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Abstract

The color refinement algorithm is mainly known as a heuristic method for graph
isomorphism testing. It has surprising but natural characterizations in terms of,
for example, homomorphism counts from trees and solutions to a system of linear
equations. Greb́ık and Rocha (2022) have recently shown how color refinement and
notions that characterize it generalize to graphons, which emerged as limit objects
in the theory of dense graph limits. In particular, they show that these characteriza-
tions are still equivalent in the graphon case. The k-dimensional Weisfeiler-Leman
algorithm (k-WL) is a more powerful variant of color refinement that colors k-tuples
instead of single vertices, where the terms 1-WL and color refinement are often used
interchangeably since they compute equivalent colorings. We show how to adapt
the result of Greb́ık and Rocha to k-WL or, in other words, how k-WL and its
characterizations generalize to graphons. In particular, we obtain characterizations
in terms of homomorphism densities from multigraphs of bounded treewidth and
linear equations. We give a simple example that parallel edges make a difference
in the more general case of graphons, which means that, there, the equivalence
between 1-WL and color refinement does not hold anymore. We also show how this
equivalence can be recovered by defining a variant of k-WL that corresponds to
homomorphism densities from simple graphs of bounded treewidth.

Mathematics Subject Classifications: 05C80, 05C50, 05C60

1 Introduction

Color refinement is a polynomial-time algorithm best known as an efficient heuristic for
graph isomorphism testing even though it has more applications, e.g., as graph kernels in
machine learning [13]. It iteratively computes a coloring of the vertices of a simple graph,
and two graphs are called indistinguishable by color refinement if the resulting multisets
of colors match. For isomorphic graphs, the resulting multisets of colors are necessarily
the same, but there are non-isomorphic graphs that still produce the same multisets of
colors. The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a generalization of color
refinement that colors k-dimensional tuples of vertices instead of single vertices. This
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again yields a heuristic for graph isomorphism testing by comparing the resulting multisets
of colors, where two graphs are called indistinguishable by k-WL if the resulting multisets
of colors match. Starting from 1-WL, which is equivalent to color refinement, it yields
a hierarchy of ever-more-powerful polynomial-time algorithms, none of which actually
decides graph isomorphism [6].

There are various seemingly unrelated characterizations of indistinguishability by color
refinement, for example, by homomorphism counts from trees [9, 7] or by rational solutions
to a certain system of linear equations encoding graph isomorphism called fractional
isomorphisms [25, 24]. Similar characterizations exist for the k-dimensional Weisfeiler-
Leman algorithm in terms of homomorphism counts from graphs of bounded treewidth
[9, 7] and Sherali-Adams relaxations of the system of linear equations encoding graph
isomorphism [7, 16, 1, 14]. Greb́ık and Rocha recently investigated the graphon counterpart
of fractional isomorphism by first providing graphon counterparts of the most important
notions used as characterizations for fractional isomorphism of graphs and then proving
that they are all equivalent [11]. Graphons emerged as limit objects for sequences of graphs
in the theory of dense graph limits developed by Borgs, Chayes, Lovász, Sós, Szegedy,
and Vesztergombi [21, 4, 5]. In this theory, homomorphism densities play a crucial role as
a starting point for a notion of convergence of a sequence of graphs and lead to the cut
distance, a (pseudo-)metric on graphons. The book of Lovász [20] provides a comprehensive
overview.

In this paper, we provide graphon counterparts of the most important notions used as
characterizations for k-WL indistinguishability and also prove their equivalence. As Greb́ık
and Rocha stress, for fractional isomorphism of graphons, both defining the corresponding
notions and proving their equivalence turned out to be surprisingly difficult. This is
no different in the case of k-WL indistinguishability, where somewhat unsurprisingly,
even more difficulties and technical hurdles arise. In particular, it turns out that there
is no clear single generalization of k-WL indistinguishability to graphons but multiple
non-equivalent variants. The arguably most interesting characterization we obtain is in
terms of homomorphism densities: The starting point of Greb́ık and Rocha was to call two
graphons U and W fractionally isomorphic if the homomorphism density t(T, U) of T in
U equals the homomorphism density of T in W for every (finite simple) tree T . Based on
this and the characterizations of k-WL for graphs, it is only natural to ask what kind of
similarity U and W have to satisfy for t(F,U) = t(F,W ) to hold for every (finite simple)
graph F of treewidth at most k. While we give an answer to this, we also show that
a much more elegant characterization and direct correspondence to the usual definition
of k-WL is obtained if we require t(F,U) = t(F,W ) to hold for every multigraph F of
treewidth at most k instead.

1.1 Finite Graphs

In this section, we give a brief description of color refinement and k-WL for finite graphs.
Moreover, we briefly present the notions characterizing them that are relevant to us. A
(finite simple) graph is a pair G = (V,E), where V is a set of vertices and E ⊆

(
V
2

)
a

set of edges. We usually write V (G) := V and E(G) := E. The initial coloring of color
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refinement for the vertices of a graph G is defined by simply letting crG,0(v) := 1 for every
vertex v ∈ V (G). Then, for every n > 0, let

crG,n+1(v) := (crG,n(v), {{crG,n(w) | wv ∈ E(G)}})

for every v ∈ V (G), where {{·}} is used to denote a multiset. Hence, the new color of a
vertex v is determined by aggregating the colors of all neighbors of v, and in particular,
two vertices u and v get different colors if they have a different number of neighbors of
some color c. Every coloring crG,n induces a partition of V (G), and after a finite number
of steps, the coloring we obtain is stable, i.e., the next and all further colorings induce the
same partition. For graphs G and H, we say that G and H are indistinguishable by color
refinement if {{crG,n(v) | v ∈ V (G)}} = {{crH,n(v) | v ∈ V (H)}} holds for every n > 0.

The notions characterizing indistinguishability by color refinement that are impor-
tant for us are tree homomorphisms, fractional isomorphisms, and stable partitions. A
homomorphism from a graph F to a graph G is a mapping h : V (F )→ V (G) such that
uv ∈ E(F ) implies h(u)h(v) ∈ E(G). The number of homomorphisms from F to G is de-
noted by hom(F,G), and t(F,G) := hom(F,G)/|V (G)||V (F )| is the homomorphism density
of F in G. Then, a result of Dvořák states two graphs G and H are not distinguished
by color refinement if and only if the number of homomorphisms hom(T,G) from T to G
equals the corresponding number hom(T,H) from T to H for every tree T [9], see also
[7]. An older result due to Tinhofer [25, 24] states that G and H are not distinguished
by color refinement if and only if they are fractionally isomorphic, i.e., there is a doubly
stochastic matrix X such that AX = XB, where A and B are the adjacency matrices
of G and H, respectively. A characterization that is more closely related to the color
refinement algorithm itself is given by stable partitions of the vertex set V (G) of a graph
G, which are partitions where all vertices in the same class have the same number of
neighbors in every other class. One can show that the partition induced by the colors of
color refinement is the coarsest stable partition and that graphs G and H are fractionally
isomorphic if and only if their coarsest stable partitions have the same parameters, i.e.,
there is a bijection between the partitions that preserves the size of every class C and
the numbers of neighbors a vertex in C has in some other class D [25]. This, in turn, is
equivalent to there being some stable partitions of G and H with the same parameters
[23].

The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a variant of color refinement
that colors k-tuples of vertices instead of single vertices; here and also throughout the
paper, k is an integer with k > 1. See [6] for an overview of the history of k-WL. Usually,
no distinction is made between 1-WL and color refinement as they, in some sense, compute
equivalent colorings. However, when stating the formal definition of k-WL, it is important
to note that already for graphs there actually are two non-equivalent definitions to be
found in the literature. Following Grohe [12], we refer to these distinct definitions as
(non-oblivious) k-WL and oblivious k-WL. Both k-WL and oblivious k-WL operate on
k-tuples of vertices, but in terms of expressive power, k-WL is equivalent to oblivious
k + 1-WL in the sense that they distinguish the same graphs. In this paper, we nearly
always consider oblivious k-WL and only briefly define non-oblivious k-WL at the end
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of the paper in Section 5.2. However, to avoid any confusion, we nevertheless continue
to explicitly use the term oblivious k-WL from here on and use the term k-WL only for
non-oblivious k-WL.

Let G be a graph. To define oblivious k-WL, we first have to define the atomic type
atpG(v̄) of a tuple v̄ = (v1, . . . , vk) ∈ V (G)k of vertices of G, which is the k × k-matrix
A with entries Aij = 2 if vi = vj, Aij = 1 if vivj ∈ E(G), and Aij = 0 otherwise. We let
owlkG,0(v̄) := atpG(v̄) for every v̄ ∈ V (G)k, and then for every n > 0, we define

owlkG,n+1(v̄) :=
(
owlkG,n(v̄),

(
{{owlkG,n(v̄[w/j] | w ∈ V (G))}}

)
j∈[k]

)
(1)

for every v̄ ∈ V (G)k. Here, v̄[w/j] denotes the k-tuple obtained from v̄ by replacing the
jth component by w; this k-tuple is usually called a j-neighbor of v̄. Hence, the new color
of a tuple v̄ is determined by aggregating the colors of all j-neighbors of v̄ for every j ∈ [k],
and in particular, two tuples ū and v̄ get different colors if, for some j ∈ [k], they have
a different number of j-neighbors of some color c. We say that oblivious k-WL does not
distinguish graphs G and H if {{owlkG,n(v̄) | v̄ ∈ V (G)k}} = {{owlkH,n(v̄) | v̄ ∈ V (H)k}} for
every n > 0.

The previously described notions that characterize indistinguishability by color refine-
ment generalize to oblivious k-WL: First of all, oblivious (k + 1)-WL does not distinguish
graphs G and H if and only if the number of homomorphisms hom(F,G) from F to G is
equal to the corresponding number hom(F,H) from F to H for every graph F of treewidth
at most k [9, 7]. A system of linear equations Lkiso(G,H), which is closely related to the
Sherali-Adams relaxations of the system of linear equations encoding graph isomorphism,
generalizes the concept of fractional isomorphisms: oblivious k-WL does not distinguish
G and H if and only if Lkiso(G,H) has a non-negative real solution, cf. [7] and also [16,
1, 14]. The precise formulation of Lkiso(G,H) is given in Section 4.8. Stable partitions of
the vertex set V (G) of a graph G can be generalized to stable partitions of V (G)k, where
tuples with different atomic types are in different classes and, for every j ∈ [k], all tuples
in the same class have the same number of j-neighbors in every other class. One can again
show that the coloring computed by k-WL on G induces the coarsest stable partition of
V (G)k and two graphs G and H are not distinguished by k-WL if and only if the coarsest
stable partitions of V (G)k and V (H)k have the same parameters, which again is equivalent
to there being some stable partitions with the same parameters. See for example [14],
where this is implicitly treated.

Remark 1. Immerman and Lander [16] first showed that fractional isomorphism of graphs
can also be seen from the perspective of logic; it corresponds to equivalence in the logic
C2, the 2-variable fragment of first-order logic with counting quantifiers. More generally,
indistinguishability by oblivious k-WL corresponds to equivalence in Ck, the k-variable
fragment of first-order logic with counting quantifiers [6]. However, this perspective does
not play a further role in this paper.
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1.2 Graphons and Homomorphism Densities

Graphons emerged in the theory of graph limits as limit objects of sequences of dense
graphs; we refer to the book of Lovász [20] for a comprehensive treatment of this topic.
Formally, a graphon is a symmetric Borel- or Lebesgue-measurable (this usually does not
make a difference) function W : [0, 1]× [0, 1]→ [0, 1], although it can be useful to consider
more general underlying spaces than the unit interval with the Lebesgue measure. A graph
G can be viewed as a graphon WG by partitioning [0, 1] into intervals I1, . . . , In of the
same size—one for each vertex—and setting WG(x, y) either to 1 or 0 for all x ∈ Ii, y ∈ Ij
depending on whether ij is an edge in G or not. Similarly, a vertex- and edge-weighted
graph H with edge weights in [0, 1] can be viewed as graphon WH , cf. [20, Section 7.1]. This
allows one to restore statements about graphs and weighted graphs from statements about
graphons, e.g., the equivalence between the notions characterizing fractional isomorphism
of graphs from the results of Greb́ık and Rocha.

We follow Greb́ık and Rocha, and throughout the whole paper, let (X,B) denote a
standard Borel space and µ a Borel probability measure on X; using this as the underlying
space for graphons has the advantage that we later can consider quotient spaces. We think
of (X,B, µ) as atom free, i.e., that there is no singleton set of positive measure, but do
not formally require it. A kernel is a (B ⊗ B)-measurable map W : X ×X → [0, 1], and a
symmetric kernel is called a graphon. An important way to view a kernel W : X×X → [0, 1]
as an (bounded linear) operator is by defining the kernel operator TW : L2(X,µ)→ L2(X,µ)
by setting

(TWf)(x) :=

∫
X

W (x, y)f(y) dµ(y) (2)

for every f ∈ L2(X,µ) and every x ∈ X. It is a well-defined Hilbert-Schmidt operator[20,
Section 7.5], and if W is a graphon, then TW is self-adjoint, i.e., its Hilbert adjoint T ∗W
satisfies T ∗W = TW ; in general, the Hilbert adjoint of an operator S : L2(X,µ)→ L2(Y, ν),
where (X,B) and (Y,D) are standard Borel spaces with Borel probability measures µ and
ν on X and Y , respectively, is the unique operator S∗ : L2(Y, ν) → L2(X,µ) satisfying
〈Sf, g〉 = 〈f, S∗g〉 for all f ∈ L2(X,µ), g ∈ L2(Y, ν).

The homomorphism density of a graph F in a graphon W : X ×X → [0, 1] is

t(F,W ) :=

∫
XV (F )

∏
ij∈E(F )

W (xi, xj) dµ
⊗V (F )(x̄), (3)

where x̄ denotes the vector of all variables xi for i ∈ V (F ). This coincides with the previous
definition for graphs, i.e., for the graphon WG obtained from a graph G as described
above, we have t(F,G) = t(F,WG) [20, (7.2)]. Two graphons U,W : X ×X → [0, 1] are
called weakly isomorphic if t(F,U) = t(F,W ) for every simple graph F . This is the usual
notion of isomorphism used for graphons and has various characterizations. For example,
two graphons U and W are weakly isomorphic if and only if their cut distance δ�(U,W )
is zero, cf. [20, Section 10.7] for this result and the definition of the cut distance. The
definition of weak isomorphism via homomorphism densities is robust in the following
sense: A multigraph is a tuple G = (V,E) where V is set of vertices and E is a multiset of
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Figure 1: Two fractionally isomorphic weighted graphs that are 1-WL distinguishable.

edges from
(
V
2

)
. The definition of the homomorphism density t(F,W ) of F in a graphon

W : X ×X → [0, 1] in Equation (3) extends to the case in which F is a multigraph, where
we slightly abuse notation and assume that each factor W (xi, xj) occurs as often in the
product

∏
ij∈E(F ) W (xi, xj) as ij is contained in E(F ). Then, two graphons U and W are

weakly isomorphic if and only if t(F,U) = t(F,W ) for every multigraph F [20, Corollary
10.36], i.e., the definition of weak isomorphism remains unchanged if we use multigraphs
instead of simple graphs.

Coming from the definition of weak isomorphism, the first definition in the paper of
Greb́ık and Rocha is to call two graphons U and W fractionally isomorphic if t(T, U) =
t(T,W ) holds for every tree T . We follow suit with the following definition, where the
treewidth of a multigraph is defined analogously to the case of simple graphs, i.e., the
edge multiplicities are not taken into account and parallel edges count as a single edge.

Definition 2. Two graphons U,W : X ×X → [0, 1] are called k-WL indistinguishable if
t(T, U) = t(T,W ) holds for every multigraph of treewidth at most k, and U and W are
called simply k-WL indistinguishable if t(T, U) = t(T,W ) holds for every simple graph of
treewidth at most k.

In these terms, two graphons U and W are weakly isomorphic if and only if they are
k-WL indistinguishable for every k, which again is equivalent to them being simply k-WL
indistinguishable for every k > 1. However, while k-WL indistinguishability clearly implies
simple k-WL indistinguishability, the converse does not hold in general. To illustrate this,
let E` denote the multigraph that consists of two vertices connected by ` parallel edges.
Then, the homomorphism densities of E` in a graphon W : X ×X → [0, 1] for ` > 0 are
precisely the moments of W , i.e., we have

t(E`,W ) =

∫
X×X

W (x, y)`d(µ× µ)(x, y).

Hence, for graphons U and W to be 1-WL indistinguishable, it is already necessary that
they have the same moments, while this is not required for U and W to be fractionally
isomorphic. For example, the constant graphon Wc : X×X → [0, 1], (x, y) 7→ c for c ∈ [0, 1]
is fractionally isomorphic to any c-regular graphon, i.e., a graphon W : X ×X → [0, 1]
satisfying

∫
X
W (x, y)dµ(y) = c for every x ∈ X, but these may not have the same moments.

A concrete example is given by the weighted graphs in Figure 1.
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Since 1-WL indistinguishability is a more restrictive notion than fractional isomorphism,
Definition 2 also introduces simple k-WL indistinguishability. Simple 1-WL indistinguisha-
bility is just fractional isomorphism since, for any class of graphs closed under connected
components, the homomorphism densities of the connected components determine the ho-
momorphism densities of all graphs in that class, cf. [20, (7.6)]. However counter-intuitive
it may seem at this point, the characterizations we obtain for k-WL indistinguishability
are much more natural than these for simple k-WL indistinguishability. In particular, the
adaption of oblivious (k + 1)-WL to graphons corresponds to k-WL indistinguishability
and not simple k-WL indistinguishability.

As a last remark, we note that for {0, 1}-graphons, i.e., graphons that only take
the values 0 and 1, parallel edges do not make a difference for homomorphism densities
since powers of 1 are just 1. Hence, for {0, 1}-graphons—of which graphs, or more
precisely graphons obtained from graphs, are a special case—, the two notions of k-WL
indistinguishability and simple k-WL indistinguishability coincide. In particular, {0, 1}-
graphons are 1-WL indistinguishable if and only if they are fractionally isomorphic. Hence,
while the terms color refinement and 1-WL are usually used synonymously in the literature,
it is important to not confuse these concepts as they differ in the more general case of
graphons.

1.3 Fractional Isomorphism of Graphons

In this section, we try to give a more formal but still high-level overview over the notions
introduced by Greb́ık and Rocha that all characterize fractional isomorphism of graphons.
We deem this essential for understanding our results.

Stating the color-refinement algorithm for graphons requires more formalism than in
the case of graphs. Greb́ık and Rocha first define the standard Borel space M of iterated
degree measures, which can be seen as the space of colors used by color refinement; its
elements are sequences α = (α0, α1, α2, . . . ) of colors after 0, 1, 2, . . . refinement rounds.
For a graphon W : X × X → [0, 1], they define a measurable function crW : X → M
(denoted iW in their work) mapping every x ∈ X to such a sequence (α0, α1, α2, . . . ). Then,
the distribution on iterated degree measures (DIDM) νW is a probability measure on M
defined as the push-forward of µ via crW , i.e., by νW (A) := µ(cr−1

W (A)) for every A ∈ B(M).
Intuitively, this is the distribution of all colors assigned to the points of the graphon W
and corresponds to the multiset of all colors used in the definition of color-refinement
indistinguishability of graphs.

Greb́ık and Rocha show that the graphon analogue to stable partitions of the vertex
set of a graph are sub-σ-algebras that satisfy certain properties. To gain some intuition,
consider the sub-σ-algebra {∅, X} of B: in some way, it corresponds to the partition of the
vertex set of a graph that consists of a single class containing all vertices. Formally, Greb́ık
and Rocha consider µ-relatively complete sub-σ-algebras, where a sub-σ-algebra C ⊆ B
of B is called µ-relatively complete if Z ∈ C for all Z ∈ B, Z0 ∈ C with µ(Z4Z0) = 0.
The set of all µ-relatively complete sub-σ-algebras of B is denoted by Θ(B, µ). Then,
for our example, the smallest µ-relatively complete sub-σ-algebra that includes {∅, X}
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corresponds to the partition of the vertex set of a graph that consists of a single class
containing all vertices.

Let C ∈ Θ(B, µ) be a µ-relatively complete sub-σ-algebra C of B. If we let L2(X,µ) :=
L2(X,B, µ) denote the Hilbert space of all measurable real-valued functions on X with
‖f‖2 < ∞ modulo equality µ-almost everywhere, we can then consider the subspace
L2(X, C, µ) of L2(X,µ) consisting of all C-measurable functions since C is µ-relatively
complete. Moreover, there is a quotient space corresponding to C, i.e., a standard
Borel space (X/C, C ′) with a Borel probability measure µ/C on X/C. Alternatively, the
conditional expectation E(− | C), i.e., the orthogonal projection onto L2(X, C, µ), yields a
different but equivalent perspective on quotient spaces.

Now, to connect sub-σ-algebras to stable partitions, for an operator T : L2(X,µ) →
L2(X,µ), a µ-relatively complete sub-σ-algebra C ∈ Θ(B, µ) is called T -invariant if
L2(X, C, µ) is T -invariant, i.e., T (L2(X, C, µ)) ⊆ L2(X, C, µ). Then, for a graphon W : X×
X → [0, 1], the µ-relatively complete sub-σ-algebra C ∈ Θ(B, µ) is called W -invariant if it
is TW -invariant, where we recall that TW is the operator defined by Equation (2). Greb́ık
and Rocha show that there is a minimum W -invariant µ-relatively complete sub-σ-algebra
CW of B (denoted C(W ) in their work), which corresponds to the coarsest stable partition
of the vertex set of a graph.

Finally, for a graphon W : X × X → [0, 1] and a W -invariant µ-relatively complete
sub-σ-algebra C ∈ Θ(B, µ), Greb́ık and Rocha define the quotient graphon W/C on the
space X/C ×X/C. Then, for graphons U,W : X×X → [0, 1], saying that the two quotient
graphons U/CU and W/CW are isomorphic corresponds to saying that two coarsest stable
partitions have the same parameters. Alternatively to the quotient graphon W/C, one can
also consider WC := E(W | C×C), the conditional expectation of W given C×C. Intuitively,
the difference is that WC is obtained by simply averaging over the color classes of C, while
W/C is obtained by first averaging over the color classes of C and then identifying all
elements of a color class.

Remark 3. Greb́ık and Rocha show that every DIDM ν defines a kernel M×M→ [0, 1]
and that, for a graphon W : X ×X → [0, 1] and its DIDM νW , this kernel on M×M is
actually isomorphic to W/CW . Intuitively, this can be viewed as a canonical representation
of W on the space of all colors.

For standard Borel spaces (X,B) and (Y,D) with Borel probability measures µ and ν
on X and Y , respectively, an operator S : L2(X,µ)→ L2(Y, ν) is called a Markov operator
if Sf > 0 for every f ∈ L2(X,µ) with f > 0, S1X = 1Y , and S∗1Y = 1X . Here, 1X and
1Y denote the all-one functions on X and Y , respectively. The Markov operator S is called
a Markov embedding if it is an isometry, i.e., ‖Sf‖2 = ‖f‖2 for every f ∈ L2(X,µ), and a
Markov isomorphism if it is a surjective Markov embedding. Markov operators are simply
the infinite-dimensional analogue to doubly stochastic matrices and yield the graphon
analogue to fractional isomorphisms. The main result of Greb́ık and Rocha then is the
following Theorem 4.

Theorem 4 ([11]). Let U,W : X ×X → [0, 1] be graphons. The following are equivalent:

1. t(T, U) = t(T,W ) for every tree T .
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2. νU = νW .

3. W/CW and U/CU are isomorphic.

4. There is a Markov operator S : L2(X,µ)→ L2(X,µ) such that TU ◦ S = S ◦ TW .

5. There are U - and W -invariant µ-relatively complete sub-σ-algebras C and D, respec-
tively, such that UC and WD are weakly isomorphic.

Recall the various notions characterizing fractional isomorphism of graphs presented in
Section 1.1. Characterization (1) corresponds to homomorphism numbers of trees and is
the definition of fractional isomorphism of graphons, Characterization (2) corresponds to
color refinement not distinguishing two graphs, Characterization (3) corresponds to the
coarsest stable partitions of two graphs having the same parameters, Characterization (4)
generalizes fractional isomorphisms, and Characterization (5) corresponds to some stable
partitions of two graphs having the same parameters. We remark that there is a subtle
difference in the way Greb́ık and Rocha phrase Characterization (3) and (5): the former uses
quotient spaces and the stronger notion of isomorphism while the latter uses conditional
expectation and weak isomorphism.

1.4 Weisfeiler-Leman Indistinguishability of Graphons

We continue in the vein of Section 1.3 and give an overview of the notions characterizing
k-WL indistinguishability of graphons before stating our main result, Theorem 5. To
generalize the oblivious k-WL to graphons, we first define the standard Borel space Mk,
which may not be confused with the product of k copies of M. Mk is the k-dimensional
analogue to M and can again be seen as the space of colors used by oblivious k-WL. Its
elements α = (α0, α1, α2, . . . ) are sequences, which can be viewed as the colors assigned to
points of a graphon after 0, 1, 2, . . . refinement rounds. Based on the definition of oblivious
k-WL for graphs, we define the measurable function owlkW : Xk →Mk mapping a k-tuple
x̄ ∈ Xk to a sequence (α0, α1, α2, . . . ). In particular, α0 corresponds to the atomic type of
a tuple of vertices and contains the values W (xi, xj) for ij ∈

(
[k]
2

)
. This further explains

the difference between 1-WL indistinguishability and fractional isomorphism: Already the
first step of oblivious 2-WL, which corresponds to 1-WL indistinguishability, completely
determines the distribution of values attained by a graphon. In contrast, these distributions
do not have to be equal for graphons to be fractionally isomorphic, cf. Section 1.2 and
Figure 1.

To get an intuition of how the refinement step of oblivious k-WL adapts to graphons,
recall how oblivious k-WL computes the new color owlkG,n+1(v̄) of a tuple v̄ ∈ V (G)k for a

graph G in Equation (1): owlkG,n+1(v̄) is a tuple consisting of the old color owlkG,n(v̄) of v̄
and, for every j ∈ [k], the multiset

{{owlkG,n+1(v̄[w/j] | w ∈ V (G))}}

of colors of all j-neighbors of v̄. For a graphon W , this multiset becomes the probability
measure

A 7→ µ({y ∈ X | owlkW,n(x̄[y/j]) ∈ A}),
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where A is a set of “colors” used in the nth refinement step, i.e., we determine the mass of
the j-neighbors of x̄ having a color in A. Compiling these probability measures for every
j ∈ [k] into a single tuple then yields the new color owlkW,n+1(x̄) of x̄. The sequence of all

these colors owlkW,n(x̄) for n = 0, 1, 2, . . . then yields the mapping owlkW : Xk → Mk, and
we define the k-WL distribution (k-WLD) νkW as the push-forward of the product measure
µ⊗k via owlkW . Then, νkW is a probability measure on Mk corresponding to the multiset of
colors computed by oblivious k-WL on a graph.

The central idea for getting from fractional isomorphism to k-WL indistinguishability is
to replace the single operator TW : L2(X,µ)→ L2(X,µ) of a graphon W : X ×X → [0, 1]
by a family TkW of operators on the product space L2(Xk, µ⊗k) := L2(Xk,B⊗k, µ⊗k). This
family TkW is indexed by a set Fk of bi-labeled graphs: a bi-labeled graph G is a triple
(G,a, b), where G is a multigraph and a ∈ V (G)k, b ∈ V (G)` for k, ` > 0 are tuples of
vertices such that both the entries of a and the entries of b are pairwise distinct; a and
b may however overlap. The set Fk is carefully chosen such that its bi-labeled graphs,
together with specific operations, serve as building blocks to construct precisely the graphs
of treewidth at most k − 1. It contains two types of bi-labeled graphs: adjacency graphs
and j-neighbor graphs, where intuitively, adjacency graphs insert an edge into a bag of a
tree decomposition and j-neighbor graphs move from one bag of a tree decomposition to
another by replacing a vertex by a fresh one. For a simple example, consider Figure 2,
where k = 3 and a tree decomposition of the cycle C4 is dissected into a sequence of
bi-labeled graphs. Here, A3

12 and A3
23 are specific instances of adjacency graphs, while N 3

2

is a j-neighbor graph. By “gluing” the output vertices of one bi-labeled graph to the input
vertices of the next bi-labeled graph in the depicted order, we obtain C4, a bi-labeled
variant of C4 with input labels on the vertices from the upper bag and output labels on the
vertices from the lower bag: going bottom up, A3

12 and A3
23 first insert the edges v1v4 and

v4v3, then N 3
2 replaces v4 by v2, and finally, A3

12 and A3
23 insert the edges v1v2 and v2v3.

Every bi-labeled graph F ∈ Fk together with a graphon W : X ×X → [0, 1] defines a
graphon operator TF→W on L2(Xk, µ⊗k). Then, TkW := (TF→W )F∈Fk denotes the family
of all these operators for bi-labeled graphs in Fk. The graphon operators of adjacency
graphs just multiply a given function f(x̄) by the value W (xi, xj) for fixed i, j. The
graphon operator of a j-neighbor graph, on the other hand, averages in the direction
j, i.e., integrates the given function f(x̄) over the jth component. As an example, the
graphon operators of the bi-labeled graphs from Figure 2 for a graphon W : X×X → [0, 1]
are given by (TA3

12→Wf)(x1, x2, x3) := W (x1, x2) · f(x1, x2, x3), (TA3
23→Wf)(x1, x2, x3) :=

W (x2, x3) · f(x1, x2, x3), and

(TN3
2→Wf)(x1, x2, x3) :=

∫
X

f(x1, y, x3) dµ(y)

for all x1, x2, x3 ∈ X. At this point, the reader might already note the connection of
these graphon operators to the description of oblivious k-WL for graphons given above as,
intuitively, the graphon operators of adjacency graphs are used in the initial coloring and
the graphon operators of j-neighbors are used in the refinement steps.

We will see that the composition of the graphon operators corresponding to the sequence
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v2

v1 v3

v4

{v1, v2, v3}

{v1, v4, v3}

a1

b1

a2

b2

a3

b3

A3
12 :

a1

b1

a2

b2

a3

b3

A3
23 :

a1

b1

a2

b2

a3

b3

N 3
2 :

a1

b1

a2

b2

a3

b3

A3
12 :

a1

b1

a2

b2

a3

b3

A3
23 :

Figure 2: The cycle C4 on four vertices with a tree decomposition. On the right, this
tree-decomposed graph is written as a sequence of bi-labeled graphs.

of bi-labeled graphs in Figure 2,

TA3
12→W ◦ TA3

23→W ◦ TN3
2→W ◦ TA3

12→W ◦ TA3
23→W ,

is precisely the graphon operator TC4→W of C4, i.e., the bi-labeled variant of C4 obtained
by gluing together this sequence of bi-labeled graphs. Furthermore, one can verify that∫

X3

TC4→W1X3 dµ⊗3 = t(C4,W ),

where 1X3 is the all-one function on X3, i.e., the homomorphism density of C4 in W is
determined by the operator TC4→W . In greater generality, the homomorphism density of a
bi-labeled graph in a graphon can always be expressed via the graphon operator.

Since we are now working with operators on L2(Xk,B⊗k, µ⊗k), we consider µ⊗k-
relatively complete sub-σ-algebra of B⊗k for an analogue to partitions of V (G)k for
some graph G. For a graphon W : X×X → [0, 1], a µ⊗k-relatively complete sub-σ-algebra
C ∈ Θ(B⊗k, µ⊗k) of B⊗k is called W -invariant if it is TkW -invariant, i.e., T -invariant for
every operator T in the family TkW . In the case k = 1, this conflicts with the earlier
definition of Greb́ık and Rocha, but it will always be clear from the context what we mean.
We show that there is a minimum W -invariant µ⊗k-relatively complete sub-σ-algebra CkW
of B⊗k. The partitions of V (G)k induced by the colors of oblivious k-WL are invariant
under permutations, i.e., reordering the vertices of a tuple yields a tuple in the same
class. Similarly, we show that CkW is permutation invariant and also define the notion of
permutation-invariant operators, i.e., operators where a reordering of the k components
of Xk yields the same operator. This reflects the fact that, in the system Lkiso of linear
equations characterizing oblivious k-WL, variables are indexed by sets and not by tuples.
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We cannot give a meaningful definition of the quotient of a graphon W : X ×X →
[0, 1] w.r.t. a µ⊗k-relatively complete sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k) if k > 2. Instead,
we consider quotients of operators. Intuitively, for an operator T on L2(Xk, µ⊗k), its
quotient operator w.r.t. C on L2(Xk/C, µ⊗k/C), denoted by T/C, is defined by going from
L2(Xk/C, µ⊗k/C) to L2(Xk, µ⊗k), applying T , and then going back to L2(Xk/C, µ⊗k/C).
Again, a different but equivalent definition can also be given via conditional expectations
by letting TC := E(− | C) ◦ T ◦ E(− | C). Then, we can consider the families TkW/C and
(TkW )C of quotient operators w.r.t. C.

We now state our main theorem, Theorem 5. As mentioned before, it is based on
oblivious k-WL, so there is a mismatch between the k in the treewidth, i.e., the k in k-WL
indistinguishability, and the other characterizations. We note that, since there are no
quotient graphons involved in Theorem 5, we also do not obtain a canonical representation
of a graphon W : X × X → [0, 1] as a graphon Mk ×Mk → [0, 1] (or as multiple such
graphons). Instead, we define canonical representations of the operators in TkW on the
space L2(Mk, νkW ) by hand.

Theorem 5. Let k > 1 and U,W : X × X → [0, 1] be graphons. The following are
equivalent:

1. t(F,U) = t(F,W ) for every multigraph of treewidth at most k − 1.

2. νkU = νkW .

3. There is a (permutation-invariant) Markov isomorphism R : L2(Xk/CkW , µ⊗k/CkW )→
L2(Xk/CkU , µ⊗k/CkU) such that TkU/CkU ◦R = R ◦ TkW/CkW .

4. There is a (permutation-invariant) Markov operator S : L2(Xk, µ⊗k)→ L2(Xk, µ⊗k)
such that TkU ◦ S = S ◦ TkW .

5. There are µ⊗k-relatively complete sub-σ-algebras C and D of B⊗k that are U -invariant
and W -invariant, respectively, and a Markov isomorphism R : L2(Xk/D, µ⊗k/D)→
L2(Xk/C, µ⊗k/C) such that TkU/C ◦R = R ◦ TkW/D.

The characterizations of Theorem 5 are listed in the same order as these in Theorem 4.
Recall the various notions characterizing k-WL indistinguishability of graphs presented
in Section 1.1. Characterization (1) corresponds to homomorphism numbers of graphs of
treewidth at most k−1 and is the definition of (k−1)-WL indistinguishability of graphons.
We note that, as in the case of simple graphs, one could always assume the multigraphs in
Characterization (1) to be connected, cf. [20, (7.6)]. For example, in the case k = 2, it
could equivalently be phrased in terms of homomorphism densities of trees with parallel
edges. Characterization (2) states that the k-WLDs of the graphons are the same and
corresponds to oblivious k-WL not distinguishing two graphs. Characterization (3) –(5)
look very similar, but have a different focus: Characterization (4) generalizes (non-negative
real) solutions to the system Lkiso(G,H) of linear equations by stating that there is a
Markov operator on the product space L2(Xk, µ⊗k) that intertwines all operators in the
families TkU and TkW simultaneously. Permutation invariance can be left out without
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changing the equivalence to the other characterizations, i.e., if there is a (not necessarily
permutation-invariant) Markov operator S satisfying Characterization (4), then there
also is a permutation-invariant one. Characterization (3) and (5) on the other hand,
correspond to the (coarsest) stable partitions of vertex-tuples of two graphs having the
same parameters. We note that there is a one-to-one correspondence between Markov
isomorphisms and measure-preserving almost bijections, cf. [11, Theorem E.3], but for the
ease of presentation, we stick to Markov isomorphisms.

1.5 Overview and Further Remarks

In Section 2, the preliminaries, we collect some basics we need: we briefly visit product
spaces, Markov operators, and quotient spaces before defining quotient operators. Section 3
formally introduces bi-labeled graphs and graphon operators, which are the key to both
stating and proving Theorem 5. In particular, we define the set Fk of bi-labeled graphs
from which we are able to construct precisely the multigraphs of treewidth k− 1, and then,
for a graphon W , the family of graphon operators TkW . Section 4 is the main section of this
paper containing the formal definitions of all notions in Theorem 5 and, of course, its proof,
for which we follow the structure of Greb́ık and Rocha [11]. Let us give a brief overview of
the proof and how the set Fk and the corresponding family of graphon operators TkW are
used in it:

• (1) =⇒ (2): We use the set Fk of bi-labeled graphs to construct expressions
that correspond to precisely the tree-decomposed graphs of treewidth at most k − 1
(Section 3.1). This allows us to define a set T k ⊆ C(Mk,R) of functions on Mk

that corresponds to homomorphism densities of these graphs (Section 4.5). The
Stone-Weierstrass Theorem yields that T k is dense in C(Mk,R), which implies that
k-WLDs are determined by homomorphism densities.

• (2) =⇒ (3): We show that a k-WLD ν defines a family Tν of operators on L2(Mk, ν)
(Section 4.4). Then, we proceed to show that, for every graphon W , the family TνkW
is in some sense isomorphic to the family TkW/CkW of quotient operators of TkW .

• (3) =⇒ (4): We combine facts we establish on quotient operators (Section 2.4)
together with the fact that CkU and CkW are TkU - and TkW -invariant, respectively.

• (4) =⇒ (5): This is a refined variant of the argument by Greb́ık and Rocha in [11],
which uses the Mean Ergodic Theorem for Hilbert spaces to Markov operators [10,
Theorem 8.6, Example 13.24]. We have condensed this argument into a standalone
lemma, Lemma 10.

• (5) =⇒ (1): We again use the fact that the set Fk of bi-labeled graphs allows to
construct expressions that correspond to precisely the tree-decomposed graphs of
treewidth at most k − 1 (Section 3.1). We use this to show that homomorphism
densities of graphs of treewidth at most k−1 in a graphon W can be expressed purely
by expressions built from the operators in TkW (Section 3.2). Then, we use that
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Markov embeddings are compatible with point-wise products of functions, which for
us means that intertwining Markov embeddings preserve homomorphism densities
(Lemma 22).

In Section 5, we show how Theorem 5 can be modified to obtain a characterization of
simple k-WL indistinguishability, i.e., indistinguishability w.r.t. homomorphism densities
of simple graphs of treewidth at most k instead of multigraphs. However, the corresponding
analogue to Theorem 5 obtained this way is less elegant and has an artificial touch to it.
The reason for this is that the set of bi-labeled graphs one uses instead of Fk is not closed
under transposition, which implies that the corresponding family of operators is not closed
under taking Hilbert adjoints. Most of the proofs in Section 5 are left out as they are
mostly analogous to the ones in Section 4.

The original goal of this work was to define a k-WL distance of graphons and to prove
that it yields the same topology as treewidth-k homomorphism densities, cf. [3], where the
result of Greb́ık and Rocha is used to prove such a result for the tree distance, which is
based on the characterization of fractional isomorphism via Markov operators. However,
the approach in [3] does not go well together with Theorem 5 as multigraph homomorphism
densities define a non-compact topology that is different from the one obtained by the
cut distance, cf. [20, Exercise 10.26] or [17, Lemma C.2]. Moreover, the characterization
of simple k-WL indistinguishability via Markov operators is also not well-suited for this
as the corresponding family of operators is not closed under Hilbert adjoints. Hence, it
remains an open problem to define such a distance.

A different open problem is given by the contemporaneous work of Grohe, Rattan, and
Seppelt [15]: They do not focus on a specific set of bi-labeled graphs, but use bi-labeled
graphs to give a unified framework to characterize graphs in terms of homomorphism
numbers. In particular, they obtain a characterization of homomorphism numbers from
graphs of bounded pathwidth. It would be interesting to see if their framework, or at least
their work on graphs of bounded pathwidth, generalizes to graphons.

2 Preliminaries

In this section, we briefly collect some facts that we use throughout the paper. Section 2.1
concerns product spaces; for a more complete reference, we refer to [8, 2]. The definitions
and results regarding Markov operators in Section 2.2 are taken from [10]. The treatment
of quotient spaces in Section 2.3 is based on that of Greb́ık and Rocha [11]. We then use
these quotient spaces to define quotient operators in Section 2.4.

2.1 Product Spaces

Recall that, throughout the whole paper, (X,B) denotes a standard Borel space, i.e., B is
the Borel σ-algebra of a Polish space, and µ a Borel probability measure on X. We often
consider the space (Xk,B⊗k, µ⊗k) with the product σ-algebra B⊗k of B and the product
measure µ⊗k of µ for k > 1. The product of a countable family of standard Borel spaces
is again a standard Borel space [18, Section 12.B]. Moreover, for a countable family of
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standard Borel spaces, its product σ-algebra is actually equal to the Borel σ-algebra of the
product topology of the underlying Polish spaces as Polish spaces are second countable [18,
Section 11.A]. Hence, the product space (Xk,B⊗k) is again a standard Borel space and
B⊗k is equal to the Borel σ-algebra of the product topology of the Polish space underlying
(X,B). For simplicity, we identify the products X ×X ×X and (X ×X)×X in the usual
way. Then, also B ⊗ B ⊗ B = (B ⊗ B)⊗ B and µ⊗ µ⊗ µ = (µ⊗ µ)⊗ µ [2, Section 18].
We treat higher-order products in the same way.

We often use the Tonelli-Fubini theorem, cf. [8, Theorem 4.4.5] and also [2, Theorem
18.3], which states that, for σ-finite measure spaces (X,S, µ) and (Y, T , ν) and a non-
negative function f on X × Y that is measurable for S ⊗ T , we have∫

X×Y
f d(µ× ν) =

∫
X

∫
Y

f(x, y) dν(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dν(y).

In particular, the functions x 7→
∫
Y
f(x, y) dν(y) and y 7→

∫
X
f(x, y) dµ(x) are measurable

for S and T , respectively. If f is not necessarily non-negative but integrable with respect
to µ× ν, then the same equations hold and the aforementioned functions are measurable
on sets X ′ and Y ′ with µ(X \X ′) = 0 and ν(Y \ Y ′) = 0, respectively.

2.2 Markov Operators

In general, for a measure space (X,S, µ) and 1 6 p 6∞, the space Lp(X,µ) := Lp(X,S, µ)
consists of all measurable real-valued functions on X with ‖f‖p < ∞, and Lp(X,µ) :=
Lp(X,S, µ) is obtained from Lp(X,µ) by identifying functions that are equal µ-almost
everywhere. The space L2(X,µ) plays a special role among these spaces as it is a Hilbert
space with the inner product given by 〈f, g〉 :=

∫
X
fg dµ. Besides L2(X,µ), the space

L∞(X,µ) also plays an important role in this paper. Note that, if µ is a probability
measure, then we have ‖f‖2 6 ‖f‖∞ and, in particular, the inclusion L∞(X,µ) ⊆ L2(X,µ)
holds.

Given two normed linear spaces (X, ‖·‖) and (Y, |·|), a function T : X → Y is called a
(bounded linear) operator if it is Lipschitz and linear. If (X, ‖·‖) = (Y, |·|), then we just say
that T is an operator on X. The operator norm of T is given by ‖T‖ := sup{|T (x)| | ‖x‖6
1} <∞, and if ‖T‖ 6 1, then T is called a contraction. For probability spaces (X,S, µ)
and (Y, T , ν) and an operator T : L2(X,µ)→ L2(Y, ν), we call T an L∞-contraction if its
restriction to L∞(X,µ) yields a well-defined contraction L∞(X,µ)→ L∞(Y, ν). To clearly
distinguish this from T being a contraction L2(X,µ)→ L2(Y, ν), we sometimes use the
term L2-contraction for this. Observe that the composition of two contractions yields a
contraction, and in particular, the composition of L2- and L∞- contractions yields a L2-
and a L∞-contraction, respectively.

For two measure spaces (X,S, µ) and (Y, T , ν), the Hilbert adjoint of an operator
T : L2(X,µ) → L2(Y, ν) is the unique operator T ∗ : L2(Y, ν) → L2(X,µ) satisfying
〈Tf, g〉 = 〈f, T ∗g〉 for all f ∈ L2(X,µ), g ∈ L2(Y, ν). For two standard Borel spaces
(X,B) and (Y,D) with Borel probability measures µ and ν on X and Y , respectively,
an operator S : L2(X,µ) → L2(Y, ν) is called a Markov operator if Sf > 0 for every
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f ∈ L2(X,µ) with f > 0, S1X = 1Y , and S∗1Y = 1X . Markov operators are both L2- and
L∞-contractions [10, Theorem 13.2 b)]. A Markov operator is called a Markov embedding
if it is an isometry. For example, the Koopman operator Tϕ : L2(X,µ) → L2(X,µ) of
a measure-preserving measurable map ϕ : X → X, defined by Tϕf := f ◦ ϕ for every
f ∈ L2(X,µ), is a Markov embedding [10, Example 13.1]. A Markov isomorphism is a
surjective Markov embedding. Note that every Markov isomorphism S satisfies S−1 = S∗

[10, Corollary 13.14]. Moreover, there is a one-to-one correspondence between Markov
isomorphisms and measure-preserving almost bijections, cf. [11, Theorem E.3]. See [10]
for a thorough treatment of Markov operators. There, the results are stated for complex
Lp-spaces, but this usually does not make a difference by the positivity of Markov operators,
cf. [10, Lemma 7.5].

2.3 Quotient Spaces

Recall that a sub-σ-algebra C ⊆ B of B is called µ-relatively complete if Z ∈ C for all
Z ∈ B, Z0 ∈ C with µ(Z4Z0) = 0. Requiring Z ∈ C for every Z ∈ B with µ(Z) = 0 instead
would yield an equivalent definition. The set of all µ-relatively complete sub-σ-algebras of
B is denoted by Θ(B, µ) and clearly includes B itself. For a non-empty Φ ⊆ Θ(B, µ), we
have

⋂
Φ :=

⋂
C∈Φ C ∈ Θ(B, µ) [11, Claim 5.4]. Hence, for a set X ⊆ B, there is a smallest

µ-relatively complete sub-σ-algebra including X , which we denote by 〈X 〉. If C ⊆ B is
a sub-σ-algebra, then one can show that 〈C〉 = {A4Z | A ∈ C, Z ∈ B with µ(Z) = 0}.
Given C ∈ Θ(B, µ), we let L2(X, C, µ) ⊆ L2(X,µ) denote the subset of all functions that
are C-measurable. It is a standard fact that, for C ∈ Θ(B, µ), the linear hull of {1A}A∈C is
dense in L2(X, C, µ). The conditional expectation E(− | C) is the orthogonal projection
onto the closed linear subspace L2(X, C, µ) of L2(X,µ).

Proposition 6 (Conditional Expectation, [2, Section 34]). Let C ∈ Θ(B, µ). Then,
L2(X, C, µ) is a closed linear subspace of L2(X,µ) and there is a self-adjoint operator
E(− | C) : L2(X,µ)→ L2(X,µ) such that

1. E(− | C) is the orthogonal projection onto L2(X, C, µ),

2.
∫
A
f dµ =

∫
A
E(f | C) dµ for every A ∈ C and every f ∈ L2(X,µ), and

3.
∫
X
f · E(g | C) dµ =

∫
X
E(f | C) · g dµ for all f, g ∈ L2(X,µ).

Given a measure space (X,S, µ), a measurable space (Y, T ), and a measurable function
g : X → Y , the push-forward g∗µ is the measure on Y defined by g∗µ(A) := µ(g−1(A)) for
every A ∈ T . For a measurable function f : Y → [−∞,∞], we then have

∫
Y
f d(g∗µ) =∫

X
f ◦ g dµ [8, Theorem 4.1.11]. The following proposition then guarantees the existence

of a quotient space of (X,B, µ) w.r.t. a µ-relatively complete sub-σ-algebra C ∈ Θ(B, µ).

Proposition 7 ([11, Theorem E.1]). Let C ∈ Θ(B, µ). There is a standard Borel space
(X/C, C ′), a Borel probability measure µ/C on X/C, a measurable surjection qC : X → X/C,
and Markov operators SC : L2(X,µ) → L2(X/C, µ/C) and IC : L2(X/C, µ/C) → L2(X,µ)
such that
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1. IC is the Koopman operator of qC,

2. µ/C is the push-forward of µ via qC,

3. S∗C = IC,

4. SC ◦ E(− | C) = SC,

5. IC is an isometry onto L2(X, C, µ),

6. IC ◦ SC = E(− | C), and

7. SC ◦IC is the identity on L2(X/C, µ/C).

Proposition 8 is a technical result that intuitively states that the quotient space
(X/C, C ′) is unique and the same as L2(X, C, µ) up to sets of measure zero.

Proposition 8 ([11, Corollary E.2]). Let (X,B) and (Y,D) be standard Borel spaces. Let
µ be a Borel probability measure on X and f : X → Y be a measurable function. Let
C ∈ Θ(B, µ) be the minimum µ-relatively complete sub-σ-algebra that makes f measurable.
Then, for every g0 ∈ L2(X, C, µ), there is a measurable map g1 : Y → R such that
g0(x) = (g1 ◦ f)(x) for µ-almost every x ∈ X.

2.4 Quotient Operators

For C ∈ Θ(B, µ) and an operator T : L2(X,µ) → L2(X,µ), we use the conditional ex-
pectation to define the operators TC : L2(X,µ) → L2(X,µ) and T/C : L2(X/C, µ/C) →
L2(X/C, µ/C) by

TC := E(− | C) ◦ T ◦ E(− | C) and T/C := SC ◦ T ◦ IC,

respectively. These definitions reflect the same concept of a quotient operator via different
languages. The following lemma states some basic properties and shows how both
definitions are related.

Lemma 9. Let C ∈ Θ(B, µ) and T : L2(X,µ)→ L2(X,µ) be an operator. Then,

1. (TC)
∗ = (T ∗)C and (T/C)∗ = T ∗/C,

2. if T is self-adjoint, then so are TC and T/C,

3. IC ◦ T/C = TC ◦ IC,
4. T/C ◦ SC = SC ◦ TC,
5. if C is T -invariant, then TC = T ◦ E(− | C) and IC ◦ T/C = T ◦ IC, and

6. if T is self-adjoint and C is T -invariant, then T/C ◦ SC = SC ◦ T .

Proof. For (1), we have (TC)
∗ = E(− | C)∗◦T ∗◦E(− | C)∗ = E(− | C)◦T ∗◦E(− | C) = (T ∗)C

by Proposition 6 and (T/C)∗ = I∗C ◦ T ∗ ◦ S∗C = SC ◦ T ∗ ◦ IC = T ∗/C by (3) of Proposition 7.
This also immediately yields (2). For (3), we have

IC ◦ T/C = IC ◦ SC ◦ T ◦ IC = E(− | C) ◦ T ◦ IC = E(− | C) ◦ T ◦ E(− | C) ◦ IC = TC ◦ IC

by (6) and (4) of Proposition 7 and Proposition 6. For (4), we have

T/C ◦ SC = SC ◦ T ◦ IC ◦ SC = SC ◦ E(− | C) ◦ T ◦ E(− | C) = SC ◦ TC
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by (4) and (6) of Proposition 7. For (5), assume that C is T -invariant. By Proposition 6,
the expectation E(− | C) is the orthogonal projection onto L2(X, C, µ). Hence, (T ◦
E(− | C))(L2(X,µ)) = T (L2(X, C, µ)) ⊆ L2(X, C, µ) and, as E(− | C) is the identity on
L2(X, C, µ), the first claim TC = T ◦ E(− | C) follows. Then, continuing with (3), we get
IC ◦ T/C = TC ◦ IC = T ◦ E(− | C) ◦ IC = T ◦ IC by (4) of Proposition 7 and Proposition 6.
Now, (6) follows from (2), (5), and (3) of Proposition 7.

The following lemma is an application of the Mean Ergodic Theorem for Hilbert spaces
to Markov operators [10, Theorem 8.6, Example 13.24] and is the essence of the proof of
the direction “(4) =⇒ (5)” of Theorem 4 by Greb́ık and Rocha [11].

Lemma 10. Let S : L2(X,µ)→ L2(X,µ) be a Markov operator. There are C,D ∈ Θ(B, µ)
with

1. L2(X, C, µ) = {f ∈ L2(X,µ) | (S ◦ S∗)f = f},
2. L2(X,D, µ) = {f ∈ L2(X,µ) | (S∗ ◦ S)f = f},
3. E(− | C) ◦ S = S ◦ E(− | D),

4. R := SC ◦ S ◦ ID : L2(X/D, µ/D)→ L2(X/C, µ/C) is a Markov isomorphism, and

5. for all operators T1, T2 : L2(X,µ)→ L2(X,µ) with T1◦S = S◦T2 and S∗◦T1 = T2◦S∗,

(a) C is T1-invariant,

(b) D is T2-invariant, and

(c) T1/C ◦R = R ◦ T2/D.

Proof. The proof of the existence of C,D ∈ Θ(B, µ) satisfying (1) to (4) uses the Mean
Ergodic Theorem and is identical to the the proof of Theorem 1.2, (4) =⇒ (5), in [11];
we leave it out here.

To prove (5), let T1, T2 : L2(X,µ)→ L2(X,µ) be bounded linear operators satisfying
T1 ◦ S = S ◦ T2 and S∗ ◦ T1 = T2 ◦ S∗. We get T1 ◦ (S ◦ S∗) = S ◦ T2 ◦ S∗ = (S ◦ S∗) ◦ T1.
Then, for f ∈ L2(X, C, µ), we have (S ◦ S∗)f = f by (1) and get T1f = (T1 ◦ S ◦ S∗)f =
(S ◦ S∗ ◦ T1)f = (S ◦ S∗)(T1f), which, again by (1), implies T1f ∈ L2(X, C, µ). Therefore,
C is T1-invariant, which proves (5a). Analogously, we get that T2 ◦ (S∗ ◦ S) = (S∗ ◦ S) ◦ T2

and that D is T2 invariant, which proves (5b). Now, we use (3) and the T2-invariance of D
to obtain to obtain

T1/C ◦R = SC ◦ T1 ◦ IC ◦ SC ◦ S ◦ ID = SC ◦ T1 ◦ E(− | C) ◦ S ◦ ID (Proposition 7 (6))

= SC ◦ T1 ◦ S ◦ E(− | D) ◦ ID ((3))

= SC ◦ T1 ◦ S ◦ ID (Proposition 7 (3) and (4))

= SC ◦ S ◦ T2 ◦ ID
= SC ◦ S ◦ ID ◦ T2/D (Lemma 9 (5))

= R ◦ T2/D.
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2.5 Permutation Invariance

Let k > 1 and consider L2(Xk, µ⊗k). Every permutation π : [k]→ [k] induces a measure-
preserving measurable map π : Xk → Xk by setting π(x1, . . . , xk) := (xπ(1), . . . , xπ(k)) for
all x1, . . . , xk ∈ X, which allows us to consider its Koopman operator Tπ on L2(Xk, µ⊗k).
Clearly, the adjoint of Tπ is given by Tπ−1 . We call a µ⊗k-relatively complete sub-σ-
algebra C ∈ Θ(B⊗k, µ⊗k) permutation invariant if C is Tπ-invariant for every permutation
π : [k] → [k]. It is easy to see that this is the case if and only if π(C) ⊆ C for every
permutation π : [k] → [k], which again is equivalent to π(C) = C for every permutation
π : [k]→ [k]. A trivial example of such a permutation-invariant sub-σ-algebra is B⊗k itself.

For C,D ∈ Θ(B⊗k, µ⊗k), an operator T : L2(Xk/C, µ⊗k/C) → L2(Xk/D, µ⊗k/D) is
called permutation invariant if Tπ/D ◦ T = T ◦ Tπ/C for every permutation π : [k]→ [k].
For the special case C = D = B⊗k, this means that an operator T on L2(Xk, µ⊗k) is
permutation invariant if Tπ ◦ T = T ◦ Tπ for every permutation π : [k]→ [k]. Of course,
this notion depends on the underlying space (X,B, µ), i.e., if we consider (Xk,B⊗k, µ⊗k) as
the underlying space, then all these operators mentioned before are trivially permutation
invariant. However, since the intended underlying space is always clear from the context, we
just use the term permutation invariant. It is not hard to prove that, if C ∈ Θ(B⊗k, µ⊗k) is
permutation invariant, then so are SC and IC, i.e., Tπ/C◦SC = SC◦Tπ and Tπ◦IC = IC◦Tπ/C
for every permutation π : [k]→ [k].

3 Graphon Operators

In this section, we present the main ingredient to Theorem 5. The key insight to go from
color refinement to k-WL is, for a graphon W , to replace the operator TW on L2(X,µ)
by a family TkW of operators on the product space L2(Xk, µ⊗k). This idea is somewhat
already present in the work of Grohe and Otto [14, Section 5.1], where they define a family
of graphs and consider a matrix that is a fractional isomorphism between all these graphs
simultaneously. The graphon setting will show that the step of defining these graphs for
the sake of them having the right adjacency matrix is rather artificial and only works
in the setting of (finite-dimensional) matrices: the operators we define are not integral
operators defined by a graphon.

The family TkW we define is closely related to oblivious k-WL and tree decompositions,
or more precisely, tree-decomposed graphs. In Section 3.1, we follow the approach of [22]
of using a set of bi-labeled graphs as building blocks that are then glued together to form
larger graphs. From our set Fk of bi-labeled graphs, we obtain precisely the multigraphs of
treewidth at most k − 1. In Section 3.2, we adapt the concept of homomorphism matrices
of bi-labeled graphs from [22] by defining the graphon operator of a bi-labeled graph and
a graphon. The graphon operators of the bi-labeled graphs in Fk and a graphon W then
yield the family TkW . We show how this family is related to homomorphisms: on the level
of bi-labeled graphs, we obtain all multigraphs of treewidth at most k− 1, while we obtain
all homomorphism functions of multigraphs of treewidth at most k − 1 on the operator
level.
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Figure 3: Composition of bi-labeled graphs.

3.1 Bi-Labeled Graphs

A bi-labeled graph G is a triple (G,a, b), where G is a multigraph and a ∈ V (G)k,
b ∈ V (G)` for k, ` > 0 are tuples of vertices such that both the entries of a and the
entries of b are pairwise distinct; a and b may however overlap. When there is no fear
of ambiguity, we sometimes just use the term graph to refer to a bi-labeled graph. The
multigraph G is called the underlying graph of G, and the tuples a and b are called the
tuples of input and output vertices, respectively. That is, a bi-labeled graph is a multigraph
where additionally input and output labels are assigned to the vertices with every vertex
having at most one label of each type. Note that one usually does not require that every
vertex has at most one label of each type, cf. [22], but this is needed to ensure that graphon
operators are well defined; the precise reason for this will be seen later when graphon
operators are defined.

Two bi-labeled graphs G = (G,a, b) and G′ = (G′,a′, b′) are isomorphic if there is
an isomorphism ϕ : V (G)→ V (G′) from G to G′ such that ϕ(a) = a′ and ϕ(b) = b′. For
k, ` > 0, let Mk,` denote the set of all (isomorphism types of) bi-labeled graphs with k
input and ` output vertices, and let Gk,` ⊆Mk,` be the subset whose underlying graphs
are simple. Let M := ∪k,`>0Mk,` and G := ∪k,`>0Gk,`.

The transpose of a bi-labeled graph G = (G,a, b) ∈ Mk,` is the bi-labeled graph
G∗ := (G, b,a) ∈ M`,k, and G is called symmetric if G∗ = G. The composition of
two bi-labeled graphs F1 = (F1,a1, b1) ∈ Mk,m and F2 = (F2,a2, b2) ∈ Mm,` is the
bi-labeled graph F1 ◦ F2 := (F,a1, b2) ∈ Mk,`, where F is obtained from the disjoint
union of F1 and F2 by identifying vertices b1,i and a2,i for every i ∈ [m]. An example
is given in Figure 3. The Schur product of two bi-labeled graphs without output labels
F1 = (F1,a1, ()),F2 = (F2,a2, ()) ∈Mk,0 is the bi-labeled graph F1 · F2 := (F,a1, ()) ∈
Mk,0, where F is obtained from the disjoint union of F1 and F2 by identifying vertices a1,i

and a2,i for every i ∈ [m]. One usually defines the Schur product for general bi-labeled
graphs in Mk,` by also identifying output vertices, cf. [22]. This, however, can result in
vertices with multiple input or output labels, which we do not allow by our definition of
a bi-labeled graph as remarked earlier. Both the composition and the Schur product of
bi-labeled graph may introduce parallel edges, cf. Figure 4, which means that the set G is
neither closed under composition nor under Schur products.

Treewidth is a graph parameter that measures how “tree-like” a graph is. Too see how
the concept is related to bi-labeled graphs, let us first recall the standard definition of
treewidth via tree decompositions. Formally, a tree decomposition of a multigraph G is a
pair (T, β), where T is a tree and β : V (T )→ 2V (G) such that,
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Figure 4: Both composition and the Schur product may introduce parallel edges.

1. for every v ∈ V (G), the set {t | v ∈ β(t)} is non-empty and connected and,

2. for every uv ∈ E(G), there is a t ∈ V (T ) such that u, v ∈ β(t).

For every t ∈ V (T ), the set β(t) is called the bag at t. The width of the tree decomposition
(T, β) is max{|β(t)| | t ∈ V (T )}−1. The treewidth tw(G) of a multigraph G is the minimum
of the widths of all tree decompositions of G. Note that treewidth is usually defined for
simple graphs and not for multigraphs, but for us, ignoring the edge multiplicities like
in the previous definition yields just the right notion for multigraphs. For the sake of
completeness, note that path decompositions and pathwidth of a multigraph G can be
defined analogously by only considering tree decomposition (T, β) where T is a path.

General tree decompositions are impractical to work with, and we rather use the
following restricted form of a tree decomposition: First, a rooted tree decomposition is
a triple (T, r, β) where (T, β) is a tree decomposition of G and r ∈ V (T ) a vertex of T ,
which we view as the root of T . Then, a nice tree decomposition of a multigraph G is a
rooted tree decomposition (T, r, β) such that

1. β(r) = ∅ and β(t) = ∅ for every leaf t of (T, r) and

2. every internal node s ∈ V (T ) of T is of one of the following three types:

Introduce node: s has exactly one child t with β(s) = β(t) ∪ v for some v ∈
V (G) \ β(t).

Forget node: s has exactly one child t with β(s)∪v = β(t) for some v ∈ V (G)\β(s).

Join node: s has exactly two children t1, t2 with β(s) = β(t1) = β(t2).

The width of (T, r, β) is the width of (T, β). Nice tree decompositions are attractive from
an algorithmic point of view because of their simplified structure, which allows one to
specify dynamic-programming algorithms by a simple case distinction based on the node
type. We do not design such an algorithm here but use nice tree decompositions to obtain
a simple set of bi-labeled graphs that serve as building blocks for all graphs of treewidth
at most k; nice tree decompositions do not pose a restriction since every graph G with
treewidth k has a nice tree decomposition of width k.

Lemma 11 ([19, Lemma 13.1.2]). Every graph G with treewidth k has a nice tree
decomposition of width k.

We now want to view a bi-labeled graph G that is decomposed by a nice tree decom-
position as a term built from atomic terms, where these atomic terms act as building
blocks for the decomposition by providing elementary operations like adding an edge to a
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bag or moving between bags of the decomposition. Such a term can then be evaluated to
obtain G, and in the next section, we show that by defining graphon operators for each
atomic term, we can alternatively evaluate this expression to a function describing the
homomorphism density of G in a graphon. The following definition gives us this set Fk of
building blocks.

Definition 12. Let k > 1. Define

1. the ij-adjacency graph Ak
ij := (([k], {ij}), (1, . . . , k), (1, . . . , k)) ∈ Gk,k for i 6= j ∈ [k],

2. the j-introduce graph Ikj := (([k],∅), (1, . . . , k), (1, . . . , j − 1, j + 1, . . . , k)) ∈ Gk,k−1,

3. the j-forget graph F k
j := Ikj

∗ ∈ Gk−1,k, and

4. the j-neighbor graph N k
j := Ikj ◦ F k

j ∈ Gk,k for j ∈ [k], and finally,

5. the all-one graph 1k := (([k],∅), (1, . . . , k), ()) ∈ Gk,0.

Let Ak :=
{
Ak
ij | i 6= j ∈ [k]

}
⊆ Gk,k and N k :=

{
N k

j | j ∈ [k]
}
⊆ Gk,k be the sets of all

adjacency graphs and all neighbor graphs, respectively. Finally, let Fk := Ak ∪N k.

The set Fk of adjacency and neighbor graphs together with 1k suffices to construct
essentially every graph of treewidth at most k. Let us first illustrate this with an example:
Consider the tree-decomposed graph in Figure 6, which can be translated to the language
of bi-labeled graphs as the expression

(N 3
3 ◦A3

12 ◦A3
13 ◦N 3

1 ◦A3
12 ◦A3

13 ◦ 13) · (N 3
1 ◦A3

13 ◦A3
23 ◦N 3

3 ◦A3
13 ◦A3

23 ◦ 13). (4)

Consider the left subtree and the subexpression left of the Schur product. The all-one
graph 13 corresponds to the leaf containing v6, v2, and v4 in the left subtree, the adjacency
graphs A3

12 and A3
13 insert the edges v6v2 and v6v4, respectively, and the neighbor graph

N 3
1 moves to the new bag containing v1, v2, and v4 as it replaces the first vertex v6 by

v1. Then, the adjacency graphs A3
12 and A3

13 insert the edges v1v2 and v1v4, respectively,
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Figure 7: The bi-labeled graph obtained by evaluation of (4).

before the neighbor graph N 3
3 moves to the new bag containing v1, v2, and v3 as it replaces

the third vertex v4 by v1. The right subexpression is constructed analogously from the
right subtree, and finally, the Schur product corresponds to the join node of the tree
decomposition and glues the two bi-labeled graphs obtained from the two subexpressions
together. Then, evaluating the expression in Equation (4) yields the bi-labeled graph in
Figure 7, i.e., its underlying graph is the graph in Figure 6, its input labels are v1, v2, and
v3, and it has no output labels. The expression in (4) is an example of a term, and we can
formalize this view of tree-decomposed graphs as expressions built from bi-labeled graphs
by composition and the Schur product.

Definition 13. Let k > 1 and F ⊆Mk,k be a set of bi-labeled graphs with k input and
k output labels. The set 〈F〉◦,· of F-terms (terms) is the smallest set of expressions such
that

1. 1k ∈ 〈F〉◦,·,

2. F ◦ F ∈ 〈F〉◦,· for all F ∈ F , F ∈ 〈F〉◦,·, and

3. F1 · F2 ∈ 〈F〉◦,· for all F1,F2 ∈ 〈F〉◦,·.

Similarly, let 〈F〉◦ ⊆ 〈F〉◦,· be the smallest set of terms satisfying Conditions (1) and (2).
For a term F ∈ 〈F〉◦,·, let [[F]] denote the bi-labeled graph obtained from evaluating it.

Note that, for a set F ⊆Mk,k and a term F ∈ 〈F〉◦,·, the bi-labeled graph [[F]] is well-
defined as we always have [[F]] ∈Mk,0 since every term starts with 1k. As demonstrated
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before, for the specific set Fk of adjacency and neighbor graphs, a term F ∈ 〈Fk〉◦,· is
essentially a tree-decomposed graph, where the tree decomposition is rooted, the multigraph
being decomposed is the bi-labeled graph underlying [[F]], and the bag at the root is given
by the input vertices of [[F]].

Theorem 14. The underlying graphs of the bi-labeled graphs obtained by evaluating the
terms in 〈Fk〉◦ and 〈Fk〉◦,· are, up to isolated vertices, precisely the multigraphs of pathwidth
and treewidth at most k − 1, respectively.

Proof. The proof is quite simple and we only sketch it here. The main idea is the following:
For a bi-labeled graph G ∈Mk,`, the composition Ak

ij ◦G of the ij-adjacency graph Ak
ij

with G adds an edge between the vertices in G with the ith and the jth input label.
When viewing the k input vertices of G as the “current” bag of a tree decomposition,
we can compose adjacency graphs with G to add any edge between the vertices of this
bag. Similarly, the composition N k

j ◦G of the j-neighbor graph N k
j with G moves to a

new bag obtained by replacing the vertex with the jth input label by a fresh vertex. In
terms of nice tree decompositions, this corresponds to an introduce node that immediately
follows on a forget node.

Following the interpretation sketched above, a term F ∈ 〈Fk〉◦,· can inductively be
translated into a rooted tree decomposition for the underlying graph of [[F]] of width k− 1:
For 1k, we take a single leaf containing k fresh vertices. For Ak

ij ◦ F, we just take the tree
decomposition for F. For N k

j ◦ F, we take the tree decomposition for F and connect a
new node to its root and replace the vertex specified by the jth input label in [[F]] by the
fresh vertex introduced by N k

j . Finally, for the Schur product F1 · F2 we take the tree
decompositions of F1 and F2 and turn them into a single tree decomposition by connecting
their roots using a join node.

For the converse direction, we inductively turn a nice tree decomposition (T, r, β) of a
graph G of width at most k − 1 into a term F ∈ 〈Fk〉◦,· such that the underlying graph
of [[F]] is G with some additional isolated vertices. This direction requires a bit more
thought since we have to make sure that the set Fk is not too restrictive. We do this by
modifying the nice tree decomposition (T, r, β) as follows, where we have to keep in mind
that a term fixes an ordering of the vertices of the graph: First, pad the bag of every leaf
to size k by adding k fresh isolated vertices. At an introduce node, add a forget node
below that removes one of the isolated vertices. At a forget node, add an introduce node
directly above adding a fresh isolated vertex. At a join node, re-order the vertices in one
of the terms such that the original vertices of G are at the same positions in both terms
and, then, identify every additional isolated vertex with the one at the same position
in the other term. Then, on this modified tree decomposition, we can apply the inverse
construction to the one described in the previous paragraph.

The height h(F) of a term F ∈ 〈Fk〉◦,· is inductively defined by letting h(1k) := 0,
h(N ◦ F) := h(F) + 1 for all N ∈ N k, F ∈ 〈Fk〉◦,·, h(A ◦ F) := h(F) for all A ∈ Ak,
F ∈ 〈Fk〉◦,·, and h(F1 · F2) := max {h(F1), h(F2)} for all F1,F2 ∈ 〈Fk〉◦,·. Then, the height
of F corresponds to the height of the tree of the tree decomposition when viewing F as a
tree-decomposed graph.
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Figure 8: Two representations of the graph Pπ. In the first representation, the vertices
are sorted by their output labels, and in the second, by their their input labels.

Remark 15. In terms of nice tree decompositions, a j-neighbor graph corresponds to an
introduce node that immediately follows on a forget node. This is also nicely reflected
in the definition of N k

j : it is a j-introduce graph composed with a j-forget graph, which
correspond to an introduce node and a forget node, respectively. Theorem 14 and its
proof would have been simplified if we included individual j-introduce and j-forget graphs,
in Fk: we would not have to deal with isolated vertices. However, just considering
j-neighbor graphs instead has the advantage that all bi-labeled graphs in Fk have both
k input and k output labels, which means that we can restrict ourselves to the single
product space L2(Xk, µ⊗k) later on instead of having to deal with all product spaces
L2(X1, µ⊗1), . . . , L2(Xk, µ⊗k). For this very same reason, we use the all-one graph 1k

instead of defining a leaf graph as an empty graph and then using k individual introduce
graphs, each introducing a single vertex, to obtain a bag of size k. The downside of these
restrictions is that we may have to add isolated vertices to a graph, cf. the statement and
proof of Theorem 14. Since additional isolated vertices do not affect the homomorphism
density of a graph in a graphon, this is perfectly fine for us. Moreover, it is also not a
restriction that, in a j-neighbor graph, both the forgotten and introduced vertex use the
jth label since we may just inductively re-order the vertices of the whole term afterwards
to make sure that the newly introduced vertex has the desired label; this is also done in
the proof of Theorem 14.

In the proof of Theorem 14, we use that we can re-label input vertices by inductively
re-labeling a whole term. This could have been simplified by including permutation graphs
in Fk: for k > 1 and a permutation π : [k]→ [k], we define the permutation graph

Pπ := (([k],∅), (1, . . . , k), (π(1), . . . , π(k)) ∈ Gk,k.

Moreover, for a tuple a ∈ V (F )k of vertices of a graph F , let π(a) := (aπ(1), . . . , aπ(k)).
Then, for a bi-labeled graph (F,a, b) ∈Mk,`, we have Pπ ◦ (F,a, b) = (F, π−1(a), b) for
every permutation π : [k] → [k] and (F,a, b) ◦ Pπ = (F,a, π(b)) for every permutation
π : [`]→ [`]. In order to keep the set Fk simple, we do not include permutations graphs in it.
Nevertheless, they come in handy later when proving that the operators and sub-σ-algebras
we define are permutation invariant.

3.2 Graphon Operators

Graphon operators generalize the homomorphism density t(F,W ) of a multigraph F in a
graphon W : X×X → [0, 1] to bi-labeled graphs. To this end, let F = (F,a, b) ∈Mk,` be
a bi-labeled graph. To simplify notation, let t(F ,W ) := t(F,W ) denote the homomorphism
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density of the underlying graph of F in W , i.e., we ignore both the input and output
labels. Now, let us first take the input labels of F into account, that is, we view F as a
multi-rooted multigraph and the homomorphism density becomes a function by not fixing
the vertices that have an input label. Formally, the homomorphism function of F in W is
the function fF→W : Xk → [0, 1] defined by

fF→W (xa1 , . . . , xak) :=

∫
XV (F )\a

∏
ij∈E(F )

W (xi, xj) dµ
⊗V (F )\a(x̄) (5)

for all xa1 , . . . , xak ∈ X. We note that we again slightly abuse notation and assume that
each factor W (xi, xj) occurs as often in the product

∏
ij∈E(F ) W (xi, xj) as ij is contained

in E(F ). The Tonelli-Fubini theorem immediately yields that

〈1Xk , fF→W 〉 = t(F ,W ).

Taking both input and output labels of F into account, we obtain an operator TF→W
instead of a function fF→W by, intuitively, “gluing” a given function f to the output
vertices of F to obtain the function TF→Wf . Formally, the F -operator of W is the mapping
TF→W : L2(X`, µ⊗`)→ L2(Xk, µ⊗k) defined by

(TF→Wf)(xa1 , . . . , xak) :=

∫
XV (F )\a

∏
ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xb`) dµ
⊗V (F )\a(x̄) (6)

for every f ∈ L2(X`, µ⊗`) and all xa1 , . . . , xak ∈ X, where we again slightly abuse notation
w.r.t. the product over all ij ∈ E(F ). The goal of this definition is that an application
of TF→W to a homomorphism function fG→W should yield the homomorphism function
fF ◦G→W ; as we will see in Lemma 19, this is the case. We note that fF→W = TF→W1X`

as an element of L∞(Xk, µ⊗k) and, in particular,

〈1Xk , TF→W1X`〉 = t(F ,W ).

The definition of TF→W only depends on the isomorphism type of F , i.e., isomorphic
bi-labeled graphs define the same operator.

Lemma 16. Let F = (F,a, b),F ′ = (F ′,a′, b′) ∈ Mk,` be isomorphic bi-labeled graphs
and W : X ×X → [0, 1] be a graphon. Then, TF→W = TF ′→W .

Proof. Let ϕ : V (F )→ V (F ′) be an isomorphism from F to F ′ such that ϕ(a) = a′ and
ϕ(b) = b′. Note that

∏
ij∈E(F ′) W (xi, xj) =

∏
ij∈E(F ) W (xϕ(i), xϕ(j)) for µ⊗V (F ′)-almost

every x̄ ∈ XV (F ′). Hence, by substituting variable xϕ(i) by xi for every i ∈ V (F ) in (6),
we immediately get TF→W = TF ′→W .

Moreover, if F does not have any edges, then the definition of TF→W is independent of
W and we just write TF . We just have to be a bit careful since TF is still dependent on
the standard Borel space (X,B) and the Borel probability measure µ.
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Example 17. 1. Define A := (([2], {12}), (1), (2)) ∈ G1,1 to be the edge with one input
and one output vertex. Let W : X × X → [0, 1] be a graphon and f ∈ L2(X,µ).
Then,

(TA→Wf)(x1) =

∫
X

W (x1, x2) · f(x2) dµ(x2) = (TWf)(x1)

for every x1 ∈ X, i.e., TA→W = TW .

2. Define D := (([2], {12}), (1), (1)) ∈ G1,1 to be the edge where one vertex has both an
input and an output label. Let W : X ×X → [0, 1] be a graphon and f ∈ L2(X,µ).
Then,

(TD→Wf)(x1) =

∫
X

W (x1, x2) · f(x1) dµ(x2) = f(x1) · degW (x1)

for every x1 ∈ X, where degW (x) :=
∫
X
W (x, y) dµ(y) for every x ∈ X.

3. Let k > 1 and π : [k] → [k] be a permutation. Since Pπ does not have any edges,
TPπ→W is independent of a specific graphon W : X × X → [0, 1] and we simply
denote it by TPπ as agreed on before. The operator TPπ is equal to the Koopman
operator Tπ of the measure-preserving measurable map Xk → Xk induced by π: Let
f ∈ L2(Xk, µ⊗k). Then,

(TPπf)(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) = (f ◦ π)(x1, . . . , xk) = (Tπf)(x1, . . . , xk)

for all x1, . . . , xk ∈ X.

The Tonelli-Fubini theorem and the Cauchy-Schwarz inequality allow us to verify that
Equation (6) is indeed is a well-defined operator and, furthermore, a contraction, where
it is crucial that we made the somewhat unusual assumption that, in a bi-labeled graph,
every vertex has at most one label of each type. The intuitive reason for this is that the
diagonal (Xk,B⊗k, µ⊗k) has measure zero (as long as our standard Borel space is atom
free), a problem which one does not face in the case of (finite-dimensional) matrices.

Lemma 18. Let F ∈ Mk,` be a bi-labeled graph and W : X ×X → [0, 1] be a graphon.
Then, TF→W : L2(X`, µ⊗`)→ L2(Xk, µ⊗k) is well-defined and an L2- and L∞-contraction.

Proof. Let F = (F,a, b). For f ∈ L2(X`, µ⊗`), define S by

(Sf)(x̄) :=
∏

ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xb`)

for every x̄ ∈ XV (F ). Then, S is clearly linear, and we claim that

‖Sf‖2 6 ‖W‖e(F )
∞ · ‖f‖2 <∞,

which not only implies that Sf ∈ L2(XV (F ), µ⊗V (F )) but also that S is a well-defined
mapping L2(X`, µ⊗`)→ L2(XV (F ), µ⊗V (F )) that additionally is an L2-contraction.
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To prove the claim, we first note that it is easy to see that x̄ 7→
∏

ij∈E(F ) W (xi, xj) is

a function in L∞(XV (F ), µ⊗V (F )) with ‖·‖∞-norm at most ‖W‖∞ since F does not have
loops, i.e., i 6= j. Second, x̄ 7→ f(xb1 , . . . , xb`) is a function in L2(XV (F ), µ⊗V (F )) and, by
the Tonelli-Fubini theorem, its ‖·‖2-norm is ‖f‖2, where it is important that the entries of
b are pairwise distinct. Then, the claim easily follows. Similarly, for f ∈ L∞(X`, µ⊗`), we

have ‖Sf‖∞ 6 ‖W‖e(F )
∞ · ‖f‖∞, i.e., S is also an L∞-contraction.

Now, TF→Wf is the function obtained from Sf by integrating out the variables xi for
i ∈ V (F ) \ a. The Cauchy-Schwarz inequality together with the Tonelli-Fubini Theorem
yields that this is an L2-contraction, i.e., ‖TF→Wf‖2 6 ‖Sf‖2. Moreover, this is trivially
an L∞-contraction, i.e., ‖TF→Wf‖∞ 6 ‖Sf‖∞ for f ∈ L∞(X`, µ⊗`). Since this operation
is also linear, this finishes the proof.

The operator TF→W was defined such that the application to a homomorphism function
fG→W yields the homomorphism function fF ◦G→W . The following lemma formalizes this
by stating that the composition of bi-labeled graphs corresponds to the composition of
graphon operators. Moreover, the analogous correspondence holds between the transpose
and the Hilbert adjoint and between the Schur product and the point-wise product.

Lemma 19. Let W : X ×X → [0, 1] be a graphon. Then,

1. TF ∗→W = T ∗F→W for every F ∈M,

2. if F ∈M is symmetric, then TF→W is self-adjoint,

3. TF1◦F2→W = TF1→W ◦ TF2→W for all F1 ∈Mk,m, F2 ∈Mm,`, k, `,m > 0, and

4. TF1·F2→W (c1 · c2) = (TF1→W c1) · (TF2→W c2) for all c1, c2 ∈ R, F1,F2 ∈Mk,0, k > 0.

Proof. (1): We have

〈TF→Wf, g〉

=

∫
Xa

 ∫
XV (F )\a

∏
ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xb`) dµ
⊗V (F )\a(x̄)

 · g(xa1 , . . . , xak) dµ
⊗a(x̄)

=

∫
XV (F )

∏
ij∈E(F )

W (xi, xj) · f(xb1 , . . . , xb`) · g(xa1 , . . . , xak) dµ
⊗V (F )(x̄)

=

∫
Xb

f(xb1 , . . . , xb`) ·

 ∫
XV (F )\b

∏
ij∈E(F )

W (xi, xj) · g(xa1 , . . . , xak) dµ
⊗V (F )\b(x̄)

 dµ⊗b(x̄)

= 〈f, TF ∗→Wg〉
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for all f ∈ L2(X`, µ⊗`), g ∈ L2(Xk, µ⊗k) by the Tonelli-Fubini theorem, which is applicable
since the product being integrated is a function in L1(XV (F ), µ⊗V (F )) by the Cauchy-
Schwarz inequality.

(2): By (1), we have T ∗F→W = TF ∗→W = TF→W .
(3): Let F1 = (F1,a1, b1), F2 = (F2,a2, b2), and F1◦F2 = (F,a1, b2). In the following,

we identify vertices b1,1, . . . , b1,m with a2,1, . . . , a2,m. Note that the sets V (F1) \ a1 and
V (F2) \ b1 = V (F2) \ a2 form a partition of V (F1 ◦ F2) \ a1. Then, we have

(TF1→W (TF2→Wf))(xa1,1 , . . . , xa1,k
)

=

∫
XV (F1)\a1

∏
ij∈E(F1)

W (xi, xj) · (TF2→Wf)(xb1,1 , . . . , xb1,m) dµ⊗V (F1)\a1(x̄)

=

∫
XV (F1)\a1

∏
ij∈E(F1)

W (xi, xj) ·

 ∫
XV (F2)\a2

∏
ij∈E(F2)

W (xi, xj) · f(xb2,1 , . . . , xb2,`) dµ
⊗V (F2)\a2(x̄)


dµ⊗V (F1)\a1(x̄)

=

∫
XV (F1)\a1

 ∫
XV (F2)\a2

∏
ij∈E(F )

W (xi, xj) · f(xb2,1 , . . . , xb2,`) dµ
⊗V (F2)\a2(x̄)

 dµ⊗V (F1)\a1(x̄)

=

∫
XV (F )\a1

∏
ij∈E(F )

W (xi, xj) · f(xb2,1 , . . . , xb2,`) dµ
⊗V (F )\a1(x̄)

for every f ∈ L2(X`, µ⊗`) and µ⊗a1-almost all xa1,1 , . . . , xa1,k
∈ X by the Tonelli-Fubini

theorem.
(4): Let F1 = (F1,a1, ()), F2 = (F2,a2, ()), and F1 · F2 = (F,a1, ()). In the following,
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we identify vertices a1,1, . . . , a1,k with a2,1, . . . , a2,k. Then, we have

((TF1→W c1) · (TF2→W c2)) (xa1,1 , . . . , xa1,k
)

=

 ∫
XV (F1)\a1

∏
ij∈E(F1)

W (xi, xj) · c1 dµ
⊗V (F1)\a1(x̄)


·

 ∫
XV (F2)\a2

∏
ij∈E(F2)

W (xi, xj) · c2 dµ
⊗V (F2)\a2(x̄)


=

∫
XV (F1)\a1

∫
XV (F2)\a2

∏
ij∈E(F1)

W (xi, xj) ·
∏

ij∈E(F2)

W (xi, xj) · c1 · c2 dµ
⊗V (F2)\a2(x̄)

dµ⊗V (F1)\a1(x̄)

=

∫
XV (F )\a1

∏
ij∈E(F )

W (xi, xj) · c1 · c2 dµ
⊗V (F )\a1(x̄)

= TF1·F2→W (c1 · c2)(xa1,1 , . . . , xa1,k
)

for all c1, c2 ∈ R and µ⊗a1-almost all xa1,1 , . . . , xa1,k
∈ X by the Tonelli-Fubini theorem.

For a set F ⊆ Mk,k, every graphon W : X × X → [0, 1] induces a family of L∞-
contractions TF→W := (TF→W )F∈F on L2(Xk, µ⊗k), cf. Lemma 18. When handling such
families of operators, we often use notation like TF→W ◦ T for an L∞-contraction T or
TF→W/C for C ∈ Θ(B⊗k, µ⊗k) to denote the family obtained by applying the operation to
every operator in the family; for these examples, we obtain the families (TF→W ◦T )F∈F and
(TF→W/C)F∈F . Moreover, if the graphs in F do not have any edges, we again abbreviate
TF := (TF )F∈F . Recall that Fk is the set of all neighbor and adjacency graphs with k
input and output labels. Let us finally define the family

TkW := TFk→W

that replaces the single operator TW in Theorem 5, our characterization of oblivious k-WL.
Let us explore the connection between the family TkW and treewidth k−1 homomorphism

functions: Recall that the terms in 〈Fk〉◦,· correspond to the tree-decomposed multigraphs
of treewidth at most k − 1 by Theorem 14. Given such a term F ∈ 〈Fk〉◦,·, we can use the
correspondence of bi-labeled graph operations to their operator counterparts, cf. Lemma 19,
to inductively compute the homomorphism function f[[F]]→W of [[F]] in a graphon W using
the operators TkW . Hence, the operators in TkW yield all homomorphism functions of
multigraphs of treewidth at most k−1 in W . An important part of the proof of Theorem 5
consists of defining different families of L∞-contractions indexed by Fk that we may use
instead of TkW and still yield the same homomorphism functions. For example, we may
replace TkW by the quotient operators TkW/C for an appropriate C ∈ Θ(B⊗k, µ⊗k). This
leads to the following general definition, where we consider families of operators on a space
L2(X,µ) where (X,B, µ) may not necessarily be a product space. For example, it could
be a quotient space.
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Definition 20. Let (Y,D) be a standard Borel space and ν be a Borel probability measure
on Y . Let k > 1 and T = (TF )F∈F be a family of L∞-contractions on L2(Y, ν) indexed by
a set F ⊆Mk,k. For every term F ∈ 〈F〉◦,·, the homomorphism function of F in T is the
function fF→T ∈ L∞(Y, ν) with ‖fF→T‖∞ 6 1 defined inductively by

1. fF→T := 1Y for F = 1k,

2. fF→T := TF fF′→T for F = F ◦ F′, where F ∈ F , and

3. fF→T := fF1→T · fF2→T for F = F1 · F2.

Moreover, the homomorphism density of F in T is defined as t(F,T) := 〈1Y , fF→T〉.

As remarked above, given a term F ∈ 〈Fk〉◦,·, we can use the correspondence of
bi-labeled graph operations to their operator counterparts to inductively compute the
homomorphism function f[[F]]→W and, in particular, the homomorphism density t([[F]],W )
of [[F]] in a graphon W using the operators in TkW .

Lemma 21. Let k > 1. Let W : X ×X → [0, 1] be a graphon. Then,

fF→TkW
= f[[F]]→W and t(F,TkW ) = t([[F]],W )

for every F ∈ 〈Fk〉◦,·.

Proof. TkW is a family of L∞-contractions on L2(Xk, µ⊗k). We show that fF→TkW
= f[[F]]→W

by induction on F ∈ 〈Fk〉◦,·. Then,

t(F,TkW ) = 〈1Xk , fF→TkW
〉 = 〈1Xk , f[[F]]→W 〉 = t([[F]],W )

by definition of t(F,TkW ) and f[[F]]→W .
For the induction basis F = 1k, we have fF→TkW

= 1Xk by Definition 20 and f[[F]]→W =
T1k→W1X0 = 1Xk by the definition of T1k→W . For the first case of the inductive step
F = F ◦ F′, where F ∈ Fk and [[F′]] ∈Mk,0, we have

fF→TkW
= TF→WfF′→TkW

= TF→Wf[[F′]]→W = TF→W (T[[F′]]→W1X0)

= TF ◦[[F′]]→W1X0

= T[[F]]→W1X0

= f[[F]]→W

by Definition 20, the induction hypothesis, the definition of T[[F]]→W , and Lemma 19 (3).
For the second case of the inductive step F = F1 · F2, where [[F]], [[F1]], [[F2]] ∈Mk,0. Then,
we have

fF→TkW
= fF1→TkW

· fF2→TkW
= f[[F1]]→W · f[[F2]]→W = (T[[F1]]→W1X0) · (T[[F2]]→W1X0)

= T[[F1]]·[[F2]]→W1X0

= T[[F]]→W1X0

= f[[F]]→W

by Definition 20, the induction hypothesis, the definition of T[[F]]→W , and Lemma 19 (4).
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The following lemma gives a sufficient condition under which two families of L∞-
contractions yield the same homomorphism densities. Recall that a Markov embedding
is a Markov operator that is an isometry. Unlike Markov operators in general, Markov
embeddings are compatible with point-wise products of functions, cf. [10, Theorem 13.9,
Remark 13.10]. This is crucial since we need the point-wise product of functions to get
from bounded pathwidth to bounded treewidth homomorphism functions.

Lemma 22. Let k > 1. Let (X1,B1) and (X2,B2) be standard Borel spaces with Borel
probability measures µ1 and µ2 on X1 and X2, respectively. Let T1 and T2 be families of L∞-
contractions on L2(X1, µ1) and L2(X2, µ2), respectively, indexed by Fk. If I : L2(X2, µ2)→
L2(X1, µ1) is a Markov embedding such that T1 ◦ I = I ◦ T2, then

IfF→T2 = fF→T1 and t(F,T1) = t(F,T2)

for every F ∈ 〈Fk〉◦,·.

Proof. We show that IfF→T1 = fF→T2 by induction on F ∈ 〈Fk〉◦,·. Then, also

t(F,T1) = 〈1X1 , fF→T1〉 = 〈1X1 , IfF→T2〉 = 〈I∗1X1 , fF→T2〉 = 〈1X2 , fF→T2〉 = t(F,T2).

For the induction basis F = 1k, we have

IfF→T2 = I1X2 = 1X1 = fF→T1 .

For F = F ◦ F′, where F ∈ Fk, we have

IfF→T2 = (I ◦ (T2)F )fF′→T2 = ((T1)F ◦ I)fF′→T2 = (T1)F fF′→T1 = fF→T1

by the assumption and the induction hypothesis. Finally, for F = F1 · F2, we use that I is
a Markov embedding and, hence, satisfies I(f · g) = If · Ig for all f, g ∈ L∞(X2, µ2) [10,
Theorem 13.9]. We have

IfF→T2 = I(fF1→T2 · fF2→T2) = IfF1→T2 · IfF2→T2 = fF1→T1 · fF2→T1 = fF→T1

by the induction hypothesis.

An important application of Lemma 22 is to replace the family TkW by the quotient
operators TkW/C for an appropriate C ∈ Θ(B⊗k, µ⊗k). To this end, we call C ∈ Θ(B⊗k, µ⊗k)
W -invariant if C is invariant for every operator in the family TkW , i.e., C is TF→W -invariant
for every F ∈ Fk, which in turn means that TF→W (L2(Xk, C, µ⊗k)) ⊆ L2(Xk, C, µ⊗k) for
every F ∈ Fk.

Corollary 23. Let k > 1. Let W : X ×X → [0, 1] be a graphon and C ∈ Θ(B⊗k, µ⊗k) be
W -invariant. Then,

t(F, (TkW )C) = t(F,TkW/C) = t(F,TkW ) = t([[F]],W )

for every F ∈ 〈Fk〉◦,·.

Proof. The last equality is just Lemma 21. By Lemma 9 (3) and (5), we have IC ◦TkW/C =
(TkW )C ◦ IC and IC ◦ TkW/C = TkW ◦ IC, respectively, where IC is a Markov embedding by
Proposition 7 (5), Therefore, Lemma 22 yields the first two equalities.
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4 Weisfeiler-Leman and Graphons

In Section 4.1 to Section 4.5, we closely follow Greb́ık and Rocha [11] to prove Theorem 5
and formally define all notions appearing in it. We start off by defining the minimum
W -invariant µ⊗k-relatively complete sub-σ-algebra CkW of B⊗k for a graphon W via the
family of operators TkW . in Section 4.1. Then, in Section 4.2, we define the space Mk, i.e.,
the space of all colors used by oblivious k-WL, and k-WL distributions, which generalize
multisets of colors. In Section 4.3, we define the function owlkW : Xk → Mk and the
k-WL distribution νkW for a graphon W . In Section 4.4, we deviate from Greb́ık and
Rocha [11] by a larger margin: They show that every distribution on iterative degree
measures ν defines a graphon on the space M; this graphon for νW is then isomorphic to
the quotient graphon W/CW . Since the operators in TkW are not integral operators defined
by a graphon (intuitively, these graphons would have to be non-zero only on the diagonal,
which has measure zero), we take the different route of showing that a k-WL distribution
ν defines a family of operators Tν on L2(Mk, ν); the family TνkW then corresponds to

TkW . In Section 4.5, we define the set T k of homomorphism functions on Mk and use
the Stone-Weierstrass Theorem to show that it is dense in C(Mk) before we finally prove
Theorem 5 in Section 4.6. The remaining sections discuss some implications of Theorem 5:
Section 4.7 shows that one can combine all k-WL distributions ν1

W , ν
2
W , . . . of a graphon W

into a single distribution to obtain a new characterization of weak isomorphism. Section 4.8
explains how the characterization of Theorem 5 using Markov operators corresponds to
the system Lkiso of linear equations.

4.1 The Minimum W -Invariant Sub-σ-Algebra

For a family T = (Ti)i∈I of operators Ti : L
2(X,µ) → L2(X,µ), where i ∈ I, and a

sub-σ-algebra C ∈ Θ(B, µ), define

T(C) :=
⋂{
D ∈ Θ(B, µ) | D ⊇ C and Ti(L

2(X, C, µ)) ⊆ L2(X,D, µ) for every i ∈ I
}
.

Then, T(C) ∈ Θ(B, µ), cf. Section 2.3, and C is called T-invariant if T(C) ⊆ C, which is
equivalent to requiring that C is Ti-invariant for every i ∈ I. Note that this operation is
monotonous, i.e., for all C,D ∈ Θ(B, µ) with C ⊆ D, we have T(C) ⊆ T(D). By definition,
the family TkW consists of the operators from the two families TAk→W and TN k . The
following definition uses these two individual families to define the sub-σ-algebra CkW of B⊗k.
Already at this point, one should notice the connection to oblivious k-WL, cf. Section 1.4:
the operators in TAk→W capture the concept of atomic types while the operators in TN k
correspond to the refinement rounds via j-neighbors used in oblivious k-WL.

Definition 24. Let k > 1 andW : X×X → [0, 1] be a graphon. Define CkW,n ∈ Θ(B⊗k, µ⊗k)
for every n ∈ N by setting CkW,0 := TAk→W (

〈{
∅, Xk

}〉
), CkW,n+1 := TN k(CkW,n) for every n ∈

N, and CkW := CkW,∞ := 〈
⋃
n∈N CkW,n〉.

Verifying that CkW is in fact the minimum W -invariant µ⊗k-relatively complete sub-
σ-algebra of B⊗k is mostly analogous to [11, Proposition 5.13]. A difference is given
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by the operators in TAk→W , which are multiplication operators, i.e., they multiply their
arguments with a fixed function. This implies that a single initial application guarantees
TAk→W -invariance for all subsequent sub-σ-algebras in the sequence. Moreover, we also
verify that CkW is permutation invariant, i.e., CkW is Tπ-invariant for every permutation
π : [k]→ [k].

Lemma 25. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then,

1. CkW,0 =
〈⋃

A∈Ak {(TA→W1Xk)−1(A) | A ∈ B([0, 1])}
〉
,

2. CkW,0 is the minimum TAk→W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k,

3. CkW,n+1 =
〈
CkW,n∪

⋃
N∈N k

{
(TN1A)−1(B) | A ∈ CkW,n, B ∈ B([0, 1])

} 〉
for every n ∈ N,

4. CkW,n is TAk→W -invariant for every n ∈ N ∪ {∞},

5. CkW is the minimum W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k, and

6. CkW,n is permutation invariant for every n ∈ N ∪ {∞}.

Proof. (1) and (2): Let C denote the minimum TAk→W -invariant µ⊗k-relatively complete
sub-σ-algebra of B⊗k, and let D denote the µ⊗k-relatively complete sub-σ-algebra of B⊗k
on the right-hand side of the equality in (1). We prove that C = D = CkW,0. We start by
proving C ⊆ D. Let A ∈ Ak. The function TA→W1Xk is D-measurable by definition of D.
Hence, for a D-measurable function g ∈ L2(Xk, µ⊗k), the product (TA→W1Xk)·g = TA→Wg
is again D-measurable, where the equality holds since TA→W is a multiplication operator.
That is, D is TAk→W -invariant, which yields C ⊆ D. For the inclusion D ⊆ C on the
other hand, 1Xk is trivially C-measurable and, since C is TAk→W -invariant, the function
TA→W1Xk is C-measurable for every A ∈ Ak. Hence, D ⊆ C. We have established C = D
and it remains to prove that these are also equal to CkW,0. We have

〈{
∅, Xk

}〉
⊆ C

and, hence, CkW,0 = TAk→W (
〈{

∅, Xk
}〉

) ⊆ TAk→W (C) ⊆ C. On the other hand, for every
A ∈ Ak, the function TA→W1Xk is CkW,0-measurable. Hence, D ⊆ CkW,0.

(3): Let D denote the µ⊗k-relatively complete sub-σ-algebra of B⊗k from (3), i.e.,
D is the minimum µ⊗k-relatively complete sub-σ-algebra of B⊗k that contains CkW,n and
makes the maps TN1A for N ∈ N k and A ∈ CkW,n measurable. It is easy to see that
D ⊆ CkW,n+1: We have CkW,n ⊆ CkW,n+1 by definition of CkW,n+1. Moreover, for N ∈ N k

and A ∈ B(CkW,n), the function 1A is CkW,n-measurable and, hence by definition of CkW,n+1,
the function TN1A is then CkW,n+1 measurable. It remains to prove that CkW,n+1 ⊆ D,
i.e., that CkW,n ⊆ D and TN(L2(Xk, CkW,n, µ⊗k)) ⊆ L2(Xk,D, µ⊗k) for every N ∈ N k. We
have CkW,n ⊆ D by definition of D. Let N ∈ N k. We have TN1A ∈ L2(Xk,D, µ⊗k) for
A ∈ CkW,n by definition of D. Since the linear hull of {1A}A∈CkW,n is dense in subspace

L2(Xk, CkW,n, µ⊗k) and since L2(Xk,D, µ⊗k) is closed, linearity and continuity of TN then
yield that TN (L2(Xk, CkW,n, µ⊗k)) ⊆ L2(Xk,D, µ⊗k).

(4): Let n ∈ N ∪ {∞} and A ∈ Ak. We have CkW,0 ⊆ CkW,n, which means that the
function TA→W1Xk is CkW,n-measurable. Then, the claim follows as TA→W is a multiplication
operator, cf. the proof of (1) and (2).
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(5): We first show that CkW ⊆ C for every TkW -invariant sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k).
We have

〈{
∅, Xk

}〉
⊆ C and, hence, CkW,0 = TAk→W (

〈{
∅, Xk

}〉
) ⊆ TAk→W (C) ⊆ C. From

there on, induction yields CkW,n+1 = TN k(CkW,n) ⊆ TN k(C) ⊆ C for every n ∈ N. Hence,
CkW ⊆ C.

It remains to prove that CkW is TkW -invariant. By (4), it suffices to show that that
CkW is TN -invariant for N ∈ N k. This is essentially Proposition 5.13 of [11]: We first
show that TN1A ∈ L2(Xk, CkW , µ⊗k) for A ∈ CkW . To this end, note that

⋃
n∈N CkW,n is an

algebra and the σ-algebra generated by it is CkW . Hence, from [8, Theorem 3.1.10], it
easily follows that we can approximate every set in CkW by a set in

⋃
n∈N CkW,n w.r.t. the

measure of their symmetric difference. This implies that, for every A ∈ CkW , there is a
sequence (An)n∈N with An ∈ CkW,n such that 1An → 1A in L2(Xk, µ⊗k). Let N ∈ N k. By
continuity of TN , we have TN1An → TN1A. Note that, for n ∈ N, we have TN1An ∈
L2(Xk, CkW,n+1, µ

⊗k) ⊆ L2(Xk, CkW , µ⊗k), which is a closed subspace by Proposition 6.
Hence, TN1A ∈ L2(Xk, CkW , µ⊗k). Since the linear hull of {1A}A∈CkW is dense in the closed

subspace L2(Xk, CkW , µ⊗k), linearity and continuity of TN then yields that L2(Xk, CkW , µ⊗k)
is TN -invariant.

(6): First, recall that B⊗k is permutation invariant. Moreover, if C ∈ Θ(B⊗k, µ⊗k), then
π(C) ∈ Θ(B⊗k, µ⊗k) for every permutation π : [k] → [k]. This implies that, if X ⊆ B⊗k
is a set with π(X ) ⊆ X for every permutation π : [k] → [k], then 〈X 〉 is permutation
invariant. Hence, 〈

{
∅, Xk

}
〉 is permutation invariant, and it suffices to show that, for a

permutation-invariant sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k), both TAk→W (C) and TN k(C) are
permutation-invariant. Then, induction yields that CkW,n is permutation invariant for every

n ∈ N and, hence, also CkW since π
(⋃

n∈N CkW,n
)

=
⋃
n∈N π(CkW,n) ⊆

⋃
n∈N CkW,n for every

permutation π : [k]→ [k].
It remains to show that, for a permutation-invariant sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k),

both TAk→W (C) and TN k(C) are permutation-invariant. We prove the statement for
TAk→W (C); the proof for TN k(C) is analogous. To this end, we show that, for an arbitrary
sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k), we have

π(TAk→W (C)) = TAk→W (π(C)) (7)

for every permutation π : [k] → [k]. Then, if C is permutation invariant, we get that
π(TAk→W (C)) = TAk→W (π(C)) = TAk→W (C) for every permutation π : [k]→ [k].

To prove Equation (7), let π : [k]→ [k] be a permutation and observe that Tπ◦TAk
ij→W ◦

Tπ−1 = TAk
π(i)π(j)

→W for all i 6= j ∈ [k]. As a side note, the analogous observation for

TN k(C) is Tπ ◦ TNk
j→W ◦ Tπ−1 = TNk

π(j)
→W for every j ∈ [k]. We get that

TAk
ij→W (L2(Xk, π(C), µ⊗k)) = TAk

ij→W (Tπ−1(L2(Xk, C, µ⊗k)))

= Tπ−1(TAk
π(i)π(j)

→W (L2(Xk, C, µ⊗k))).
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Let D ∈ Θ(B⊗k, µ⊗k). Then, we have

TAk
ij→W (L2(Xk, π(C), µ⊗k)) ⊆ L2(Xk,D, µ⊗k)

⇐⇒ TAk
π(i)π(j)

→W (L2(Xk, C, µ⊗k)) ⊆ Tπ(L2(Xk,D, µ⊗k))

⇐⇒ TAk
π(i)π(j)

→W (L2(Xk, C, µ⊗k)) ⊆ L2(Xk, π−1(D), µ⊗k).

As the mapping Ak
ij 7→ Ak

π(i)π(j) is a permutation of Ak and we also have D ⊇ π(C) ⇐⇒
π−1(D) ⊇ C, this implies Equation (7).

4.2 Weisfeiler-Leman Measures and Distributions

Before defining the mapping owlkW : Xk →Mk, we have to define the space Mk, which can
be seen as the space of all colors used by oblivious k-WL. We state some facts regarding
spaces of measures first: For a separable metrizable space (X, T ), let P(X) denote the set
of all Borel probability measures on X. Let Cb(X) denote the set of bounded continuous
real-valued functions on X. We endow P(X) with the topology generated by the maps
µ 7→

∫
f dµ for f ∈ Cb(X). This leads to the notion of weak convergence of measures of

which the Portmanteau Theorem gives many equivalent characterizations [18, Theorem
17.20]. We only use that, for (µi)i∈N with µi ∈P(X) and µ ∈P(X), we have µi → µ if
and only if ∫

fdµi →
∫
fdµ

for every f ∈ Cb(X), where we may replace Cb(X) by a dense subset, i.e., a subset that is
dense for dsup(f, g) := sup|f − g|. If (X, T ) is compact, which is the case for the spaces
we define, then Cb(X) = C(X), where C(X) denotes the set of continuous real-valued
functions on X. The Borel σ-algebra B(P(X)) is generated by the maps µ 7→ µ(A) for
A ∈ B(X) and also by the maps µ 7→

∫
f dµ for bounded Borel real-valued functions f

[18, Theorem 17.24]. If (X, T ) is Polish, then so is P (X) [18, Theorem 17.23], which
means that, if (X,B) is a standard Borel space, then so is (P(X),B(P(X))). We note
that every compact metrizable space K = (X, T ) is separable [18, Proposition 4.6], which
means that (X,B) is a standard Borel space, where B is the Borel σ-algebra generated by
T . Additionally, in the case of such a K, the topological space P(X) is again compact
metrizable [18, Theorem 17.22].

We are ready to define the space Mk. One should pay attention to the connection

to oblivious k-WL, cf. Section 1.4: Here, P k
0 = [0, 1](

[k]
2 ) is the space of possible “edge

weights” of a tuple x̄ ∈ Xk, generalizing possible atomic types. Moreover, oblivious k-WL
defines k multisets of colors in every refinement, which results in k probability measures
on the previous space Mk

n in the following definition, where we recall that f∗µ denotes the
push-forward of µ via f .

Definition 26 (The Spaces Mk and Pk). Let k > 1. Let P k
0 := [0, 1](

[k]
2 ) and inductively

define Mk
n :=

∏
i6n P

k
i and P k

n+1 :=
(
P
(
Mk

n

))k
for every n ∈ N. Let Mk := Mk

∞ :=
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∏
n∈N P

k
i and, for n 6 m 6 ∞, let pm,n : Mk

m → Mk
n be the natural projection, i.e., the

restriction to the first n components. Finally, define

Pk :=
{
α ∈Mk | (αn+1)j = (pn+1,n)∗(αn+2)j for all j ∈ [k], n ∈ N

}
.

As a product of a sequence of metrizable compact spaces, Mk is metrizable [8, Proposi-
tion 2.4.4] and also compact by Tychonoff’s Theorem [8, Theorem 2.2.8]. Moreover, as
Mk is a product of a sequence of second-countable spaces, the Borel σ-algebra of Mk and
the product of the Borel σ-algebras of its factors are the same, cf. Section 2.1.

Consider the requirement (αn+1)j = (pn+1,n)∗(αn+2)j in the definition of Pk, and note

that αn+1 ∈ P k
n+1 =

(
P
(
Mk

n

))k
and αn+2 ∈ P k

n+2 =
(
P
(
Mk

n+1

))k
for α ∈Mk, i.e., Pk is

well-defined. This requirement intuitively expresses that αn+2, which can be thought of as
a coloring after n+ 2 refinement rounds, is consistent with αn+1 for every n ∈ N, but it
does not require that α0 is consistent with α1. One could add the additional consistency
condition that, for ij ∈

(
[k]
2

)
and u /∈ ij, the push-forward of (α1)u via the projection to

component ij is the Dirac measure of (α0)ij, but this would introduce an inconsistency in
the case k = 2 where there is no such u. For simplicity, we just leave this out; it does not
cause any problems for us.

In terms of graphs, an element (α0, α1, . . . ) of Mk can be thought of as a sequence of
unfoldings of a graph, cf. [7], of heights 0, 1, 2, . . . . These unfoldings, however, do not have
to be related in any way. The subspace Pk contains these sequences where each unfolding
is a continuation of the previous one. These sequences can also be viewed as a single,
infinite unfolding: By the Kolmogorov Consistency Theorem [18, Exercise 17.16], for all
α ∈ Pk and j ∈ [k], there is a unique measure µαj ∈P(Mk) such that (p∞,n)∗µ

α
j = (αn+1)j

for every n ∈ N. Moreover, one can verify that this mapping α 7→ µαj is continuous, cf. [11,
Claim 6.2].

Lemma 27. Pk is closed in Mk and Pk → P(Mk), α 7→ µαj is continuous for every
j ∈ [k].

Proof. To prove that Pk is closed, let αi → α with αi ∈ Pk for every i ∈ N and α ∈Mk. Let
j ∈ [k] and n ∈ N. By definition of the product topology, we have ((αi)n+2)j → (αn+2)j,
which yields∫

Mk
n

f d((αi)n+1)j
αi∈Pk=

∫
Mk
n

f d(pn+1,n)∗((αi)n+2)j =

∫
Mk
n+1

f ◦ pn+1,n d((αi)n+2)j

→
∫

Mk
n+1

f ◦ pn+1,n d(αn+2)j

=

∫
Mk
n

f d(pn+1,n)∗(αn+2)j

for every f ∈ C(Mk
n). Therefore, ((αi)n+1)j → (pn+1,n)∗(αn+2)j. Since also ((αi)n+1)j →

(αn+1)j and the metrizable space P(Mk
n) is Hausdorff, we get (αn+1)j = (pn+1,n)∗(αn+2)j.

Hence, α ∈ Pk.
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Let j ∈ [k]. Let αi → α with αi ∈ Pk for every i ∈ N and α ∈ Pk. To prove that
µαij → µαj , we observe that∫
Mk

f ◦ p∞,n dµαij =

∫
Mk
n

f d(p∞,n)∗µ
αi
j =

∫
Mk
n

f d((αi)n+1)j →
∫
Mk
n

f d(αn+1)j =

∫
Mk
n

f d(p∞,n)∗µ
α
j

=

∫
Mk

f ◦ p∞,n dµαj

for every n ∈ N and every f ∈ C(Mk
n). This already proves the claim as the set⋃

n∈NC(Mk
n) ◦ p∞,n is uniformly dense in C(Mk) by the Stone-Weierstrass Theorem [8,

Theorem 2.4.11]; in particular, this set separates points by the definition of the product
topology and the fact that every metrizable space is completely Hausdorff.

Lemma 27 implies that Pk ∈ B(Mk) and that Pk → R, α 7→
∫
f dµαj is measurable

for every bounded measurable real-valued function f on Mk and every j ∈ [k], cf. the
definition of P(Mk). This justifies the following definition of a k-WL distribution (k-
WLD), which intuitively generalizes the concept of a multiset of colors with the additional
constraints that, first, the non-consistent sequences α ∈ Mk have measure zero and,
second, it satisfies a variant of the Tonelli-Fubini Theorem w.r.t. the measures given by
the mappings Pk →P(Mk), α 7→ µαj . This definition only become fully clear in the next
subsections: we will show that every graphon W has a natural k-WLD νkW associated
with it that satisfies both conditions and that these conditions guarantee the existence of
certain operators associated with the k-WLD.

Definition 28. Let k > 1. A measure ν ∈ P(Mk) is called a k-Weisfeiler-Leman
distribution (k-WLD) if

1. ν(Pk) = 1 and

2.
∫
Mk

f dν =
∫
Mk

( ∫
Mk

f dµαj

)
dν(α) for all bounded measurable f : Mk → R, j ∈ [k].

4.3 The Mapping owlkW

Having defined the compact metrizable space Mk, we can finally define the mapping
owlkW : Xk → Mk and the k-WL distribution νkW for a graphon W . To this end, let us
first recall that oblivious k-WL for a graph G initially colors a k-tuple v̄ ∈ V (G)k by its
atomic type, which includes the information of which vertices in v̄ are equal and which are
connected by an edge. In our case, this becomes somewhat simpler since we do not have to
deal with the case that entries of a k-tuple x̄ ∈ Xk are equal; if our standard Borel space
is atom free, such diagonal sets have measure zero in the product space and do not matter.
Hence, we only include the information W (xi, xj) for every ij ∈

(
[k]
2

)
. Notice the connection

to the operators TAk→W : by definition, we have (TAk
ij→Wf)(x̄) = W (xi, xj) · f(x̄) for every

f ∈ L2(Xk, µ⊗k) and µ⊗k-almost every x̄ ∈ Xk.
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Let us also take a look at the substitution operation in the refinement rounds of oblivious
k-WL. Fix x̄ ∈ Xk and j ∈ [k]. Define x̄[/j] := (x1, . . . , xj−1, xj+1, . . . , xk) ∈ Xk−1 to
be the tuple obtained from x̄ by removing the jth component, and for y ∈ X, also
x̄[y/j] := (x1, . . . , xj−1, y, xj+1, . . . , xk) ∈ Xk, which is the tuple obtained from x̄ by
replacing the jth component by y. The preimage of a set A ⊆ Xk under the map
x̄[·/j] : X → Xk, y 7→ x̄[y/j] is

x̄[·/j]−1(A) = {y ∈ X | x̄[y/j] ∈ A} =: Ax̄[/j],

which we call the section of A determined by x̄[/j]. Note that, technically, Ax̄[/j] also
depends on j and not only on the (k − 1)-tuple x̄[/j] ∈ Xk−1, but we nevertheless
stick to this notation. The mapping x̄[·/j] is measurable, i.e., we have Ax̄[/j] ∈ B for
every A ∈ B⊗k [2, Theorem 18.1 (i)]. If we let pj : Xk → X denote the projection
to the jth component, which is measurable by definition of B⊗k, then, the mapping
x̄[·/j] ◦ pj : Xk → Xk, ȳ 7→ x̄[yj/j] is measurable as the composition of measurable
functions and we have (x̄[·/j] ◦ pj)∗µ⊗k = x̄[·/j]∗µ. To see the connection to the operators
TN k , note that the definition of TNk

j
yields that

(TNk
j
f)(x̄) =

∫
X

f(x̄[y/j]) dµ(y) =

∫
X

f ◦ x̄[·/j] dµ =

∫
Xk

fd (x̄[·/j]∗µ) (8)

for every f ∈ L2(Xk, µ⊗k) and µ⊗k-almost every x̄ ∈ Xk.

Definition 29 (The Mapping owlkW ). Let k > 1 and W : X ×X → [0, 1] be a graphon.
Define owlkW,0 : Xk →Mk

0 by

owlkW,0(x̄) :=
(
W (xi, xj)

)
ij∈([k]

2 )

for every x̄ ∈ Xk. Inductively define owlkW,n+1 : Xk →Mk
n+1 by

owlkW,n+1(x̄) :=

(
owlkW,n(x̄),

( (
owlkW,n ◦x̄[·/j]

)
∗ µ
)
j∈[k]

)
for every x̄ ∈ Xk. Then, let owlkW = owlkW,∞ : Xk → Mk be the mapping defined by

(owlkW (x̄))n := (owlkW,∞(x̄))n := (owlkW,n(x̄))n for all n ∈ N, x̄ ∈ Xk. Finally, let νkW :=

owlkW ∗µ
⊗k ∈P(Mk) be the push-forward of µ⊗k via owlkW .

An immediate consequence of Definition 29 is the following lemma. In particular, we
use it to prove that the mapping owlkW,n is measurable for every n ∈ N ∪ {∞}, which
actually is needed for everything in Definition 29 to be well defined.

Lemma 30. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then, owlkW,m
−1

(p−1
m,n(A)) =

owlkW,n
−1

(A) for all 1 6 n < m 6∞ and every A ∈ B(Mk
n).
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Proof. Let A ∈ B(Mk
n). We have

owlkW,m
−1

(p−1
m,n(A)) =

{
x̄ ∈ Xk |

((
owlkW,m(x̄)

)
1
, . . . ,

(
owlkW,m(x̄)

)
n

)
∈ A

}
=
{
x̄ ∈ Xk |

((
owlkW,n(x̄)

)
1
, . . . ,

(
owlkW,n(x̄)

)
n

)
∈ A

}
= owlkW,n

−1
(A)

by definition of owlkW,m and owlkW,n.

Lemma 31 states not only that owlkW,n is measurable but also that the minimum
µ⊗k-relatively complete sub-σ-algebra that makes it measurable is given by CkW,n, cf. [11,
Proposition 6.6].

Lemma 31. Let k > 1 and W : X ×X → [0, 1] be a graphon. For n ∈ N ∪ {∞},

CkW,n =
〈{

owlkW,n
−1

(A) | A ∈ B(Mk
n)
}〉

.

Proof. Let Dn := 〈{owlkW,n
−1

(A) | A ∈ B(Mk
n)}〉. First, we prove CkW,n = Dn for every n ∈ N

by induction on n. For the induction basis n = 0, we have

D0 =
〈{

owlkW,0
−1

(A) | A ∈ B(Mk
0)
}〉

=
〈{

owlkW,0
−1

(A) | A ∈ B([0, 1](
[k]
2 ))
}〉

The Borel σ-algebra B([0, 1](
[k]
2 )) is generated by the sets of the form

∏
ij∈([k]

2 )Aij where

Aij ∈ B([0, 1]) and Aij = [0, 1] for all but at most one ij [18, Section 10.B]. Since it
suffices to check measurability of a function for a generating set [8, Theorem 4.1.6], we

may replace B([0, 1](
[k]
2 )) by a generating set in the definition of D0, which yields that

D0 =
〈{

owlkW,0
−1

(A) | A ∈ B([0, 1](
[k]
2 ))
}〉

=
〈{{

x̄ ∈ Xk | (W (xi, xj))ij∈([k]
2 ) ∈ A

}
| A ∈ B([0, 1](

[k]
2 ))
}〉

=
〈{{

x̄ ∈ Xk | W (xi, xj) ∈ A
}
| A ∈ B([0, 1]), ij ∈

(
[k]
2

)}〉
=
〈⋃

ij∈([k]
2 )
{{
x̄ ∈ Xk | W (xi, xj) ∈ A

}
| A ∈ B([0, 1])

}〉
=
〈⋃

A∈Ak
{

(TA→W1Xk)−1(A) | A ∈ B([0, 1])
}〉

= CkW,0. (Lemma 25 (1))

For the inductive step, let n ∈ N. We have to prove that CkW,n+1 = Dn+1. Recall that

we have Mk
n+1 = Mk

n ×
(
P
(
Mk

n

))k
by definition and that the Borel σ-algebra B(P

(
Mk

n

)
)

is generated by the maps µ 7→ µ(A) for A ∈ B(Mk
n) [18, Theorem 17.24]. Hence, by

definition of the product σ-algebra and since it suffices to check measurability of a function
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for a generating set [8, Theorem 4.1.6], B(Mk
n+1) is the smallest σ-algebra containing{

p−1
n+1,n(A) | A ∈ B(Mk

n)
}

and making the maps

Mk
n+1 3 α 7→ ((α)n+1)j(A)

for A ∈ B(Mk
n) and j ∈ [k] measurable. Again by [8, Theorem 4.1.6], this means that

Dn+1 is the smallest µ⊗k-relatively complete sub-σ-algebra of B⊗k containing{
owlkW,n+1

−1
(p−1
n+1,n(A)) | A ∈ B(Mk

n)
}

=
{
owlkW,n

−1
(A) | A ∈ B(Mk

n)
}

and making the maps

Xk 3 x̄ 7→ ((owlkW,n+1(x̄))n+1)j(A) =
( (

owlkW,n ◦x̄[·/j]
)
∗ µ
)

(A)

=

∫
Mk
n

1Ad
(
owlkW,n ◦x̄[·/j]

)
∗ µ

=

∫
Xk

1A ◦ owlkW,n d x̄[·/j]∗µ

= (TNk
j
1A ◦ owlkW,n)(x̄)

for A ∈ B(Mk
n) and j ∈ [k] measurable, where the equalities hold µ⊗k-almost everywhere,

cf. also Equation (8).
To see that Dn+1 ⊆ CkW,n+1, we verify that CkW,n+1 contains the aforementioned sets and

that the aforementioned maps are measurable for it. We have{
owlkW,n

−1
(A) | A ∈ B(Mk

n)
} def.

⊆ Dn
IH

⊆ CkW,n
def.

⊆ CkW,n+1.

By the induction hypothesis, owlkW,n is CkW,n-measurable, and since A ∈ B(Mk
n), so is

1A ◦ owlkW,n. Hence, by definition of CkW,n+1, TNk
j
1A ◦ owlkW,n is CkW,n+1-measurable, which is

just what we wanted to prove.
It remains to verify that CkW,n+1 ⊆ Dn+1. By Lemma 25 (3), it suffices to prove that

Dn+1 contains CkW,n and makes the functions TN1A for N ∈ N k and A ∈ CkW,n measurable.
We have

CkW,n
IH

⊆ Dn =
〈{

owlkW,n
−1

(A) | A ∈ B(Mk
n)
}〉
⊆ Dn+1.

Let A ∈ CkW,n. By the induction hypothesis, we have A ∈ Dn. Since the preimage of a

σ-algebra is a σ-algebra, we have A = owlkW,n
−1

(B)4Z for some B ∈ B(Mk
n) and Z ∈ B⊗k

with µ⊗k(Z) = 0. Then, x̄ ∈ A ⇐⇒ owlkW,n(x̄) ∈ B for every x̄ /∈ Z, i.e., 1B ◦owlkW,n = 1A,
where the equality holds µ⊗k-almost everywhere. Let j ∈ [k]. We know that Dn+1 makes
the map TNk

j
1B ◦ owlkW,n = TNk

j
1A measurable, but this is already what we wanted to

show.
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It remains to prove that

CkW =
〈{

owlkW
−1

(A) | A ∈ B(Mk)
}〉

,

where, by definition, we have CkW = 〈
⋃
n∈N CkW,n〉. It is easy to see that the Borel σ-algebra

B(Mk) is generated by the projections p∞,n. Hence, by [8, Theorem 4.1.6],

CkW =

〈⋃
n∈N

CkW,n

〉
=

〈⋃
n∈N

{
owlkW,n

−1
(A) | A ∈ B(Mk

n)
}〉

=
〈{

owlkW,n
−1

(A) | n ∈ N, A ∈ B(Mk
n)
}〉

=
〈{

owlkW
−1

(p−1
∞,n(A)) | n ∈ N, A ∈ B(Mk

n)
}〉

=
〈{

owlkW
−1

(A) | A ∈ B(Mk)
}〉

.

By Lemma 31, CkW is the minimum µ⊗k-relatively complete sub-σ-algebra that makes
owlkW measurable. Hence owlkW : Xk → Mk is a measurable and measure-preserving
mapping from the measure space (Xk,B⊗k, µ⊗k) to (Mk,B(Mk), νkW ) and we can consider
the Koopman operator TowlkW : L2(Mk, νkW )→ L2(Xk, µ⊗k) of owlkW .

Corollary 32. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then,

1. the Koopman operator TowlkW : L2(Mk, νkW ) → L2(Xk, µ⊗k) of owlkW is a Markov

embedding onto L2(Xk, CkW , µ⊗k),

2. the operator SCkW : L2(Xk, µ⊗k) → L2(Xk/CkW , µ⊗k/CkW ) becomes a Markov isomor-

phism when restricted to L2(Xk, CkW , µ⊗k), and

3. Rk
W := SCkW ◦TowlkW : L2(Mk, νkW )→ L2(Xk/CkW , µ⊗k/CkW ) is a Markov isomorphism.

Proof. (1): Consider the measure spaces (Xk,B⊗k, µ⊗k) and (Mk,B(Mk), νkW ). The map-
ping owlkW : Xk →Mk is measurable by Lemma 31 and measure-preserving by definition
of νkW . Hence, its Koopman operator TowlkW : L2(Mk, νkW ) → L2(Xk, µ⊗k) is a Markov

embedding [10, Theorem 7.20]. By Proposition 8, it is an isometry onto L2(Xk, CkW , µ⊗k).
(2): By Proposition 7 (5), the operator SCkW : L2(Xk, µ⊗k) → L2(Xk/CkW , µ⊗k/CkW )

becomes a Markov isomorphism when restricted to L2(Xk, CkW , µ⊗k).
(3): Follows immediately from (1) and (2).

It remains to verify that νkW is in fact a k-WLD. The following lemma can also be seen as
a justification of the definition of a k-WLD. In particular, it shows that Tonelli-Fubini-like
requirement in Definition 28 actually stems from the Tonelli-Fubini Theorem. In other
words, the definition of a k-WLD is chosen such that it captures the essential properties
of νkW that make it possible to define the analogue of TkW on the space L2(Mk, νkW ). In the
next section, we define these operators on L2(Mk, ν) for an arbitrary k-WLD ν.
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Lemma 33. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then,

1. owlkW (Xk) ⊆ Pk,

2. µ
owlkW (x̄)
j = (owlkW ◦x̄[·/j])∗µ for all j ∈ [k], x̄ ∈ Xk, and

3. νkW is a k-WLD.

Proof. (1): Let x̄ ∈ Xk. For j ∈ [k] and n ∈ N, we have

(pn+1,n)∗((owl
k
W (x̄))n+2)j = (pn+1,n)∗((owl

k
W,n+2(x̄))n+2)j (Definition owlkW )

= (pn+1,n)∗((owl
k
W,n+1 ◦x̄[·/j])∗µ) (Definition owlkW,n+2)

= (owlkW,n ◦x̄[·/j])∗µ
= ((owlkW,n+1(x̄))n+1)j (Definition owlkW,n+1)

= ((owlkW (x̄))n+1)j. (Definition owlkW )

Hence, owlkW (x̄) ∈ Pk.
(2): For n ∈ N and A ∈ B(Mk

n), we have

µ
owlkW (x̄)
j (p−1

∞,n(A)) = (p∞,n)∗µ
owlkW (x̄)
j (A) = ((owlkW (x̄))n+1)j(A) (Definition µ

owlkW (x̄)
j )

= ((owlkW,n+1(x̄))n+1)j(A) (Definition owlkW )

= (owlkW,n ◦x̄[·/j])∗µ(A) (Definition owlkW,n+1)

= (owlkW ◦x̄[·/j])∗µ(p−1
∞,n(A)).

That is, µ
owlkW (x̄)
j and (owlkW ◦x̄[·/j])∗µ both are probability measures that agree on the set⋃

n∈N
{
p−1
∞,n(A) | A ∈ B(Mk

n)
}

, which generates B(Mk). By the π-λ Theorem [18, Theorem
10.1 iii)], they agree on all of B(Mk).

(3): By (1), we have νkW (Pk) = µ⊗k(owlkW
−1

(Pk)) = µ⊗k(Xk) = 1. Let j ∈ [k]. Let
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f : Mk → R be bounded and measurable. We have∫
Mk

f dνkW
def. νkW=

∫
Mk

f dowlkW ∗µ
⊗k =

∫
Xk

f ◦ owlkW dµ⊗k

T.-F.
=

∫
Xk−1

∫
X

f ◦ owlkW (x̄[y/j]) dµ(y)

 dµ⊗k−1(x̄[/j])

(xj ∈ X arb.)

=

∫
Xk

∫
X

f ◦ owlkW (x̄[y/j]) dµ(y)

 dµ⊗k(x̄)

=

∫
Xk

 ∫
Mk

f d(owlkW ◦x̄[·/j])∗µ

 dµ⊗k(x̄)

(2)
=

∫
Xk

 ∫
Mk

f dµ
owlkW (x̄)
j

 dµ⊗k(x̄)

push-f.
=

∫
Mk

 ∫
Mk

f dµαj

 dowlkW ∗µ
⊗k(α)

def. νkW=

∫
Mk

 ∫
Mk

f dµαj

 dνkW (α).

4.4 Operators and Weisfeiler-Leman Measures

For a graphon W , the operator Rk
W : L2(Mk, νkW ) → L2(Xk/CkW , µ⊗k/CkW ) is a Markov

isomorphism by Corollary 32. Hence, if U is another graphon with νkU = νkW , then
Rk
U ◦ (Rk

W )∗ is a Markov isomorphism from L2(Xk/CkW , µ⊗k/CkW ) to L2(Xk/CkU , µ⊗k/CkU).
However, we still lack that this Markov isomorphism “maps” the family TkW/CkW to TkU/CkU .
To close this gap, we show that we can define a family TνkW of operators on L2(Mk, νkW )

such that Rk
W “maps” TνkW to TkW/CkW . This replaces the graphon M×M→ [0, 1] defined

by Greb́ık and Rocha [11]. Let us begin with operators for neighbor graphs as this is the
interesting case; in particular, it shows why we have the Tonelli-Fubini-like requirement in
the definition of a k-WLD.
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Lemma 34. Let k > 1, and let ν ∈P(Mk) be a k-WLD. Let j ∈ [k]. Setting

(TNk
j→νf)(α) :=

∫
Mk

f dµαj

for all f ∈ L∞(Mk, ν), α ∈ Mk defines an L∞-contraction that uniquely extends to an
L2-contraction L2(Mk, ν)→ L2(Mk, ν).

Proof. We show that the definition yields a well-defined contraction TNk
j→ν on L∞(Mk, ν)

such that ‖TNk
j→νf‖2 6 ‖f‖2 for every f ∈ L∞(Mk, ν). Then, TNk

j→ν uniquely extends to

a contraction on L2(Mk, ν) since L∞(Mk, ν) is dense in L2(Mk, ν).
The definition of a k-WLD immediately yields that, if A ∈ B(Mk) with ν(A) = 0, then

µαj (A) = 0 for ν-almost every α ∈ Mk. Hence, if a property holds ν-almost everywhere,
it holds µαj -almost everywhere for ν-almost every α ∈ Mk. Let f ∈ L∞(Mk, ν). Then,
|f | 6 ‖f‖∞ ν-almost everywhere, and hence, |f | 6 ‖f‖∞ holds µαj -almost everywhere for
ν-almost every α ∈Mk. Thus, for ν-almost every α ∈Mk, we have∣∣∣ ∫

Mk

f dµαj

∣∣∣ 6 ∫
Mk

|f | dµαj 6
∫
Mk

‖f‖∞ dµαj = ‖f‖∞,

which yields that ‖TNk
j→νf‖∞ 6 ‖f‖∞. In particular, if f, g ∈ L∞(Mk, ν) are equal

ν-almost everywhere, then

‖TNk
j→νf − TNk

j→νg‖∞ = ‖TNk
j→ν(f − g)‖∞ 6 ‖f − g‖∞ = 0,

that is, TNk
j→νf and TNk

j→νg are equal ν-almost everywhere. Here we used that the

mapping TNk
j→ν is linear, which follows directly from the linearity of the integral. Recall

that Pk → R, α 7→
∫
fµαj is measurable for every bounded measurable R-valued function

f on Mk by Lemma 27 and the definition of P(Pk). Since Pk ∈ B(Mk) by Lemma 27
and ν(Pk) = 1, this combined with the previous considerations yields that TNk

j→ν is a

well-defined mapping L∞(Mk, ν)→ L∞(Mk, ν).
It remains to show that ‖TNk

j→νf‖2 6 ‖f‖2 for every f ∈ L∞(Mk, ν). We have

‖TNk
j→νf‖

2
2 =

∫
Mk

( ∫
Mk

f dµαj

)2

dν(α)
C.-S.

6
∫
Mk

( ∫
Mk

f 2 dµαj

)
dν(α) (Cauchy-Schwarz)

=

∫
Mk

f 2 dν (def. k-WLD)

= ‖f‖2
2

Note that we again used that |f | 6 ‖f‖∞ holds µαj -almost everywhere for ν-almost every
α ∈Mk in order to apply the Cauchy-Schwarz inequality.

The following lemma states that Lemma 34 is indeed the right definition.

Lemma 35. Let k > 1 and W : X ×X → [0, 1] be a graphon. For every N ∈ N k,
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1. TN ◦ TowlkW = TowlkW ◦ TN→νkW ,

2. (TN )CkW ◦ TowlkW = TowlkW ◦ TN→νkW , and 3. TN/CkW ◦Rk
W = Rk

W ◦ TN→νkW .

Proof. (1): Let j ∈ [k]. We have

(TNk
j
◦ TowlkW f)(x̄) = (TNk

j
f ◦ owlkW )(x̄) =

∫
X

f ◦ owlkW (x̄[y/j]) dµ(y) (def.)

=

∫
Mk

f d(owlkW ◦x̄[·/j])∗µ

=

∫
Mk

f dµ
owlkW (x̄)
j (Lemma 33 (2))

= (TNk
j→νkW

f)(owlkW (x̄)) (def. TNk
j→νkW

)

= (TowlkW ◦ TNk
j→νkW

f)(x̄) (def.)

for µ⊗k-almost every x̄ ∈ Xk and every f ∈ L∞(Mk, νkW ). This already proves the claim
as L∞(Mk, νkW ) is dense in L2(Mk, νkW ).

(2): We have

(TN )CkW ◦ TowlkW = TN ◦ E(− | CkW ) ◦ TowlkW (Lemma 9 (5) and Lemma 25 (5))

= TN ◦ TowlkW (cf. Corollary 32)

= TowlkW ◦ TN→νkW . ((1))

(3): We have

TN/CkW ◦Rk
W = SCkW ◦ TN ◦ ICkW ◦ SCkW ◦ TowlkW (def.)

= SCkW ◦ E(− | CkW ) ◦ TN ◦ E(− | CkW ) ◦ TowlkW (Proposition 7 (4) and (6))

= SCkW ◦ (TN )CkW ◦ TowlkW (def.)

= SCkW ◦ TowlkW ◦ TN→νkW ((2))

= Rk
W ◦ TN→νkW . (def.)

Defining the operators for adjacency graphs is much simpler. Intuitively, every α ∈Mk

contains the values W (xi, xj) for every ij ∈
(

[k]
2

)
at position 0.

Lemma 36. Let k > 1, and let ν ∈P(Mk) be a k-WLD. Let ij ∈
(

[k]
2

)
. Setting

(TAk
ij→νf)(α) := (α0)ij · f(α)

for all f ∈ L2(Mk, ν), α ∈Mk defines an L∞- and L2-contraction L2(Mk, ν)→ L2(Mk, ν).
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Proof. The mapping α 7→ (α0)ij is measurable by definition of the product σ-algebra.
Hence, TAk

ij→νf for f ∈ L2(Mk, ν) is measurable as the product of measurable functions.

Moreover, by definition of Mk, the function α 7→ (α0)ij is bounded by 1, which immediately
yields that ‖TAk

ij→νf‖2 6 ‖f‖2 for f ∈ L2(Mk, ν) and ‖TAk
ij→νf‖∞ 6 ‖f‖∞ for f ∈

L∞(Mk, ν). Moreover, TAk
ij→ν is linear as a multiplication operator.

Analogously to Lemma 35, one can verify that Lemma 36 is in fact the right definition.

Lemma 37. Let k > 1 and W : X ×X → [0, 1] be a graphon. For every A ∈ Ak,

1. TA→W ◦ TowlkW = TowlkW ◦ TA→νkW ,

2. (TA→W )CkW ◦ TowlkW = TowlkW ◦ TA→νkW ,

and

3. TA→W/CkW ◦Rk
W = Rk

W ◦ TA→νkW .

Proof. (1): Let ij ∈
(

[k]
2

)
. We have

(TAk
ij→W ◦ TowlkW f)(x̄) = (TAk

ij→Wf ◦ owl
k
W )(x̄)

= W (xi, xj) · (f ◦ owlkW )(x̄) (def.)

= ((owlkW (x̄))0)ij · (f ◦ owlkW )(x̄) (def. owlkW )

= (TAk
ij→νkW

f)(owlkW (x̄)) (def. TAk
ij→νkW

)

= (TowlkW ◦ TAk
ij→νkW

f)(x̄) (def.)

for µ⊗k-almost every x̄ ∈ Xk and every f ∈ L2(Mk, νkW ).
(2) and (3): Analogous to the proof of (2) and (3) of Lemma 35, respectively.

For a k-WLD ν ∈P(Mk), we define the family of L∞-contractions Tν := (TF→ν)F∈Fk .
Lemma 35 (3) and Lemma 37 (3) can then be rephrased as the following corollary.

Corollary 38. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then, TkW/CkW ◦Rk
W =

Rk
W ◦ TνkW .

Recall Definition 20, i.e., the homomorphism density of a term in a family of L∞-
contractions. In particular, this definition applies to the family TνkW of the k-WLD νkW of

a graphon W . Lemma 22 with the previous corollary yields that TνkW and TkW/CkW give

us the same homomorphism densities (and also functions), which are just the original
homomorphism densities in W .

Corollary 39. Let k > 1. Let W : X ×X → [0, 1] be a graphon and C ∈ Θ(B⊗k, µ⊗k) be
W -invariant. Then, t(F,TνkW ) = t([[F]],W ) for every F ∈ 〈Fk〉◦,·.

Proof. By Corollary 23, we have t(F,TkW/CkW ) = t([[F]],W ) since CkW is W -invariant by
Lemma 25. By Corollary 38, we have TkW/CkW ◦Rk

W = Rk
W ◦ TνkW , where Rk

W is a Markov

isomorphism by Corollary 32. Then, Lemma 22 yields t(F,TkW/CkW ) = t(F,TνkW ).
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The mapping owlkW : Xk →Mk assigns an element of Mk to a k-tuple of elements from
X. The order of these elements from X in the tuple has no deeper meaning and should,
intuitively, not matter. While we already have defined what it means for an operator
and a sub-σ-algebra to be permutation invariant, we now also formalize this for k-WLDs,
and in particular, show that the k-WLD νkW of a graphon W , which is defined via owlk,
is permutation invariant. This allows us to show that, in Theorem 5, Markov operators
and Markov isomorphisms can always be assumed to be permutation invariant and, hence,
confirms the intuition that the order of the elements in a k-tuple from X does not matter.
This becomes important for the connection to linear equations in Section 4.8, where this
assumption of permutation invariance is always implicitly present.

A permutation π : [k]→ [k] extends to a measurable bijection π : Mk →Mk as follows:
We obtain a measurable bijection π : P k

0 → P k
0 by setting π((yij)ij) := (yπ(i)π(j))ij for

(yij)ij ∈ [0, 1](
[k]
2 ). From there on, π inductively extends to a measurable bijection π : Mk

n →
Mk

n by component-wise application and, then, to a measurable bijection π : P k
n+1 → P k

n+1

by setting π((µj)j∈[k]) = (π∗µπ(j))j∈[k] for every (µj)j∈[k] ∈ P k
n+1. Finally, we obtain the

measurable bijection π : Mk
n →Mk

n by component-wise application.
Let ν ∈ P(Mk) be a k-WLD and π : [k] → [k] be a permutation. By definition of

π∗ν, the extension π : Mk → Mk is a measure-preserving map from (Mk,B(Mk), ν) to
(Mk,B(Mk), π∗ν) by definition. The k-WLD ν is called π-invariant if π∗ν = ν, in which
case we can view the Koopman operator of π as an operator Tπ→ν : L2(Mk, ν)→ L2(Mk, ν).
The notation Tπ→ν avoids confusion with the Koopman operator of π when viewing it as a
map Xk → Xk, which we denote just by Tπ. We call a k-WLD ν ∈P(Mk) permutation-
invariant if it is π-invariant for every permutation π : [k]→ [k]. Then Lemma 40 yields
that the k-WLD νkW of a graphon W is permutation invariant.

Lemma 40. Let k > 1 and W : X × X → [0, 1] be a graphon. For every permutation
π : [k]→ [k],

1. π ◦ owlkW = owlkW ◦π,

2. νkW is π-invariant,

3. Tπ ◦ TowlkW = TowlkW ◦ Tπ→νkW ,

4. (Tπ)CkW ◦ TowlkW = TowlkW ◦ Tπ→νkW , and

5. Tπ/CkW ◦ SCkW ◦ TowlkW = SCkW ◦ TowlkW ◦
Tπ→νkW .

Proof. (1): We prove that π ◦ owlkW,n = owlkW,n ◦π by induction on n ∈ N. This yields

(π ◦ owlkW (x̄))n = (owlkW ◦π(x̄))n for every x̄ ∈ Xk by induction on n ∈ N, which then
implies the claim. For the base case, we have

π(owlkW,0(x̄)) =
(
(owlkW,0(x̄))π(i)π(j)

)
ij∈([k]

2 )
=
(
W (xπ(i), xπ(j))

)
ij∈([k]

2 ) = owlkW,0(π(x̄))

for every x̄ ∈ Xk. Then, for the inductive step, the induction hypothesis yields that
(π(owlkW,n+1(x̄)))i = (owlkW,n+1(π(x̄)))i for every x̄ ∈ Xk and every i 6 n. Moreover, we
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have

(π(owlkW,n+1(x̄)))n+1 =
(
π∗((owl

k
W,n+1(x̄))n+1)π(j)

)
j∈[k]

=
(
π∗

((
owlkW,n ◦x̄[·/π(j)]

)
∗ µ
))

j∈[k]

=
((
π ◦ owlkW,n ◦x̄[·/π(j)]

)
∗ µ
)
j∈[k]

=
((
π ◦ owlkW,n ◦π−1 ◦ π(x̄)[·/j])

)
∗ µ
)
j∈[k]

=
((

owlkW,n ◦π(x̄)[·/j])
)
∗ µ
)
j∈[k]

(IH)

= (owlkW,n+1(π(x̄)))n+1

for every x̄ ∈ Xk.
(2): We have

π∗ν
k
W = π∗(owl

k
W ∗µ

⊗k) = (π ◦ owlkW )∗µ
⊗k (1)

= (owlkW ◦π)∗µ
⊗k = owlkW ∗(π∗µ

⊗k) = owlkW ∗µ
⊗k

= νkW .

(3): We have

Tπ ◦ TowlkW f = f ◦ owlkW ◦π
(1)
= f ◦ π ◦ owlkW = TowlkW ◦ Tπ→νkW f

for every f ∈ L2(Mk, νkW ).
(4) and (5): Analogous to the proof of (2) and (3) of Lemma 35, respectively.

4.5 Homomorphism Functions and Weisfeiler-Leman Measures

For the proof of Theorem 5, Corollary 39 allows us to get from k-WLDs to homomorphism
densities, but getting to the other characterizations from there is arguably the most
involved part of the proof. As Greb́ık and Rocha have shown [11], the key tool needed for
this is the Stone-Weierstrass Theorem: It yields that the set of homomorphism functions
on Mk, which is yet to be defined, is dense in the set C(Mk) of continuous functions on
Mk. This then means that equal homomorphism densities already imply equal k-WLDs.

To apply the Stone-Weierstrass Theorem, we have to define the homomorphism function
of a term on the set Mk. Recall that an α ∈ Mk is a sequence α = (α0, α1, α2, . . . ) that,
intuitively, corresponds to a sequence of unfoldings of heights 0, 1, 2, . . . of a graphon.
However, as the components α0, α1, α2 do not have to be consistent, cf. the definition of Pk,
using different components may lead to different functions. Hence, we define a whole set
of functions for a single term by considering all ways in which we may use the components
to define a homomorphism function. We could avoid this by defining homomorphism
functions just on Pk instead of Mk; this, however, would complicate things further down
the road, which is why we just accept this small inconvenience. Note the similarity between
the following definition and the operators defined in the previous section.
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Definition 41. Let k > 1. For every term F ∈ 〈Fk〉◦,· and every n ∈ N with n > h(F),
we inductively define the set F F

n of functions Mk
n → [0, 1] as the smallest set such that

1. 1Mk
n
∈ F 1k

n ,

2. α 7→ (α0)ij · f(α) ∈ FAk
ij◦F

n for every f ∈ F F
n ,

3. α 7→
∫
Mk
n
f d(αn+1)j ∈ F

Nk
j ◦F

n+1 for every f ∈ F F
n and every j ∈ [k],

4. f1 · f2 ∈ F F1·F2
n for all f1 ∈ F F1

n , f2 ∈ F F2
n , and

5. f ◦ pn,m ∈ F F
n for every f ∈ F F

m and every m ∈ N with n > m > h(F).

Moreover, for every term F ∈ 〈Fk〉◦,·, define the set F F of functions Mk → [0, 1] by

F F := F F
∞ :=

⋃
h(F)6n<∞

F F
n ◦ p∞,n.

With a simple induction, one can verify that for every term F ∈ 〈Fk〉◦,· and every
n ∈ N ∪ {∞} with n > h(F), the set F F

n is non-empty and all functions in it are well-
defined and continuous. Recall that, for a term F ∈ 〈Fk〉◦,· and a k-WLD ν ∈ P(Mk),
the operators Tν already define the homomorphism function fF→Tν ∈ L∞(Mk, ν) by
Definition 20. Note that the k-WLD ν satisfying ν(Pk) = 1 is the reason why we only have
this single function fF→Tν . Then, it should come at no surprise that this single function is
equal to all of the previously defined functions ν-almost everywhere.

Lemma 42. Let k > 1 and ν ∈P(Mk) be a k-WLD. Let F ∈ 〈Fk〉◦,· be a term and n ∈ N
with n > h(F). Then, every function in F F

n ◦ p∞,n is equal to fF→Tν ν-almost everywhere.

Proof. We prove the statement by induction on F and n. For the base case, we have
1Mk

n
◦ p∞,n = 1Mk = f1k→Tν ν-almost everywhere. For the inductive step, first consider

α 7→ (α0)ij · f(α) ∈ FAk
ij◦F

n for an f ∈ F F
n , where we have

(α0)ij · f(p∞,n(α)) = (TAk
ij→νf ◦ p∞,n)(α)

IH
= (TAk

ij→νfF→Tν )(α) = fAk
ij◦F→ν(α)

for ν-almost every α ∈ Mk. Next, consider α 7→
∫
Mk
n
f d(αn+1)j ∈ F

Nk
j ◦F

n+1 for an f ∈ F F
n

and a j ∈ [k]. Since ν is a k-WLD, we have ν(Pk) = 1, which yields that∫
Mk
n

f d(αn+1)j =

∫
Mk
n

f d(p∞,n)∗µ
α
j =

∫
Mk

f ◦ p∞,n dµαj = (TNk
j→νf ◦ p∞,n)(α)

IH
= (TNk

j→νfF→ν)(α)

= fNk
j ◦F→ν(α)
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for ν-almost every α ∈Mk. For the product f1 · f2 ∈ F F1·F2
n of f1 ∈ F F1

n , f2 ∈ F F2
n , we have

(f1 · f2) ◦ p∞,n = (f1 ◦ p∞,n) · (f2 ◦ p∞,n)
IH
= fF1→Tν · fF2→Tν = fF1·F2→Tν

ν-almost everywhere. Finally, consider f ◦ pn,m ∈ F F
n for f ∈ F F

m and m ∈ N with
n > m > h(F). Then, f ◦ pn,m ◦ p∞,n = f ◦ p∞,m = fF→Tν holds ν-almost everywhere by
the inductive hypothesis.

Corollary 39 yields the following corollary to the previous lemma.

Corollary 43. Let k > 1 and W : X×X → [0, 1] be a graphon. For every term F ∈ 〈Fk〉◦,·
and every function f ∈ F F, we have

t([[F]],W ) =

∫
Mk

fνkW .

For every n ∈ N∪ {∞}, define T kn :=
⋃

F∈〈Fk〉◦,·,h(F)6n F
F
n and abbreviate T k := T k∞. By

induction, we can use the Stone-Weierstrass Theorem and the Portmanteau Theorem to
show that the Stone-Weierstrass Theorem is actually applicable to all of these sets and, in
particular, to T k, cf. [11, Proposition 7.5].

Lemma 44. Let k > 1. For every n ∈ N∪{∞}, the set T kn is closed under multiplication,
contains 1Mk

n
, and separates points of Mk

n.

Proof. First, consider the case that n ∈ N. We trivially have 1Mk
n
∈ F 1k

n ⊆ T kn by
definition. Moreover, for f1, f2 ∈ T kn , there are terms F1,F2 ∈ 〈Fk〉◦,· with h(F1) 6 n
and h(F2) 6 n. such that f1 ∈ F F1

n and f2 ∈ F F2
n . Then, f1 · f2 ∈ F F1·F2

n ⊆ T kn as
h(F1 · F2) = max {h(F1), h(F2)} 6 n. We prove that T kn separates points of Mk

n by
induction on n. For the base case n = 0, let β 6= γ ∈Mk

0. Then, there is an ij ∈
(

[k]
2

)
such

that βij 6= γij, and the function α 7→ (α0)ij ∈ F
Ak
ij◦1k

0 separates β and γ.
For the inductive step, assume that T kn separates points of Mk

n. Let β 6= γ ∈ Mk
n+1.

If there is an 0 6 m 6 n such that βm 6= γm, then pn+1,n(β) 6= pn+1,n(γ) ∈ Mk
n. Hence,

by the inductive hypothesis, there is an f ∈ T kn such that f(pn+1,n(β)) 6= f(pn+1,n(γ)).
By definition, f ∈ F F

n for some term F ∈ 〈Fk〉◦,· with h(F) 6 n. Therefore, f ◦ pn+1,n ∈
F F
n+1 ⊆ T kn+1 is a function that separates β and γ.

For the remaining case, assume that βn+1 6= γn+1. Then, there is a j ∈ [k] such that
(βn+1)j 6= (γn+1)j. By the inductive hypothesis and the Stone-Weierstrass Theorem [8,
Theorem 2.4.11], the linear hull of T kn is uniformly dense in C(Mk

n). Since Mk
n is Hausdorff,

it then follows from the Portmanteau Theorem [18, Theorem 17.20] that there is an
f ∈ T kn such that

∫
Mk
n
f d(βn+1)j 6=

∫
Mk
n
f d(γn+1)j. By definition, f ∈ F F

n for some term

F ∈ 〈Fk〉◦,· with h(F) 6 n. Then, α 7→
∫
Mk
n
f d(αn+1)j ∈ F

Nk
j ◦F

n+1 ⊆ T kn+1 is a function that

separates β and γ.
Having proven the statement for every n ∈ N, one can also easily see that it holds in

the case n =∞ from the definitions, cf. also the first case of the induction.
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A final application of the Stone-Weierstrass Theorem and the Portmanteau Theorem
yields that, for a sequence of graphons, convergence of their k-WLDs is equivalent to
convergence of treewidth k − 1 multigraph homomorphism densities.

Lemma 45. Let k > 1. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons
and a graphon, respectively. Then, νkWn

→ νkW if and only if t(F,Wn)→ t(F,W ) for every
multigraph F of treewidth at most k − 1.

Proof. Note that the linear hull of T k is uniformly dense in C(Mk) by Lemma 44 and the
Stone-Weierstrass Theorem [8, Theorem 2.4.11]. Hence, we have

νkWn
→ νkW ⇐⇒

∫
Mk

f dνkWn
→
∫
Mk

f dνkW for every f ∈ C(Mk)

(Portmanteau Theorem)

⇐⇒
∫
Mk

f dνkWn
→
∫
Mk

f dνkW for every f in the linear hull of T k

⇐⇒
∫
Mk

f dνkWn
→
∫
Mk

f dνkW for every f ∈ T k (Linearity of the integral)

⇐⇒ t([[F]],Wn)→ t([[F]],W ) for every F ∈ 〈Fk〉◦,· (Corollary 43)

⇐⇒ t(F,Wn)→ t(F,W ) for every multigraph F of tw. 6 k − 1.
(Theorem 14)

Since Mk is Hausdorff, this in particular means that the k-WLDs of two graphons are
equal if and only if their homomorphism densities are.

Corollary 46. Let k > 1 and U,W : X ×X → [0, 1] be graphons, Then, νkU = νkW if and
only if t(F,U) = t(F,W ) for every multigraph F of treewidth at most k − 1.

4.6 Proof of Theorem 5

We are finally ready to prove Theorem 5. The majority of the work is already done and, at
this point, it is just about putting all the previous results together. For easier readability,
we restate the theorem here.

Theorem 5. Let k > 1 and U,W : X × X → [0, 1] be graphons. The following are
equivalent:

1. t(F,U) = t(F,W ) for every multigraph of treewidth at most k − 1.

2. νkU = νkW .

3. There is a (permutation-invariant) Markov isomorphism R : L2(Xk/CkW , µ⊗k/CkW )→
L2(Xk/CkU , µ⊗k/CkU) such that TkU/CkU ◦R = R ◦ TkW/CkW .
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4. There is a (permutation-invariant) Markov operator S : L2(Xk, µ⊗k)→ L2(Xk, µ⊗k)
such that TkU ◦ S = S ◦ TkW .

5. There are µ⊗k-relatively complete sub-σ-algebras C and D of B⊗k that are U -invariant
and W -invariant, respectively, and a Markov isomorphism R : L2(Xk/D, µ⊗k/D)→
L2(Xk/C, µ⊗k/C) such that TkU/C ◦R = R ◦ TkW/D.

Proof. (1) =⇒ (2): This is just Corollary 46.
(2) =⇒ (3): Let R := Rk

U ◦ (Rk
W )∗. By the assumption, R is well defined, and by

Corollary 32, it is a Markov isomorphism as the composition of two Markov isomorphisms.
By Corollary 38, we have

TkU/CkU ◦R = TkU/CkU ◦Rk
U ◦ (Rk

W )∗ = Rk
U ◦ TkνkU ◦ (Rk

W )∗ = Rk
U ◦ TkνkW ◦ (Rk

W )∗

= Rk
U ◦ (Rk

W )∗ ◦ TkW/CkW
= R ◦ TkW/CkW .

Similarly, Lemma 40 yields that R is permutation invariant.
(3) =⇒ (4): Set S := ICkU ◦R ◦SCkW , which is a Markov operator as the composition of

Markov operators. By Lemma 25 (5), CkU and CkW are TkU - and TkW -invariant, respectively.
Hence,

TkU ◦ S = TkU ◦ ICkU ◦R ◦ SCkW = ICkU ◦ T
k
U/CkU ◦R ◦ SCkW = ICkU ◦R ◦ T

k
W/CkW ◦ SCkW

= ICkU ◦R ◦ SCkW ◦ T
k
W

= S ◦ TkW .

by Lemma 9 (5) and (6). In a similar fashion, Lemma 25 (6) implies that, if R is
permutation invariant, then so is S.

(4) =⇒ (5): Follows immediately from Lemma 10.
(5) =⇒ (1): We have t([[F]], U) = t(F,TkU/C) = t(F,TkW/D) = t([[F]],W ), for every

F ∈ 〈Fk〉◦,· by Corollary 23 and Lemma 22. Then, Theorem 14 yields the claim.

4.7 Measure Hierarchies

Theorem 5 implies that the sequence ν1
W , ν

2
W , . . . of k-WLDs of a graphon W characterizes

W up to weak isomorphism since every graph has some finite treewidth. Let us explore
this a bit more in depth by combining all these k-WLDs into a single measure.

For 1 6 ` 6 k < ∞, we define the projection pk,` from Mk to M` as follows:
First, inductively define the function pk,` : P k

n → P `
n by defining pk,` : P k

0 → P `
0 by

pk,`((wij)ij∈([k]
2 )) := (wij)ij∈([`]

2 ) and, for the inductive step, by defining pk,` : P k
n+1 → P `

n+1

by pk,`((νj)j∈[k]) := (pk,`∗νj)j∈[`]. This is well-defined as every pk,` is continuous. Second,
the function pk,` : P k

n → P `
n directly extends to a function pk,` : Mk

n →M`
n by applying it

component wise. Finally, by then applying this function component-wise, pk,` extends to a
continuous function pk,` : Mk →M`.
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Consider the inverse limit of the spaces Mk and the projections pk+1,k for k > 1 defined
by

M∞ :=
{

(αk)k>1 ∈
∏
k>1

Mk
∣∣∣ pk+1,k(αk+1) = αk for every k > 1

}
with the σ-algebra B(M∞) generated by the projections p∞,k : M∞ → Mk, α 7→ αk for
every k > 1. Note that this notation is justified as M∞ is again a standard Borel space
[18, Exercise 17.16]. As a product of a sequence of metrizable compact spaces,

∏
k>1 Mk is

metrizable [8, Proposition 2.4.4] and also compact by Tychonoff’s Theorem [8, Theorem
2.2.8]. Since pk+1,k is continuous, this implies that M∞ is closed and, hence, a metrizable
compact space. Let

WL :=
{

(νk)k>1 ∈
∏
k>1

WLk
∣∣∣ νk = pk+1,k

∗ν
k+1 for every k > 1

}
,

where WLk denotes the set of all k-WLDs. Then, by the Kolmogorov Consistency
Theorem [18, Exercise 17.16], for every ν ∈ WL, there is a unique ν∞ ∈ P(M∞) such
that p∞,k∗ν

∞ = νk for every k > 1.

Lemma 47. Let (νn)n be a sequence with νn ∈WL and ν ∈WL. Then, ν∞n → ν∞ if and
only if νkn → νk for every k > 1.

Proof. The set
⋃

16k<∞C(Mk)◦p∞,k is uniformly dense in C(M∞) by the Stone-Weierstrass
Theorem [8, Theorem 2.4.11], cf. also the proof of Lemma 27. Hence, we have

ν∞n → ν∞ ⇐⇒
∫
M∞

f dν∞n →
∫
M∞

f dν∞ for every f ∈ C(M∞)

(Portmanteau Theorem)

⇐⇒
∫
M∞

f ◦ p∞,k dν∞n →
∫
M∞

f ◦ p∞,k dν∞ for all k > 1, f ∈ C(Mk)

⇐⇒
∫
M∞

f dp∞,k∗ν
∞
n →

∫
M∞

f dp∞,k∗ν
∞ for all k > 1, f ∈ C(Mk)

⇐⇒
∫
M∞

f dνkn →
∫
M∞

f dνk for all k > 1, f ∈ C(Mk)

⇐⇒ νkn → νk for every k > 1. (Portmanteau Theorem)

One can show that, for every graphon W : X ×X → [0, 1], the sequence (νkW )k>1 of its
k-WLDs is in WL and, hence, yields a measure ν∞W ∈P(M∞). Together, Lemma 45 and
Lemma 47 imply that these measures induce the same topology on the space of graphons
as multigraph homomorphism densities; note that this topology is different from the one
induced by simple graph homomorphism densities, cf. [20, Exercise 10.26] or [17, Lemma
C.2].
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Corollary 48. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons and a
graphon, respectively. Then, the following are equivalent:

1. ν∞Wn
→ ν∞W .

2. t(F,Wn)→ t(F,W ) for every multigraph F .

While simple graph and multigraph homomorphism densities yield different topologies,
they do not make a difference for weak isomorphism: two graphons are weakly isomorphic
if and only if they have the same multigraph homomorphism densities [20, Corollary 10.36].
Since M61(M∞) is Hausdorff, this yields the following corollary.

Corollary 49. Let U,W : X ×X → [0, 1] be graphons. Then, ν∞U = ν∞W if and only if U
and W are weakly isomorphic.

4.8 Linear Equations

In this section, we elaborate the connection between Characterization (4) of Theorem 5
and the system Lkiso(G,H) of linear equations mentioned in the introduction. To this end,
we first describe Lkiso(G,H): G and H are graphs and Lkiso(G,H) has a variable Xπ for
every set π ⊆ V (G)× V (H) of size |π| 6 k. Such a set π is called a partial isomorphism
if the mapping it induces is injective and preserves adjacency and non-adjacency. Then,
Lkiso(G,H) is given by the following equations:

Lkiso(G,H) :



∑
v∈V (G)

Xπ∪{(v,w)} = Xπ for every π ⊆ V (G)× V (H) of size

|π| 6 k − 1 and every w ∈ V (H)∑
w∈V (H)

Xπ∪{(v,w)} = Xπ for every π ⊆ V (G)× V (H) of size

|π| 6 k − 1 and every v ∈ V (G)

X∅ = 1

Xπ = 0 for every π ⊆ V (G)× V (H) of size |π| 6 k

that is not a partial isomorphism

The graphs G and H are not distinguished by oblivious k-WL if and only if Lkiso(G,H) has
a non-negative real solution. The equivalence to precisely this system of linear equations
is from [7], although it is already implicit in earlier work [16, 1, 14].

Lkiso(G,H) is much closer related to Characterization (4) of Theorem 5 than it might
seem at first glance: The variables of Lkiso(G,H) can be interpreted as permutation-invariant
matrices on V (G)1 × V (H)1, . . . , V (G)k × V (H)k. In Theorem 5, instead of permutation-
invariant operators on all spaces L2(X1, µ⊗1), . . . , L2(Xk, µ⊗k), we only have a single
permutation-invariant Markov operator S on L2(Xk, µ⊗k). In general, for an operator S
on L2(Xk, µ⊗k), defining

S↓ := TF kk ◦ S ◦ TIkk
yields an operator on L2(Xk−1, µ⊗k−1). It is easy to see that (S↓)∗ = S∗↓ since the adjoint
of a forget graph is the corresponding introduce graph and vice versa. Moreover, if S
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is permutation-invariant, this definition is independent of the specific pair of forget and
introduce graphs, i.e., we have S↓ = TF kj ◦S ◦TIkj for every j ∈ [k] since TF kk ◦T(k...j) = TF kj
and T(j...k) ◦ TIkk = TIkj .

Lemma 50. Let k > 1 and S be a permutation-invariant Markov operator on L2(Xk, µ⊗k).
Then, S↓ is a permutation-invariant Markov operator. Moreover, if TNk

k
◦ S = S ◦ TNk

k
,

then

1. S ◦ TIkk = TIkk ◦ S↓ ,

2. TF kk ◦ S = S↓ ◦ TF kk , and

3. TNk−1
k−1
◦ S↓ = S↓ ◦ TNk−1

k−1
.

Proof. First note that

S↓1Xk−1 = (TF kk ◦ S ◦ TIkk )1Xk−1 = (TF kk ◦ S)1Xk = TF kk 1Xk = 1Xk−1 ,

where the last equality holds since µ is a probability measure. Since S∗ is also a Markov
operator, we also obtain (S↓ )∗1Xk−1 = S∗↓ 1Xk−1 = 1Xk−1 . Let f ∈ L2(Xk−1, µ⊗k−1)
with f > 0. Then, TIkk f = f ⊗ 1X > 0, and hence, (S ◦ TIkk )f > 0. Therefore, also

S ↓ f = (TF kk ◦ S ◦ TIkk )f > 0. Hence, S ↓ is a Markov operator. For a permutation

π : [k− 1]→ [k− 1], we define the permutation π′ : [k]→ [k] by π′(i) := π(i) for i ∈ [k− 1]
and π′(k) := k. Then,

Tπ ◦ S↓ = Tπ ◦ TF kk ◦ S ◦ TIkk = TF kk ◦ Tπ′ ◦ S ◦ TIkk = TF kk ◦ S ◦ Tπ′ ◦ TIkk
= TF kk ◦ S ◦ TIkk ◦ Tπ
= S↓ ◦ Tπ.

Hence, S↓ is permutation invariant. Now, assume that TNk
k
◦ S = S ◦ TNk

k
. Then,

TIkk ◦ S↓ = TIkk ◦ TF kk ◦ S ◦ TIkk = TNk
k
◦ S ◦ TIkk = S ◦ TNk

k
◦ TIkk

= S ◦ TIkk ◦ TF kk ◦ TIkk
= S ◦ TIkk ,

where the last equality holds since µ is a probability measure. Then, we also obtain 2
by considering S∗ and S∗↓ and then taking adjoints. Finally, note that the permutation
invariance of S yields that we also have TNk

k−1
◦ S = S ◦ TNk

k−1
. Moreover, observe that

N k−1
k−1 ◦ F k

k = F k
k ◦N k

k−1. Hence,

TNk−1
k−1
◦ S↓ = TNk−1

k−1
◦ TF kk ◦ S ◦ TIkk = TF kk ◦ TNk

k−1
◦ S ◦ TIkk = TF kk ◦ S ◦ TNk

k−1
◦ TIkk

= TF kk ◦ S ◦ TIkk ◦ TNk−1
k−1

= S↓ ◦ TNk−1
k−1

.
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Given a permutation-invariant Markov operator S on L2(Xk, µ⊗k), repeated applica-
tions of Lemma 50 yield a sequence S0, . . . , Sk of permutation-invariant Markov operators
Si on L2(X i, µ⊗i) by letting Sk := S and Si−1 := Si↓ for i ∈ [k], which we call the operator
hierarchy defined by S. The following lemma shows that the equation TNk

k
◦ S = S ◦ TNk

k

of Theorem 5 is just a way of formulating graphon analogues for the first three equations
in the definition of Lkiso.

Lemma 51. If S is a permutation-invariant Markov operator on L2(Xk, µ⊗k) such that
TNk

k
◦ S = S ◦ TNk

k
, then its operator hierarchy satisfies

1. Si(f ⊗ 1X) = Si−1(f)⊗ 1X for every f ∈ L2(X i−1, µ⊗i−1) and every i ∈ [k],

2. S∗i (f ⊗ 1X) = S∗i−1(f)⊗ 1X for every f ∈ L2(X i−1, µ⊗i−1) and every i ∈ [k],

3. S0 is the identity operator, and

4. Si > 0 for every i ∈ [k].

Conversely, if S0, . . . , Sk is a sequence of permutation-invariant operators Si on L2(X i, µ⊗i)
satisfying the four conditions above, then S0, . . . , Sk are Markov operators satisfying
TN i

i
◦ Si = Si ◦ TN i

i
.

Proof. The forward direction follows inductively from Lemma 50. For backward direction,
note that, by definition of I ii , the first condition just states that Si ◦ TIii = TIii ◦ Si−1; the
second condition is the analogous statement for forget graphs. This immediately yields
the backward direction.

As a final remark, we note that in addition to Lemma 50, one can also easily prove that,
if TAk

12→U ◦ S = S ◦ TAk
12→W holds for graphons U,W : X ×X → [0, 1] and k > 3, then we

also have TAk−1
12 →U

◦S↓ = S↓ ◦ TAk−1
12 →W

. This inductively extends to operator hierarchies,

and it is easy to see that this requirement corresponds to the fourth equation in the
definition of Lkiso (concerning partial isomorphisms); we are just missing the injectivity that
a partial isomorphism requires, which is not important as long as our standard Borel space
is atom-free. Together with Lemma 51, this shows how to restore the characterization of
oblivious k-WL indistinguishability by Lkiso for graphs G and H from Theorem 5.

5 Simple Weisfeiler-Leman Indistinguishability

Theorem 5 shows that oblivious k-WL corresponds to bounded treewidth multigraph
homomorphism densities. The reason for this are the atomic types used by k-WL, or more
accurately in our setting, the adjacency graphs since subsequent applications of the same
adjacency graph Ak

ij to a term result in parallel edges. This cannot be prevented by simply
disallowing such subsequent applications: for the application of the Stone-Weierstrass
Theorem in the proof of Theorem 5, it is crucial that the set T k of homomorphism functions
is closed under multiplications. However, to achieve this closure under multiplications, we
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Figure 9: The graphs S2
2,{1} and S3

2,{1,3}.

close the set of terms under Schur products, which may introduce parallel edges if we have
edges between input vertices, cf. Figure 4. To prevent this way of introducing parallel
edges, we have to prevent edges from being added between input vertices in the first place.

In Section 5.1, we show how Theorem 5 and its proof have to be adapted for simple
graph homomorphism densities. To this end, we introduce simple (oblivious) k-WL. Not
surprisingly, the definitions become more similar to color refinement and the ones of Greb́ık
and Rocha [11]. For the sake of brevity, we only include proofs that significantly differ
from their counterpart in Section 4. We also briefly show how simple non-oblivious k-WL
can be defined in Section 5.2.

5.1 Simple Oblivious Weisfeiler-Leman

To prevent edges from being added between input vertices, we only allow certain combina-
tions of adjacency and neighbor graphs; after a sequence of adjacency graphs connecting a
vertex j to other vertices, we immediately follow up with a j-neighbor graph. Formally,
for every (j, V ) in the set Sk := {(j, V ) | j ∈ [k] and V ⊆ [k] \ {j}}, define the bi-labeled
graph

Skj,V := N k
j ◦©i∈VA

k
ij ∈ Gk,k.

We note that this is well-defined since the composition of adjacency graphs is associative.
Let F sk :=

{
Skj,V | (j, V ) ∈ Sk

}
⊆ Gk,k be the set of all these bi-labeled graphs. We have to

be a bit cautious as, in general, these graphs are not symmetric and, hence, their graphon
operators are not self-adjoint; in general, the set F sk is not even closed under transposition.
Note that, by definition, the Skj,V -graphon operator of a graphon W is given by

(TSkj,V→Wf)(x̄) =

∫
X

(∏
i∈V

W (xi, y)

)
· f ◦ x̄[y/j] dµ(y)

for µ⊗k-almost every x̄ ∈ Xk. Analogously to Theorem 14, one can observe that the
underlying graphs of [[F]] for terms F ∈ 〈F sk〉◦,· are, up to isolated vertices, precisely the
simple graphs of treewidth at most k − 1. Basically, when constructing a term from a
nice tree decomposition, we just add all edges that are missing for a vertex whenever that
vertex is forgotten. We note that we do not miss any edges this way, i.e., every edge of
the original graph is present in the term and added at some point, since the bag at the
root node of a nice tree decomposition is the empty set.

For the sake of brevity, we write Tsk
W := TF sk→W for a graphon W . Then, de-

fine CskW,n ∈ Θ(B⊗k, µ⊗k) for every n ∈ N by setting CskW,0 :=
〈{

∅, Xk
}〉

, CskW,n+1 :=
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Tsk
W (CskW,n) for every n ∈ N, and finally, CskW := CskW,∞ := 〈

⋃
n∈N CskW,n〉. Then, analogously to

Lemma 25, one can show that CskW is permutation-invariant and the minimum Tsk
W -invariant

µ⊗k-relatively complete sub-σ-algebra of B⊗k. We now deviate a bit from the definition
of W -invariance and call a µ⊗k-relatively complete sub-σ-algebra C ∈ Θ(B⊗k, µ⊗k) simply
W -invariant if C is invariant for every operator in the family (Tsk

W )CskW , i.e., C is (TF→W )CskW -

invariant for every F ∈ F sk. The reason for this is that, since Tsk
W is not closed under

taking adjoints, CskW might not be invariant under these adjoints. In contrast, CskW is trivially
both (Tsk

W )CskW -invariant and (Tsk
W )∗CskW

-invariant. In fact, it is easy to see that CskW is also the

minimum simply W -invariant µ⊗k-relatively complete sub-σ-algebra of B⊗k.
For a separable metrizable space (X, T ), let M61(X) denote the set of all measures of

total mass at most 1. We endow M61(X) with a topology analogously to P(X), i.e., with
the topology generated by the maps µ 7→

∫
f dµ for f ∈ Cb(X). Then, for measures that

all have the same total mass, the Portmanteau Theorem is still applicable as we can scale
them to have total mass of one. Let P sk

0 := {1} be the one-point space and inductively
define

Msk
n :=

∏
i6n

P sk
i and P sk

n+1 :=
(
M61

(
Msk

n

))Sk
for every n ∈ N. Let Msk := Msk

∞ :=
∏

n∈N P
sk
i and, for n 6 m 6∞, let pm,n : Msk

m →Msk
n

be the natural projection. Finally, define

Psk :=
{
α ∈Msk | (αn+1)(j,V ) = (pn+1,n)∗(αn+2)(j,V ) for all (j, V ) ∈ Sk, n ∈ N

}
.

By the Kolmogorov Consistency Theorem [18, Exercise 17.16], for all α ∈ Pk and
(j, V ) ∈ Sk, there is a unique measure µαj,V ∈P(Mk) such that (p∞,n)∗µ

α
j,V = (αn+1)(j,V )

for every n ∈ N. Analogously to Lemma 27, the set Psk is closed in Msk and, for every
(j, V ) ∈ Sk, the mapping Psk →P(Msk), α 7→ µαj,V is continuous. To adapt the definition
of a k-WLD, we add a third requirement of absolute continuity and Radon-Nikodym
derivatives, cf. the definition of distributions over iterated degree measures [11].

Definition 52. Let k > 1. A measure ν ∈P(Msk) is called a simple k-Weisfeiler-Leman
distribution (simple k-WLD) if

1. ν(Psk) = 1,

2.
∫
Msk f dν =

∫
Msk

( ∫
Msk f dµ

α
j,∅

)
dν(α) for all bounded measurable f : Msk → R,

j ∈ [k], and

3. µαj,V 4 µαj,∅ and 0 6
dµαj,V
dµαj,∅

6 1 for ν-almost every α ∈Msk and every (j, V ) ∈ Sk.

Let W : X ×X → [0, 1] be a graphon. Define owlskW,0 : Xk →Msk
0 by owlskW,0(x̄) := 1 for

every x̄ ∈ Xk. Inductively define owlskW,n+1 : Xk →Msk
n+1 by

owlskW,n+1(x̄) :=

owlskW,n(x̄),

(
A 7→

∫
owlskW,n

−1
(A)x̄[/j]

∏
i∈V

W (xi, y) dµ(y)

)
(j,V )∈Sk


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for every x̄ ∈ Xk. Then, let owlskW = owlskW,∞ : Xk → Msk be the mapping defined

by (owlskW (x̄))n := (owlskW,∞(x̄))n := (owlskW,n(x̄))n for all n ∈ N, x̄ ∈ Xk. Finally, let

νskW := owlskW ∗µ
⊗k ∈ P(Msk) be the push-forward of µ⊗k via owlskW . Analogously to

Lemma 31, one can show that

CskW,n =
〈{

owlskW,n
−1

(A) | A ∈ B(Msk
n )
}〉

for n ∈ N ∪ {∞}. Defining Rsk
W := SCskW ◦ TowlskW yields a Markov isomorphism from

L2(Msk, νskW ) to L2(Xk/CskW , µ⊗k/CskW ), cf. Corollary 32. Let us explicitly state the adaptation
of Lemma 33 since the proof requires some additional work.

Lemma 53. Let k > 1 and W : X ×X → [0, 1] be a graphon. Then,

1. owlskW (Xk) ⊆ Psk, and

2. µ
owlskW (x̄)
j,∅ = (owlskW ◦x̄[·/j])∗µ for all j ∈ [k], x̄ ∈ Xk,

3. νskW is a simple k-WLD.

Proof. The proof of (1) is analogous to Lemma 33 (1). For (2), observe that µ
owlskW (x̄)
j,∅ is

a probability measure. Then, the proof is analogous to Lemma 33 (2). For (3), we get

νskW (Psk) = 1 and
∫
Msk f dν

sk =
∫
Msk

(∫
Msk f dµ

α
j,∅

)
dνskW (α) for every bounded measurable

f : Msk → R and every j ∈ [k] as in the proof of Lemma 33 (3).
Let (j, V ) ∈ Sk. Let x̄ ∈ Xk and let

C :=
〈{

x̄[·/j]−1(owlskW−1
(A)
)
| A ∈ B(Msk)

}〉
be the minimum µ-relatively complete sub-σ-algebra that makes owlskW ◦x̄[·/j] measurable.
Then, E(y 7→

∏
i∈V W (xi, y) | C) ∈ L2(X, C, µ) and hence, by Proposition 8, there is a

measurable function g : X → R such that E(y 7→
∏

i∈V W (xi, y) | C) = g ◦ owlskW ◦x̄[·/j]
µ-almost everywhere. Note that 0 6 g 6 1 holds µ-almost everywhere. For every n ∈ N
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and every A ∈ B(Msk
n ), we have

µ
owlskW (x̄)
j,V (p−1

∞,n(A)) = (p∞,n)∗µ
owlskW (x̄)
j,V (A)

= ((owlskW (x̄))n+1)(j,V )(A)

= ((owlskW,n+1(x̄))n+1)(j,V )(A)

=

∫
owlskW,n

−1
(A)x̄[/j]

∏
i∈V

W (xi, y) dµ(y)

=

∫
x̄[·/j]−1(owlskW

−1
(p−1
∞,n(A)))

∏
i∈V

W (xi, y) dµ(y)

=

∫
x̄[·/j]−1(owlskW

−1
(p−1
∞,n(A)))

E

(
y 7→

∏
i∈V

W (xi, y) | C

)
dµ

(Proposition 6)

=

∫
x̄[·/j]−1(owlskW

−1
(p−1
∞,n(A)))

g ◦ owlskW ◦x̄[·/j] dµ

=

∫
p−1
∞,n(A)

g d(owlskW ◦x̄[·/j])∗µ

=

∫
p−1
∞,n(A)

g dµ
owlskW (x̄)
j,∅ .

Since
⋃
n∈N

{
p−1
∞,n(A) | A ∈ B(Msk

n )
}

generates B(Msk), the π-λ Theorem [18, Theorem 10.1

iii)] yields that µ
owlskW (x̄)
j,V (A) =

∫
A
g dµ

owlskW (x̄)
j,∅ for every A ∈ B(Msk). Therefore, µαj,V 4 µαj,∅

and 0 6
dµαj,V
dµαj,∅

6 1 for every α ∈ owlskW (Xk). By definition of νskW , this holds νskW -almost

everywhere. Hence, νskW is a simple k-WLD.

Let ν ∈P(Msk) be a simple k-WLD and (j, V ) ∈ Sk. By definition of a k-WLD, we

have 0 6
dµαj,V
dµαj,∅

6 1 for ν-almost every α ∈Msk. Hence, analogously to Lemma 34, one can

show that setting

(TSkj,V→νf)(α) :=

∫
Msk

dµαj,V
dµαj,∅

· f dµαj,∅ =

∫
Msk

f dµαj,V

for all f ∈ L∞(Msk, ν), α ∈ Msk defines an L∞-contraction that uniquely extends to an
L2-contraction L2(Msk, ν)→ L2(Msk, ν).

Lemma 54. Let k > 1 and W : X ×X → [0, 1] be a graphon. For every S ∈ F sk,

1. TS→W ◦ TowlskW = TowlskW ◦ TS→νskW ,

2. (TS→W )CkW◦TowlskW = TowlskW◦TS→νskW , and 3. TS→W/CkW ◦Rsk
W = Rsk

W ◦ TS→νskW .
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Proof. Let (j, V ) ∈ Sk such that S = Skj,V . For x̄ ∈ Xk, let Cx̄ denote the minimum

µ-relatively complete sub-σ-algebra that makes owlskW ◦x̄[·/j] measurable. As seen in the
proof of Lemma 53, we have

E(y 7→
∏
i∈V

W (xi, y) | Cx̄) =
dµ

owlskW (x̄)
j,V

dµ
owlskW (x̄)
j,∅

◦ owlskW ◦x̄[·/j]

µ-almost everywhere. Then, we have

(TowlskW ◦ TS→νskW f)(x̄) =

∫
Msk

dµ
owlskW (x̄)
j,V

dµ
owlskW (x̄)
j,∅

· f d(owlskW ◦x̄[·/j])∗µ

(Definition and Lemma 53 (2))

=

∫
X

E(y 7→
∏
i∈V

W (xi, y) | Cx̄) · f ◦ owlskW ◦x̄[·/j] dµ

=

∫
X

∏
i∈V

W (xi, y) · E(f ◦ owlskW ◦x̄[·/j] | Cx̄)(y) dµ(y)

(Proposition 6)

=

∫
X

∏
i∈V

W (xi, y) · f ◦ owlskW ◦x̄[y/j] dµ(y)

= (TS→W ◦ TowlskW f)(x̄)

for every f ∈ L∞(Msk, ν) and µ⊗k-almost every x̄ ∈ Xk. As L∞(Msk, νskW ) is dense in
L2(Msk, νskW ), this implies (1). From there on, (2) and (3) are analogous to Lemma 35 (2)
and (3), respectively.

For k > 1 and a simple k-WL distribution ν ∈P(Msk), let Tν := (TS→ν)S∈F sk . Then,
for a graphon W : X ×X → [0, 1], we have

Tsk
W/CskW ◦Rsk

W = Rsk
W ◦ TνskW and Tsk

W

∗
/CskW ◦Rsk

W = Rsk
W ◦ T∗νskW ,

where the first equation is just Lemma 54 and the second equation follows from the first
since Rsk is a Markov isomorphism. As before, a permutation π : [k] → [k] naturally
extends to a measurable bijection π : Msk →Msk, and the π-invariance, and more general
the permutation invariance, of a simple k-WLD can be defined analogously to Section 4.4.
The analogous result to Lemma 40 holds as well; in particular, νskW is permutation invariant
for a graphon W . Let C ∈ Θ(B⊗k, µ⊗k) be simply W -invariant; recall that this definition is
a bit artificial as it means that C is (Tsk

W )CskW -invariant. Corollary 23 can then be adapted
to the also somewhat convoluted statement that

t(F,TνskW ) = t(F, ((Tsk
W )CskW )C) = t(F, (Tsk

W )CskW/C) = t(F,Tsk
W ) = t([[F]],W )

holds for every F ∈ 〈F sk〉◦,·. To prove this, one has to apply Lemma 22 twice this time: first,
to get from Tsk

W to (Tsk
W )CskW and, second, to get from there to ((Tsk

W )CskW )C and (Tsk
W )CskW/C.
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For a term F ∈ 〈F sk〉◦,· and every n ∈ N with n > h(F), the set F F
n of functions

Msk
n → [0, 1] is defined similarly to Definition 41. More precisely, while we could just use

the old definition, it can actually be simplified as the distinct cases for adjacency and
neighbor graphs can be subsumed by the function

α 7→
∫
Msk
n

f d(αn+1)(j,V ) ∈ F
Skj,V ◦F
n+1

for every f ∈ F F
n and every j ∈ [k]. From there, we analogously obtain the set F F of

continuous functions Msk → [0, 1]. Lemma 42 and Corollary 43 adapt in a straight-forward
fashion.

For every n ∈ N ∪ {∞}, define T sk
n :=

⋃
F∈〈F sk〉◦,·,h(F)6n F

F
n and abbreviate T sk := T sk

∞ .

Lemma 44 also adapts easily, i.e., for every n ∈ N ∪ {∞}, the set T sk
n is closed under

multiplication, contains 1Msk
n

, and separates points of Msk
n . Here, one has to observe that

the all-one function distinguishes two measures if their total mass is different, which means
that the Portmanteau Theorem is still applicable in this case. From there, we obtain the
following analogue to Lemma 45.

Lemma 55. Let k > 1. Let (Wn)n and W : X × X → [0, 1] be a sequence of graphons
and a graphon, respectively. Then, νskWn

→ νskW if and only if t(F,Wn)→ t(F,W ) for every
simple graph F of treewidth at most k − 1.

Since P(Msk) is Hausdorff, this also means that the simple k-WLDs of two graphons
are equal if and only if their treewidth k − 1 simple graph homomorphism densities are.
With the Counting Lemma [20, Lemma 10.23], we also obtain the following additional
corollary.

Corollary 56. Let k > 1. The mapping W0 → P(Msk),W 7→ νskW is continuous when
W0 is endowed with the cut distance.

We note that the same reasoning does not work for multigraphs as the Counting
Lemma does not hold for multigraphs. Moreover, the above corollary does not hold for
multigraphs since convergence of simple graph homomorphism densities does not imply
convergence of multigraph homomorphism densities, cf. [20, Exercise 10.26] or [17, Lemma
C.2].

Having outlined the necessary changes for simple graphs, we obtain the following
variant of Theorem 5 for simple graph homomorphism densities. Note the inelegant
characterization via Markov operators, which is quite artificial in this case; this again
stems from the fact that the family Tsk

W of operators is not closed under taking adjoints.

Theorem 57. Let k > 1 and U,W : X × X → [0, 1] be graphons. The following are
equivalent:

1. t(F,U) = t(F,W ) for every simple graph of treewidth at most k − 1.

2. νskU = νskW .
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3. There is a (permutation-invariant) Markov isomorphism R :L2(Xk/CskW , µ⊗k/CskW )→
L2(Xk/CskU , µ⊗k/CskU ) such that Tsk

U /CskU ◦R = R ◦ Tsk
W/CskW .

4. There is a (permutation-invariant) Markov operator S : L2(Xk, µ⊗k)→ L2(Xk, µ⊗k)
such that (Tsk

U )CskU ◦ S = S ◦ (Tsk
W )CskW and S∗ ◦ (Tsk

U )CskU = (Tsk
W )CskW ◦ S

∗.

5. There are µ⊗k-relatively complete sub-σ-algebras C and D of B⊗k that are sim-
ply U-invariant and simply W -invariant, respectively, and a Markov isomorphism
R : L2(Xk/D, µ⊗k/D)→ L2(Xk/C, µ⊗k/C) such that (Tsk

U )CskU /C◦R = R◦(Tsk
W )CskW /D.

Proof. (1) =⇒ (2): Follows from Lemma 55.
(2) =⇒ (3): Analogous to Theorem 5 as we have both Tsk

U /CskU ◦Rsk
U = Rsk

U ◦ TνskU and

(Rsk
W )∗ ◦ Tsk

W/CskW = TνskW ◦ (Rsk
W )∗ since Rsk

W is a Markov isomorphism.

(3) =⇒ (4): Set S := ICskU ◦R ◦ SCskW , which is a Markov operator as the composition
of Markov operators. Then,

(Tsk
U )CskU ◦ S = (Tsk

U )CskU ◦ ICskU ◦R ◦ SCskW = ICskU ◦ T
sk
U /CskU ◦R ◦ SCskW (Lemma 9 (3))

= ICskU ◦R ◦ T
sk
W/CskW ◦ SCskW

= ICskU ◦R ◦ SCskW ◦ (Tsk
W )CskW (Lemma 9 (4))

= S ◦ (Tsk
W )CskW .

Note that we neither used that CskU is Tsk
U -invariant nor that CskW is Tsk

W -invariant. Since R
is a Markov isomorphism, we also have Tsk

U
∗
/CskU ◦ R = R ◦ Tsk

W
∗
/CskW , which means that

we obtain (Tsk
U
∗
)CskU ◦ S = S ◦ (Tsk

W
∗
)CskW in an analogous fashion. This implies the claim.

Moreover, analogously to Theorem 5, if R is permutation invariant, then so is S.
(4) =⇒ (5): Follows immediately from Lemma 10.
(5) =⇒ (1): Analogous to Theorem 5.

Also in this case, it is possible to define the space Ms∞ and, for a graphon W : X×X →
[0, 1], the measure νs∞W ∈P(Ms∞). Then, one obtains the following lemma corresponding
to Corollary 48, where we now have a third characterization in terms of the cut distance,
denoted by δ�, cf. [20, Theorem 11.5].

Lemma 58. Let (Wn)n and W : X ×X → [0, 1] be a sequence of graphons and a graphon,
respectively. Then, the following are equivalent:

1. νs∞Wn
→ νs∞W .

2. t(F,Wn)→ t(F,W ) for every simple graph F .

3. Wn
δ�−→ W .
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Figure 10: The (isomorphism types of) graphs in Fns1.

5.2 Non-Oblivious Simple Weisfeiler-Leman

As mentioned in the introduction, there are two non-equivalent variants of k-WL for graphs:
oblivious k-WL and (non-oblivious) k-WL, where k-WL is equivalent to oblivious k+1-WL
in the sense that two graphs are distinguished by k-WL if and only if they are distinguished
by oblivious k + 1-WL [12, Corollary V.7]. (Non-oblivious) k-WL is usually considered in
the graph setting since it needs less memory to achieve the same expressive power, but the
connections of oblivious k-WL to other characterizations are much cleaner. Examples of
this are the system Lkiso(G,H) of linear equations, where the k directly corresponds to the
k of oblivious k-WL, the logic Ck, the k-variable fragment of first-order logic with counting
quantifiers, and the maximum bag size in a tree decomposition, although the latter is
usually hidden by the fact that one subtracts one from the maximum bag size in a tree
decomposition to get the width of such a decomposition. Tree decompositions also give an
explanation of the difference between oblivious k-WL and non-oblivious k-WL: intuitively,
given a tree decomposition of width k, we may dissect it into parts at bags of size k + 1 or
at bags of size k yielding oblivious k-WL and non-oblivious k-WL, respectively.

Let us formally define non-oblivious k-WL. Let G be a graph and recall that the atomic
type atpG(v̄) of a tuple v̄ = (v1, . . . , vk) ∈ V (G)k of vertices of G is the k × k-matrix A
with entries Aij = 2 if vi = vj, Aij = 1 if vivj ∈ E(G), and Aij = 0 otherwise. Then, let
wlkG,0(v̄) := atpG(v̄) and, for every n > 0, define

wlkG,n+1(v̄) :=
(
wlkG,n(v̄), {{(atpG(v̄w),

(
wlkG,n(v̄[w/j])

)
j∈[k]

) | w ∈ V (G)}}
)

(9)

for every v̄ ∈ V (G)k. We say that k-WL does not distinguish graphs G and H if {{wlkG,n(v̄) |
v̄ ∈ V (G)k}} = {{wlkH,n(v̄) | v̄ ∈ V (H)k}} for every n > 0. Recall that the j-neighbor v̄[w/j]
denotes the k-tuple obtained from v̄ by replacing the jth component by w. The colorings
computed by 1-WL and color refinement induce the same partition and, in particular,
1-WL distinguishes two graphs if and only if color refinement does [12, Proposition V.4].

Following the intuition that a tree decomposition of width k can be dissect into parts
either at bags of size k+ 1 or at bags of size k, one can adapt the definitions of this section
to obtain a variant of simple k-WL akin to non-oblivious k-WL. To this end, recall the
definition of forget, adjacency, and introduce graphs from Definition 12 and let Fnsk to be
the set of all bi-labeled graphs

F k+1
j1
◦©i∈VA

k+1
ij1
◦ Ik+1

j2
∈ Gk,k
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for j1, j2 ∈ [k + 1], V ⊆ [k + 1] \ {j1}. Then, a term in 〈F sk+1〉◦,· can be turned into a
term in 〈Fnsk〉◦,· by essentially re-grouping the introduce and forget graphs. All definitions
and results from this section transfer to the set Fnsk and, in particular, one can obtain a
variant of Theorem 57 without the mismatch of the k of simple k-WL and the k of the
treewidth. Since it is so similar, however, we do not state it here.

For a last remark, consider the special case of k = 1 of fractional isomorphism. The
isomorphism types in Fns1 are shown in Figure 10; they all are symmetric in this special
case. We note that the graph on the far left is A, the edge with one input and one output
vertex, cf. Example 17, which satisfies TA→W = TW . Among the bi-labeled graphs in Fns1,
this is actually the only interesting graph since it is necessary and already sufficient for
the construction of all trees. In other words, we can leave out the other bi-labeled graphs
from Fns1. Then, the resulting characterizations are essentially Theorem 4, the result of
Greb́ık and Rocha.
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