed cycle 1 → 2 → 3 → 1, then the D-game is just RPS.
In Section 1 we mentioned the following greedy strategy Rg for Rei in this semi-restricted
D-game: When she still has all three options available, she chooses each with uniform
probability; When she has two options, she chooses the stronger one with probability 2/3
and the weaker one with probability 1/3; When she has only one option, she chooses this
with probability 1. The next theorem implies the first half of Theorem 1.
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Theorem 7. The greedy strategy Rg is the unique optimal strategy for Rei in the semi-
restricted D-game when D is the directed cycle 1 → 2 → 3 → 1.

Proof. Let R be an optimal strategy for Rei. We shall prove that Pr(R(r) = u) =
Pr(Rg(r) = u) for all vertices u and vectors r by induction on the quantity r1+r2+r3. The
base case when r1 + r2 + r3 = 0 is trivial. Now suppose Pr(R(r′) = u) = Pr(Rg(r

′) = u)
for all vertices u and vectosr r′ satisfying r′1+r′2+r′3 < r1+r2+r3. Let pu := Pr(R(r) = u)
for each u ∈ {1, 2, 3}.

When |supp(r)| = 1, by the definition of a strategy for Rei, we have Pr(R(r) = u) =
Pr(Rg(r) = u) for all u.

When |supp(r)| = 2, we can assume without loss of generality that r1, r2 > 0. Suppose
p1 = 2/3 + 󰂃 with 󰂃 > 0, which means p2 = 1/3− 󰂃. Applying Fact 5 to both R and Rg

gives

SD(r;R) =

󰀕
1

3
+ 2󰂃

󰀖
+

󰀕
2

3
+ 󰂃

󰀖
SD(r − δ1) +

󰀕
1

3
− 󰂃

󰀖
SD(r − δ2),

SD(r;Rg) =
1

3
+

2

3
SD(r − δ1) +

1

3
SD(r − δ2),

where here we used the assumptions that R is optimal and that Rg coincides with R on
r′ = r − δu for u = 1, 2. These two identities imply

SD(r;Rg)− SD(r;R) = 󰂃(SD(r − δ2)− SD(r − δ1)− 2) < 0,

where the inequality is by Lemma 6 with α(2, 1) = 2 (since N+(2) ∩N−(1) = {3}). This
contradicts R being an optimal strategy, so we can not have p1 = 2/3 + 󰂃 for any 󰂃 > 0.
If p1 = 2/3− 󰂃 for some 󰂃 > 0, we now have

SD(r;R) =

󰀕
1

3
+ 󰂃

󰀖
+

󰀕
2

3
+ 󰂃

󰀖
SD(r − δ1) +

󰀕
1

3
− 󰂃

󰀖
SD(r − δ2).

Similar to before we find

SD(r;Rg)− SD(r;R) = 󰂃(SD(r − δ1)− SD(r − δ2)− 1) < 0,

where the inequality is again by Lemma 6. This is also a contradiction, so we must have
p1 = 2/3 and p2 = 1/3, which means Pr(R(r) = u) = Pr(Rg(r) = u) for all u as desired.

When |supp(r)| = 3, we let ∆ := max{p2 − p3, p3 − p1, p1 − p2}. Note that ∆ 󰃍 0. By
Fact 5 and the assumption of R being optimal, we have

SD(r;R) = ∆+ p1SD(r − δ1) + p2SD(r − δ2) + p3SD(r − δ3).

Our proof now divides into three cases.

Case 1. Exactly one term in {p2 − p3, p3 − p1, p1 − p2} equals ∆.
Without loss of generality, we can assume p2 − p3 = ∆. Take

󰂃 =
1

3
min{|∆− (p3 − p1)|, |∆− (p1 − p2)|} > 0.

the electronic journal of combinatorics 30(4) (2023), #P4.32 9



Consider a different strategy R′ for Rei with

Pr(R′(r) = 1) = p1, Pr(R′(r) = 2) = p2 − 󰂃, Pr(R′(r) = 3) = p3 + 󰂃,

and Pr(R′(r′) = u) = Pr(R(r′) = u) for all vertices u and vectors r′ ∕= r. By Fact 5 and
our choice of 󰂃, we have

SD(r;R′) = (∆− 2󰂃) + p1SD(r − δ1) + (p2 − 󰂃)SD(r − δ2) + (p3 + 󰂃)SD(r − δ3).

Thus

SD(r;R′)− SD(r;R) = 󰂃(SD(r − δ3)− SD(r − δ2)− 2) < 0,

where the inequality is by Lemma 6. This contradicts R being optimal, so Case 1 can
not happen.

Case 2. Exactly two expressions in {p2 − p3, p3 − p1, p1 − p2} equal ∆.
Without loss of generality, we assume p2 − p3 = p3 − p1 = ∆. This implies p3 = 1/3,

p2 = 1/3 +∆, and p1 = 1/3−∆. Note that ∆ > 0, as otherwise p1 − p2 also attains ∆.
Similar to the above arguments, we can compute

SD(r;Rg)− SD(r;R) = ∆(SD(r − δ1)− SD(r − δ2)− 1) < 0,

where the inequality is by Lemma 6. This gives a contradiction, so Case 2 can not happen.

Case 3. Every expression in {p2 − p3, p3 − p1, p1 − p2} equals ∆.
We have p2 − p3 = p3 − p1 = p1 − p2, which implies p1 = p2 = p3 = 1/3 and hence

Pr(R(r) = u) = Pr(Rg(r) = u) for all u. As neither of the previous two cases happen,
we must be in this case, so we obtain the desired conclusion.

The only remaining digraph on 3 vertices is the directed path, and in this case it turns
out there are many optimal strategies for Rei.

Theorem 8. The optimal strategies for Rei in the semi-restricted D-game when D is the
directed path 1 → 2 → 3 are exactly those R satisfying Pr(R(r) = 3) = 1/2 whenever
{3} ⊊ supp(r).

That is, Rei will always play 3 with probability 1/2 provided she can play 3 and at
least one other option. The intuition for Theorem 8 is as follows: in any particular round,
suppose Rei plays v with probability pv. It is clear that Norman will only ever play 1 or
2 for his turn, and for a given round these gives him expected payoffs of p2 and p1 − p3,
respectively. These two payoffs are equal precisely when p3 = 1/2. Thus the strategies in
Theorem 8 are exactly those such that Norman is indifferent between which (reasonable)
vertex he should play. The proof of Theorem 8 is similar to that of Theorem 7, and as
such we have relegated its proof to Appendix A.
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3 Bounding the Score

3.1 General bounds

Our proofs will need the following technical result, which will be used to control the
expected number of rounds remaining in the semi-restricted D-game after one option has
been depleted.

Lemma 9. Let p ∈ (0, 1] and N be an integer. Let X = X1 + · · ·+XN where the Xi are
iid random geometric variables with parameter p. Then

E[(EX −X) · (X 󰃑 EX)] = O(
√
N/p)

Proof. Note that Var(X) = N(1− p)/p2. Therefore by Cauchy-Schwarz inequality

E[(EX −X) (X 󰃑 EX)] 󰃑 O(
󰁳

Var(X)Var( (X 󰃑 EX)) = O(
√
N/p),

where we use the fact that Var( (X 󰃑 EX)) = O(1).

We can use this technical result to prove Theorem 2.

Proof of Theorem 2. Recall that we wish to show

SD(n · 1) = max
v

{d+(v)− d−(v)}n+OD(
√
n).

The lower bound SD(n·1) 󰃍 maxv{d+(v)−d−(v)}n follows form Norman deterministically
choosing v every round. It remains to exhibit a strategy of Rei such that Norman can
gain at most maxv{d+(v)−d−(v)}n+OD(

√
n) points in expectation against this strategy.

Intuitively, Rei’s strategy will be to play uniformly at random until some option is
depleted, after which she plays arbitrarily. To more formally analyze this strategy, we
will have Rei generate an infinite random string π = π1π2 · · · where each πt is chosen
uniformly and independently amongst V (D). In the t-th round, Rei will play πt, unless
that option has been depleted, in which case she plays arbitrarily.

Let k = |V (D)|. For w ∈ V (D), let Tw denote the smallest integer t such that
|{s 󰃑 t : πs = w}| = n, and let T = minw Tw. Note that before the T -th round of the
game, Rei can still play every option (and hence does so uniformly), and that some option
is depleted after completion of the T -th round. Thus for t 󰃑 T , if Norman plays v in the
t-th round, then the expected increase in score for Norman is exactly k−1(d+(v)− d−(v)),
so his maximum expected increase in score is at most k−1 maxv{d+(v) − d−(v)}. Using
this and that Norman’s score increases by at most 1 for each round after the T -th, we
find

E[SD(r)|T ] 󰃑 T · k−1 max
v

{d+(v)− d−(v)}+ (kn− T )

󰃑 max
v

{d+(v)− d−(v)}n+ (kn− T ), (7)
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where this last step used that deterministically T 󰃑 kn. It remains to upper bound the
expected value of kn− T .

Observe that Tw has the distribution of the sum of n independent geometric random
variables with parameter 1/k. Thus ETw = kn, and Lemma 9 gives

E[(kn− Tw) (Tw 󰃑 kn)] = OD(
√
n).

It follows that

E[kn− T ] = E[max
w

{kn− Tw}] 󰃑
󰁛

w

E[(kn− Tw) (Tw 󰃑 kn)] = OD(
√
n).

Combining this with (7) and using the tower property of conditional expectation gives
the desired result.

A similar approach gives Theorem 3.

Proof of Theorem 3. Recall that we wish to prove

SD(r) 󰃑 max
v

󰀫
󰁛

u∈N+(v)

ru −
󰁛

u∈N−(v)

ru

󰀬
+OD(M

2/3),

where M = maxv rv. The approach we use is very similar to that of Theorem 2, so we will
omit some of the redundant details. Intuitively, we will prove the lower bound by having
Rei play each option w with probability rw/

󰁓
u ru until an option is depleted, after which

she plays arbitrarily. However, we will first need to “trim” r to ignore vertices with rv
small.

To be more precise, let r′ be the vector defined by r′w = rw if rw 󰃍 M2/3 and r′w = 0
otherwise. Rei generates an infinite random string π = π1π2 · · · where πt = w with
probability r′w/

󰁓
u r

′
u for all w ∈ supp(r′) independently of every other πs. In the t-th

round Rei will play πt unless that option is depleted, in which case she plays arbitrarily.
For w ∈ supp(r′), let Tw denote the smallest integer t such that |{s 󰃑 t : πs = w}| =

r′w, and let T = minw∈supp(r′) Tw. Note that for t 󰃑 T , if Norman plays v in the t-th
round then the expected increase in score for Norman is exactly (

󰁓
u r

′
u)

−1(
󰁓

u∈N+(v) r
′
u−󰁓

u∈N−(v) r
′
u). Using this, that Norman’s score increases by at most 1 each round, and

that T 󰃑
󰁓

u r
′
u, we see that

E[SD(r)|T ] 󰃑 max
v

󰀫
󰁛

u∈N+(v)

r′u −
󰁛

u∈N−(v)

r′u

󰀬
+

󰀣
󰁛

u

ru − T

󰀤
. (8)

Observe that each Tw random variable has the distribution of the sum of r′w = rw
independent geometric random variables with parameter rw/

󰁓
u r

′
u. Thus ETw =

󰁓
u r

′
u,

and Lemma 9 gives

E[(
󰁛

u

r′u − Tw) (Tw 󰃑
󰁛

u

r′u)] = OD(r
−1/2
w

󰁛

u

r′u) = OD(M
2/3),
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where this last step used rw 󰃍 M2/3 and
󰁓

u r
′
u 󰃑 k ·M . It follows that

E[
󰁛

u

r′u − T ] = E[max
w

{
󰁛

u

r′u − Tw}] 󰃑
󰁛

w

E[(
󰁛

u

r′u − Tw) (Tw 󰃑
󰁛

u

r′u)] = OD(M
2/3).

Combining this with (8), the tower property of conditional expectation, and that
󰁓

u ru−󰁓
u r

′
u = OD(M

2/3) gives the desired result.

3.2 Spectral bounds

As we saw in the case of RPS, there are semi-restricted games where Rei’s optimal strategy
is to start by playing uniformly at random until some option runs out. In this section, we
will classify a class of graphs for which Rei’s optimal strategy is to play approximately
uniformly until some option runs out. We do so by identifying a property which implies
that the expected loss at any given step is proportional to its deviation from the uniform
strategy.

Given a digraph D, we identify V (D) with [k] for some integer k and let AD be the
skew adjacency matrix of D, i.e.

(AD)ij =

󰀻
󰁁󰀿

󰁁󰀽

1, if ij ∈ E(D)

−1 if ji ∈ E(D)

0 otherwise

.

Our main focus for this subsection will be digraphs satisfying

Null(AD) = span(1).

To motivate this, observe that at any given state r, if p is the probability vector such
that Rei plays vertex u with probability pu, then Rei’s expected loss for this round will
be 0 if and only if ADp = 0. Therefore, for digraphs with Null(AD) = span(1), the
steps where Rei’s expected loss is 0 are the ones where Rei picks her option uniformly at
random. We will now show that in fact the expected loss for such digraphs is always at
least proportional to the maximum deviation between pv and 1/k.

Lemma 10. For any k-vertex digraph D with Null(AD) = span(1), there exists a constant
αD > 0 such that for any probability vector p indexed by V (D), we have

max
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
󰃍 αD max

v
|pv − 1/k|.

Proof. First notice that the left-hand side of our inequality satisfies

max
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
= max

v
(ADp)v 󰃍 k−1 max

v
|(ADp)v|, (9)
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where the last inequality holds because
󰁓

v(ADp)v = 0 and because x = (x1, . . . , xk) with󰁓k
i xi = 0 and x1 󰃍 · · · 󰃍 xk satisfies

kx1 󰃍
󰁛

i: xi󰃍0

xi =
󰁛

i: xi󰃑0

|xi| 󰃍 |xk|.

Since AD is skew-symmetric and dim(Null(AD)) = 1, it admits an eigendecomposition
AD =

󰁓k
i=1 λieie

∗
i with 0 = |λ1| < |λ2| 󰃑 · · · 󰃑 |λk|, e∗i ei = 1, and e∗i ej = 0 for all i ∕= j.

Notice that ADp = AD(p− k−1 · 1), we have

||ADp||2 =
󰀏󰀏󰀏󰀏AD

󰀃
p− k−1 · 1

󰀄󰀏󰀏󰀏󰀏
2
=

󰀏󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏󰀏

k󰁛

i=2

ei
󰀅
λie

∗
i

󰀃
p− k−1 · 1

󰀄󰀆
󰀏󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏󰀏
2

=

󰁹󰁸󰁸󰁷
k󰁛

i=2

|λi|2 |e∗i (p− k−1 · 1)|2 󰃍 |λ2| ·
󰀏󰀏󰀏󰀏p− k−1 · 1

󰀏󰀏󰀏󰀏
2
󰃍 |λ2|max

v
|pv − 1/k| .

Hence

max
v

|(ADp)v| 󰃍
1

k
||ADp||2 󰃍

|λ2|
k

max
v

|pv − 1/k| ,

so by (9) the statement follows with αD = |λ2| /k2.

Using this we can prove the following lower bound on SD(n · 1) whenever Null(AD) =
span(1).

Theorem 11. If D is a digraph on at least three vertices with Null(AD) = span(1), then

SD(n · 1) = Ω(
√
n).

Proof. We identify V (D) with [k] for k 󰃍 3 and let N = kn be the total number of rounds
in this game. Fix some optimal strategy R for Rei. We divide the game into two phases:
the first phase is when every option is still available to Rei, and the second phase is when
at least one option has been depleted. Let T be the (random) number of steps in the first
phase.

Let X = (X1, X2, . . . , XN) be the stochastic process where Xi denotes Rei’s choice
when i 󰃑 T , and for i > T the Xi are independently uniformly random over [k]. We
define

ptv = Pr(Xt = v|X1, X2, . . . , Xt−1).

For t 󰃑 T , ptv corresponds to the probability of Rei choosing v at the t-th round given her
previous choices.

We consider the following greedy strategy for Norman: Suppose at the t-th round,
the restriction vector for Rei is r with pv = Pr(R(r) = v) for all v, then Norman will
deterministically pick w that maximizes his expected gain, i.e.

w = argmax
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
.
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Here we break ties arbitrarily. If t 󰃑 T , we have pv = ptv. Then, by Lemma 10, Norman’s
expected gain at this round is

max
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
= max

v

󰀫
󰁛

u∈N+(v)

ptu −
󰁛

u∈N−(v)

ptu

󰀬
󰃍 αD|pt1 − 1/k|.

If t > T , there exists some v with pv = 0. Then, by Lemma 10, Norman’s expected gain
at this round is

max
v

󰀫
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀬
󰃍 αD/k

We let S1 denote Norman’s expected score during the first phase under this strategy
and S2 his score during the second phase, so that his total expected score is S1 + S2. By
above analysis, we have

S1 󰃍 E

󰀥
T󰁛

t=1

αD|pt1 − 1/k|
󰀦
= αDE

󰀥
N󰁛

t=1

|pt1 − 1/k|
󰀦
, (10)

S2 󰃍 E

󰀥
N󰁛

t=T+1

αD/k

󰀦
=

αD

k
· E[N − T ]. (11)

Here, the second identity of (10) follows from pt1 = 1/k when t > T .
From (10) and (11), we see that S1, S2 󰃍 0, and thus to prove the result it suffices

to show max{E
󰁓

t |pt1 − 1/k|,E[N − T ]} = Ω(
√
n). To this end, fix some small constant

c > 0 to be chosen later. We may assume from now on that

E

󰀥
N󰁛

t=1

|pt1 − 1/k|
󰀦
󰃑 c

√
n, (12)

as otherwise we are done by (10).
We claim that, if c is sufficiently small, then with probability at least 1/8 the vertex

1 appears at least n + Ω(
√
n) times in X. This will imply our theorem. Indeed, if 1

appears n+Y times in X, then necessarily N −T 󰃍 Y since (X1, . . . , XT−1) by definition
has each symbol appearing less than n times. Thus this claim together with (11) implies
S2 = Ω(

√
n), giving the result. It remains to prove the claim.

Let f(X) be the number of times 1 occur in X. We will show that we can couple f(X)
with a binomial random variable Bin(N, 1/k) such that

E[|f(X)− Bin(N, 1/k)|] 󰃑 E

󰀥
N󰁛

t=1

|pt1 − 1/k|
󰀦
.

To do so, we consider independent uniform random variables U1, U2, . . . , UN ∼ U [0, 1].
Let Yt = (Ut 󰃑 1/k). Notice that

Bin(N, 1/k) ∼
󰁛

1󰃑t󰃑N

Yt.
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To couple Xt with Yt, we let

Xt = j if Ut ∈
󰀣
󰁛

i<j

pti,
󰁛

i󰃑j

pti

󰀦
.

With this coupling,

Pr( (Xt = 1) ∕= Yt) = Pr(Ut 󰃑 pt1 and Ut > 1/k) + Pr(Ut > pt1 and Ut 󰃑 1/k)

= Pr(Ut ∈ (1/k, pt1] and pt1 > 1/k) + Pr(Ut ∈ [pt1, 1/k] and pt1 󰃑 1/k)

= E[|pt1 − 1/k|].

Therefore

E[|f(X)− Bin(N, 1/k)|] = E

󰀥󰀏󰀏󰀏󰀏
N󰁛

t=1

(Xt = 1)− Yt

󰀏󰀏󰀏󰀏

󰀦
󰃑

N󰁛

t=1

E[|pt1 − 1/k|] 󰃑 c
√
n,

where this last step used (12). We will now exploit the deviation of Bin(N, 1/k) from its
mean N/k = n to show that f(X) also deviates from n. Since k 󰃍 2, we can pick a small
enough β > 0 such that

Pr(Bin(N, 1/k) 󰃍 n+ β
√
n) 󰃍 1

4
.

Taking c = β/16 together with Markov’s inequality gives

Pr(Bin(N, 1/k)− f(X) 󰃍 β
√
n/2) 󰃑 E[|f(X)− Bin(N, 1/k)|]

β
√
n/2

󰃑 2c/β =
1

8
.

It follows that

Pr(f(X) 󰃍 n+ β
√
n/2)

󰃍 Pr(Bin(N, 1/k) 󰃍 n+ β
√
n and Bin(N, 1/k)− f(X) < β

√
n/2)

󰃍 Pr(Bin(N, 1/k) 󰃍 n+ β
√
n)− Pr(Bin(N, 1/k)− f(X) 󰃍 β

√
n/2)

󰃍 1/8.

This concludes the proof of the claim, hence also the proof of this theorem.

To apply Theorem 11, we need to find a class of digraphs satisfying the necessary
spectral conditions. Eulerian tournaments turn out to be such a class, and to establish
this we need the following lemma.

Lemma 12. Every tournament T on an even number of vertices has det(AT ) ∕= 0.

Proof. Suppose T is a tournament on n vertices. We will prove that det(AT ) is an odd
number and hence is not 0. Let I be the n × n identity matrix and J be the n × n all
1 matrix. Notice that AT and J − I are the same over the field Z/2Z. Because J has
eigenvalue n with multiplicity 1 and 0 with multiplicity n− 1, we have

det(AT ) ≡ det(J − I) ≡ (−1)n−1(n− 1) ≡ 1 mod 2,

where this last step holds when n is even.
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Lemma 13. All Eulerian tournaments D satisfy Null(AD) = span(1).

Proof. First notice that Eulerian tournaments have an odd number of vertices. Clearly
1 ∈ Null(AD). Let T be the tournament obtained by deleting an arbitrary vertex of D.
By Lemma 12,

rank(AD) 󰃍 rank(AT ) = |V (D)|− 1,

which means dim(Null(AD)) = 1.

Proof of Theorem 4. The upper bound follows from Theorem 2 while the lower bound
follows from Theorem 11 and Lemma 13.

4 Oblivious Strategies

Inspired by the optimal strategy for semi-restricted RPS, We say that a strategy for Rei
R is oblivious if the random variable R(r) depends only on supp(r) for all r, i.e. if Rei
plays based only on the set of options she can play without taking into account how many
times she can perform each option. We say that a digraph D is oblivious if Rei has an
optimal strategy in the semi-restricted D-game which is oblivious. We emphasize that D
being oblivious only guarantees that there exists at least one oblivious optimal strategy,
not that every optimal strategy is oblivious.

Naively, oblivious strategies seem like they would be ineffective. However, in Section
2 we saw that every digraph on at most 3 vertices is oblivious, and the unique optimal
strategy in the game considered in [11] was also oblivious. Thus at this point one might
guess that every digraph is oblivious.

Unfortunately this turns out not to be the case. In fact, we will show that almost
every tournament and almost every Eulerian tournament fails to be oblivious. We do this
through the following proposition.

Proposition 14. Let D be a tournament. If there exists a set S ⊆ V (D) with |S| even
and with N+(v) ∩ S ∕⊆ N+(w) ∩ S for all v ∈ S, w ∈ V (D) and v ∕= w, then D is not
oblivious.

To prove this, we need the following technical result.

Lemma 15. Let D be an oblivious digraph and R an oblivious optimal strategy for Rei in
the semi-restricted D-game. Let S ⊆ V (D), and let p be the probability vector satisfying
pu = Pr(R(r) = u) whenever supp(r) = S. If v ∈ S is such that there exists a non-
negative vector q with supp(q) = S and

󰁓
u∈N+(v) qu−

󰁓
u∈N−(v) qu = maxw{

󰁓
u∈N+(w) qu−󰁓

u∈N−(w) qu}, then we have

󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu = max
w

󰀫
󰁛

u∈N+(w)

pu −
󰁛

u∈N−(w)

pu

󰀬
.
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Let us pause for a moment to discuss what this lemma is saying and where it comes
from. Given that Rei plays according to the distribution p when supp(r) = S, Nor-

man will always choose a v achieving maxw

󰁱󰁓
u∈N+(w) pu −

󰁓
u∈N−(w) pu

󰁲
. Observe that

some vertices v will never achieve this maximum regardless of what p is, e.g. if N+(v)
is disjoint from S and N−(v) ∕= ∅. Slightly more generally (and almost trivially), the
only v which could possibly achieve this maximum for (some) p are those vertices v
such that there exists a non-negative vector q with supp(q) ⊆ S such that v achieves

maxw

󰁱󰁓
u∈N+(w) qu −

󰁓
u∈N−(w) qu

󰁲
. If the hypothesis of the lemma had the weaker con-

dition supp(q) ⊆ S rather than supp(q) = S, then the conclusion could be interpreted as
saying “any v which could possibly achieve the maximum for p does achieve the maxi-
mum”, and as such the current lemma can be viewed as a slightly weaker version of this
statement.

Proof. Assume v, q are as in the hypothesis of the proposition, and let n be a large integer.
Define the vector r by having3 ru = qun for all u, noting that supp(r) = supp(q) = S.
Let γ = minu qu/pu, where we let qu/pu := ∞ if pu = 0. Note that 0 < γ < ∞ since
supp(q) = S and p ∕= 0.

Claim 16. With probability tending towards 1 as n tends towards infinity, an option will
be depleted after (γ + o(1))n rounds, at which point every vertex u has (qu − puγ)n+ o(n)
actions remaining in expectation.

Proof of claim. The analysis is similar to the one performed in the proof of Theorem 3.
Rei generates an infinite random string π = π1π2 . . . where πt = u independently with

probability pu. In the t-th round Rei will play πt until an option is depleted. Let Tu denote
the smallest integer t such that |{s 󰃑 t : πs = u}| = ru, and let T = minu∈supp(r) Tu. Note
that T is the number of rounds until an option is depleted.

For any vertex u, we have Tu ∼ X1 + . . . + Xru where Xi ∼ Geo(pu) iid. Therefore
ETu = ru/pu and Var(Tu) = o((ETu)

2). It follows from Chebyshev’s inequality that, for
example,

Pr(|Tu − ETu| 󰃍 (ETu)
2/3) = o(1).

By a union bound, we see that with high probability Tu = (1 + o(1))ETu for all u, and
hence T = (γ + o(1))n with high probability.

Moreover, by a routine application of the second moment method and union bound,
with high probability the number of times u appears in the first (γ + o(1))n letters in π
is (γ + o(1))pun for all u, so after the first vertex is depleted, each vertex u has (qu −
puγ)n+ o(n) actions remaining in expectation.

Consider the following (possibly non-optimal) strategy for Norman: pick an arbitrary
vertex w and play this until some option is depleted, then play v for the rest of the game.

3Strictly speaking we should define ru = ⌈qun⌉ to make r a restriction vector, but this distinction will
not affect our analysis.
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By the claim above, the expected score for Norman under this strategy is
󰀣

󰁛

u∈N+(w)

pu −
󰁛

u∈N−(w)

pu

󰀤
γn+

󰀣
󰁛

u∈N+(v)

(qu − puγ)n−
󰁛

u∈N−(v)

(qu − puγ)n

󰀤
+ o(n).

The quantity above is a lower bound for SD(r). By using Theorem 3 and the hypothesis
on q, we have

SD(r) 󰃑
󰀣

󰁛

u∈N+(v)

qu −
󰁛

u∈N−(v)

qu

󰀤
n+O(n2/3).

Comparing these two inequalities for SD(r) gives

󰀣
󰁛

u∈N+(w)

pu −
󰁛

u∈N−(w)

pu

󰀤
γn 󰃑

󰀣
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀤
γn+ o(n).

This is only possible if
󰁓

u∈N+(w) pu −
󰁓

u∈N−(w) pu 󰃑
󰁓

u∈N+(v) pu −
󰁓

u∈N−(v) pu. As w
was arbitrary, this implies the result.

We can now prove Proposition 14.

Proof of Proposition 14. Assume for contradiction that an oblivious optimal strategy R
existed, and let p be the probability vector satisfying pu = Pr(R(r) = u) whenever
supp(r) = S.

For each v ∈ S, consider the non-negative vector q with qu = 2|V (D)| for u ∈ N+(v)∩
S, qu = 1 for u ∈ S \N+(v), and qu = 0 otherwise. By hypothesis, for all w ∕= v we have

|N+(w) ∩ (N+(v) ∩ S)| 󰃑 |N+(v) ∩ S|− 1.

This implies for all w ∕= v that

󰁛

u∈N+(w)

qu −
󰁛

u∈N−(w)

qu 󰃑
󰁛

u∈N+(w)

qu 󰃑 |N+(w) ∩ (N+(v) ∩ S)| · 2|V (D)|+ |V (D)| · 1

󰃑 |N+(v) ∩ S| · 2|V (D)|− |V (D)| 󰃑
󰁛

u∈N+(v)

qu −
󰁛

u∈N−(v)

qu.

Because supp(q) = S, Lemma 15 implies

󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu = max
w

󰀫
󰁛

u∈N+(w)

pu −
󰁛

u∈N−(w)

pu

󰀬
(13)

for all v ∈ S.
Since supp(p) ⊆ S, we have

󰁛

v∈S

󰀣
󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu

󰀤
=

󰁛

v∈S

󰀣
󰁛

u∈N+(v)∩S
pu −

󰁛

u∈N−(v)∩S
pu

󰀤
= 0.
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This together with the fact that (13) holds for all v ∈ S implies that we must have

󰁛

u∈N+(v)

pu −
󰁛

u∈N−(v)

pu =
󰁛

u∈N+(v)∩S

pu −
󰁛

u∈N−(v)∩S

pu = 0 (14)

for all v ∈ S. Define AD[S] to be the submatrix of AD restricted to the rows and columns
indexed by S. Then, (14) states that p restricted to the indices of S is a nullvector for
AD[S], and p being a probability vector means that it is a non-zero nullvector. But from
Lemma 12 we know that such a vector p does not exist, giving the desired contradiction.

Using Proposition 14, we can quickly establish that an exponentially small proportion
of tournaments are oblivious.

Theorem 17. Let Tn denote the set of tournaments on [n]. There exists a constant c > 0
such that if n is sufficiently large and D is chosen uniformly at random from Tn, then

Pr(D is oblivious) 󰃑 e−cn.

Proof. Let m = n if n is even, and m = n − 1 otherwise. Fix any subset S ⊆ [n] of size
m. Let B denote the event that there exists v ∈ S, w ∈ V (D) with v ∕= w such that
N+(v) ∩ S ⊆ N+(w) ∩ S. By Proposition 14, if D is oblivious, then B must occur. Thus
it suffices to upper bound Pr(B).

For any v ∕= w ∈ V (D), it is straightforward to show that

Pr(N+(v) ∩ S ⊆ N+(w) ∩ S) 󰃑 (3/4)n−3.

Thus by a union bound, we find

Pr(D is oblivious) 󰃑 Pr(B) 󰃑 n2 · (3/4)n−3,

giving the desired result.

Similarly, almost every Eulerian tournament is not oblivious.

Theorem 18. Let En denote the set of Eulerian tournaments on [2n+1]. If D is chosen
uniformly at random from En, then

Pr(D is oblivious) = O(n−2).

Proving Theorem 18 requires a significantly more complicated argument than that
of Theorem 17. Philosophically, this is because it is easy to sample a uniformly random
tournament (one can just choose the orientation of each arc uniformly and independently),
but it is much harder to generate an Eulerian tournament uniformly at random, see for
example [10] which implicitly provides an efficient probabilistic sampling algorithm using
random walks. We get around this issue by invoking a “switching” type argument, the
full details of which can be found in Appendix B.
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5 Open Problems

Many open questions about semi-restricted games remain. We discuss a few of these in
the following subsections.

5.1 Optimal Strategies

In this paper, we determined all of the optimal strategies for semi-restricted D-games
when D has at most 3 vertices. It would be of interest to do this for some (non-trivial)
infinite family of digraphs as well. Perhaps the simplest such family is the following.

Problem 19. Determine all of the optimal strategies for the semi-restricted Pn-game,
where Pn denotes the directed path on n vertices.

In Theorem 18, we showed that almost every Eulerian tournament D fails to have
a “simple” (i.e. oblivious) optimal strategy for Rei in the semi-restricted D-game. A
closer inspection of the proof shows that these tournaments fail to have such an optimal
strategy when Rei has |V (D)|−1 remaining options. Thus it is possible (though seemingly
unlikely) that Rei has a simple optimal strategy when every option is still available to
her.

Problem 20. Is it true that for every Eulerian tournament D, there exists an optimal
strategy for Rei in the semi-restricted D-game such that under this strategy, if Rei has
restriction vector r with supp(r) = V (D), then Rei plays each option with probability
1/|V (D)|?

5.2 Improved Bounds

Theorem 1 shows that the expected score for Norman in semi-restricted RPS is Θ(
√
n)

when both players play optimally. It would be interesting to get a more precise estimate.

Question 21. Does there exist a c > 0 such that SD(n, n, n) ∼ c
√
n when D is the

directed 3-cycle? If so, what is c?

Because Theorem 1 gives the optimal strategy for Rei in this game, Question 21 is
equivalent to asymptotically determining the expected value of some strange (but explicit)
random variable. In particular, it suffices to understand the times T1, T2 at which point Rei
runs out of 1 or 2 options. It is plausible that these random variables (up to rescaling)
are exponentials as in the original birthday and coupon collector problems. We have
computed the exact value of SD(n, n, n) for n 󰃑 100, and this data suggests that we may
have c ≈ 1.46.

We proved effective general upper bounds on SD(r) through Theorems 2 and 3. It
is natural to ask if these results can be improved. For example, it might be possible to
improve the OD(M

2/3) error term in Theorem 3 to OD(M
1/2).
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Question 22. Is it true that for every digraph D and restriction vector r with M =
maxv rv, we have

SD(r) 󰃑 max
v

󰀫
󰁛

u∈N+(v)

ru −
󰁛

u∈N−(v)

ru

󰀬
+OD(M

1/2).

Such a result would be an (optimal) strengthening of Theorem 3, as well as a significant
generalization of Theorem 2. The central obstacle with this question is that we do not
know what strategy Rei should use so that Norman can obtain at most this many points
in expectation.

When D is an Eulerian digraph, Theorem 2 shows that 0 󰃑 SD(n · 1) 󰃑 OD(
√
n). We

think that this upper bound might be tight in general.

Question 23. Does every Eulerian digraph with at least one arc satisfy SD(n · 1) =
ΩD(

√
n)?

A positive answer to this question together with Theorem 2 would show SD(n · 1) =
ΘD(

√
n) for all such D.

We can show Question 23 has a positive answer whenever the spectral conditions of
Theorem 11 are satisfied. Motivated by this, we ask when exactly these spectral conditions
occur. We emphasize that this is a purely linear algebraic question and does not involve
any game theory.

Question 24. Which Eulerian digraphs D are such that their skew-adjacency matrix AD

has a nullspace of dimension 1?

For example, Lemma 13 shows that Eulerian tournaments have this property, and we
can also show that this holds for certain powers of directed Hamiltonian cycles. Similarly
it is not difficult to show that D will fail to satisfy this property if its underlying graph
is bipartite, has an even number of vertices, or if there exist distinct vertices v, v′ with
N+(v) = N+(v′) and N−(v) = N−(v′).

We note that the matrix AD, as well as the essentially equivalent Hermitian matrix
i · AD, have been well studied in the literature, see for example [5, 8], and it is possible
that the results and techniques used in these papers could give insight into the answer to
Question 24.
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A Proof of Theorem 8

This section is dedicated to proving Theorem 8, which we recall says that if D is the
directed 3-path 1 → 2 → 3, then the optimal strategies for Rei in the semi-restricted
D-game are exactly those R satisfying Pr(R(r) = 3) = 1/2 whenever {3} ⊊ supp(r).

Proof of Theorem 8. Let R be an arbitrary optimal strategy for Rei, and as before we
argue by induction that Pr(R(r) = 3) = 1/2 whenever {3} ⊊ supp(r). We fix an arbitrary
r with {3} ⊊ supp(r) and write Pr(R(r) = u) = pu for each u ∈ {1, 2, 3}.

If p2 = 0, then by applying the techniques in the proof of Theorem 7, we can argue
p1 = p3 = 1/2 as desired. Similarly if p1 = 0, we can argue p2 = p3 = 1/2. As such we skip
these arguments and consider only the case p1, p2 > 0. Our aim is to show p2 = p3 − p1,
which implies p3 = 1/2 as desired.

If p2 > p3 − p1, let
󰂃 = min{p2, p2 − (p3 − p1)} > 0

and consider a different strategy R′ for Rei with

Pr(R′(r) = 1) = p1 +
󰂃

2
, Pr(R′(r) = 2) = p2 − 󰂃, Pr(R′(r) = 3) = p3 +

󰂃

2
,

and Pr(R′(r′) = u) = Pr(R(r′) = u) for all vertices u and r′ ∕= r. Note that, by our
choice of 󰂃, we have

max
󰁱
p2 − 󰂃,

󰀓
p1 +

󰂃

2

󰀔
−

󰀓
p3 +

󰂃

2

󰀔
,−(p2 − 󰂃)

󰁲
= max{p2, p3 − p1,−p2}− 󰂃.

Using Fact 5 and that R is an optimal strategy, we find

SD(r;R′)− SD(r;R) = 󰂃

󰀕
1

2
SD(r − δ1) +

1

2
SD(r − δ3)− SD(r − δ2)− 1

󰀖
.

By Lemma 6 and the structure of D, we have

SD(r − δ1) 󰃑 SD(r − δ2) + 1 and SD(r − δ3) < SD(r − δ2) + 1,

which implies SD(r;R′)−SD(r;R) < 0. This contradicts R being optimal, so we can not
have p2 > p3−p1. If p2 < p3−p1, we can take 󰂃 = (p3−p1)−p2 > 0 and consider another
strategy R′ for Rei with

Pr(R′(r) = 1) = p1, Pr(R′(r) = 2) = p2 +
󰂃

2
, Pr(R′(r) = 3) = p3 −

󰂃

2
,

with R′ coinciding with R on every other vector r′. Similarly, R′ will contradict the fact
that R is optimal, so we must have p2 = p3−p1 as wanted. This proves that every optimal
strategy R satisfies Pr(R(r) = 3) = 1/2 when {3} ⊊ supp(r). It remains to show that all
such strategies are optimal, i.e. that SD(r;R) = SD(r;R′) for any strategies R,R′ of this
form.

Take R to be the unique strategy for Rei defined by Pr(R(r) = 3) = 1/2 whenever
{3} ⊊ supp(r) and Pr(R(r) = 2) = 0 whenever 1 ∈ supp(r). We shall prove by induction
on r1 + r2 + r3 that
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• SD(r;R) = SD(r;R′) for an arbitrary strategy R′ satisfying Pr(R′(r) = 3) = 1/2
whenever {3} ⊊ supp(r);

• SD(r) = SD(r − δ1 + δ2)− 1 whenever r1 > 0.

The base case when r1+r2+r3 = 0 is trivial. Suppose we have proved these two identities
for all r′ with r′1 + r′2 + r′3 < r1 + r2 + r3.

First we argue SD(r;R) = SD(r;R′). Let us write Pr(R(r) = u) = pu and Pr(R′(r) =
u) = p′u for all u. If either r1 = 0 or r2 = 0, by the description of R and R′, we know
they coincide on all vectors r′ with r′1 󰃑 r1, r

′
2 󰃑 r2, and r′3 󰃑 r3. So we clearly have the

desired identity in this case. If r1, r2 > 0 and r3 = 0, by the description of R,R′, we have
p1 = 1, p2 = p3 = p′3 = 0, and p′1 = 1− p′2. Using Fact 5 we can compute

SD(r;R)− SD(r;R′) = SD(r − δ1)− (p′2 + (1− p′2)SD(r − δ1) + p′2SD(r − δ2))

= −p′2(1− SD(r − δ1) + SD(r − δ2)) = 0,

where the last equality follows from the second identity from the inductive hypothesis. If
r1, r2, r3 > 0, by the description of R,R′, we have p1 = 1/2, p2 = 0, p3 = p′3 = 1/2, and
p′1 = 1/2− p′2. Again, by Fact 5 we can compute

SD(r;R)− SD(r;R′) = −p′2(1− SD(r − δ1) + SD(r − δ2)) = 0.

So we conclude the first wanted identity for our inductive process.
Next we argue SD(r) = SD(r − δ1 + δ2)− 1 under the condition r1 > 0. Note that we

have already showed SD(r;R) = SD(r;R′), and similarly we have SD(r − δ1 + δ2;R) =
SD(r − δ1 + δ2;R′). So by the first half of this proof, we have

SD(r) = SD(r;R) and SD(r − δ1 + δ2) = SD(r − δ1 + δ2;R).

Now, if r3 = 0, it is easy to check SD(r) = r2 = SD(r − δ1 + δ2) − 1 as wanted. If
r3 > 0 and r1 = 1, by Fact 5 and the description of R, we have

SD(r) =
1

2
SD(r − δ1) +

1

2
SD(r − δ3),

SD(r − δ1 + δ2) =
1

2
+

1

2
SD(r − δ1) +

1

2
SD(r − δ1 + δ2 − δ3).

Together with the inductive hypothesis SD(r − δ3) = SD(r − δ1 + δ2 − δ3) − 1, we can
conclude the wanted identity. If r3 > 0 and r1 > 1, by Fact 5 and the description of R,
we have

SD(r) =
1

2
SD(r − δ1) +

1

2
SD(r − δ3),

SD(r − δ1 + δ2) =
1

2
SD(r − 2δ1 + δ2) +

1

2
SD(r − δ1 + δ2 − δ3).

Again, applying the inductive hypothesis for SD(r − δ1) and SD(r − δ3) respectively, we
can conclude SD(r) = r2 = SD(r−δ1+δ2)−1 as wanted. Hence we conclude the inductive
process, which completes the proof.
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B Proof of Theorem 18

This section is dedicated to proving Theorem 18, which we recall says that if En is the set
of Eulerian tournaments on [2n+ 1] and D is chosen uniformly at random from En, then

Pr(D is oblivious) = O(n−2).

The main lemma we need is the following.

Lemma 25. Let En denote the set of Eulerian tournaments on [2n + 1], and for v, w ∈
[2n + 1], let Ev,w

n ⊆ En denote the set of Eulerian tournaments D with vw ∈ E(D) and
with |N+(v) ∩N+(w)| = n− 1. If n 󰃍 16, then

|Ev,w
n | 󰃑 214n−4|En|.

Proof. It is not difficult to see that for each D ∈ Ev,w
n , there exists a vertex uD and

disjoint sets AD, BD of size n−1 such that N+(v)∩N+(w) = AD, N
−(v)∩N−(w) = BD,

and v → w → uD → v. We use this structural result together with a “switching” type
argument to prove the bound.

Given D ∈ Ev,w
n , we say that a pair of arcs {a1b1, a2b2} is D-valid if these are vertex

disjoint arcs in D with a1, a2 ∈ AD and b1, b2 ∈ BD. Given a D-valid pair {a1b1, a2b2},
we define D[a1b1, a2b2] to be the digraph which has the arcs b1 → a1 → v → b1 and
b2 → a2 → v → b2 and which otherwise agrees with D. It is not difficult to see that
D[a1b1, a2b2] is an Eulerian tournament because D was Eulerian and {a1b1, a2b2} was
D-valid.

With the above definition in mind, we construct an auxiliary bipartite graph G with
vertex set Ev,w

n ⊔ En by having D ∈ Ev,w
n and D′ ∈ En adjacent in G if and only if

D′ = D[a1b1, a2b2] for some D-valid pair {a1b1, a2b2}.
Claim 26. Each D ∈ Ev,w

n has degG(D) 󰃍 2−7n4.

Proof. Since D[a1b1, a2b2] is a distinct digraph for each distinct D-valid pair {a1b1, a2b2},
the claim is equivalent to saying each D ∈ Ev,w

n has at least 2−7n2 many D-valid pairs
{a1b1, a2b2}.

Given two (possibly non-disjoint) sets S, T ⊆ V (D), let e(S, T ) be the number of arcs
s → t in D with s ∈ S and t ∈ T . Because D is Eulerian and |AD| = n− 1, we have

n(n− 1) = e(AD, V (D)) = e(AD, AD) + e(AD, {v, w}) + e(AD, {uD}) + e(AD, BD)

󰃑
󰀕
n− 1

2

󰀖
+ 0 + (n− 1) + e(AD, BD),

which implies e(AD, BD) 󰃍 1
2
(n − 1)(n − 4). Thus there exist at least 1

2
(n − 1)(n − 4)

choices for arcs a1b1 from AD to BD, and given such an arc, there exist at least

e(AD, BD)− (n− 1) · 2 󰃍 1

2
(n− 1)(n− 8)
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arcs a2b2 with a1 ∕= a2, b1 ∕= b2. In total then the number of ways we can construct an
(ordered) D-valid pair (a1b1, a2b2) is at least

1

2
(n− 1)(n− 4) · 1

2
(n− 1)(n− 8) 󰃍 2−6n4

for n 󰃍 16. This double counts the number of (unordered) D-valid pairs {a1b1, a2b2}, so
dividing this quantity by 2 gives the desired lower bound.

Claim 27. Each D′ ∈ En has degG(D
′) 󰃑 120.

Proof. Observe that if D ∈ Ev,w
n and {a1b1, a2b2} is D-valid, then there are exactly 5

vertices x ∈ V (D[a1b1, a2b2]) which have one arc to {v, w} and one arc from {v, w},
namely this holds for a1, b1, a2, b2, uD. Thus degG(D

′) = 0 if D′ ∈ En does not have 5
vertices with this property, and otherwise there are trivially at most 5! = 120 digraphs D
which could have D′ = D[a1b1, a2b2] (namely by choosing which of its 5 vertices to play
the roles of a, a′, b, b′, uD).

With these two claims, we have

2−7n2|Ev,w
n | 󰃑

󰁛

D∈Ev,w
n

degG(D) =
󰁛

D′∈En

degG(D
′) 󰃑 120|En|,

and rearranging this inequality gives the result.

We can now prove almost every Eulerian tournament is not oblivious.

Proof of Theorem 18. Let E∗
n ⊆ En be the set of oblivious Eulerian digraphs on [2n + 1].

Then the theorem statement is equivalent to saying

|E∗
n| = O(n−2|En|).

Fix an arbitrary set S ⊆ [2n+ 1] of 2n vertices, and let E∗∗
n be the set of digraphs which

have N+(v) ∩ S ⊆ N+(w) ∩ S for some distinct v, w ∈ [2n+ 1]. We claim that

E∗
n ⊆ E∗∗

n ⊆
󰁞

v,w

Ev,w
n .

Indeed, E∗
n ⊆ E∗∗

n follows from Proposition 14. Let D ∈ E∗∗
n , say with N+(v) ∩

S ⊆ N+(w) ∩ S. Note that |N+(v) ∩ S| 󰃍 |N+(v)| − 1 = n − 1, so in particular
|N+(v) ∩N+(w)| 󰃍 n− 1. We can not have N+(v) = N+(w) since either vw ∈ E(D) or
wv ∈ E(D), so we must have |N+(v) ∩ N+(w)| = n − 1. Thus D ∈ Ev,w

n ∪ Ew,v
n , proving

the claim.
With this claim, we have

|E∗
n| 󰃑 |E∗∗

n | 󰃑
󰀏󰀏󰀏󰀏󰀏
󰁞

v,w

Ev,w
n

󰀏󰀏󰀏󰀏󰀏 = O(n−2|En|),

where this last step used Lemma 25. We conclude the result.

We note that it is likely that a more sophisticated argument could be used to improve
the bound of Theorem 18 to show that it is exponentially unlikely for a random Eulerian
tournament to be oblivious.
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C Restricted Games

This section is devoted to studying games where both players are restricted. In particular,
we look at the case when two players Alice and Bob are given restriction vectors a, b with󰁓

ai =
󰁓

bj = N and play some zero sum game a total of N times, with e.g. Alice being
forced to use each option i a total of ai times. We begin with some formal definitions
analogous to the definitions of Section 2.

We use G to denote a simultaneous zero-sum game played by Alice and Bob where
OA (OB resp.) consists of the set of options Alice (Bob resp.) can play at each round.
We let G(i, j) denote the score that Alice receives in this game if Alice plays i and Bob
plays j. We say that (a, b) is a pair of restriction vectors if a, b are non-negative integral
vectors indexed by OA, OB with

󰁓
ai =

󰁓
bj.

Given a game G as above, a strategy for Alice in the restricted G-game is a function
A from pairs of restriction vectors (a, b) to random variables such that supp(A(a, b)) ⊆
supp(a) for all (a, b). A strategy for Bob B is defined analogously by requiring that
supp(B(a, b)) ⊆ supp(b). Recall that δi is a restriction vector with value 1 on entry i and
0 elsewhere. Given a pair of strategiesA,B for Alice and Bob and restriction vectors (a, b),
we define the score (for Alice) SG(a, b;A,B) by SG(a, b;A,B) = 0 if

󰁓
ai =

󰁓
bj = 0,

and otherwise

SG(a, b;A,B) = G(A(a, b),B(a, b)) + SG(a− δA(a,b), b− δB(a,b);A,B).

We define the expected score SG(a, b;A,B) = E[SG(a, b;A,B)]. We have the following
analogue of Fact 5 for restricted games.

Fact 28. Let A and B be strategies for Alice and Bob respectively. If (a, b) is a restriction
vector pair with pi = Pr(A(a, b) = i) and qj = Pr(B(a, b) = j) for each i ∈ OA, j ∈ OB,
then

SG(a, b;A,B) =
󰁛

i

󰁛

j

piqj(G(i, j) + SG(a− δi, b− δj;A,B)).

A strategy for AliceA is optimal if for every strategy B for Bob we have SG(a, b;A,B)=
maxA′ SG(a, b;A′,B), and we similarly define what it means for B to be an optimal strategy
for Bob. We define the uniform strategy for Alice UA by having Pr(UA(a, b) = i) = ai󰁓

i′ ai′

and we similarly define the uniform strategy for Bob UB.

Proposition 29. In the restricted G-game, UA is an optimal strategy for Alice and UB

is an optimal strategy for Bob.

Proof. We will prove by induction on N that if a, b are restriction vectors with
󰁓

i ai =󰁓
j bj = N and if A is any strategy for Alice, then

SG(a, b;A,UB) =
󰁛

i,j

G(i, j)aibj
N

=: M(a, b).
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The base case when N = 1 is obvious. For the inductive process, suppose there exists
i ∈ OA such that Pr(A(a, b) = i) = 1. By Fact 28, we have

SG(a, b;A,UB) =
󰁛

j

bj
N

· (G(i, j) + SG(a− δi, b− δj;A,UB)). (15)

By the inductive hypothesis, we have

SG(a− δi, b− δj;A,UB) =
1

N − 1

󰀣
󰁛

i′ ∕=i,j′ ∕=j

G(i′, j′)ai′bj′ +
󰁛

i′ ∕=i

G(i′, j)ai′(bj − 1)

+
󰁛

j′ ∕=j

G(i, j′)(ai − 1)bj′ +G(i, j)(ai − 1)(bj − 1)

󰀤

=
1

N − 1

󰀣
󰁛

i′,j′

G(i′, j′)ai′bj′ −
󰁛

i′

G(i′, j)ai′ −
󰁛

j′

G(i, j′)bj′ +G(i, j)

󰀤
.

Plugging this into (15) and using
󰁓

j cbj = cN for any constant c, we have

N(N − 1) · SG(a, b;A,UB) =
󰁛

j

bj

󰀣
(N − 1)G(i, j) +

󰁛

i′,j′

G(i′, j′)ai′bj′

−
󰁛

i′

G(i′, j)ai′ −
󰁛

j′

G(i, j′)bj′ +G(i, j)

󰀤

= (N − 1)
󰁛

i′,j′

G(i′, j′)ai′bj′ .

Dividing both sides by N(N − 1) gives SG(a, b;A,UB) = M(a, b) under our assumption
Pr(A(a, b) = i) = 1. Since this holds regardless of which deterministic option i Alice plays,
we see that SG(a, b;A,U) = M(a, b) for any (mixed) strategy A for Alice, concluding the
inductive proof.

As we have shown, Bob can use strategy U to guarantee that Alice’s expected score is
at most M(a, b). A symmetric argument shows that Alice can guarantee at least M(a, b)
points by using her uniform strategy. Thus M(a, b) is the expected score if both players
play optimally, and in particular UA and UB are optimal strategies for Alice and Bob
respectively.

We note that in general UA and UB will not be the unique optimal strategies for the
restricted G-game. Indeed, if G(i, j) = 0 for all i, j then every strategy is optimal, and
more generally there will be multiple optimal strategies if there exist i ∕= i′ such that
G(i, j) = G(i′, j) for all j.
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