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Abstract

We say a subset C of an abelian groupG arises as a minimal additive complement
if there is some other subset W of G such that C+W = {c+w : c ∈ C, w ∈ W} = G
and such that there is no proper subset C ′ ⊂ C such that C ′ + W = G. In their
recent paper, Burcroff and Luntzlara studied, among many other things, the con-
ditions under which eventually periodic sets, which are finite unions of infinite (in
the positive direction) arithmetic progressions and singletons, arise as minimal ad-
ditive complements in Z. In the present paper we study this further and give, in
the form of bounds on the period m, some sufficient conditions for an eventually
periodic set to arise as a minimal additive complement; in particular we show that
“all eventually periodic sets are eventually minimal additive complements”. More-
over, we generalize this to a framework in which “patterns” of points (subsets of
Z2) are projected down to Z, and we show that all sets which arise this way are
eventually minimal additive complements. We also introduce a formalism of formal
power series, which serves purely as a bookkeeper in writing down proofs, and we
prove some basic properties of these series (e.g. sufficient conditions for inverses to
be unique). Through our work we are able to answer a question of Burcroff and
Luntzlara (when does C1 ∪ (−C2) arise as a minimal additive complement, where
C1, C2 are eventually periodic sets?) in a large class of cases.

Mathematics Subject Classifications: 05B10, 11B13, 05B99

1 Introduction

The setting of the question is as follows. For C and W subsets of an abelian group G, we
say that C is an additive complement to W if the Minkowski sum C +W is equal to G,
i.e. if

G = C +W := {c+ w : c ∈ C, w ∈ W}.
C is a minimal additive complement (or MAC ) to W if there is no proper subset of C
which is an additive complement to W . We say C arises as a MAC (or is a MAC ) if
there exists a W to which C is a MAC.
aDepartment of Mathematics, Columbia University, New York, USA (fz2326@columbia.edu).
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In particular, we will be interested in sets which are called “eventually periodic sets”,
which are defined as follows: For S ⊆ Z, let S/m denote the image in Z/mZ under the
standard projection. An eventually periodic set of period m is a set of integers of form1

(mN+ A) ∪B ∪ F

where A, B, and F are finite, A is nonempty, B/m ⊆ A/m, and F/m ∩ A/m = ∅.
In this paper, we shall study the conditions under which eventually periodic sets arise

as MACs. We will show two main theorems, namely Theorems 4 and 7, the latter of
which is stated in a new general framework of “patterns” which we introduce, and use
them to deduce several other results, for example that

Result (Proposition 1). Any eventually periodic set C = mN ∪ B ∪ {f} (where B is a
finite subset of Z such that b ≡ 0 mod m for all b ∈ B and f ̸≡ 0 mod m) arises as a
MAC in Z.
and that

Result (Proposition 2). Any C = mN ∪ F (for F in a single congruence class mod m)
arises as a MAC in Z.

The two main theorems are of roughly the following form: if there exists some set
cover of mN ∪ B (or more generally a congruence class mod m in which C has infinitely
many points) satisfying certain conditions, and if m is greater than a certain bound,
then C arises as a MAC. In particular, roughly speaking, all eventually periodic sets are
eventually MACs. We also introduce a formalism of “formal power series” to help reduce
the process of checking the proofs of such statements to routine calculations. We should
however issue a disclaimer that there is no new content in these formal power series,
and that no tools or clever tricks from the broader theory of generating functions/formal
power series will be utilized; these formal power series here serve purely as bookkeepers.

1.1 Background and Motivation

Minimal additive complements were introduced in 2011 as an arithmetic analogue to the
metric concept of h-nets in groups by Nathanson [9], who showed that every nonempty
finite subset of Z has a MAC, and moreover that every additive complement of such a set
contains a MAC. The question of which subsets of Z have MACs has since been studied
by many; for example, Chen and Yang [5] showed in 2012 that all subsets of Z which
are unbounded both above and below have MACs. Kiss, Sándor, and Yang [8] in 2019
introduced the concept of “eventually periodic sets” and studied the question of when
these sets have MACs.

The natural “inverse problem” is then to study which subsets of Z arise as MACs.
This study was initiated by Kwon [7] in 2019, who showed that every nonempty finite set
in Z arises as a MAC. Alon, Kravitz, and Larson [1] extended this further in 2020 and
showed that, in any finite abelian group G, any nonempty subset C with size bounded

1Here we adopt the standard where N includes 0, i.e. N = Z⩾0.
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above by some constant depending on |G| will arise as a MAC. Moreover, they showed
that any nonempty finite subset of an infinite abelian group arises as a MAC. Later in
2020, Biswas and Saha [4] generalized this even further and showed that, for any group G
(abelian or not), any nonempty finite subset C with |G| > |C|5−|C|4 will arise as a MAC;
in particular, any nonempty finite subset of any infinite group will arise as a MAC. Also
in 2020, Biswas and Saha [3] derived some conditions for subsets to not arise as MACs in
an arbitrary group; for example, their results show that ({3, 5, 7, 9, 11}+12Z)∪{p prime :
p ≡ 1 mod 12} is not a MAC in Z.

Our motivation is as follows. In 2020, Burcroff and Luntzlara [2] studied (among many
other things) the eventually periodic sets of Kiss, Sándor, and Yang and the question
of when do they arise as MACs. They showed that there are three certain necessary
conditions for an eventually periodic set to arise as a MAC, whose statements are rather
technical and which we therefore skip here. In the case that m is prime, they gave a
fourth necessary condition. They also showed that, in certain circumstances, namely for
m a prime congruent to 2 modulo 3 and for A/m and F/m of certain prescribed sizes (m+1

3

and 1, respectively), these necessary conditions are also sufficient. Using these facts in
conjunction, they showed that any set of form 2N ∪ B ∪ F arises as a MAC if and only
if 2Z \ (2N ∪ B) = F +W for some W ⊆ Z. In conclusion, BL have given necessary and
sufficient conditions for eventually periodic sets of prime period congruent to 2 mod 3 and
with |F/m| = 1 and |A/m| = p+1

3
to arise as MACs. They also simplified these conditions

to something very concise and concrete in the case of m = 2. A natural question to ask
then is if there are other circumstances in which an eventually periodic set C arises as a
MAC. We will attempt to treat this direction in this paper.

By venturing in this direction, we are able to answer an open question of Burcroff
and Luntzlara for a large number of cases. At the end of their paper [2], they raised the
following question:

Question. Which sets of the form C1 ∪ (−C2), where C1 and C2 are eventually periodic
sets of integers, arise as minimal additive complements?

Our results (in particular, Theorem 12) will show that a large class of such sets do indeed
rise as minimal additive complements.

Let us briefly explain why we study the objects we do in this paper. The existence of
a nonempty F is crucial, as it allows us to set up so-called “dependent elements” in our
constructions later (to be explained later; roughly this is just to ensure that all elements
of the eventually periodic set are necessary). Without this F , it is for example easy to
see that N is not a MAC in Z. Similarly, our results here are true roughly because if m is
sufficiently large, then there is “enough space to maneuver” in setting up the “dependent
elements”.

the electronic journal of combinatorics 30(4) (2023), #P4.34 3



2 Prelude

2.1 Preliminary Definitions

First some brief notes on convention: we will take the “natural numbers” N = Z0+ =
{n ∈ Z : n ⩾ 0} to include zero. Negative integers are denoted Z−. We will write modn k
to denote the remainder of k when divided by n. Some further notes on hats: throughout
this paper we will decorate many of our symbols with hats, namely the widehat □̂, the
widetilde □̃, and the overline □; our philosophy is that the widehat denotes lifts, the
widetilde is any generic marker (preferably to do with some “natural” modification), and
the overline denotes quotients. For f ∈ Z, we will frequently identify f ∈ Z/mZ with
a representative in {0, 1, · · · ,m − 1}; for instance, for m = 3 and f = 4 we will write
m > 2f , and for m = 5 and f = 9 we have modf 8 = 0.

Recall from the introduction that the general setting of the question is as follows:

Definition 1. For C and W subsets of an abelian group G, we say C is an additive
complement to W if

G = C +W := {c+ w : c ∈ C,w ∈ W}.

C is a minimal additive complement (shortened to MAC ) to W if there is no proper
subset of C which is an additive complement to W .

We say C arises as a MAC (or is a MAC ) if there exists a W to which C is a MAC.
For W = {w} a singleton, we will denote

C + w := C + {w}.

If A ⊆ S ⊆ G are subsets such that there exists B ⊆ G with

S = A+B,

then we say S is coverable by A.

For this paper we will be concerned mostly with the case of G = Z. There, many
results are known already; for example in this paper we will utilize the theorem of Kwon
[7] mentioned in the introduction:

Theorem (K, Theorem 9). All finite subsets of Z arise as MACs.

Closely related to this is a lemma by Burcroff-Luntzlara [2] which we shall also employ
later, whereupon we shall call it the “BL lemma”.

Lemma (BL, Lemma 7). For a fixed finite set F ⊂ Z and W ⊆ Z such that F +W ⊃ N,
there exists a set W ′ ⊆ Z such that F + W ′ = F + W and F ′ + W ′ ̸= F + W ′ for any
proper subset F ′ ⊂ F .

Recall that the results of this paper are concerned with “eventually periodic sets”,
defined by
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Definition 2. For S ⊆ Z, let S/m denote the image in Z/mZ under projection.
An eventually periodic set of period m is a set of integers of form

(mN+ A) ∪B ∪ F

where A is nonempty, B and F are finite, B/m ⊆ A/m, and F/m ∩ A/m = ∅.
As noted by B-L, WLOG we may take A to have at most one element in each congru-

ence class mod m.

In the future, A,B, F will be assumed to be sets such that (mN + A) ∪ B ∪ F is an
eventually periodic set.

In other words, these are sets which have infinite (in the positive direction) arithmetic
progressions of period m starting from all elements of A, and various finite “exceptions”
B and F , where elements of B lie in the same congruence classes as elements of A and
elements of F lie in different congruence classes than those of A.

Our motivating point is BL’s following result:

Proposition (2). For C = 2N ∪ B ∪ F , where B ⊂ 2Z− and F ⊂ 2Z + 1, C arises as a
MAC if and only if

2Z \ (2N ∪B) = W + F

for some W ⊆ Z.

2.2 The Setting

In this section we will describe the “setup” we will be operating under, in the hopes of
providing a clearer and more visual picture of the problem at hand.

In dealing with eventually periodic sets of period m, we shall think of them as follows:
take the infinite strip in the lattice Z2 given by

Zm = {(x, y) ∈ Z2 : 0 ⩽ x ⩽ m− 1}

and consider it as a copy of Z by taking

n = x+my.

For example, the set 4N ∪ {−8,−12} ∪ {3, 6} would look like:
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In order to preserve structure, perhaps it is better to think of this as

Zm = Z2/(
(x, y) ∼ (x′, y′) if x ≡ x′ modm, y′ +

x′ − x

m
= y

)
,

or more concisely

Zm

ModZ∼= Z2/Z⟨(m,−1)⟩ ∼= Z

where the congruence is that of abelian groups (hence the symbol
ModZ∼= ). In fact we can

take this to be definition:

Notation 3. Let Zm be
Zm := Z2/Z⟨(m,−1)⟩ ∼= Z.

We will denote the projection map by

πm : Z2 −↠ Zm.

Under the identification (which we call the strip construction)

Zm = {(x, y) ∈ Z2 : 0 ⩽ x ⩽ m− 1},

for i ∈ [0,m − 1] we will call each {(x, y) ∈ Zm : x = i} the i-th column, denoted Col(i)
(or Colm(i) when there could be confusion with the following definition). We will write
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Col+(i) to denote the subset of Col(i) with y ⩾ 0, i.e. nonnegative y-coordinate. Similarly
Col−(i) refers to y < 0.

Similarly we may refer to {(x, y) ∈ Z2 : x = i} as the i-th column of Z2, denoted
Col(i). We will write Col+(i) to denote the subset of Col(i) with y ⩾ 0, i.e. nonnegative
y-coordinate. Similarly Col−(i) refers to y < 0. For s = (i, j) ∈ Z2, we define Col(s) :=
Col(i). For a subset S of Z2, we also denote the set of columns in which S has elements
by Col(S), with Col+(S) defined by Col+(S) :=

⋃
s∈S Col

+(s) and similarly for Col−(S).
Abuse of notation: for any subset S of Z, we will use the same symbol S to denote its

isomorphic image in Zm
∼= Z.

A more pictorial/“topological” way to think of this is to take Z2 and wrap it around
horizontally to create a cylinder in a slanted manner, such that each (mk, y) gets glued
to (m(k − 1), y + 1).

In this setup, the question of whether or not C is an additive complement can be
rephrased as whether or not there exists a set of “translations” (more precisely this is
translations inside Zm = Z2/Z⟨(m,−1)⟩) byW such that the union of all such translations
of C covers all of Zm. For example, W = {1} is a simple shift to the right by one unit.
Whether or not C is a minimal additive complement can be rephrased as whether or not
such a W exists such that every element c ∈ C has a dependent element in the integers
n ∈ Z, which are defined as follows:

Definition 4. For a fixed additive complement W of C, an element c ∈ C is said to have
a dependent element if there is some d ∈ Z such that d ̸∈ C \ {c}+W , i.e. if c is removed
then d fails to be covered.

Observation. As noted by B-L, it is clear that minimality is equivalent to every element
of C having a dependent element, i.e. in the union of all translations,

⋃
w∈W (C + {w}) =

C +W , every element c ∈ C has a translate which is covered exactly once.

3 Results and Discussions Thereof

B-L described when sets of form 2N ∪B ∪ F arise as MACs. In attempting to generalize
this to general m, we can restrict our attention to either F a singleton or B an empty set.
In the former case,

Proposition 5. For m ⩾ 2, any eventually periodic set of the form C = mN ∪ B ∪ {f}
arises as a MAC. This holds even if B is infinite, unless both m = 2 and mN ∪ B = mZ
are true, in which case the proposition is that mZ ∪ {f} does not arise as a MAC.

In the latter case,

Proposition 6. For |F/m| = 1, any eventually periodic set of form C = mN ∪ F arises
as a MAC.

Note that the hypothesis |F/m| = 1 in particular implies F ̸= ∅ is nonempty.
The above two propositions can both be seen as specific instances of the following:
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Proposition 7. For |F/m| = 1, the existence of a subset W ⊆ Z such that mZ− \ B =
F +W implies that mN ∪B ∪ F is a MAC.

Proposition 7 implies Proposition 1. Let B be finite. Indeed, in Proposition 1 F = {f}
is a singleton, which can cover any subset of the integers, and therefore in particular any
B has mZ− \B = {f}+W , which by Proposition 7 implies C = mN∪B∪{f} is a MAC.

For the case where B is infinite, see the Appendix. ■

Proposition 7 implies Proposition 2. Similarly in Proposition 2 we have B = ∅, so that
mZ−\B = mZ−, which is coverable by any F ; indeed, just takeW = {−km−f1 : k ∈ Z+},
where f1 is the maximal element of F . (Indeed, it is easy to see that, generally, N is
coverable by any finite set F ⊆ Z; then the above is a specific instance, since mZ− is
isomorphic to N as monoids.) Hence an empty B satisfies the conditions of Proposition
7, which gives Proposition 2. ■

In fact, Proposition 7 is also a specific case of a more general statement, namely
Theorem 8 below. Recall that for f ∈ Z we identify f ∈ Z/mZ with a representative in
{0, · · · ,m−1} to make statements such asm > f . Also recall that modk n ∈ {0, · · · , k−1}
denotes the remainder of n when divided by k, so that for example for m = 3 and f = 5,
we have modf 7 = 1.

Theorem 8. Let A = {a}, B, F be subsets of Z such that (mN+a)∪B∪F is an eventually
periodic set and |B/m| = |F/m| = |A| = 1 with F/m = {f}, where without loss of generality
let A = {0}. Suppose there existences a set cover {Si},

S1 ∪ · · · ∪ Sn = mN ∪B,

such that each member Si has
mZ \ Si = F +Wi

for some Wi ⊆ Z. Then if

m ⩾ f + 2f
⌊
n/f

⌋
+modf n,

then C = mN ∪B ∪ F arises as a MAC.

Some explanation regarding the theorem statement: it is easy to see that instead of
considering a general A = {a} we can assume without loss of generality that A = {0},
because the question of whether C = (mN + a) ∪ B ∪ F arises as a MAC is translation
invariant – indeed, C is a MAC if and only if {c − a : c ∈ C} is a MAC since the W
witnessing C as a MAC has that {w + a : w ∈ W} witnesses {c− a : c ∈ C} as a MAC.

Theorem 8 implies Proposition 7. First let f > 1. Indeed, Proposition 7 is the case
when mN ∪ B has a cover which consists of a single set, namely mN ∪ B itself; in this
case n = 1, and the relevant bound is m ⩾ f + 1, which is of course always true. This
recovers Proposition 7.
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If f = 1, the argument in the previous paragraph will give that we are done if m ⩾ 3.
The m = 1 case is of course impossible since then F would collide with the column
containing the arithmetic progression.

Hence it remains to prove the case f = 1 and m = 2. We claim that C+(W ∪{0}) = Z
realizes C as a MAC. Firstly, since mZ−\B is infinite in the negative direction, it contains
a subset which admits a monoid structure making it an isomorphic copy of N (as monoids),
and so by the BL Lemma we can assume that F is minimal with respect to the condition
F + W = mZ− \ B. Secondly, since F + W = mZ− \ B ⊆ 2Z lies in the 0-th column,
we have that 0 ̸∈ W . Thirdly, since F + W = mZ− \ B where mZ− \ B is unbounded
in the negative direction, we have that the sum C + (W ∪ {0}) = (C +W ) ∪ (C + {0})
contains infinitely many translates of the arithmetic progression 2N in the sum C +W .
This is because every member w ∈ W must have w ≡ 1 (2) in order for f + w to be a
multiple of 2, and further there must be infinitely many such w in the negative direction
since F is a finite set, so that the subset 2N ⊂ C, when added to these infinitely many
w ∈ W , give infinitely many translates of 2N. These translates are of the form 2N + w,
where w ≡ 1 (2), and since there are infinitely many of them in the negative direction,
they cover all of 2Z + 1. Furthermore, C +W contains F +W and therefore mZ− \ B.
On the other half, C + {0} contains mN ∪ B. Hence, together, we have C + (W ∪ {0})
contains mN ∪ B, mZ− \ B, and 2Z + 1; hence C + (W ∪ {0}) gives all of Z. Moreover,
C is a MAC with respect to W ∪ {0} since the removal of any element in 2N ∪ B would
lead to C + {0} not containing that element, and the removal of any element in F would
lead to F +W not giving all of mZ− \B. ■

Let us remark that, in the worst case scenario, one can always take the set cover to be

mN ∪ {b1} ∪ · · · {bk} = mN ∪B

in the above, so that n = |B| + 1. This set cover satisfies the required conditions since,
as noted earlier, mZ \mN is always coverable by F , and mZ \ {b} is similarly coverable
since it consists of two isomorphic (as monoids) copies of N, which we have established is
coverable by finite sets. In particular, this means that

Proposition 9. Let |B/m| = |F/m| = |A| = 1 with F/m = {f}, where again without loss
of generality let A = {0}. Then

m ⩾ f + 2f

⌊
|B|+ 1

f

⌋
+modf (|B|+ 1)

implies that
C = mN ∪B ∪ F

arises as a MAC.
In some sense, this is saying “any C = mN ∪B ∪ F (where |F/m| = 1) is a MAC for

sufficiently large m”, or “any C = mN ∪B ∪ F (|F/m| = 1) is eventually a MAC”.

Theorem 8 implies Proposition 9. See paragraph preceding Proposition 9. ■
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This idea of “eventually being a MAC” is one we will explore more and make more
precise presently.

Notation 10. Given any set of points Ĉ in the lattice Z2, we may consider its image under
the projection and then the isomorphism

φ ◦ πm : Z2 −↠ Zm
∼
−! Z,

which is a composition we will call πm by abuse of notation. Let this image be denoted
C = πm(Ĉ); then we may ask whether or not C is a MAC inside Z. In fact, we can ask
this question for varying m.

In general, we will call such a Ĉ (respectively Â, B̂, F̂ ) a pattern for/of C (respectively

A, B, F ), and Ĉ/ is defined as

Ĉ/ := {x : (x, y) ∈ Ĉ for some y}

the set of x-coordinates of Ĉ.

This construction allows us to turn subsets of Z2 into subsets of Z. When such a Ĉ has
columns which are either consisted of finitely many points (giving F ) or consisted of finite
many points union an “infinite ray” of points going to the north (giving B ∪ (mN+A)),
this construction gives C an eventually periodic set.

Just as a Ĉ gives rise to a C via C = πm(Ĉ), given a set C ⊆ Zm
∼= Z we may

also consider its “natural” preimage, denoted π−1
m (C), which is the unique preimage Ĉ

satisfying Ĉ/ ⊆ [m]− 1 = {0, · · · ,m− 1}
The next theorem will tell us that, in some sense, all patterns for eventually periodic

sets are eventually MACs. That is, we take our eventually periodic set C of period m,
consider its preimage π−1

m (C) = Ĉ under the construction above, and consider, for large
growing M , πM(π−1

m (C)); the statement is that this set is a MAC in Z for all sufficiently

large M . But before stating this theorem let us define a quantity we will use: for Ĉ the
pattern for C, consider Ĉ/ = {x : (x, y) ∈ Ĉ for some y} the set of x-coordinates; this Ĉ/

will be a set of separated maximal contiguous “blocks”, i.e.

Ĉ/ = {c1,1, · · · , c1,n1} ∪ · · · ∪ {ck,1, · · · , ck,nk
},

where each {ci,1, · · · , ci,ni
} has ci,j−ci,j−1 = 1 (i.e. is an arithmetic progression of common

difference one) and i < j =⇒ ci,• < cj,•.
Let ℓ be the smallest possible length of a consecutive (i.e. an arithmetic progression

of common difference one) set of integers formed by horizontal translates of Ĉ/, i.e. the
minimal possible length of an interval of integers [a, b] such that there exists W such that

Ĉ/ +W = [a, b]. Then this number is at most

ℓ ⩽ ck,nk
− c1,1 + ck,1 − c1,n1 = out(Ĉ/) + inn(Ĉ/),

where we have defined “out” for “outer range” and “inn” for “inner range”:

out(Ĉ/) := ck,nk
− c1,1, inn(Ĉ/) := ck,1 − c1,n1 .
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This is since the set

W = [0, inn(Ĉ/)− 1] = {0, 1, · · · , inn(Ĉ/)− 1}

gives Ĉ/ + W = {c1,1, c1,1 + 1, · · · , ck,nk
+ inn(Ĉ/) − 1}, which is a consecutive run of

integers.

Theorem 11. For any fixed patterns of Â, B̂, and nonempty F̂ , and for every m such
that

m ⩾ (ℓ+ 1)(|A|+ |B|+ |F/|),

any
C = (mN+ A) ∪B ∪ F

is a MAC. Here ℓ denotes the minimal length possible of a consecutive block formed by
horizontal translates of Ĉ/, which is further bounded by

ℓ ⩽ out(Ĉ/) + inn(Ĉ/).

In other words, “all eventually periodic sets are eventually MACs”. Theorem 11 is
also a corollary of a more general theorem:

Theorem 12. Let Ĉ ⊂ Z2 be horizontally bounded (i.e. Ĉ/ is a bounded set). Let

F̂ = F̂1 ∪ · · · ∪ F̂t denote the (nonempty) columns with finitely many points (where each

F̂i lies in a distinct column Col(F̂i)), and let K̂ = K̂1 ∪ · · · ∪ K̂r denote the columns with

infinitely many points (where again each K̂i lies in a distinct column Col(K̂i)). For Ĉ/

the set of x-coordinates of Ĉ, let ℓ denote the minimal length possible of a consecutive
block formed by horizontal translates of Ĉ/, which satisfies

ℓ ⩽ out(Ĉ/) + inn(Ĉ/).

Suppose that for each K̂i there exists a set cover Ŝi consisting of

Ŝi,1 ∪ · · · ∪ Ŝi,|Ŝi| = K̂i

such that, for each i, j, there is some collection of (possibly empty) Ŵi,j;µ, Ûi,j;ν ⊆ Z2 such
that

Col(K̂i) \ Ŝi,j =
t⋃

µ=1

(
F̂µ + Ŵi,j;µ

)
∪

r⋃
ν=1

(
K̂ν + Ûi,j;ν

)
.

Then

m ⩾ (ℓ+ 1)

(
|F̂/|+

r∑
i=1

|Ŝi|

)
implies that C = πm(Ĉ) is a MAC in Z.
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Theorem 12 implies Theorem 11. To recover Theorem 11 from Theorem 12, take
Ĉ = π−1

m ((mN + A) ∪ B ∪ F ) lying in the strip 0 ⩽ x ⩽ m − 1. Then Ĉ/ is bounded.

In this case the finite columns of Ĉ are F̂ = π−1
m (F ) and the infinite columns are K̂ =

π−1
m ((mN+A)∪B), which can be written as K̂ = π−1

m (mN+A)∪π−1
m (B) = Col+(Â)∪ B̂,

where Col+(Â) :=
⋃

â∈ÂCol+(â). It should be noted that each specific column of K̂ is of

form K̂i = Col+(âi) ∪ B̂i, where âi is an element of Â and B̂i are the elements of B̂ lying
in the same column as âi, and ℓ is the same as before.

Now take the set cover of the infinite columns

K̂ = Col+(â1) ∪ · · · ∪ Col+(â|A|) ∪ {b̂1} ∪ · · · ∪ {b̂|B|},

i.e.
K̂i = Col+(âi) ∪

⋃
b̂∈B̂i

{b̂},

where |Si| = 1+ |Bi| and
∑

i |Si| = |A|+ |B|. This set cover satisfies the hypotheses since
firstly

Col(K̂i) \ Col+(âi) = Col−(âi) = Fj +Wi,j

for any Fj; to see this recall from earlier that any half column (which is isomorphic as a
monoid to N if we take addition to only affect the y coordinate) is coverable by any finite
set. Similarly, secondly

Col(K̂i) \ {b̂} = Fj +Wi,j

for any finite column Fj, which is true since Col(K̂i)\{b̂} consists of two infinite rays, one
pointing up and one pointing down, and as established earlier these rays, each isomorphic
as monoids to N, are coverable by finite sets.

Then Theorem 12 states that

m ⩾ (ℓ+ 1)(|F/|+ |A|+ |B|)

implies that C is a MAC, which is precisely the statement of Theorem 11. ■

The reader might note that Theorems 4 and 7 say very similar things, namely that for
large enough m the projection under πm of some pattern will be a MAC in Z. However,
Theorem 8 is not a corollary of Theorem 12 due to the bounds. Indeed, applying Theorem
12 to the setting of Theorem 8 will yield only

m ⩾ (2f + 1)(n+ 1)

where n is the size of the set cover S, which is much worse than the bound given in
Theorem 8. As the reader will see in the proofs in the following section, the construction
for Theorem 8 feels “tight” or “efficient” in some sense while in Theorem 12 we are much
sloppier. This is perhaps to be expected; Theorem 8 deals with a very specific type of set
(namely |A/m| = |B| = |F/m| = 1), while Theorem 12 deals with a much broader class,
so one might expect that it is easier to derive better bounds in the former case than the
latter.
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We should also note that, by choosing appropriateK, Theorem 12 answers the question
of Burcroff and Luntzlara mentioned at the end of the Introduction in a large class of cases.
Indeed, writing Ci = (mN+Ai)∪Bi∪Fi and Ai =

⋃
j Ai,j and Bi =

⋃
j Bi,j (where Ai,j, Bi,j

lies in a single column), by taking K to be K = (mN+A1)∪B1∪(−(mN+A2))∪(−B2) ⊆
C1 ∪ (−C2), Theorem 12 tells us that whenever we can partition Bi,j by Si,j,k such that
Col−(minAi,j)\Si,j,k can be set-covered by appropriate translates of the different columns
in C1, C2, if m is larger than some bound depending on the size of our cover, the number
of equivalence classes mod m represented by F1 ∪ (−F2), and the horizontal distribution
(when we draw it in Zm form) of C1 and C2, then C1 ∪ (−C2) is a MAC. As an example,
in the case that B1 = B2 = ∅ and at least one of F1, F2 is nonempty, since translations of
finite sets can cover N, we obtain the bound that

m ⩾ (ℓ+ 1)(|(F1)/|+ |(F2)/|+ |(A1)/|+ |(A2)/|)

implies C1 ∪ (−C2) arises as a MAC.
As another example of Theorem 12, we could consider the case K = mN ∪ B where

B is infinite and F = {f} is a singleton. Then we can take the set cover to have one
set, namely K itself, for mZ \ (mN ∪ B) = mZ− \ B is coverable by (translates of) the
singleton {f}. Furthermore, in this case ℓ = 2f . Then the bound from Theorem 12 tells
us that

m ⩾ (2f + 1)2

implies that C = mN∪B ∪ {f} is a MAC. It turns out this is true for smaller m as well,
as long as not both of m = 2 and mN ∪B = mZ are true.

Having discussed at length the results, it remains to prove Theorems 4 and 7 (as we
have noted in the discussions above, all other results are actually corollaries of these two).

4 A Formalism of Formal Power Series

Before giving the proofs of our main theorems, namely Theorems 4 and 7, we will develop
a language of “formal power series” in which the proofs are much easier to relate. We
should however give a disclaimer beforehand that these formal power series do not possess
the soul of the technique of generating functions, which is namely the idea of collapsing
long expressions into short ones or vice versa (e.g. the identity

∑
n x

n = 1
1−x

) in order to
achieve clever manipulations. The formal power series we introduce here will not engage
in such acrobatics and will instead serve solely as bookkeepers.

The point of this is to make it easier to show that C is a MAC, given a claimed
complement W . Roughly, this formalism will turn a set S ⊆ Z into a formal power series.

In our strip construction Zm, each column Col(i) = {(x, y) ∈ Zm : x = i} can be
thought of as a copy of Z with the obvious addition structure (add the y-coordinates).
Endow Col(i) = {(x, y) : x = i} ⊂ Zm with an isomorphism

Col(i) ∼= Z

where we take addition in Col(i) to be addition of the y-coordinates. This isomorphism
is such that (i, 0) ∈ Col(i) corresponds to 0 ∈ Z.
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Notation 13. For a set S ⊆ Col(i) ⊂ Zm which lies entirely in a single column, we will let

S̃ ⊆ Z denote its image in Z under the isomorphism Zm ⊃ Col(i) ∼= Z.
In the backwards direction, given a set S ⊆ Z, we will let qS(i) ⊆ Col(i) ⊂ Zm denote

its image under the inverse isomorphism.

The above is nothing more than saying that the set of all integers in a single congruence
class mod m forms a copy of Z.

But before we can describe how our formalism will turn the data of a set S ⊆ Z into
an object, we must first describe in what world this object will live. In the following
definition the symbol ⊔ refers to the disjoint union, which keeps track of multiplicities,
and the symbol ⊕ refers to the Minkowski sum of sets + except with multiplicities taken
into account2, i.e. a “disjoint” Minkowski sum.

Definition 14. Consider the Z-algebra generated by symbols of form qA for A ∈ NZ

(here NZ refers to subsets of Z with multiplicity allowed, i.e. a “weighted subset” with
weights, which encode multiplicity, in N), modded out by relations q∅ = 0, q{0} = 1,
qAqB − qA⊕B = 0, and qA + qB − qA⊔B = 0; in symbols this is

Q := Z
[
{qA : A ∈ NZ}

]/
{q∅ = 0, q{0} = 1, qAqB = qA⊕B, qA + qB = qA⊔B}.

We can then consider the following polynomial ring over this algebra:

Ξm := Q[[x]]/⟨xm−q{1}⟩.

When qB = qA + qC for some set C ∈ NZ, we will say qB ⩾ qA.

Abuse of notation: For a singleton S = {n}, instead of writing the cumbersome
qS = q{n}, we will write qn. For example we will write q1 in place of q{1}. Similarly we
will write q0 = 1 instead of q{0}. We will also later drop the notation ⊕ and only use
+, relying on context3 for whether we consider multiplicity or not. Generally speaking,
whenever we are in the context of these exponential symbols, or later in the context of
formal power series, the symbol + will be taken to mean with multiplicity.

Our choice of notation NZ here is in line with the notation {0, 1}Z for the power set
P(Z). Hence regular subsets of Z are those members of NZ whose weights (i.e. multiplic-
ities) are either 0 or 1, so that every member of P(Z) is a member of NZ.

The reason why we take this ideal to quotient by in the definition of Ξm will be clear
later. It is in this ring Ξm = Q[[x]]/⟨xm−q1⟩ that our formal power series shall live.

2For example, {0, 1}+ {1, 2} = {1, 2, 3} whereas {0, 1} ⊕ {1, 2} = {1, 2, 2, 3}.
3Perhaps we should note that A+ B ⊆ A⊕ B; indeed, once we remove multiplicity, these two sets are
the same.
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These symbols, appropriately, behave like exponentials and correspond to

∅ ! q∅ = 0,

{0} ! q0 = 1,

A ! qA,

A⊕B  ! qAqB = qA⊕B,

A ⊔B  ! qA + qB,

B \ A ! qB − qA,

and the distributive property of multiplication corresponds to

A⊕ (B ⊔ C) = (A⊕B) ⊔ (A⊕ C) ! qA(qB + qC) = qAqB + qAqC = qA⊕B + qA⊕C .

Defining B ⊖ A to be the set C such that A⊕ C = B (if it exists), we also have

B ⊖ A !
qB

qA
.

Note that by extending the notion of setminus B \ A to include cases when A is not
necessarily a subset of B, we can make sense of expressions such as −qA. Indeed, treating
NZ as a semi-ring with addition corresponding to ⊔ and multiplication corresponding to
the disjoint Minkowski sum ⊕, we can complete this to a ring by introducing symbols of
form B⊔− A ! qB−qA, appropriately quotienting so that B⊔− A = D⊔− C ⇐⇒ B⊔C =
D ⊔ A, i.e. qB − qA = qD − qC ⇐⇒ qB + qC = qD + qA.

The idea of this formalism is to do the following: Given a set S ⊆ Zm
∼= Z, write

S = S1 ⊔ · · · ⊔ Sn where each Si lies in a single column labeled by distinct si ∈ Z/mZ.
Then the information in S is the same as the data

C  !
{
(S̃1, s1), · · · , (S̃n, sn)

}
,

where the first entry in each pair indicates the “shape” of the elements of S in the column
labeled by the second entry of each pair. We call this the shape list form. We also overload
the symbol ⊔ and write this as

C = (S̃1, s1) ⊔ · · · ⊔ (S̃n, sn) =
n⊔

i=1

(S̃i, si).

Our formalism will now take this data and put it into a power series in the following
way. Given a set S = S1 ⊔ · · · ⊔ Sn ⊆ Zm, where each Si lies in a single column, let us
write

S(x) :=
n∑

i=1

qS̃ixsi
abuse
:=

n∑
i=1

qSixsi ∈ Ξm,

where in an abuse of notation we have written xsi instead of xsi and qSi instead of qS̃i for
the sake of simplicity. We write [xi]S(x) for the coefficient in front of the xi term (after
reducing mod xm − q1 until all powers are less than or equal to m− 1).
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Then it is obvious that, for A,B ⊆ Zm, we have

A(x) +B(x) = (A ⊔B)(x),

A(x)B(x) = (A+B)(x).

Note well that such formal power series are in bijection with weighted (i.e. we allow
multiplicities for each element) subsets of Zm.

For a power series S(x) ∈ Ξm presented in a form such that the exponents appearing
in S(x) are in the range [0,m− 1], let us denote

Range(S(x)) := {exponents appearing in S(x)} = S/m.

Now we should also explain why in defining Ξm we are quotienting out by the ideal
⟨xm − q1⟩. This is simply because our sets live in Zm. For example, for A = {1}, we
have A(x) = q1x0, which is the same as A(x) = q0xm since in the latter description

qS := qS̃ = q0 corresponds to S = {m} = {(m, 0)} ⊂ Zm, which is the same as {(m, 0)} =
{(0, 1)} ⊂ Zm due to the definition of Zm.

In claiming that (A + B)(x) = A(x)B(x) and (A ⊔ B)(x) = A(x) + B(x), we have
omitted some minor checks; these are covered in the Appendix at the end of the paper.

The key in this definition is that now, when claiming that C is a MAC to W , rather
than compute C+W and show it is Z, meanwhile proving that all elements of C have de-
pendents, we can instead take their formal power series, multiply, and check the coefficient
in front of each xi, which is equivalent to checking column-by-column that C + W = Z
minimally. As expected, there is no new content in this formalism (it’s just notation),
but this will make writing down certain proofs much more concise.

More precisely, the condition of C + W = Z is the same as every i-th coefficient
[xi](C+W )(x) of (C+W )(x) having [xi](C+W )(x) = qS where S ⊇ Z (here i ∈ [0,m−1]),
and the condition of C being minimal will be checked within each term qSxs; there, we
will check whether or not S ⊇ Z contains elements dependent on elements of C, and
whether or not the union over all such S covers all elements of C (so that every element
of C has a dependent element). That is, checking that C is minimal will be equivalent to
giving a partition of C ⋃

i

Ci = C

such that

∀ i, ∃ w ∈ W, n ∈ Z/mZ : [xn](C +W )(x) = qCi+w + qS, S ∩ (Ci + w) = ∅.

In words, this is saying that for any Ci in this partition, there is some element w ∈ W
and column number n ∈ Z/mZ such that the coefficient [xn](C + W )(x), which counts
the results of C+W in the n-th column with multiplicity, contains the elements of Ci+w
exactly once.
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5 Proofs of Main Results

In this section we shall prove the main results, namely Theorems 4 and 7.
The language of the formal power series will make this process easier to communicate,

but for sake of transparency we should say that this is not how we came up with these
theorems. Generally, perhaps a reasonable strategy to come up with these statements
might be to stare at and play with pictures like the strip construction Zm (this is what
we did), and to write down a proof one would use these formal power series. In writing
down the proofs in these sections, we have tried our best to be very explicit and write
down all the computational details, even if they are completely straightforward; as a
result the proofs are rather long, but we hope that the trade-off is that the readers will be
able to read along and confirm that the proofs are correct without having to separately
compute/check things on paper themselves.

Perhaps it should be noted that these theorems are much easier to see pictorially than
symbolically; as unfortunately is the case at times with mathematics at large, symbols,
whilst affording more precision, obscure intuition and the flow of logic.

5.1 Proving Theorem 8

We first prove Theorem 8. The idea is to give a construction for C + W = Z in which
all elements of C have a dependent element; namely, each Si ⊆ mN ∪ B will have its
dependent elements concentrated in a single column. We shall spread these columns
containing dependents out amongst sections of length 2f . We will fit all these sections
into Zm, and the idea is that if m is big enough then all these sections will fit.

In the proof below, the rough outline will be as follows: we will give a construction
of a set V and claim that C is a MAC to V ; we will calculate the formal power series
of these sets; we will multiply the formal power series together; and lastly we will check
term-by-term in the power series that C + V = Z and that C is minimal with respect to
this condition. Since the power series determines the set, we could have just given V (x),
but we go the extra step of writing down what V is for this first proof for the sake of
transparency.

Proof of Theorem 8. For ease of reading we will separate the proof into sections which
are italicized.

(1) Observations. Let {Si} be the set cover in the theorem assumptions, i.e. S1 ∪
· · · ∪ Sn = mN ∪ B such that each member Si has mZ \ Si = F +Wi for some Wi ⊆ Z.
Note that the finiteness of B implies mN ∪ B is bounded below which implies Si must
also be bounded below. As such, mZ \ Si will contain a shifted copy of Col−(0); that is,
an infinite ray of integers (more precisely this ray consists of multiples of m) starting at
min(Si)−m and pointing in the negative direction; in particular this infinite ray is

−mN+min(Si)−m ⊆ mZ \ Si;

we can think of this as an isomorphic (as monoids) copy of N sitting below min(Si).
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By assumption there is some Wi such that F +Wi = mZ\Si = Col(0)\Si. Consider a
minimalW ′

i ⊆ Wi such that F+W ′
i = (Col+(0)+yi)\Si for some4 yi ∈ Col−(0)+minB+1.

(This W ′
i exists because F is finite, so that if the sum F +Wi = Col(0) \ Si is some set

continuing infinitely in the negative direction, then necessarily eventually (in the negative
direction) this sum is just consecutive translations of F , i.e. there is some W ′′

i ⊆ Wi such
that F +W ′′

i = Col−(0) + zi for some negative number zi.) Then, noting that

F + (Col−(0) + yi −maxF ) = Col−(0) + yi ∼= N,

where the latter isomorphism is that of monoids, we may apply the BL Lemma to obtain
a modification/replacement5 Ui of (Col

−(0) + yi −maxF ) such that

F + Ui = Col−(0) + yi

with F minimal, i.e. wherein no proper subset F ′ ⊂ F satisfies the same equation. Then,
with respect to F + Ui = Col−(0) + yi, we have that every element of F has a dependent
element in Col−(0) + yi. Then consider6 W ′

i ⊔ Ui; the sum of F with this set is

F +(W ′
i ⊔Ui) = (F +W ′

i )⊔ (F +Ui) =
(
(Col+(0)+yi)\Si

)
⊔
(
Col−(0)+yi

)
= Col(0)\Si.

Hence for the rest of this proof, by redefining the symbol Wi to be

Wi := W ′
i ⊔ Ui,

we can assume that
F +Wi = mZ \ Si,

and F is minimal with respect to this equation; moreover, by construction we can find
dependent elements of F which are of form Z ∋ δ < yi ⩽ minB. Note that, passing to
Col(i) ∼= Z, this equation reads

F̃ + W̃i = Z \ S̃i,

with dependent elements of F which are of form δ̃ < ỹi ⩽ min B̃.
Let us also note that, since Si ⊆ mN∪B and therefore mZ \ Si are concentrated in a

single column (i.e. a single congruence class mod m) and since F is also concentrated in a
single column, F +Wi = mZ \Si implies that Wi is also concentrated in a single column,
i.e. all elements of Wi are equivalent mod m. In fact we know what this congruence class
is; F +Wi = mZ \ Si under projection implies f + wi = 0, i.e.7

w = −f.

4Note that such an yi is necessarily nonpositive, where we take minB = 0 if B = ∅. Also recall that
Col+ is defined to be inclusive (including 0) whereas Col− is defined to be exclusive (not including 0).
Note also that this yi may depend on i.

5This notation implies a dependence on i, and this dependence comes from yi.
6Note that the disjoint union here is redundant, as W ′

i and Ui are necessarily disjoint because their
sums with F are disjoint.

7Here we have written w instead of wi since they are all the same anyway.
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Similarly, as F is finite and mZ \ Si (as noted earlier) is unbounded below, in order
for
F +Wi = mZ\Si to be true it must be the case that Wi contains infinitely many negative

elements. Therefore, W̃i must also contain infinitely many negative elements.
For sake of brevity, let

k =
⌊
n/f

⌋
, r = modf n.

(2) Construction. To be upfront, we will immediately give the construction8 of V to
which C shall be a MAC. As you can see it is quite a mess, and for that reason we will
not be working with all of V all at once, and will instead cut it up into little pieces and
consider one at a time. Let V be (here whenever the upper limit is smaller than the lower
limit, e.g. ∪0

j=1, this is taken to be the empty set by convention; this convention will make
our claims true when r = 0):

V =
k⋃

i=1

[(2i− 1)f, 2if − 1
]
∪

f⋃
j=1

(
W(i−1)f+j + (2i− 1)f + j − 1

)
∪
[
(2k + 1)f, (2k + 1)f + r − 1

]
∪

r⋃
j=1

(
Wkf+j + (2k + 1)f + j − 1

)
∪

f⋃
j=r+1

(
mZ+ 2kf + j − 1

)
∪

m−1⋃
j=(2k+2)f

(
mZ+ j

)
.

Note that the translation factors (2i−1)f+j−1 in the expressionW(i−1)f+j+(2i−1)f+j−1
are precisely the members of the intervals of integers in V .

Let us denote the shorthand (here 1 ⩽ j ⩽ f)

Wi,j := W(i−1)f+j, Si,j := S(i−1)f+j.

Furthermore define “car blocs” Vi of V for 1 ⩽ i ⩽ k as follows:

Vi :=
[
(2i− 1)f, 2if − 1

]
∪

f⋃
j=1

(
W(i−1)f+j + (2i− 1)f + j − 1

)
.

Extending this notation, let us also define for i = k + 1 the “remainder bloc”

Vk+1 :=
[
(2k + 1)f, (2k + 1)f + r − 1

]
∪

r⋃
j=1

(
Wkf+j + (2k + 1)f + j − 1

)
8Here we use the notation [a, b] = {a, a+ 1, a+ 2, · · · , b− 1, b}.
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as well as the “filler blocs”

VZ :=

f⋃
j=r+1

(
mZ+ 2kf + j − 1

)
∪

m−1⋃
j=(2k+2)f

(
mZ+ j

)
.

In shape list form these sets are

Vi =

f⊔
j=1

(W̃i,j, (2i− 2)f + j − 1) ⊔
f⊔

j=1

({0}, (2i− 1)f + j − 1),

Vk+1 =
r⊔

j=1

(W̃k+1,j, 2kf + j − 1) ⊔
r⊔

j=1

({0}, (2k + 1) + j − 1),

VZ =

f⊔
j=r+1

(Z, 2kf + j − 1) ⊔
m−1⊔

j=(2k+2)f

(Z, j).

Note well that the unions in our definition of V can actually be taken to be disjoint
unions (since none of the sets intersect)

V = V1 ⊔ · · · ⊔ Vk ⊔ Vk+1 ⊔ VZ.

The claim then is that C is a MAC of V .

(3) Generatingfunctionology. Reading from the shape list forms, we may readily see
that the formal power series for these blocs are

Vi(x) = qW̃i,1x(2i−2)f + · · ·+ qW̃i,fx(2i−1)f−1 + q0x(2i−1)f + · · ·+ q0x2if−1

=

f∑
j=1

(
qW̃i,jx(2i−2)f+j−1 + x(2i−1)f+j−1

)
;

Vk+1(x) = qW̃k+1,1x2kf + · · ·+ qW̃k+1,rx2kf+r−1 + q0x(2k+1)f + · · ·+ q0x(2k+1)f+r−1

=
r∑

j=1

(
qW̃k+1,jx2kf+j−1 + x(2k+1)f+j−1

)
;

VZ(x) = qZx2kf+r + · · ·+ qZx(2k+1)f−1 + qZx(2k+2)f + · · ·+ qZxm−1

=

f∑
j=r+1

qZx2kf+j−1 +
m−1∑

j=(2k+2)f

qZxj.

Similarly, the shape list form of C is

C = (N ∪ B̃, 0) ⊔ (F̃ , f),

so that its power series is

C(x) = qN∪B̃x0 + qF̃xf .
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For short let us write K := mN ∪B, so that

C(x) = qK̃x0 + qF̃xf .

We can then directly compute each of the C+Vi, C+Vk+1, and C+VZ by computing
the power series via multiplication. Indeed,

(C + Vi)(x) = C(x)Vi(x)

=
(
qK̃x0 + qF̃xf

)(
qW̃i,1x(2i−2)f + · · ·+ qW̃i,fx(2i−1)f−1

+ q0x(2i−1)f + · · ·+ q0x2if−1
)

= qK̃qW̃i,1x(2i−2)f + · · ·+ qK̃qW̃i,fx(2i−1)f−1

+ (qK̃ + qF̃ qW̃i,1)x(2i−1)f + · · ·+ (qK̃ + qF̃ qW̃i,f )x2if−1

+ qF̃x2if + · · ·+ qF̃x(2i+1)f−1.

Note that, by shifting the index up by one, we have

(C + Vi+1)(x) = qK̃qW̃i+1,1x2if + · · ·+ qK̃qW̃i+1,fx(2i+1)f−1

+ (qK̃ + qF̃ qW̃i+1,1)x(2i+1)f + · · ·+ (qK̃ + qF̃ qW̃i+1,f )x(2i+2)f−1

+ qF̃x(2i+2)f + · · ·+ qF̃x(2i+3)f−1,

wherein the first f terms of (C+Vi+1)(x) will combine with the last f terms of (C+Vi)(x).
This is the “cars fitting together” we were talking about.

Similarly, we may compute

(C + Vk+1)(x) = C(x)Vk+1(x)

=
(
qK̃x0 + qF̃xf

)(
qW̃k+1,1x2kf + · · ·+ qW̃k+1,rx2kf+r−1

+ q0x(2k+1)f + · · ·+ q0x(2k+1)f+r−1
)

= qK̃qW̃k+1,1x2kf + · · ·+ qK̃qW̃k+1,rx2kf+r−1

+ (qK̃ + qF̃ qW̃k+1,1)x(2k+1)f + · · ·+ (qK̃ + qF̃ qW̃k+1,r)x(2k+1)f+r−1

+ qF̃x(2k+2)f + · · ·+ qF̃x(2k+2)f+r−1

and

(C + VZ)(x) = C(x)VZ(x)

=
(
qK̃x0 + qF̃xf

)(
qZx2kf+r + · · ·+ qZx(2k+1)f−1

+ qZx(2k+2)f + · · ·+ qZxm−1
)
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= qK̃qZx2kf+r + · · ·+ qK̃qZx(2k+1)f−1

+ qF̃ qZx(2k+1)f+r + · · ·+ qF̃ qZx(2k+2)f−1

+ qK̃qZx(2k+2)f + · · ·+ qK̃qZxm−1

+ qF̃ qZx(2k+3)f + · · ·+ qF̃ qZxm−1+f

= qK̃qZx2kf+r + · · ·+ qK̃qZx(2k+1)f−1

+ qF̃ qZx(2k+1)f+r + · · ·+ qF̃ qZx(2k+2)f−1

+ qK̃qZx(2k+2)f + · · ·+ qK̃qZx(2k+3)f−1

+ (qK̃qZ + qF̃ qZ)x(2k+3)f + · · ·+ (qK̃qZ + qF̃ qZ)xm−1

+ qF̃ qZxm + · · ·+ qF̃ qZxm+f−1

= qK̃qZx2kf+r + · · ·+ qK̃qZx(2k+1)f−1

+ qF̃ qZx(2k+1)f+r + · · ·+ qF̃ qZx(2k+2)f−1

+ qK̃qZx(2k+2)f + · · ·+ qK̃qZx(2k+3)f−1

+ (qK̃qZ + qF̃ qZ)x(2k+3)f + · · ·+ (qK̃qZ + qF̃ qZ)xm−1

+ qF̃ qZq1x0 + · · ·+ qF̃ qZq1xf−1.

Having calculated the sums of C with each of the blocs, we may now calculate C +V .
Since V = V1 ⊔ · · · ⊔ Vk ⊔ Vk+1 ⊔ VZ, we have

(C + V )(x) = (C + V1)(x) + · · ·+ (C + Vk)(x) + (C + Vk+1)(x) + (C + VZ)(x),

so that adding up the above results we get

(C + V )(x) = qK̃qW̃1,1x0 + · · ·+ qK̃qW̃1,fxf−1

+
k−1∑
i=1

(
(qK̃ + qF̃ qW̃i,1)x(2i−1)f + · · ·+ (qK̃ + qF̃ qW̃i,f )x2if−1

+ (qF̃ + qK̃qW̃i+1,1)x2if + · · ·+ (qF̃ + qK̃qW̃i+1,f )x(2i+1)f−1

)
+ (qK̃ + qF̃ qW̃k,1)x(2k−1)f + · · ·+ (qK̃ + qF̃ qW̃k,f )x2kf−1

+ (qF̃ + qK̃qW̃k+1,1)x2kf + · · ·+ (qF̃ + qK̃qW̃k+1,r)x2kf+r−1

+ (qF̃ + qK̃qZ)x2kf+r + · · ·+ (qF̃ + qK̃qZ)x(2k+1)f−1

+ (qK̃ + qF̃ qW̃k+1,1)x(2k+1)f + · · ·+ (qK̃ + qF̃ qW̃k+1,r)x(2k+1)f+r−1

+ qF̃ qZx(2k+1)f+r + · · ·+ qF̃ qZx(2k+2)f−1

+ qK̃qZx(2k+2)f + · · ·+ qK̃qZx(2k+3)f−1

+ (qK̃qZ + qF̃ qZ)x(2k+3)f + · · ·+ (qK̃qZ + qF̃ qZ)xm−1
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+ qF̃ qZq1x0 + · · ·+ qF̃ qZq1xf−1

= q(K̃+W̃1,1)⊔(F̃+Z+1)x0 + · · ·+ q(K̃+W̃1,f )⊔(F̃+Z+1)xf−1

+
k−1∑
i=1

(
qK̃⊔(F̃+W̃i,1)x(2i−1)f + · · ·+ qK̃⊔(F̃+W̃i,f )x2if−1

+ qF̃⊔(K̃+W̃i+1,1)x2if + · · ·+ qF̃⊔(K̃+W̃i+1,f )x(2i+1)f−1

)
+ qK̃⊔(F̃+W̃k,1)x(2k−1)f + · · ·+ qK̃⊔(F̃+W̃k,f )x2kf−1

+ qF̃⊔(K̃+W̃k+1,1)x2kf + · · ·+ qF̃⊔(K̃+W̃k+1,r)x2kf+r−1

+ qF̃⊔(K̃+Z)x2kf+r + · · ·+ qF̃⊔(K̃+Z)x(2k+1)f−1

+ qK̃⊔(F̃+W̃k+1,1)x(2k+1)f + · · ·+ qK̃⊔(F̃+W̃k+1,r)x(2k+1)f+r−1

+ qF̃+Zx(2k+1)f+r + · · ·+ qF̃+Zx(2k+2)f−1

+ qK̃+Zx(2k+2)f + · · ·+ qK̃+Zx(2k+3)f−1

+ q(K̃+Z)⊔(F̃+Z)x(2k+3)f + · · ·+ q(K̃+Z)⊔(F̃+Z)xm−1.

It should be well noted that the purpose of the bound

m ⩾ (2k + 1)f + r

is to ensure that this expression has all like terms combined; in particular, it ensures that
all terms of form

qK̃⊔(F̃+W̃i,j)x(2i−1)f+j−1

have exponents lying in the range [0,m− 1].

(4) Deciphering. Having computed (C+V )(x), to check that C is an additive comple-
ment to V , i.e. C + V = Z, it suffices to check that every coefficient [xi](C + V )(x) is of
form qA where A ⊇ Z, i.e. qZ ⩽ [xi](C+V )(x) for all i. We can verify this by considering
casework depending on the range of the exponent:

(i) x0 to xf−1. Coefficients in this range are of form q(K̃+W̃i)⊔(F̃+Z+1); since Z ⊆ F̃+Z+1,
it is clear that

qZ ⩽ q(K̃+W̃i)⊔(F̃+Z+1).

(ii) x(2i−1)f to x(2i+1)f−1 for 1 ⩽ i ⩽ k − 1. Coefficients in this range are either of form

qK̃⊔(F̃+W̃i) or qF̃⊔(K̃+W̃i). In the latter case, since N ⊆ K̃ and since W̃i contains
infinitely many negative elements, we have Z ⊆ K̃ + W̃i and therefore

qZ ⩽ qF̃⊔(K̃+W̃i).

In the former case, recall F̃ + W̃i = Z \ S̃i, and since S̃i ⊆ K̃, we have Z ⊆
K̃ ⊔ (F̃ + W̃i), i.e.

qZ ⩽ qK̃⊔(F̃+W̃i)

as well.
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(iii) x(2k−1)f to x2kf+r−1. Coefficients in this range are of the same form as (ii), so we are
done here for the same reasons as in (ii).

(iv) x2kf+r to x(2k+1)f−1. Coefficients in this range are of form qF̃⊔(K̃+Z). Since clearly

Z ⊆ K̃ + Z, we have

qZ ⩽ qF̃⊔(K̃+Z).

(v) x(2k+1)f to x(2k+1)f+r−1. Coefficients in this range are covered by (ii) also.

(vi) x(2k+1)f+r to xm−1. Coefficients in this range are either of form qF̃+Z, qK̃+Z, or

qF̃+Z + qK̃+Z. It is clear that Z ⊆ F̃ + Z, K̃ + Z, so that

qZ ⩽ qF̃+Z, qK̃+Z, qF̃+Z + qK̃+Z.

This concludes the check that C + V = Z.
Next let us see that all elements of C have dependent elements in Z with respect to

V . In fact, we claim that every column labeled by (2i− 1)f + j− 1 (where 1 ⩽ j ⩽ f and
(i− 1)f + j ⩽ n) contains dependent elements of every element of Si,j and every element

of F . Indeed, the coefficients [x(2i−1)f+j−1](C + V )(x) are of form

[x(2i−1)f+j−1](C + V )(x) = qK̃⊔(F̃+W̃i,j);

by construction we have F̃ + W̃i,j = Z \ S̃i,j in such a way that there are dependent

elements of every element of F̃ of form δ̃ < ỹi,j ⩽ min B̃, so that in particular δ̃ ̸∈ K̃.

Then, in K̃ ⊔ (F̃ + W̃i,j), each such δ̃ is counted/covered exactly once, so that they are

still dependent elements of F̃ in the equation

K̃ ⊔ (F̃ + W̃i,j) ⊇ Z,

which gives dependents of all of F . Similarly, S̃i,j is avoided by F̃ + W̃i,j (which is equal

to Z \ S̃i,j actually, namely everyone but Si,j), and is covered exactly once in K, so that
we have the dependent elements of Si,j also. Taking the union over all appropriate i, j,
this gives the dependent elements of all

⋃
i,j Si,j = mN∪B, so that all elements of C have

dependents in the equation
C + V = Z.

This concludes the check that C is minimal with respect to C + V = Z.
Lastly we should remark on the use of the bound

m ⩾ (2k + 1)f + r.

Indeed, if this were to fail, i.e. if m < (2k + 1)f + r, then the term in (C + V )(x)

qK̃⊔(F̃+W̃k+1,r)x(2k+1)f+r−1

would be reduced in the quotient which defines Ξm to q

(
K̃⊔(F̃+W̃k+1,r)

)
+1x(2k+1)f+r−1−m,

which would then “collide” (i.e. combine like terms) with a term from earlier; in this

case, we can no longer guarantee that S̃i,j ⊆ Z is covered only once in the coefficient

[x(2k+1)f+r−1−m](C + V )(x). ■
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5.2 Proving Theorem 12

We next prove Theorem 12. The idea is similar to Theorem 8. In Theorem 8, because
the problem conditions are specific (e.g. only one column of F and B), each section
can fit many dependent-containing columns inside. However, because the distribution of
points in C is not known in the setting of Theorem 12, we will only be able to put one
dependent-containing column in each section this time.

Proof of Theorem 12. This theorem is stated in the setting of Z2 projecting to Zm. How-
ever, in proving the theorem we will work directly in Zm, taking the assumptions that
there is some set cover Si of the infinite columns Ki ⊆ C ⊆ Zm

Si,1 ∪ · · · ∪ Si,ni
= Ki

such that, for each i, j, there are (possibly empty) Wi,j;µ, Ui,j;ν ⊆ Zm such that

Col(Ki) \ Si,j =
t⋃

µ=1

(Fµ +Wi,j;µ) ∪
r⋃

ν=1

(Kν + Ui,j;ν),

and that

m ⩾ (ℓ+ 1)

(
|F/|+

r∑
i=1

|Si|

)
,

i.e.

m ⩾ (ℓ+ 1)

(
t+

r∑
i=1

ni

)
:=(ℓ+ 1)N.

Each Fi or Kj will reside in the column labeled by f i or kj respectively, and we may
sometimes write ci for the label of the column containing Ci, the i-th column of C counting
from the left for 1 ⩽ i ⩽ t+ r.

As before, the proof will be separated into italicized sections for ease of reading.

(1) Observations. As per the definition of ℓ, let9 Q/ be a set such that

C/ +Q/ = [0, ℓ− 1].

The discussion immediately following the statement of Theorem 12 shows that such a set
exists with the given upper bound ℓ ⩽ out(Ĉ/) + inn(Ĉ/). Then, define

Q(x) :=
∑
q∈Q/

qZxq.

Note well that the set Q corresponding to this power series satisfies

(C +Q)(x) = qP0x0 + · · ·+ qPℓ−1xℓ−1 ⩾ qZx0 + · · ·+ qZxℓ−1,

9This notation is provocatively chosen.
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where each Pi ⩾ Z.
Since the columns F1, · · · , Ft are finite sets, by the theorem of Kwon we know that

there exists10 Wi ⊆ Z such that
Fi +Wi = Z

and Fi is minimal with respect to this equation.
Consider the ordered list of symbols (which each stand for one of our sets){

F1, · · · , Ft, S1,1, · · · , S1,n1 , · · · , Sr,1, · · · , Sr,nr

}
;

for a symbol S in this list, let α(S) be the index in this list where S appears. For example,
α(F1) = 1, α(Ft) = t, and α(Sr,nr) = t+

∑
i ni. We will use the shorthand

αi,j := α(i, j) := α(Si,j) = the index where Si,j appears.

In line with this notation, we will define11 Si for 1 ⩽ i ⩽ t+
∑

j nj = N to be{
S1, · · · , SN

}
:=
{
F1, · · · , Ft, S1,1, · · · , S1,n1 , · · · , Sr,1, · · · , Sr,nr

}
,

so that Sα(i,j) = Si,j.

(2) Construction. First we give the construction of the set V to which C shall be a
MAC. Rather than give the explicit set construction, we will give the power series V (x),
which as remarked earlier determines the set V . Since V shall be quite unwieldy, we will
again break it up into “blocs”.

The “car blocs” Vi (1 ⩽ i ⩽ t+
∑

j nj = N) are defined by formal power series which
we give here. For 1 ⩽ i ⩽ t, define

Vi(x) := x(i−1)(ℓ+1)
(
qW̃ixℓ−f i +Q(x)

)
,

and for t+ 1 ⩽ α(i, j) ⩽ N let us define

Vα(i,j)(x) := x(α(i,j)−1)(ℓ+1)

(
q0xℓ−ki +

t∑
µ=1

qW̃i,j;µxℓ−fµ +
r∑

ν=1

qŨi,j;νxℓ−kν +Q(x)

)
.

Note well that some of these terms in
∑t

µ=1 q
W̃i,j;µxℓ−fµ +

∑r
ν=1 q

Ũi,j;νxℓ−kν could be zero,

for example if W̃i,j;µ = ∅ then qW̃i,j;µ = 0.
Similarly to last time, the “filler blocs” will be defined by the power series

VZ(x) := (xN(ℓ+1) + · · ·+ xm−1)Q(x).

10We apologize in advance for the overload of notation for the letter W here, but remember that Wi

with a single subscript is the additive complement of a Fi, while Wi,j;µ with three subscripts is the set
involved in the theorem assumptions.

11We apologize in advance for overloading notation, but the way to distinguish these Si and the members
of the set cover Si,j ∈ Si is that the former has only one subscript while the latter has two.
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In the case that m = N(ℓ+ 1), this power series is defined to be zero.
Then we shall define V to be

V := V1 ⊔ · · · ⊔ VN ⊔ VZ,

whose power series shall thus be the sum of those written above.
The claim then is that C+V = Z, and that C is minimal with respect to this condition.

(3) Generatingfunctionology. We will compute the power series (C + V )(x) by com-
puting
(C + Vi)(x) and (C + VZ)(x) and then adding them together.

Note that in this setup, the power series of C = F1 ⊔ · · · ⊔ Ft ⊔K1 ⊔ · · · ⊔Kr is given
by

C(x) = qF̃1xf1 + · · ·+ qF̃txf t + qK̃1xk1 + · · ·+ qK̃rxkr .

Let us then compute the sums C + Vi and C + VZ by computing the formal power
series thereof. For 1 ⩽ i ⩽ t, compute

(C + Vi)(x) = C(x)Vi(x)

=
(
qF̃ixf i + (C \ Fi)(x)

)
x(i−1)(ℓ+1)

(
qW̃ixℓ−f i +Q(x)

)
= qF̃iqW̃ixiℓ+i−1 + (C \ Fi)(x)q

W̃ixiℓ+i−1−f i + x(i−1)(ℓ+1)(C +Q)(x)

= qP0x(i−1)ℓ+i−1 + · · ·+ qPℓ−1xiℓ+i−2

+ qF̃iqW̃ixiℓ+i−1

+ (C \ Fi)(x)q
W̃ixiℓ+i−1−f i

:=Fili(x)

+ Depi(x)

+ Erri(x),

where we have defined (Fil standing for Filler, Dep standing for Dependents, and Err
standing for Error)

Fili(x) := qP0x(i−1)ℓ+i−1 + · · ·+ qPℓ−1xiℓ+i−2,

Depi(x) := qF̃iqW̃ixiℓ+i−1,

Erri(x) := (C \ Fi)(x)q
W̃ixiℓ+i−1−f i .

Note well that the exponents of x appearing in Fili(x) are precisely

RangeFili(x) =
[
(i− 1)ℓ+ i− 1, iℓ+ i− 2

]
,

while the exponent appearing in Depi(x) is

RangeDepi(x) = {iℓ+ i− 1}.
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Recall that Pi ⊇ Z, and note well that all terms in the last summand Erri(x) are
constant multiples of

xiℓ+i−1−f i+fj or xiℓ+i−1−f i+kj

for j ̸= i, so that in particular

[xiℓ+i−1]Erri(x) = 0.

Also note well that the largest power of x appearing in Erri(x) is x
iℓ+i−1−f i+maxC/ , which

satisfies
iℓ+ i− 1− f i +maxC/ ⩽ (i+ 1)ℓ+ i− 1

since ℓ > maxC/ −minC/, and the smallest power of x appearing in Erri(x) is

xiℓ+i−1−f i+minC/ , which satisfies

iℓ+ i− 1− f i +minC/ ⩾ (i− 1)ℓ+ i− 1

since f i ⩽ maxC/ and ℓ > maxC/ − minC/. These two inequalities ensure that when
we add (C + Vi)(x) + (C + Vi+1)(x), the summand Erri(x) from C + Vi will combine
with the terms Fili(x) and Fili+1(x) and will not collide12 with the term Depi+1(x) =

qF̃i+1qW̃i+1x(i+1)ℓ+i from C + Vi+1.
Similarly, for t+ 1 ⩽ α(i, j) ⩽ N ,

(C + Vα(i,j))(x) = C(x)Vα(i,j)(x)

= C(x)x(αi,j−1)(ℓ+1)

(
q0xℓ−ki +

t∑
µ=1

qW̃i,j;µxℓ−fµ +
r∑

ν=1

qŨi,j;νxℓ−kν +Q(x)

)
=
(
qK̃ixki + (C \Ki)(x)

)
x(αi,j−1)(ℓ+1)xℓ−ki

+
t∑

µ=1

(
qF̃µxfµ + (C \ Fµ)(x)

)
x(αi,j−1)(ℓ+1)qW̃i,j;µxℓ−fµ

+
r∑

ν=1

(
qK̃νxkν + (C \Kν)(x)

)
x(αi,j−1)(ℓ+1)qŨi,j;νxℓ−kν

+ x(αi,j−1)(ℓ+1)(C +Q)(x)

= qP0x(αi,j−1)ℓ+αi,j−1 + · · ·+ qPℓ−1xαi,jℓ+αi,j−2

+

(
qK̃i +

t∑
µ=1

qF̃µqW̃i,j;µ +
r∑

ν=1

qK̃νqŨi,j;ν

)
xαi,jℓ+αi,j−1

+ (C \Ki)(x)x
αi,jℓ+αi,j−1−ki

+
t∑

µ=1

(C \ Fµ)(x)q
W̃i,j;µxαi,jℓ+αi,j−1−fµ

12I.e., will not “collide with the passenger from C + Vi+1”.
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+
r∑

ν=1

(C \Kν)(x)q
Ũi,j;νxαi,jℓ+αi,j−1−kν

:=Filα(i,j)(x)

+ Depα(i,j)(x)

+ Errα(i,j)(x),

where we have defined

Filα(i,j)(x) := qP0x(αi,j−1)ℓ+αi,j−1 + · · ·+ qPℓ−1xαi,jℓ+αi,j−2,

Depα(i,j)(x) :=

(
qK̃i +

t∑
µ=1

qF̃µqW̃i,j;µ +
r∑

ν=1

qK̃νqŨi,j;ν

)
xαi,jℓ+αi,j−1,

Errα(i,j)(x) := (C \Ki)(x)x
αi,jℓ+αi,j−1−ki +

t∑
µ=1

(C \ Fµ)(x)q
W̃i,j;µxαi,jℓ+αi,j−1−fµ

+
r∑

ν=1

(C \Kν)(x)q
Ũi,j;νxαi,jℓ+αi,j−1−kν .

Again note well that the exponents appearing in Filα(i,j)(x) are

Range Filα(i,j)(x) =
[
(αi,j − 1)ℓ+ αi,j − 1, αi,jℓ+ αi,j − 2

]
,

while the exponent appearing in Depα(i,j)(x) is

RangeDepα(i,j)(x) = {αi,jℓ+ αi,j − 1}.

As before we remark that the coefficients in Filα(i,j)(x) have Pµ ⊇ Z, and we must
note well that all the terms in the last summand Errα(i,j)(x) are multiples of

xαi,jℓ+αi,j−1−cµ+cν ,

where for example cµ = ki for the first summand in Errα(i,j)(x) and cν ̸= cµ. In particular
this means

[xαi,jℓ+αi,j−1] Errα(i,j)(x) = 0.

Also note well that the largest power of x appearing in Errα(i,j)(x) is at most (in the sense
of comparing the exponents) xαi,jℓ+αi,j−1−minC/+maxC/ , which satisfies

αi,jℓ+ αi,j − 1−minC/ +maxC/ ⩽ (αi,j + 1)ℓ+ αi,j − 1

since ℓ > maxC/ −minC/. Moreover the smallest power of x appearing in Errα(i,j)(x) is
at least

αi,jℓ+ αi,j − 1−maxC/ +minC/ ⩾ (αi,j − 1)ℓ+ αi,j − 1

for the same reason. These two inequalities ensure that when we consider the sum
(C + Vα(i,j))(x) + (C + Vα(i,j)+1)(x), the summand Errα(i,j)(x) from (C + Vα(i,j))(x) will
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combine with the terms Filα(i,j)(x) and Filα(i,j)+1(x) and will not collide (i.e., after using
the relation xm = q1 so that all exponents are in the range [0,m−1], the set of exponents
appearing in the former is disjoint from the set of exponents appearing in the latter) with
the term Depα(i,j)+1(x).

Lastly let us compute

(C + VZ)(x) = C(x)VZ(x)

= C(x)Q(x)(xN(ℓ+1) + · · ·+ xm−1)

=
(
qP0x0 + · · ·+ qPℓ−1xℓ−1

)(
xN(ℓ+1) + · · ·+ xm−1

)
= qPN(ℓ+1)xNℓ+N + · · ·+ qPm+ℓ−2xm+ℓ−2,

where we the sets PN(ℓ+1), · · · , Pm+ℓ−2 are defined such that the last equality holds; i.e.,
these new13 PN(ℓ+1), · · · , Pm+ℓ−2 are obtained by distributing14. Also note well that, since
Pi ⊇ Z for i ∈ [0, ℓ− 1], we also know Pi ⊇ Z for i ∈ [N(ℓ+ 1),m+ ℓ− 2].

Then, adding everything together, we have

(C + V )(x) = (C + V1)(x) + · · ·+ (C + VN)(x) + (C + VZ)(x)

= Fil1(x) + Dep1(x)

+
N∑
i=2

((
Erri−1(x) + Fili(x)

)
+Depi(x)

)
+ ErrN(x) + qPN(ℓ+1)xNℓ+N + · · ·+ qPm+ℓ−2xm+ℓ−2

=
(
qPm+1x0 + · · ·+ qPm+ℓ−2+1xℓ−2 + Fil1(x)

)
+Dep1(x)

+
N∑
i=2

((
Erri−1(x) + Fili(x)

)
+Depi(x)

)
+ ErrN(x) + qPN(ℓ+1)xNℓ+N + · · ·+ qPm−1xm−1.

Let us decipher what this means now.

(4) Deciphering. Note that, for 1 ⩽ α ⩽ N ,

Range Filα(x) =
[
(α− 1)ℓ+ α− 1, αℓ+ α− 2

]
,

Filα(x) ⩾ qZx(α−1)ℓ+α−1 + · · ·+ qZxαℓ+α−2,

RangeErrα(x) ⊆ RangeFilα(x) ∪ RangeFilα+1(x),

RangeDepα(x) = αℓ+ α− 1.

If
m ⩾ Nℓ+N,

13Note that the subscripts here do not overlap with P0, · · · , Pℓ−1, so there’s no overlap of notation here.
14Also called “FOILing”.
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then DepN(x) (and therefore all Depα(x) for α < N) will not collide, in the quotient
defining Ξm, with the earlier terms in the sum

(C + V )(x) =
(
qPm+1x0 + · · ·+ qPm+ℓ−2+1xℓ−2 + Fil1(x)

)
+Dep1(x)

+
N∑
i=2

((
Erri−1(x) + Fili(x)

)
+Depi(x)

)
+ ErrN(x) + qPN(ℓ+1)xNℓ+N + · · ·+ qPm−1xm−1.

That is, the inequality m ⩾ Nℓ+N guarantees that

RangeDepα(x) ∩ Range

(
(C + V )(x)−

∑
β

Depβ(x)

)
= ∅,

i.e. that the only place xαℓ+α−1 appears with nonzero coefficient is in Depα(x).
Let us first check that C + V = Z. Because of the presence of the Filα(x), we have

[xj](C + V )(x) ⩾ qZ ∀ j ∈
[
(α− 1)ℓ+ α− 1, αℓ+ α− 2

]
.

Note that the intervals
[
(α− 1)ℓ+ α− 1, αℓ+ α− 2

]
and

[
αℓ+ α, (α + 1)ℓ+ α− 1

]
are separated by αℓ+ α− 1, and this coefficient we can readily see is

[xαℓ+α−1](C + V )(x) =


qF̃iqW̃i = qF̃i+W̃i ⩾ qZ if α = i ⩽ t

qK̃i +
t∑

µ=1

qF̃µqW̃i,j;µ +
r∑

ν=1

qK̃νqŨi,j;ν

= qK̃i⊔
⊔

µ(F̃µ+W̃i,j;µ)⊔
⊔

ν(K̃ν+Ũi,j;ν) ⩾ qZ

else
,

where in the second case15 we have α = α(i, j) > t. Hence the coefficient in front of x
raised to any power in the range [0, Nℓ+N − 1] will be greater than or equal to qZ.

Lastly, note that for Nℓ+N ⩽ µ ⩽ m− 1 we have

[xµ](C + V )(x) = qPµ ⩾ qZ.

This concludes the check that

(C + V )(x) ⩾ qZx0 + · · ·+ qZxm−1,

i.e. that C + V = Z.
Next let us check that C is minimal with respect to C+V = Z. To do this we will see

that all elements of C have dependents in Z. In fact, we claim that there are dependents
of all of Fi in the (iℓ + i − 1)-th column, and that there are dependents of all of Si,j in
the (αi,jℓ+ αi,j − 1)-th column.

15The coefficient in the second case is at least qZ since
⊔

µ(F̃µ+W̃i,j;µ)⊔
⊔

ν(K̃ν+Ũi,j;ν) covers everything

except S̃i,j , and K̃i covers S̃i,j .
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But this is evident from the calculations we did earlier. Indeed, for 1 ⩽ i ⩽ t,

[xiℓ+i−1](C + V )(x) = qF̃i+W̃i ,

and by construction F̃i is minimal with respect to F̃i + W̃i = Z, which implies that every
element of F̃i has a dependent in the (iℓ+ i−1)-th column. Similarly, for t+1 ⩽ α(i, j) ⩽
N ,

[xαi,jℓ+αi,j−1](C + V )(x) = qK̃i⊔
⊔

µ(F̃µ+W̃i,j;µ)⊔
⊔

ν(K̃ν+Ũi,j;ν),

where
t⋃

µ=1

(F̃µ + W̃i,j;µ) ∪
r⋃

ν=1

(K̃ν + Ũi,j;ν) = Z \ S̃i,j

and S̃i,j ⊆ K̃i, so that Si,j is covered exactly once in the expression

K̃i ⊔
⊔

µ(F̃µ + W̃i,j;µ) ⊔
⊔

ν(K̃ν + Ũi,j;ν), so that there are dependent elements of S̃i,j in
column αi,jℓ+ αi,j − 1.

Unioned over all i, j, this gives dependent elements for all of
⋃

i,j Si,j = K and
⋃

i Fi =
F , so that there are dependent elements for all of C, which concludes our check that C is
minimal. ■

6 Comments, Questions, and Further Directions

6.1 Variations of Main Results

In our proof for Theorem 8, note that the place where we crucially used that B is finite
is in saying that mN ∪ B is bounded below, and therefore Si is bounded below, so if
F + Wi = mZ \ Si, then necessarily F + Wi contains a infinite set extending into the
negative direction, so that the BL lemma applies. If we drop the assumption that B is
finite, this is no longer guaranteed, and we can no longer ensure that F +Wi = mZ\Si in
a way that gives the dependents of F . However we can sidestep this issue by dedicating
a separate column to the dependents of F : since F̃ is finite, by the theorem of Kwon it
arises as a MAC in Z, and we can instead use F̃ + W̃ = Z to give the dependent elements
of F . Modifying the proof appropriately so that there is now n+1 columns of dependents
rather than n, we can obtain that

Theorem 15. Let |B/m| = |F/m| = |A| = 1 with F/m = {f}, without loss of generality
let A = {0}, and let B be infinite. Then the existence of a set cover {Si},

S1 ∪ · · · ∪ Sn = mN ∪B,

such that each member Si has
mZ \ Si = F +Wi

for some Wi ⊆ Z, implies that if

m ⩾ f + 2f

⌊
n+ 1

f

⌋
+modf (n+ 1),
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then
C = mN ∪B ∪ F

arises as a MAC.

Note that this bound is the same as the one in Theorem 8 except n is replaced with
n+ 1, where the +1 is for the extra column dedicated to F .

One might then ask what happens if the |B| < ∞ condition is weakened in the general
case. We do not see an immediate solution, as Theorem 11 was derived from Theorem
12 by taking the worst-case scenario in which we dedicate a column for every member of
B, but if B is infinite then this approach no longer works. We hence pose the following
question:

Question. Is some variant of Theorem 11 true for infinite B? That is, even if B is infinite,
is it still true that every eventually periodic set is eventually a MAC?

6.2 Regarding the Formal Power Series

We remark that, in the ring Q, the only units are ±q0.
Since no two nonempty sets satisfy A ⊕ B = ∅, we have that no two nonzero qA, qB

satisfy qAqB = q∅ = 0, so that Q is an integral domain. Then we can consider the fraction
field FracQ, as well as generating series (FracQ)[[x]] with coefficients in this fraction field.
The classical result from elementary formal power series tells us that

Observation. A power series S(x) ∈ (FracQ)[[x]] has a uniquely determined multiplicative
inverse in this ring if and only if [x0]S(x) ̸= 0.

For the same reason, [x0]S(x) ̸= 0 implies S(x) ∈ (FracQ)[[x]]/⟨xm − q1⟩ has a multi-
plicative inverse. In fact, this is true even if [x0]S(x) = 0, as long as S(x) is not identically
zero. Indeed, in the ring S(x) ∈ (FracQ)[[x]]/⟨xm − q1⟩, note that xi has the multiplica-
tive inverse q−1xm−i; then, given a S(x) with zero constant term, we can write it as

S(x) = xk
(∑m−1

i=0 qAixi
)
, where qA0 ̸= 0; then S(x)−1 = q−1xm−k

(∑m−1
i=0 qAixi

)−1
. Hence

Observation. Any nonzero power series 0 ̸= S(x) ∈ (FracQ)[[x]]/⟨xm − q1⟩ has a multi-
plicative inverse in this ring.

One might wonder if this multiplicative inverse is unique like it is for the classical
setting of formal series over fields. By expanding the equation

(qA0x0 + · · ·+ qAm−1xm−1)(qB0x0 + · · ·+ qBm−1xm−1) = 1,

one can see that the relevant system of equations is

qA0 qAm−1+1 qAm−2+1 qAm−3+1 · · · qA1+1

qA1 qA0 qAm−1+1 qAm−2+1 · · · qA2+1

qA2 qA1 qA0 qAm−1+1 · · · qA3+1

...
...

...
. . .

. . .
...

qAm−2 qAm−3 qAm−4 · · · qA0 qAm−1+1

qAm−1 qAm−2 qAm−3 · · · qA1 qA0





qB0

qB1

qB2

...
qBm−2

qBm−1


=



q0

0
0
...
0
0


.
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(The presence of the extra q1’s on the upper triangle comes from the fact that xm = q1.)
Then a multiplicative inverse in (FracQ)[[x]]/⟨xm−q1⟩ is unique if and only if this Toeplitz
matrix on the left (which has entries in this strange field FracQ)

T :=



qA0 qAm−1+1 qAm−2+1 qAm−3+1 · · · qA1+1

qA1 qA0 qAm−1+1 qAm−2+1 · · · qA2+1

qA2 qA1 qA0 qAm−1+1 · · · qA3+1

...
...

...
. . .

. . .
...

qAm−2 qAm−3 qAm−4 · · · qA0 qAm−1+1

qAm−1 qAm−2 qAm−3 · · · qA1 qA0


is invertible. The author wonders if some type of complexification is possible, so that the
Gershgorin circle theorem (or some appropriate variant) becomes applicable.

We suppose it is possible that somehow this matrix is always invertible. For example,
in the case m = 2, the determinant of this matrix is

detT = qA0⊕A0 − qA1⊕A1⊕1,

which we see cannot be zero since A0 ⊕ A0 = A1 ⊕ A1 ⊕ 1 is impossible, as the smallest
number in A0 ⊕ A0 (which must be the sum of the smallest number in A0 with itself)
must be even, while the smallest number in A1 ⊕ A1 ⊕ 1 must be odd. Hence

Observation. In the case m = 2, all multiplicative inverses in (FracQ)[[x]]/⟨xm − q1⟩ are
unique.

But even in the case m = 3 this becomes more unwieldy. Indeed, for m = 3 the
determinant becomes

detT = qA0qA0qA0 + qA1qA1qA1+1 + qA2qA2+1qA2+1 − 3qA0qA1qA2q1,

so that

detT = 0 ⇐⇒ (A0⊕A0⊕A0)⊔(A1⊕A1⊕A1⊕1)⊔(A2⊕A2⊕A2⊕2) = 3(A0⊕A1⊕A2⊕1).

We can treat this case in the same way as before: letting the minimal element of Ai be
ai with multiplicity16 mi, we see that the minimum element of the left-hand side is

min
(
A⊕3

0 ⊔ (A⊕3
1 ⊕ 1) ⊔ (A⊕3

2 ⊕ 1)
)
= min{3a0, 3a1 + 1, 3a2 + 2}, with multiplicity m3

i ;

on the other hand, the minimal element of the right hand side is

min
(
3(A0 ⊕ A1 ⊕ A2 ⊕ 1)

)
= a0 + a1 + a2 + 1, with multiplicity m0m1m2.

For detT = 0 to be true, the right-hand-side minimum must agree with the left-hand-
side minimum, which is one of the stated three things. If a0 + a1 + a2 + 1 = 3a0 is the
common minimum of both sides, then a1 + a2 + 1 = 2a0, i.e. 1 = (a0 − a1) + (a0 − a2),

16Not conflicting with the m which denotes which Ξm we are in.
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so that a0 must be greater than one of a1 and a2, contradicting the minimality of 3a0. If
a0 + a1 + a2 + 1 = 3a1 + 1 is the common minimum of both sides, then a0 + a2 = 2a1.
i.e. 0 = (a1 − a0) + (a1 − a2), which also contradicts17 the minimality of 3a1 + 1. Lastly,
if a0 + a1 + a2 + 1 = 3a2 + 2 is the common minimum, then a0 + a1 = 2a2 + 1, i.e.
1 = (a0 − a2) + (a1 − a2), also contradicting18 the minimality of 3a2 + 2. Hence the two
minima cannot possibly be equal, and so we conclude detT ̸= 0:

Proposition 16. For m ⩽ 3, all multiplicative inverses for nonzero elements in

(FracQ)[[x]]/⟨xm − q1⟩

exist and are unique.

As a remark, it is not enough to check the sizes (with multiplicity taken into account
of course) of both sides, since the sizes are

|A0|3 + |A1|3 + |A2|3 and 3|A0||A1||A2|,

which is precisely AM-GM and are equal precisely when |A0| = |A1| = |A2|.
However, one could try to use this idea of comparing sizes to derive sufficient conditions

for unique inverses. Taking the sizes of the entries in the Toeplitz matrix, we obtain that
if the determinant of the symmetric19 Toeplitz matrix

det


|A0| |Am−1| · · · · · · |A1|
|A1| |A0| |Am−1| · · · |A2|
... |A1|

. . .
. . .

...
...

...
. . . |A0| |Am−1|

|Am−1| |Am−2| · · · |A1| |A0|


is nonzero, then A(x) has a unique multiplicative inverse in (FracQ)[[x]]/⟨xm − q1⟩. This
matrix has integer entries, so we may now apply familiar results; for example, applying
the Gershgorin circle theorem20 [6], one obtains that

Proposition 17. If

|A0| >
m−1∑
i=1

|Ai|,

then A(x) has a unique multiplicative inverse in (FracQ)[[x]]/⟨xm − q1⟩.
17If a1 ⩾ a0, then 3a0 < 3a1+1, contradiction. Otherwise, we must have a1 > a2, so that 3a1+1 > 3a2+2,
also contradiction.

18a0 ⩽ a2 implies 3a0 < 3a2 + 2, contradicting minimality, so we must have a0 > a2. But a1 ⩽ a2 also
implies 3a1+1 < 3a2+2, also contradiction; hence also a1 > a2. But the sum of two positive numbers
cannot be 1.

19This is because |A⊕ 1| = |A|.
20As a reminder, this theorem states that, for a complex matrix A = {aij}, every eigenvalue of A lies in
at least one of the discs B∑

j ̸=i |aij |(aii) ⊂ C.
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The case m = 3 might have given us hope that there is some pattern to be had, but
detT for m = 4 is

detT = qA
4
0 − 4qA

2
0qA1qA3q1 − 2qA

2
0qA

2
2q1 + 4qA0qA

2
1qA2q1

+4qA0qA2qA
2
3q2 − qA

4
1q1 + 2qA

2
1qA

2
3q2

−4qA1qA
2
2qA3q2 + qA

4
2q2 − qA

4
3q3,

which is far messier. We leave open the following question:

Question. Under what general circumstances (perhaps always) are multiplicative inverses
unique in (FracQ)[[x]]/⟨xm − q1⟩?

As a fun example, we can consider the equation

1 + x+ x2 + · · · = 1

1− x
.

When taken to Ξm, the left hand side is

1 + x+ x2 + · · · = x0 + x1 + q1x0 + q1x2 + q2x0 + q2x1 + · · ·
= (q0 + q1 + q2 + · · · )x0 + (q0 + q1 + q2 + · · · )x1

= qNx0 + qNx1

= (N)(x).

On the other hand,

1− x = q0x0 − q0x1

= ({0})(x)− ({1})(x)
= ({0} ⊔− {1})(x),

so that the equation (1 + x+ x2 + · · · )(1− x) = 1 becomes

1 = (N)(x)({0} ⊔− {1})(x)
= (N⊕ ({0} ⊔− {1}))(x)
= ((N⊕ {0}) ⊔− (N⊕ {1}))(x)
= ({1})(x),

so that
(1 + x+ x2 + · · · )(1− x) = 1 ! (N⊕ {0}) \ (N⊕ {1}) = {1}.

Since we’ve seen that multiplication of these formal power series corresponds to the
(disjoint) Minkowski sum and addition corresponds to the disjoint union, one may ask
what the functional composition corresponds to. The answer is not clear to us, and we
leave this open:

Question. What does functional composition of these formal power series correspond to
set-theoretically?
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6.3 Vaguer Questions and Directions

In the construction of these formal power series, our idea was that the information of a
set in Zm

∼= Z is the same as P(Z)m, that is the information of m elements in the power
set of Z. The information of P(Z) is then encoded in the coefficients of our formal power
series, and the exponents of x indicate which position this set is at in our m elements
of Z. One might ask how to generalize this idea: in general, one might roughly have
different exponential symbols expi(Si) ∈ Qi which do not combine, and coefficients in a
power series might look like products

∏
i expi(Si) of these symbols, and each term might

have products of powers of variables attached of form
∏

i x
ni
i . We suspect these formal

power series will only make sense for finitely-generated abelian groups.

Direction. To further investigate and make precise these generalized formal power series
as well as their combinatorial set-theoretic interpretations.

In a similar vein, looking at our setup for the statement of Theorem 12, our idea
was to take a collection of points in Z2 satisfying some conditions, quotient out by some
sequence of “increasing” submodules (in our case “increasing” meant Z⟨(m,−1)⟩ where
m is increasing), and ask at what point does the image become a MAC. But why this
particular sequence of submodules? We suspect that, for some appropriately defined
family of “increasing” submodules, Theorem 12 is still true.

Question. How should one define these families of “increasing” submodules so that some
appropriate variant of Theorem 12 is still true? And how ought we to modify the formal
power series in this framework?

One can take these questions even further. But why should 2 be special?

Question. What if instead we considered a collection of points in some other (finitely-
generated) abelian group, quotiented out by some sequence of “increasing” submodules
(we guess of the same rank), and asked at what point does the image become a MAC?
And how ought we to define the formal power series in this framework?

Lastly, one might consider similar questions for nonabelian groups, but without the
structure afforded by finitely-generated abelian groups this question is rather unclear.
We would also like to remark that, in the case of formal power series for enumerative
purposes, there was a categorification incarnated in the form of the theory of combinatorial
species wherein lied a vast and rich theory. Although much more of a “long shot”, one
might ask whether the formal power series defined in the present paper also admitted
such a categorification. In the species case, this was achieved roughly by considering
the automorphism groups of the exponents (where xn represented [n]) and gluing them
together into a category; in our case, it is unclear what, if any, automorphism groups
should be considered.

7 Appendix: An Explanation of the Operations of Series and
Proof of Proposition 1 in a Special Case

We explain Definition 9.
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Explanation of Definition. We have secretly hidden some content in claiming A(x) +
B(x) = (A ⊔ B)(x) and A(x)B(x) = (A + B)(x), but the amount of content is epsilon
and is evident from FOIL (distributive property of multiplication). Indeed, writing A =
A1 ⊔ · · · ⊔Ar and B = B1 ⊔ · · · ⊔Bt, it is clear that A⊔B = A1 ⊔ · · · ⊔Ar ⊔B1 ⊔ · · · ⊔Bt,
i.e.

(A ⊔B)(x) =
r∑

i=1

qAixai +
t∑

j=1

qBjxbj = A(x) +B(x).

Now that we’ve shown the first equality, to show that A(x)B(x) = (A + B)(x), let
us first show the basic case when A = A1 and B = B1 are each concentrated in a
single column. In that case A(x) = qAxa and B(x) = qBxb, whereupon it is obvious

that A + B  ! (Ã + B̃, a + b), so that (A + B)(x) = qÃ+B̃xa+b = qA+Bxa+b, while
A(x)B(x) = qAxaqBxb, so that

(A+B)(x) = A(x)B(x).

Now that the base case is established, to get the general case we can see that

A+B = (A1 ⊔ · · · ⊔ Ar) +B

= (A1 +B) ⊔ · · · ⊔ (Ar +B)

(A+B)(x) =
(
(A1 +B) ⊔ · · · ⊔ (Ar +B)

)
(x)

= (A1 +B)(x) + · · ·+ (Ar +B)(x)

=
(
A1 + (B1 ⊔ · · · ⊔Bt)

)
(x) + · · ·+

(
Ar + (B1 ⊔ · · · ⊔Bt)

)
(x)

=
(
(A1 +B1) ⊔ · · · ⊔ (A1 +Bt)

)
(x) + · · ·+

(
(Ar +B1) ⊔ · · · ⊔ (Ar +Bt)

)
(x)

= (A1 +B1)(x) + · · ·+ (A1 +Bt)(x) + · · · (Ar +B1)(x) + · · ·+ (Ar +Bt)(x)

= A1(x)B1(x) + · · ·+ A1(x)Bt(x) + · · ·+ Ar(x)B1(x) + · · ·Ar(x)Bt(x)

=
(
A1(x) + · · ·+ Ar(x)

)(
B1(x) + · · ·+Bt(x)

)
= A(x)B(x).

■

We now prove Proposition 1 in the case that B is infinite.

Proof of Proposition 1. If B is infinite and mN∪B ̸= mZ, we can still proceed as follows.
Being a singleton, {f} has another set W such that {f}+W = mZ− \B (this set is not
empty since mN ∪B ̸= mZ). Then

C +

(
{0} ∪W ∪

m−1⋃
i=1

(mZ+ i) \ (mZ+m− f)

)
= Z

realizes C as a MAC. Indeed, in this expression, C + {0} ensures that mN ∪ B has
dependent elements, and C +W ensures that {f} has dependent elements. It is easy to
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see that this covers all of Z, as well as that the 0-th column contains dependent elements
for all of C.

Even if mN ∪B = mZ, as long as m ⩾ 3, we can still consider

C +

(
m−2⋃
i=0

(i+ im) ∪ (mZ+m− 1− f)

)
= Z.

The dependent elements ofmN∪B are given by the translates by i+im, and the dependent
elements of {f} are given by the translates by mZ+m− 1− f .

However, if both mN ∪ B = mZ and m = 2, it is easy to see by inspection that this
set cannot be a MAC; we cannot cover all of Z while maintaining a dependent element of
{f}, for instance. ■
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