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Abstract

While the number of polyominoes is known to be supermultiplicative by a sim-
ple concatenation argument, it is still unknown whether the same applies to polyia-
monds. This article proves that if `,m are not both 1, then T (` + m) > T (`)T (m),
for which one can say that the number of polyiamonds T (n) is supermultiplicative.
The method is, however, by concatenating, merging and adding cells at the same
time. A corollary is an increment of the best known lower bound on the growth
constant from 2.8423 to 2.8578.

Mathematics Subject Classifications: 05B50, 05A16

1 Introduction

A polyomino is an edge-connected set of cells on the square lattice. It has become popular
in literature, as a theoretical topic with practical applications as well as a recreational
medium. Meanwhile, a polyiamond, which is our main interest in this article, is an edge-
connected set of cells on the triangular lattice. While the cells of the square lattice are
identical up to a translation, there are two types of cells for the triangular lattice, as
depicted in Fig. 1.

Two lattice animals are said to be equivalent if one of them is a translate of the other.
On the other hand, we say two animals are distinct if they are not equivalent. We denote
by S(n), T (n) the number of all distinct animals with n cells for the square lattice and the
triangular lattice, respectively. They are also called the number of fixed lattice animals in
literature, as there are other variants allowing extra operations, e.g. rotation, reflection,
instead of only translation. In the sequel, we always mean fixed lattice animals by lattice
animals.

Some beginning values of T (n) are given in Table 1, with the actual polyiamonds
for n = 1, 2, 3 depicted in Fig. 2. Other values of T (n) for n 6 75 can be found in
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Figure 1: A triangular lattice with two polyiamonds of 1 cell

Page 479 of [1]. The sequence T (n) is also known as the sequence A001420 in The On-
Line Encyclopedia of Integer Sequences.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T (n) 2 3 6 14 36 94 250 675 1838 5053 14016 39169 110194 311751

Table 1: Some beginning values of T (n)

T (1) = 2 T (2) = 3

T (3) = 6

Figure 2: Polyiamonds of 1, 2, 3 cells

Growth constants

The number of the polyominoes with n cells grows exponentially with a growth constant
represented by the limit

λS = lim
n→∞

n
√
S(n).

The constant is also known as Klarner’s constant, since Klarner first gave a proof of the
limit by observing that S(n) is supermultiplicative [2]. We remind that a sequence sn
is said to be supermultiplicative if s`+m > s`sm for any `,m > 1. If sn is positive and
supermultiplicative, then the limit of n

√
sn exists by Fekete’s lemma [3]. Note that in

principle the limit n
√
sn can be infinite but in our case we have S(n) 6 6.75n by a result of

Eden [4] using an encoding technique. In other words, the limit of λS exists and is finite.
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As for the case of polyiamonds, we do not know yet whether T (n) is supermultiplica-
tive. In fact, as far as to the awareness of the author, the only paper that really attempts
to prove the limit for polyiamonds is [5], where it is shown that: Given a lattice with the
number L(n) of lattice animals with n cells, we have the growth constant

λL = lim
n→∞

L(n+ 1)

L(n)
.

Note that the result is actually stronger than the existence of the limit n
√
L(n). However,

the techniques in use, often known under the name “pattern theorems”, are quite involved.
Therefore, we still desire an easier way to prove the limit

λT = lim
n→∞

n
√
T (n).

Ideally, it would be something like a concatenation argument as in the case of polyominoes.
In fact, we give such a way in Proposition 2.

Concatenation arguments and lower bounds

Before reminding the proof of the supermultiplicativity of S(n) using the concatenation
argument, let us define a lexicographic order on the cells of a polyomino/polyiamond: Cell
c1 is said to be smaller than cell c2 if (i) c1 is on a column to the left of the column of c2,
or (ii) both c1, c2 are on the same column and c1 is below c2.

With the lexicographic order, we are ready to show the supermultiplicativity of S(n):
For every pair of polyominoes A,B with `,m cells, respectively, we can give a unique
polyomino of ` + m cells by translating them so that the largest cell of A is adjacent to
the left of the smallest cell of B. For example, Fig. 3 depicts a case with A in the dark
color and B in white.

Figure 3: A concatenation of two polyominoes

Note that the supermultiplicativity of S(n) does not only give the existence of the
limit λS but also concludes that λS = supn

n
√
S(n) by Fekete’s lemma. In other words,

if we have the value of S(n) for some n, we obtain a lower bound n
√
S(n) 6 λS. Note

that we do not really need the corollary λS = supn
n
√
S(n) of Fekete’s lemma to see that

n
√
S(n) is a lower bound. Indeed, we have the infinite sequence S(n), S(2n), S(3n), . . .

with the growth rate at least n
√
S(n), since it follows from the supermultiplicativity that

S(kn) > S(n)S((k − 1)n) > S(n)[S(n)]k−1 = [S(n)]k for every k > 2 by induction. In
fact, we even have a nondecreasing sequence n

√
S(n), 2n

√
S(2n), 4n

√
S(4n), 8n

√
S(8n), . . .

since 2m
√
S(2m) > 2m

√
[S(m)]2 = m

√
S(m) for every m.

the electronic journal of combinatorics 30(4) (2023), #P4.38 3



Difficulties with polyiamonds and previous approaches

While proving the supermultiplicativity of the number of polyominoes is so straightfor-
ward with a simple concatenation argument, we will explain why it is not so simple for
the case of polyiamond. At first, we revise the two types of polyiamonds characterized by
the type of triangle of the largest cell, as depicted by the two top polyiamonds in Fig. 4.
Let us denote the types by � and �, with respect to the direction of the triangle. We also
denote the number of polyiamonds of these types by T�(n) and T�(n), respectively. If
we characterize by the smallest cells, we have the two bottom polyiamonds in Fig. 4. We
denote the types by � and �, and the numbers of polyiamonds of them by T�(n), T�(n),
in the same manner. The article [6] observes the following relations:

T�(n) = T�(n), T�(n) = T�(n),

as a polyiamond of type � is a reflex of a polyiamond of type �, and likewise for the pair
�,�. Also, we have

T�(n) = T�(n− 1),

because the cell �, which is the largest cell, needs another cell � just below it to connect
to the remaining cells.

Figure 4: Types of polyiamonds by the largest/smallest cells

Also in [6], we observe that a polyiamond of type � can be concatenated (by a similar
strategy to polyominoes) to a polyiamond of type � only, and a polyiamond of type �
can be concatenated to a polyiamond of type � only. The former can be done in only
one way, but we allow the latter to be done in two ways, as depicted in Fig. 5.

Although not every pair of polyiamonds can be concatenated in the traditional way,
a concatenation argument in [6] gives the following result.
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Figure 5: Concatenations of polyiamonds

Proposition 1 (Barequet, Shalah, and Zheng 2019). For every n,

T (2n) >
2

3
[T (n)]2. (1)

Let us quickly sketch the argument in [6].

Proof. Since all the three resulting polyiamonds in Fig. 5 are distinguishable, it follows
that for every n,

T (2n) > T�(n)T�(n) + 2T�(n)T�(n).

As T�(n) = T�(n), T�(n) = T�(n) and T (n) = T�(n) + T�(n), we have

T (2n) > [T�(n)]2 + 2[T�(n)]2

=
2

3
[T�(n)]2 +

2

3
[T�(n)]2 +

1

3
[T�(n)]2 +

4

3
[T�(n)]2

>
2

3
[T�(n)]2 +

2

3
[T�(n)]2 + 2

√
1

3
T�(n)

√
4

3
T�(n)

=
2

3
[T�(n) + T�(n)]2

=
2

3
[T (n)]2.

Relation (1) gives a lower bound for the growth constant λT in terms of T (n). Indeed,

we have 2
3
T (2n) >

[
2
3
T (n)

]2
, i.e. 2n

√
2
3
T (2n) > n

√
2
3
T (n) for every n. In other words, the

sequence
{

2t·n
√

2
3
T (2t · n)

}
t

is nondecreasing. It follows that λT > n

√
2
3
T (n) for every n.
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The actual values of T (n), which is the sequence A001420 in The On-Line Encyclopedia
of Integer Sequences, are known for all n 6 75 (see Page 479 of [1]) with

T (75) = 15936363137225733301433441827683823.

It gives the following bound in [6]:1

λT > 75

√
2

3
T (75) > 2.8423. (2)

In the same work [6], by assuming an unproved conjecture,2 there is a stronger but
conditional relation:

T (2n) > 0.7122 [T (n)]2, (3)

which gives the corresponding tentative bound

λT > 75
√

0.7122 · T (75) > 2.8448.

In the following section, we will present a simple proof that the limit of the growth
constant exists and a stronger result on T (n) that it is supermultiplicative.

2 Main theorem

A simple proof of the limit of the growth constant for polyiamonds

Neither (1) nor (3) is enough to prove the limit of n
√
T (n), e.g. the sequence T ′(n) with

T ′(2k) = 3k and T ′(2k + 1) = 22k+1 (for any k) satisfies the relations in (1) and (3) but
we do not have the limit of n

√
T ′(n). However, we can adapt the argument in [6] with

little extra effort to make it more general (by not fixing n but letting `,m arbitrary) but
weaker (by a constant 1

3
instead of 2

3
) as in the following proposition.

Proposition 2. For every `,m,

T (`+m) >
1

3
T (`)T (m). (4)

Proof. We first observe that T�(n) is a nondecreasing sequence, as T�(n) 6 T�(n+1) can
be seen by an injection map from a polyiamond of n cells to a polyiamond of n+ 1 cells
(both of type �): We simply add a cell just below the smallest cell of the polyiamond
of n cells. It follows that there are at least as many polyiamonds of n cells of type � as

1In [6], the lower bound is actually 2.8424, as an approximation of 75

√
2
3T (75). But Barequet once hinted

in a private communication that one would better use a strict lower bound than an approximation for
the sake of rigor.

2It is actually called an assumption in [6]: For every n, we have T (n + 1)/T (n) 6 4.
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those of type �, since T�(n) > T�(n − 1) = T�(n) (when n − 1 = 0, it is trivial). For
every `,m, we have3

3T (`+m) > 3[T�(`)T�(m) + 2T�(`)T�(m)]

> T�(`)T�(m) + T�(`)T�(m) + T�(`)T�(m) + T�(`)T�(m)

= [T�(`) + T�(`)][T�(m) + T�(m)]

= T (`)T (m).

Although the constant 1
3

of (4) is weaker than the constant 2
3

of (1) in bounding the

growth constant, the former gives a proof of the limit of n
√
T (n) (the sequence {1

3
T (n)}n

is supermultiplicative). To the awareness of the author, there is no other such simple
proof of the limit of n

√
T (n), even though the manipulations are so straightforward. (The

only known proof is by “pattern theorems” in [5], which is fairly involved.)

Corollary 3. The limit λT = n
√
T (n) exists.

Note that the fact that λT is finite is already given in [7] with λT 6 4, using the
encoding technique that was introduced by Eden [4] to prove λS 6 6.75.

The number of polyiamonds is supermultiplicative

It is in fact unnecessary to sacrifice the constant 2
3

to obtain such a general form in
Proposition 2. Quite the contrary, we can improve the constant to 1. Indeed, while the
proofs of the relations use concatenation arguments only, we can show that T (n) is actually
supermultiplicative by concatenating two polyiamonds together with merging and adding
some certain cells at the same time. This even improves the unproved relation (3).

Theorem 4. The number of polyiamonds is supermultiplicative, in the sense that if `,m
are not both 1, then T (`+m) > T (`)T (m).

Note that T (1)T (1) = 2 · 2 = 4 while T (2) = 3. However, this is the only exception,
for which we may still conclude that T (n) is supermultiplicative.

As Fekete’s lemma still works for this type of supermultiplicativity, the corresponding
lower bound is λT > n

√
T (n), and when n = 75, we have

λT > 75
√
T (75) > 2.8578,

which improves the current best lower bound 2.8423 in (2).

Proof. As one of `,m is at least 2, we let m > 2. For any such pair of `,m, we construct
an injective map such that for any two polyiamonds A,B of respectively `,m cells, the
map gives a unique polyiamond C of n = ` + m cells. This is sufficient for showing that
T (`+m) > T (`)T (m).

3In fact, we do not use two concatenations of two polyiamonds of types � and � as in Fig. 5 but one
only is sufficient, i.e. we can start with T (` + m) > T�(`)T�(m) + T�(`)T�(m). That is why we come
up with the weaker constant 1

3 .
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Case
Type of the
`-th cell

Some leftmost
columns with

precisely ` cells

2 adjacent cells
immediately on top of

the `-th cell
0 any Yes No
1 � No any
2 � No Yes
3 � No No

Table 2: Cases and properties

Let us first consider the following case (denoted by Case 0) where we can easily deal
with: The rightmost column of A has a cell � and the leftmost column of B has a cell �.
In this case, we translate A and B such that the largest � of A touches the smallest �
of B on the left. This gives a connected polyiamond C of n cells. Fig. 6 depicts the case
with the largest � of A in the dark color and the smallest � of B in white. Note that
some leftmost columns of C have ` cells while the remaining columns have m cells.

Figure 6: Case 0

Before considering the three remaining cases where we assume that we do not have
Case 0, the reader may quickly check Table 2 with the properties that allow us to distin-
guish the resulting polyiamonds C.4 Denoting by P (A) the largest cell of A and by Q(B)
the smallest cell of B, we consider the three remaining cases:

1. If P (A) = � and Q(B) = �, we translate A,B such that P (A) is just below Q(B).
This gives a connected polyiamond C of n cells, whose `-th cell is �, and there are
no leftmost columns of C with precisely ` cells. Fig. 7 depicts this case, which is
actually an extract of Fig. 5.

2. If P (A) = � and Q(B) = �, we translate A,B such that P (A) coincides with
Q(B). As we do not have Case 0, there is no cell � on the rightmost column of A,
hence we can add a cell � just below the position of P (A) (and now also of Q(B))
in order to have a polyiamond C of n cells. Fig. 8 depicts the case with P (A) and

4An entry “any” means the value can be any, and depends on particular pairs of polyiamonds.
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`

Figure 7: Case 1

P (B) both situating at the stroked cell, which is the (` + 1)-st cell of C. On top
of Q(B) = �, there is another cell � because the cell � needs a cell � just on top
of it to get connected to the rest of B (note that m > 2 and this is the only place
we need the assumption). Meanwhile, the newly added cell � is the `-th cell of C,
whose position is just below P (A) = Q(B). In other words, there are at least two
adjacent cells immediately on top of the `-th cell.

`

P (A) = Q(B)

Figure 8: Case 2

3. If P (A) = � and Q(B) = �, we translate A,B such that P (A) coincides with Q(B).
After that, we add a cell just on top of the largest cell in the leftmost column of B.
This gives a connected polyiamond C of n cells, whose `-th cell is a cell � (originally
P (A) and Q(B) before merging).

Fig. 9 depicts the two cases: (i) there are more than one cell on the column of Q(B)
in B and (ii) Q(B) is the only cell in its column in B. In the case (i), the largest
cell in the leftmost column of B is depicted as a cell � in white color. In both cases,
P (A) and Q(B) both situate at the stroked cell, and the newly added cell � is in
black color.

We remark that there are no two adjacent cells immediately on top of the `-th cell
of C. It is because either the position just on top of the `-th cell of C, which is
formerly Q(B), is empty in the case (i) (due to not having Case 0), or there is only
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one cell above the `-th cell of C in the case (ii). (In the case (i), the two top-most
cells in the column of the `-th cells of C are above the `-th cell but not immediately
on top of the `-th cell.)

P (A) = Q(B)` P (A) = Q(B)`

(i) (ii)

Figure 9: Case 3

All the cases were covered, and we can distinguish them by Table 2. Therefore, the
number of polyiamonds is supermultiplicative in the sense stated in the conclusion.

Dual representation with the supermultiplicativity in the original sense

We do not have the supermultiplicativity in the original sense for T (n) since T (1) =
2 makes T (1)T (1) > T (2) (the only exception). However, we show that in the dual
representation the value of T (1) would be 1 while all other T (n) for n > 2 remain the
same values.

At first, we can see a polyomino in a different way: A polyomino is a set of points
in the square lattice so that the induced graph by the points is connected. This dual
representation is illustrated in Fig. 10.

Figure 10: A polyomino with its dual presentation

The situation for triangular lattice is a bit different. The dual representation of the
triangular lattice is the hexagonal lattice (the honeycomb lattice): Each triangle cell
in the triangular lattice corresponds to a point in the hexagonal lattice and the edge
connectedness of the triangle cells are presented by the edges connecting the points in the
hexagonal lattice. The dual representation is illustrated in Fig. 11.
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Figure 11: A polyiamond with its dual presentation in the hexagonal lattice

We would remark here that the choice of representation affects the value of T (1). In
the original representation by the cells in the triangular lattice, there are two polyiamonds
of one cell with opposite directions. In the representation by the points in the hexagonal
lattice, the number would be one, as every point is a translate of any other point. However,
both representations give the same value of T (n) for any n > 2. The reason is that any
edge in the hexagonal lattice determines uniquely the types of the corresponding cells
of the endpoints in the triangular lattice and the positions of the cells. Indeed, there
are three classes of edges (which are unique up to a translation): upward, horizontal,
downward (with respect to the direction from left to right). The corresponding cells with
the positions are: a � is below a � (upward), a � is to the left of a � (horizontal), a �
is above a � (downward).
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[3] Michael Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gle-
ichungen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249,
1923.

[4] Murray Eden. A two-dimensional growth process. Berkeley Symposium on Mathe-
matical Statistics and Probability, 4:223–239, 1961.

[5] Neal Madras. A pattern theorem for lattice clusters. Annals of Combinatorics,
3(2):357–384, 1999.

the electronic journal of combinatorics 30(4) (2023), #P4.38 11



[6] Gill Barequet, Mira Shalah, and Yufei Zheng. An improved lower bound on the
growth constant of polyiamonds. Journal of Combinatorial Optimization, 37(2):424–
438, 2019.

[7] W. F. Lunnon. Counting hexagonal and triangular polyominoes. In Graph Theory
and Computing, pages 87–100. Elsevier, 1972.

the electronic journal of combinatorics 30(4) (2023), #P4.38 12


	Introduction
	Main theorem

