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Abstract

The generalized Turán number ex(n,H, F ) is the maximum number of copies
of H in n-vertex F -free graphs. We consider the case where χ(H) < χ(F ). There
are several exact results on ex(n,H, F ) when the extremal graph is a complete
(χ(F ) − 1)-partite graph. We obtain multiple exact results with other kinds of
extremal graphs.

Mathematics Subject Classifications: 05C35

1 Introduction

One of the most studied questions in extremal Combinatorics is the following: what is
the largest number ex(n, F ) of edges that an n-vertex graph can have, if it does not
contain F as a subgraph? Turán [25] showed that in the case F = Kr+1, the largest
number of edges are in the Turán graph T (n, r), which is the complete r-partite graph
with each part of order bn/rc or dn/re. Erdős, Stone and Simonovits [8, 10] showed that
if χ(F ) = r + 1 > 2, then ex(n, F ) = (1 + o(1))|E(T (n, r))|.

A straightforward generalization of the above question is when instead of the num-
ber of edges, we consider the number of subgraphs isomorphic to a given graph H.
Let N (H,G) denote the number of copies of H in G. Given graphs H and F and
a positive integer n, their generalized Turán number is ex(n,H, F ) = max{N (H,G) :
G is an n-vertex F -free graph}. The systematic study of these numbers was initiated

by Alon and Shikhelman [1].
One particular topic that has attracted a lot of attention is the study of when the

Turán graph contains the most copies of H among F -free graphs. More generally, when
does a complete (χ(F )− 1)-partite graph contains the most copies of H? We say that H
is F -Turán-good if χ(H) < χ(F ) and ex(n,H, F ) = N (H,T (n, r)) for sufficiently large
n. We say that H is weakly F -Turán-good if χ(H) < χ(F ) and for sufficiently large
n, ex(n,H, F ) = N (H,T ) for some complete (χ(F ) − 1)-partite graph T . Note that
for a given graph H, a straightforward but complicated computation determines which
n-vertex complete r-partite graph contains the most copies of H. The very first result in
the area is due to Zykov [27] and states that if k < r, then Kk is Kr-Turán-good. The
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systematic study of F -Turán-good graphs was initiated by Győri, Pach and Simonovits
[18] in the case F = Kr and by Gerbner and Palmer [16] for general F .

A phenomenon often seen in this area is the so-called stability. It refers to the property
that if some F -free graph contains almost ex(n, F ) edges (almost ex(n,H, F ) copies of
H), then it is in some sense close to the extremal graph. There are different versions
of stability based on what ”almost” and ”close” means. The most studied version is
based on the following notion. Given two graphs H and G on the same vertex set, the
edit distance of H and G is the least number of edges that need to be added to H and
removed from H to obtain G. Slightly imprecisely, when we say that H has edit distance
at most k from T (n, r), we mean that we can obtain a graph isomorphic to T (n, r) on
the vertex set V (H) by adding and deleting at most k edges.

The classical Erdős-Simonovits stability theorem [5, 6, 24] states that if F is not
bipartite and an n-vertex F -free graph G has ex(n, F )−o(n2) edges, then the edit distance
of G from T (n, χ(F )− 1) is o(n2). We say that H is F -Turán-stable if for every n-vertex
F -free graph G that contains ex(n,H, F )− o(n|V (H)|) copies of H, the edit distance of G
from T (n, χ(F )−1) is o(n2). We say that H is weakly F -Turán-stable if for every n-vertex
F -free graph G that contains ex(n,H, F )− o(n|V (H)|) copies of H, the edit distance of G
is o(n2) from some complete (χ(F )− 1)-partite graph T . Using this language, the Erdős-
Simonovits stability theorem states that K2 is F -Turán-stable for every non-bipartite
graph F .

The first stability result in generalized Turán problems is due to Ma and Qiu [21].
They showed that if χ(F ) = r + 1 and k ≤ r, then Kk is F -Turán-stable. They used
this result to show that if F has a color-critical edge, then Kk is F -Turán-good. More
precisely, they proved a bound for every F that happens to give an exact result if F has a
color-critical edge. The decomposition family D(F ) of F consists of every bipartite graph
that can be obtained by deleting r−1 classes from an (r+1)-coloring of F . Let biex(n, F )
denote the maximum number of edges in an n-vertex graph that does not contain any
member of the decomposition family of F . In particular, if F has a color-critical edge,
then K2 is in the decomposition family of F , thus biex(n, F ) = 0.

Theorem 1 (Ma, Qiu [21]). For any k ≤ r, we have ex(n,Kk, F ) = N (Kk, T (n, r)) +
biex(n, F )Θ(nk−2).

This approach where we prove that H is F -Turán-stable and use it to prove that H
is F -Turán-good can also be found in [20, 23, 19, 12]. Finally, Gerbner [14] provided the
following general formulation.

Theorem 2. Let χ(F ) > χ(H) and assume that F has a color-critical edge. If H is
weakly F -Turán-stable, then H is weakly F -Turán-good.

Let us remark that the same property is also implied by the weaker assumption that
there is an n-vertex F -free graph G with N (H,G) = ex(n,H, F ) that has edit distance
o(n2) from a complete (χ(F )−1)-partite graph. We emphasize that what makes the above
theorem especially useful is the simple observation from [14] that if H is weakly Kχ(F )-
Turán-stable, then H is weakly F -Turán-stable, thus one stability result gives infinitely
many exact results.

In this paper we extend this result by going beyond (χ(F ) − 1)-partite graphs: we
obtain exact results when the extremal construction is obtained by adding further edges
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to a complete (χ(F ) − 1)-partite graph. One such result has been obtained by Gerbner
and Patkós [17]. Let Br,1 denote the graph consisting of two copies of Kr sharing a
vertex. It was shown in [4] that among Br,1-free graphs, the most edges are contained in
the Turán graph plus an additional edge. It was extended in [17] to any Kr with r < k
in place of K2. There are further results when B3,1 is forbidden in [12].

Our first result is a common generalization of Theorems 1 and 2. Let σ denote the
smallest number of vertices that a color class of H can have in a proper χ(H)-coloring.
We say that a coloring of a graph is almost proper if there is exactly one edge whose
endpoints have the same color. Note that an r-chromatic graph does not necessarily have
an almost proper coloring with at most r colors, for example any almost proper coloring
of C4 uses three colors.

Theorem 3.

(i) Let r + 1 = χ(F ) > χ(H) and assume that H is weakly F -Turán-stable. Then
ex(n,H, F ) ≤ N (H,T ) + biex(n, F )Θ(n|V (H)|−2) for some n-vertex complete r-
partite graph T . Moreover, for every n-vertex F -free graph G with N (H,G) =
ex(n,H, F ) there is an r-partition of V (G) to A1, . . . , Ar, a constant K = K(F )
and a set B of at most rK(σ(F )−1) vertices such that each member of D(F ) inside
a part shares at least two vertices with B, every vertex of B is adjacent to Ω(n)
vertices in each part, and every vertex of Ai \ B is adjacent to o(n) vertices in Ai
and all but o(n) vertices in Aj with j 6= i.

(ii) ex(n,H, F ) = N (H,T ) + biex(n, F )Θ(n|V (H)|−2) if there is a connected component
H ′ of H such that one of the following hold.

(a) H ′ has an almost proper coloring with at most r colors.

(b) biex(n,H ′) = o(biex(n, F )).

In particular, if F has a color-critical vertex, there are no members of D(F ) inside the
parts Ai. An example where (ii) does not hold is ex(n,C4, F2). It was shown in [16] that
C4 is F2-Turán-good, i.e., ex(n,C4, F2) = max{N (H,T )}, while biex(n, F2) = 1. A more
general result is in [11], showing that for any F with a color-critical vertex there is a graph
H that is F -Turán-good. Again, the error term is 0 instead of biex(n, F )Θ(n|V (H)|−2).

We prove this theorem in Section 2. Section 3 contains several exact results proved
using Theorem 3, and some new constructions of weakly F -Turán-stable graphs.

2 Proof of Theorem 3

We will use the following lemma from [14].

Lemma 4. Let us assume that χ(H) < χ(F ) and H is weakly F -Turán-stable, thus
ex(n,H, F ) = N (H,T ) + o(n|V (H)|) for some complete (χ(F )− 1)-partite n-vertex graph
T . Then every part of T has order Ω(n).

We will use the following simple observation (and variations of it) multiple times.
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Lemma 5. Let G be an n-vertex graph with a partition of V (G) to A1, . . . , Ar such that
|Ai|= Θ(n) for each i. Assume that each vertex of Ai is connected to all but o(n) vertices
outside Ai. Let F ′ be an induced subgraph of F such that the remaining part of F is
s-colorable. Assume that a copy of F ′ is embedded into G avoiding A1, . . . , As. Then we
can extend this copy of F ′ to a copy of F in G.

Proof. Let U1 . . . , Us be the color classes of the graph we obtain by deleting F ′ from F .
We will embed the sets Ui one by one in an arbitrary order into Ai. When we embed Ui,
the already embedded at most |V (F )| vertices are adjacent to all the Θ(n) vertices in Ai
with o(n) exceptions, thus we can pick the necessary vertices.

Now we are ready to prove Theorem 3 that we restate here for convenience.

Theorem 3.

(i) Let r + 1 = χ(F ) > χ(H) and assume that H is weakly F -Turán-stable. Then
ex(n,H, F ) ≤ N (H,T ) + biex(n, F )Θ(n|V (H)|−2) for some n-vertex complete r-
partite graph T . Moreover, for every n-vertex F -free graph G with N (H,G) =
ex(n,H, F ) there is an r-partition of V (G) to A1, . . . , Ar, a constant K = K(F )
and a set B of at most rK(σ(F )−1) vertices such that each member of D(F ) inside
a part shares at least two vertices with B, every vertex of B is adjacent to Ω(n)
vertices in each part, and every vertex of Ai \ B is adjacent to o(n) vertices in Ai
and all but o(n) vertices in Aj with j 6= i.

(ii) ex(n,H, F ) = N (H,T ) + biex(n, F )Θ(n|V (H)|−2) if there is a connected component
H ′ of H such that one of the following hold.

(a) H ′ has an almost proper coloring with at most r colors.

(b) biex(n,H ′) = o(biex(n, F )).

Proof. To prove (i), we will pick the numbers α, β, γ, ε > 0 in this order, such that
each is sufficiently small compared to the previous one, and after that we pick n that is
sufficiently large. Let us consider an n-vertex F -free graph G with ex(n,H, F ) copies of
H. Because of the weakly F -Turán-stable property, for any ε > 0 there is a complete
r-partite graph T on V (G) that can be obtained from G by adding and removing at most
εn2 edges. Let us pick T such that we need to remove the least number of edges and let
A1, . . . , Ar be the parts of T . Note that by the choice of T , each vertex in Ai has at least
as many neighbors in every part as in Ai, and we have |Ai|≥ αn for some α > 0 using
Lemma 4.

Let β > 0 be sufficiently small and γ > 0 be sufficiently small compared to β. Let Bi

denote the set of vertices in Ai with at least γn neighbors in Ai and B = ∪ri=1Bi.

Claim 6. There is a K depending on γ and F such that |B|≤ K(σ(F )− 1).

Proof. This is an extension of Claim 4.2 in [21], and the proof also extends to our case,
thus we only give a sketch here. Clearly |B|≤ 2εn/γ by the definition of ε. Therefore,
v ∈ Bi has at least γn− 2εn/γ ≥ γn/2 neighbors in every Aj \ Bj, using that ε is small
enough compared to β.

Let A′j denote an arbitrary set of γn/2 neighbors of v in Aj \Bj, and let G(v) denote
the subgraph of G induced on ∪rj=1A

′
j. Then at most εn2 edges are missing in G(v)
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between parts A′j. Therefore, the edge density in G(v) is larger than (r − 2)/(r − 1) (as
that is the edge density of the (r−1)-partite Turán graph, but we have almost all the edges
of the r-partite Turán graph). Thus, we can apply the Erdős-Simonovits supersaturation
theorem [9] to obtain that G(v) contains at least cnbr copies for some constant c > 0 of
the complete r-partite graph Kb,...,b for b = |V (F )|.

Consider the following auxiliary bipartite graph. Part A consists of the copies of
Kb,...,b in ∪ri=1Ai \ Bi, while the other part is B. A vertex u ∈ A is adjacent to v ∈ B
if the corresponding complete r-partite graph is in the neighborhood of v. Then clearly
|A|≤ nbr. Each vertex of A has at most σ(F )− 1 neighbors in B, since otherwise we can
find a complete (r + 1)-partite graph in G with parts of order σ(F ), |V (F )|, . . . , |V (F )|,
which obviously contains F . This implies that the number of edges in this auxiliary
bipartite graph is at most (σ(F )− 1)nbr and at least |B|cnbr, completing the proof with
K = 1/c.

Let us return to the proof of the theorem. Let Ui denote the set of vertices v in Ai \Bi

such that there are at least βn vertices in V (G) \Ai that are not adjacent to v. Clearly,
|Ui|≤ εn/β. Let Vi = Ai \ (Bi ∪ Ui).

For each vertex v ∈ Ui for each i, let us delete the edges from v to vertices in Ai, and
connect v to every vertex of Vj with j 6= i. Let G′ be the resulting graph. Observe that
we deleted at most γn edges incident to v, thus at most γn|V (H)|−1 copies of H containing
v. On the other hand, we added at least βn − rεn/β − rK(σ(H) − 1) ≥ βn/2 edges
incident to v (here we use that ε is small enough compared to β and n is large enough).

We claim that these edges are in at least βn|V (H)|−1/2|V (H)|−1 copies of H. Indeed, let
us fix an r-coloring of H with color classes W1, . . . ,Wr. We count only the copies of H
where Wj is embedded into Vj for j 6= i and Wi is embedded into Vi ∪ {v}. We apply
the same greedy idea that we used in the proof of Lemma 5. First we embed Wi: One
vertex to v and the other vertices into Vi arbitrarily. Then we embed the other parts Wj

in an arbitrary order. Each time, when we want to embed W`, the already embedded at
most |V (H)| vertices have at least |V`|−|V (H)|βn > n/2 + |V (H)| common neighbors in
V` (using that β is small enough), as each vertex of Vj has at most βn non-neighbors in
other parts. Therefore, embedding the vertices of W` one by one, we always have at least
n/2 choices.

We also claim that G′ is F -free. Assume not and pick a copy F0 of F with the smallest
number of vertices from ∪ri=1Ui. Clearly F0 contains a vertex v ∈ Ui, as all the new edges
are incident to such a vertex. Let Q be the set of vertices in F0 that are adjacent to v
in G′. They are each from ∪j 6=iVj. Their common neighborhood in Vi is of order at least
αn−|V (F )|βn > |V (F )| (here we use that β is small enough compared to α). Therefore,
at least one of them is not in F0, thus we can replace v with that vertex to obtain another
copy of F with less vertices from ∪ri=1Ui, a contradiction.

We obtained that G′ is F -free and contains more copies of H than G (a contradiction)
unless Ui is empty for every i. We also claim that there is no member of D(F ) inside Vi.
Indeed, by Lemma 5 that would extend to a copy of F . Moreover, if there is a member
of D(F ) that contains only one vertex u from B, then we can restrict ourselves to the
neighbors of u and apply Lemma 5 to obtain a copy of F . Indeed, u has at least γn
neighbors in each part Ai, thus at least γn −K(σ(F ) − 1) = Θ(n) neighbors in Ai \ B.
We restrict G′ to these vertices and the already embedded vertices. Then we let F ′ be
the already embedded member of D(F ) and s = r − 2, and apply Lemma 5.
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Let us count now the copies of H in G. We haveN (H,T ) copies inside T . There are at
most rbiex(n, F ) edges inside Vi, thus there are at most rbiex(n, F )n|V (H)|−2 copies of H
using some of those edges. It is left to count the copies of H which contain a vertex from
B. As |B|≤ rK(σ(F )−1), clearly there are at most rK(σ(F )−1)n|V (H)|−1 such copies of
H. If σ(F ) = 1, then this is 0. If σ(F ) > 1, then biex(n, F ) ≥ n− 1, since the star is not
in the decomposition family. Therefore, rK(σ(F )−1)n|V (H)|−1 = O(biex(n, F )n|V (H)|−2),
completing the proof of (i).

The lower bound in (ii) is given by taking T and adding into one part Ai of T a
D(F )-free graph with biex(|Ai|, F ) edges. As |Ai|= Ω(n) by Lemma 4, biex(|Ai|, F ) =
Θ(biex(n, F )). In the proofs of both (a) and (b), we will find Θ(biex(n, F )n|V (H′)|−2)
copies of H ′. Clearly we can find Θ(n|V (H′′)|) copies of every connected component H ′′ of
H in T , and we can pick them one by one such that they are vertex-disjoint. This way
we find Θ(biex(n, F )n|V (H)|−2) copies of H, which completes the proof in both cases.

Observe that in (a), each new edge is in Θ(n|V (H′)|−2) copies of H ′. To show (b),
observe that there are Θ(biex(n, F )) edges in Ai that are contained in a member of
D(H ′). Each such copy is clearly extended to a copy of H ′ using edges of T , and there
are Θ(n) ways to choose each new vertex.

3 Exact results

We can obtain several exact results. First we generalize a theorem of Moon [22] that
determines ex(n, F ) where F consists of s vertex-disjoint copies of Kr+1.

Theorem 7. Let F consist of s > 1 components with chromatic number r+1, each with a
color-critical edge, and any number of components with chromatic number at most r. Let
H be a weakly F -Turán-stable graph and n sufficiently large. Then ex(n,H, F ) = N (H,T )
for a complete (s+ r − 1)-partite graph T with s− 1 parts of order 1.

Proof. One can check that T does not contain F , and therefore ex(n,H, F ) is at least
N (H,T ). Let G be an n-vertex F -free graph with ex(n,H, F ) copies of H. We will apply
Theorem 3 to obtain a partition to A1, . . . , Ar and a set B with |B|= O(1) such that each
member of D(F ) inside parts Ai contains a vertex from B.

Assume first that there are s independent edges u1v1, . . . , usvs inside the parts such
that for each i, at least one of ui and vi are not in B. Observe that ui and vi have Ω(n)
common neighbors in each part besides the one containing them.

Let F1, . . . , Fs denote the components of F with chromatic number r + 1. We apply
the same greedy idea as in the proof of Lemma 5. We go through the edges uivi one by
one and extend them to Fi. Without loss of generality, vi ∈ A1. Let B1, . . . , Br denote the
parts of the graph we obtain by deleting a color-critical edge from Fi, with the endpoints
of the deleted edge being in B1. We will embed the vertices in Bj to Aj. First we map
the two endpoints of the deleted edge to ui and vi and the other vertices of B1 arbitrarily.
Recall that the O(1) embedded vertices have Ω(n) common neighbors in A2. We pick
|B2| of them that avoid the vertices we already picked to be in the copy of F and the
avoid each uj and vj. Then the vertices we picked to be in the copy of Fi have Ω(n)
common neighbors in A3, we pick |B3| of them that we have not picked to be in our copy
of F , and so on. We always have to avoid O(1) already picked vertices. This way we
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obtain an Fi and ultimately F1, . . . , Fs. Clearly we can pick the remaining components
in a similar way to obtain F , a contradiction.

If |B|≥ s, then clearly we can find s distinct vertices among their neighbors not
in B, resulting in the contradiction. Consider now a largest set of independent edges
inside parts. By the above, there are at most s − 1 edges, and each edge inside parts is
incident to at least one of their at most 2s− 2 endvertices. Observe that outside B, each
vertex is in o(n) edges inside parts. Thus, there are o(n) edges inside parts that are not
incident to B. Therefore, deleting all the edges inside parts that are not incident to B,
we lose o(n|V (H)|−1) copies of H. If |B|< s − 1, then we can add a vertex to B creating
Θ(n|V (H)|−1) copies of H, a contradiction. We obtained that |B|= s− 1. Clearly, for any
edge usvs inside parts but outside B we could add independent edges u1v1, . . . , us−1vs−1
with ui ∈ B, to obtain the forbidden configuration. This implies that G is a subgraph of
a complete (s+ r−1)-partite graph with s−1 parts of order 1, completing the proof.

From now on we will focus on the case where F has a color-critical vertex. An example
where we can obtain an exact result is when all the parts can contain anyD(F )-free graphs
at the same time. Note that this does not necessarily mean that we embed a D(F )-free
graph with the maximum number of edges into the parts.

Let us consider the complete (r+ 1)-partite graph K1,a,...,a. Clearly its decomposition
family contains the star K1,a, thus graphs with maximum degree at most a − 1 can be
embedded into each part. Let us call a graph almost a-regular if it is either a-regular or
has one vertex of degree a− 1 and each other vertex has degree a.

Let T (s)
0 (n, r) denote the following family of graphs. We take a complete r-partite

graph T , and for each part Ai, we embed an almost s-regular graph. It is easy to see
that these graphs are K1,a,...,a-free, where s = a− 1. Let T (s)(n, r) denote the subfamily

of T (s)
0 (n, r) where T is the Turán graph T (n, r). Simonovits [24] showed that the graphs

in T (a−1)(n, r) have the most edges among K1,a,...,a-free graphs.

Theorem 8. Let F be the complete (r+1)-partite graph K1,a,...,a, H be a weakly F -Turán-
stable graph and n sufficiently large.

(i) If χ(H) < r, then ex(n,H, F ) = N (H,T ) for some T ∈ T (a−1)
0 (n, r).

(ii) If H is a forest, then ex(n,H, F ) = N (H,T ) for every T ∈ T (a−1)
0 (n, r) where the

graph embedded into each part has girth at least |V (H)|.

We remark that (i) is not immediate from the preceding argument, as it is possible
that a graph embedded into a part with less edges contains more copies of some (subgraph
of) H. Consider now cliques Kk. It is not hard to show that we need to embed into each
part of a complete r-partite graph an almost a-regular graph with the maximum number
of triangles, and among those we need a graph with the maximum number of K4s, and so
on. However, to determine these graphs does not seem to be a simple problem. A very
special case is solved in [26].

We also remark that linear forests, (thus paths) are F -Turán-stable for every r [15],
and forests H containing a matching of size b|V (H)|/2c are F -Turán-stable for r = 3 by
[14]. Thus, (ii) gives an exact result for those graphs. Before proving the theorem, we
need a lemma.
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Lemma 9. Let G be an n-vertex graph with vertex set partitioned into A1, . . . , Ar such
that for each i ≤ r, |Ai|= Θ(n) and each vertex v ∈ Ai adjacent to at most a vertices
in Ai and to all but o(n) vertices in Aj for j 6= i. If χ(H) < r or H is a forest, then
for each edge uv inside Ai, there are Ω(n|V (H)|−2) copies of H containing uv. Moreover,
there are Ω(n|V (H)|−2) copies of H containing uv and no other edges inside any Aj.

Proof. We apply a greedy argument similar to Lemma 5. We assume without loss of
generality that u, v ∈ Ar and embed an arbitrary edge of H to uv. If χ(H) < r, then
take a proper r− 1-coloring of the remaining part of H, and we will embed the jth color
class of H to Aj. We embed the color classes one by one. The O(1) vertices already
embedded have |Aj|−o(n) = Θ(n) common neighbors in Aj, we pick vertices arbitrarily
among those. Therefore, we have Θ(n) choices for each vertex, and altogether we pick
|V (H)|−2 vertices, implying the required bound.

If H is a forest and r = 2, the embedded edge cuts H to at least two connected
components, we embed the components one by one. For each component that has a
vertex adjacent to u, we embed that vertex first to a neighbor of u in A2 that we have
not used earlier. Then we embed the neighbors of that vertex to neighbors in A1, and so
on. We proceed similarly for components with a vertex incident to v, and we start with
an arbitrary vertex for other components. Each time we have to pick one of the Θ(n)
neighbors and have to avoid the at most |V (H)|−1 vertices that we already used.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. First we prove (i) and that the same statement holds for forests H.
Observe first that by Theorem 3, an n-vertex F -free graph G with N (H,G) = ex(n,H, F )
can be obtained the following way: we embed a K1,a-free graph into each part of an r-
partite graph T . Indeed, we have σ(F ) = 1, thus in the extremal graph we have |B|= 0,
which in turn implies that there is no member of D(F ) = {K1,a, Ka,a} inside any of the
parts. One can also easily see that G is F -free. We can assume that T is a complete
r-partite graph, as adding further edges between parts does not create F .

We need to show that the graphs Gi embedded into the parts Ai are (a − 1)-almost
regular. Those graphs Gi do not affect the number of copies of H that contain only edges
between parts. Each other copy of H intersects some part Ai in a subgraph Hi that
contains least one edge. Let pi denote the number of isolated edges in Hi and qi denote
the number of components of Hi of order more than 2. By Lemma 9 we have that for
any edge inside Ai, there are at least cn|V (H)|−2 copies of H containing that edge (and no
other edges inside any Aj) for some c.

Observe that for a fixed Hi, there are O(n|V (H)|−pi−2qi) copies of H intersecting Ai in
a copy of Hi. Indeed, we pick one vertex from each component inside Ai, then there are
O(1) ways to pick the other vertices of that component. There are at most n ways to
pick each other vertex of H. This means that for any edge uv inside Ai, there are at least
cn|V (H)|−2 copies of H containing uv and no other edge from Ai, and for some c′, there
are at most c′n|V (H)|−2 copies of H containing another subgraph inside Ai.

Assume now that Gi is not an (a−1)-almost regular graph. If |E(Gi)|≤ (a−1)|Ai|/2−
c′/c, then we are done, since we lose at least cn|V (H)|−2c′/c copies of H. Observe that if
|E(Gi)|> (a − 1)|Ai|/2 − c′/c, then at least |Ai|−2c′/c vertices have degree a − 1. It is
easy to see that we can turn Gi to an (a − 1)-almost regular graph G′i by adding and
removing O(1) edges.
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Indeed, let u and v be of degree less than a− 1 in Gi, then there are at most 2a− 4
vertices in Ai adjacent to u or v. If n is sufficiently large, then we can find an edge xy
in Gi such that xu and yv are not in Gi. We delete the edge xy and add the edges xu
and yv. This way we find a K1,a-free graph with more edges. We can repeat this until
we arrive to an (a− 1)-almost regular graph G′i.

We claim that N (Hi, Gi) − N (Hi, G
′
i) = O(npi+qi−1). Let U be the set of vertices

with different neighborhood in Gi and G′i, then |U |= O(1). The number of copies of Hi

avoiding U is the same in Gi and G′i. The other copies in G′i can be counted by picking a
vertex in U and extending it to a component, O(1) many ways, then picking one vertex
in each component, O(n) ways each, then adding adjacent vertices O(1) ways.

Since |V (H)|≥ 2(pi + qi), we have that pi + qi − 1 ≤ |V (H)|−3 unless Hi consists of
an isolated edge plus some isolated vertices. Clearly the number of such subgraphs
Hi increases by Ω(n|V (Hi)|−2), while the number of other subgraphs Hi decreases by
O(n|V (Hi)|−3). Therefore, replacing Gi with G′i, we lose O(n|V (H)|−3) copies of H and
we gain Ω(n|V (H)|−2) copies, a contradiction.

To prove (ii), by Theorem 3, we need to maximize the number of copies of H in graphs
G which are obtained from a complete r-partite graph by placing K1,a-free subgraphs into
each part. Each copy of H intersects each part in a forest. As observed by Cambie, de
Verclos and Kang [3], the largest number of copies of each forest in m-vertex K1,a-free
graphs is in almost a-regular graphs with girth at least the diameter of the forest. Such
graphs exist if m is sufficiently large [7], completing the proof.

Assume now that biex(n, F ) = O(1). This will be useful since we add to a complete
r-partite graph T and delete from T O(1) edges, thus it is enough to obtain asymptotic
results on the number of copies of H containing those edges.

Let H be a graph with chromatic number less than r and uv be an edge of H that cuts
H into at least two connected components. Let us fix an edge u′v′ of T (n, r) and consider
the number f(u′v′) of copies of H in T (n, r) where u′v′ corresponds to uv. Note that
f(u′v′) = Θ(n|V (H)−2), f(u′v′) depends on u′ and v′, but clearly f(u′v′) = (1+o(1))f(u′′v′′)
for any u′v′, u′′v′′. Let f(n) = max f(u′v′) where the maximum is taken on all the edges
u′v′ of T (n, r).

Lemma 10. Let G be obtained from T (n, r) by adding and removing o(n) edges at every
vertex. Then each edge of G corresponds to uv in (1 + o(1))f(n) copies of H in G. If we
add any non-edge to G, the resulting edge also corresponds to uv in (1 + o(1))f(n) copies
of H.

Proof. Let H ′ denote the graph we obtain by deleting u and v from H, and let H ′′ be a
component of H ′ such that some of its vertices are connected to, say, u.

Observe that N (H ′, T (n, r) = Θ(n|V (H′)|), since we can embed each color class of
H ′ in a proper r-coloring of H to a distinct color class of T (n, r). By embedding the
vertices of the color classes one by one, we have at least bn/rc − |V (H ′)|+1 choices each
time, and we count each copy of H O(1) times this way. As each edge is in O(n|V (H′)|−2)
copies of H ′, adding and deleting o(n2) edges from T (n, r) adds and deletes o(n|V (H′)|)
copies of H ′. Therefore, a graph with edit distance o(n2) from the Turán graph has
(1 + o(1))N (H ′, T (n, r)) copies of H ′.

For each edge and non-edge u′v′ of G, the rest of G has edit distance o(n2) from the
Turán graph, thus has (1 + o(1))N (H ′, T (n, r)) copies of H ′. Some of those copies are
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extended to H with u′ and v′, while others are not. As the parts Ai have roughly the
same size, the only difference is whether u′ and v′ belong to the same part or not.

We can embed H ′′ into G (1 + o(1))N (H ′′, T (n, r)) ways, even after we already em-
bedded some of the other components of H ′. Indeed, the O(1) already embedded vertices
cannot be used, but there are O(n|V (H′′)|−1) = o(N (H ′′, T (n, r))) copies of H ′′ in G con-
taining at least one of those vertices. More importantly, such an embedding is good for us
if the neighbors of u in H ′ are the neighbors of u′ in G. This happens when they belong to
parts of T (n, r) distinct from the part of u, with a lower order term of exceptions. Thus
we can embed the components one by one, obtaining the same asymptotic each time. By
symmetry, the same argument works for components of H ′ where some of the vertices
are connected to v. Finally, for components where no vertex is connected to any of u and
v, the situation is even simpler, since we can use any embedding of such a component
avoiding the already embedded vertices.

Theorem 11. Let r+1 = χ(F ) > χ(H) = 2, assume that H is F -Turán-stable and Kr+1-
Turán-good and n is sufficiently large. Assume that H is a forest and biex(n, F ) = O(1).
Then ex(n,H, F ) = N (H,G) for some G with ex(n, F ) = |E(G)|.

Proof. Assume indirectly that there is an n-vertex F -free graph G0 with less than ex(n, F )
edges such that N (H,G0) = ex(n,H, F ). Then we can apply Theorem 3 to obtain that
G0 can be obtained from a complete r-partite graph T with parts A1, . . . , Ar by adding
a edges inside parts and removing b edges between parts. Moreover, each vertex is
connected to o(n) vertices in its part and all but o(n) vertices in the other parts. We
also have a, b = O(1). Observe that each part of T has order (1 + o(1))n/r, otherwise T
contains Ω(n|V (H)|) less copies of H, and the O(1) extra edges create O(n|V (H)|−2) copies
of H. Let G1 be an n-vertex F -free graph with ex(n, F ) edges.

As K2 is F -Turán-stable, we have that G1 can be obtained from T (n, r) by adding a′

and deleting b′ edges. There are no graphs from D(F ) inside the parts of T (n, r) in G1,
thus a′ = O(1). Observe that a − b < a′ − b′ since G0 has less than ex(n, F ) edges. We
will apply Lemma 10 to both G0 and G1.

Let us return to G0. By deleting the a edges inside parts, we delete (1 + o(1))af(n)
copies of H; the number of copies containing more than one such edge is O(n|V (H)|−3),
thus negligible. By adding the b edges to obtain a complete r-partite graph, we create
(1 + o(1))bf(n) copies of H; again, the number of copies containing more than one such
edge is negligible. Then we turn the resulting graph to the Turán graph, this does not
decrease the number of copies of H because H is Kr+1-Turán-good. Finally, we turn this
graph to G1 by adding a′ and removing b′ edges. This way altogether the number of copies
of H increases by (1+o(1))(a′−b′+b−a)f(n). As we have 0 < (a′−b′+b−a) = O(1), we
obtain that the number of copies of H increases, a contradiction completing the proof.

Given F with chromatic number r+ 1, let us call an F -free n-vertex graph G nice for
F if G contains T (n, r) and has ex(n, F ) edges.

Theorem 12. Let χ(F ) = 3, χ(H) = 2, assume that H is F -Turán-stable and Kr+1-
Turán-good, biex(n, F ) = O(1) and n is sufficiently large. If there is a nice graph for F ,
then there is a nice graph G0 for F with ex(n,H, F ) = N (H,G0).

As the proof is similar to the proof of Theorem 11, we will present it briefly. One can
look at the above proof to find how the arguments can be completed.
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Proof. Let G be an n-vertex F -free graph G with ex(n,H, F ) = N (H,G) and assume
indirectly that G is not nice. Let us apply Theorem 3 to obtain T . Let us fix an edge uv
of H. If uv cuts H into two or more parts, we will apply Lemma 10 to show that each
edge of G corresponds to uv in (1 + o(1))f(n) copies of H. Otherwise uv is contained in
a cycle, which must be of even length. Observe that if an even cycle contains an edge
of G not in T , it must contain another such edge. This implies that an edge of G not
in T corresponds to uv in O(n|V (H)|−3) copies of H. On the other hand, an edge of T
corresponds to uv in Θ(n|V (H)|−2) copies of H.

We obtained that every edge of T corresponds to uv in more or asymptotically the
same number of copies of H as the edges of G outside T , which implies the statement.

An even simpler special case is when biex(n, F ) = 1, i.e., when D(F ) contains both
the star and the matching with two edges. The main example is Br,1. Another example
is the following graph Qr. Let r ≥ 3. We take K1,2,a3,...,ar+1 with parts Ai of order ai ≥ 2,
and remove all but two independent edges between Ar and Ar+1.

Let Gm denote the family of graphs obtained the following way. We take a complete
r-partite graph T , add one edge uivi into each of m parts, and for each i, j ≤ m, we delete
either the edges uiuj and vivj or the edges uivj and viuj. Let Gm denote the element of
Gm where T = T (n, r) and the m additional edges are placed into m smallest parts.

Theorem 13.

(i) Let H be weakly Qr-Turán-stable. Then ex(n,H,Qr) = N (H,G) for some G ∈ Gm,
m ≤ r. In particular, if q := (2r − k)/(r − k + 1) is not an integer, then
ex(n,Kk, Qr) = N (Kk, Gdqe). If q is an integer, then either
ex(n,Kk, Qr) = N (Kk, Gq) or ex(n,Kk, Qr) = N (Kk, Gq+1).

(ii) Let H be Br,1-Turán-stable. Then ex(n,H,Br,1) = N (H,G′), for some G′ that is
obtained from a complete (r − 1)-partite graph by adding an edge into one of the
parts.

The first statement of the above theorem gives an example where the extremal graph
is not the same for ex(n,H, F ) as for ex(n, F ), even though both contain the Turán graph.
The second statement generalizes most of the known exact results when χ(H) < χ(F )
and F does not have a color-critical edge.

Proof. We start with the upper bound in (i). We apply Theorem 3. We obtain that
an extremal graph G is obtained by adding at most one edge into each part Bi of an
r-partite graph T . Moreover, every vertex of T is connected to all but o(n) vertices in the
other parts. Assume that u1v1 and u2v2 are added to parts B1 and B2 of T and assume
indirectly that one of these four vertices, say v2 is adjacent to both vertices of the other
edge, i.e., u1v2 and v1v2 are in G. We show that in this case we can embed Qr into G, a
contradiction. We embed an edge between Ar and Ar+1 to u1v1. For the other edge xy
between Ar and Ar+1, we embed x to a common neighbor of u2 and v2 in B1 and embed
y to u2. We embed the single vertex in the first part of Qr to v2, and embed all the other
vertices in Ar and Ar+1 to neighbors of v2 in B1. Finally, we embed the remaining parts
of Qr by Lemma 5. By symmetry, for each i, j ≤ m either the edges uiuj and vivj or the
edges uivj and viuj are missing, showing that G is a subgraph of an element of Gm.
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To show the lower bound in (i), it is enough to deal with the case a2 = · · · = ar+1 = 2.
Assume that Qr is embedded into Gm. Let v denote the vertex in the part of order 1 in
Qr. If v is embedded in a part Bi of T together with any other vertex, then they are the
endpoints of the extra edge of G inside Bi, and the other extra edges of G are not used,
since one of the endpoints is not adjacent to the image of v. But then Qr is embedded
into T plus one edge, which is impossible. Thus we can assume that Bi contains only v.

Observe that if x ∈ Ai with i < r and x is embedded into Bi of T , then at most one
other vertex of Qr is embedded into Bi. Indeed, x has only one non-neighbor in Qr, and
the same holds for that vertex, thus every set of three vertices in Qr containing x induces
at least two edges. The vertices in parts Ai, i < r are embedded into either at least r− 1
or exactly r − 2 parts of T .

In the first case, those r− 1 parts of T contain at most 2r− 2 embedded vertices and
the last part contains one vertex, a contradiction. In the second case, those r − 2 parts
contain the images of the parts of order 2, thus Ar ∪ Ar+1 is embedded into one part, a
contradiction.

Consider now ex(n,Kk, Qr). If T has a part of order not (1 + o(1))n/r, then clearly
T has Θ(nk) less copies of Kk then the Turán graph, and the extra edges create O(nk−2)
copies of Kk. Therefore, G is close to T (n, r), in particular, every edge of G inside parts
is in (1 + o(1))(n/r)k−2

(
r−1
k−2

)
copies of Kk. Every non-edge between parts would create

(1 + o(1))(n/r)k−2
(
r−2
k−2

)
copies of Kk is added to G.

By the first part of the statement in (i), we know that there are m edges added inside
parts and 2

(
m
2

)
edges removed between parts. Therefore, the number of copies of Kk is

N (Kk, T ) + (1 + o(1))m(n/r)k−2
(
r−1
k−2

)
− (1 + o(1))m(m− 1)(n/r)k−2

(
r−2
k−2

)
. If m < q, then

increasing m increases this number, if m > q then increasing m decreases this number. If
m = q, then it can go either way because of the o(1) term. This shows that if q is not an
integer, then m = dqe, while if q is an integer, then either m = q or m = q + 1. If there
are two parts of T such that |Bi|> |Bj|+1, then we move a vertex u from Bi to Bj. We
pick u that is not incident to an edge of G inside Bi. This creates Θ(nk−2) more copies in
the complete r-partite graph T and destroys O(nk−3) copies of Kk that contains an edge
of G not in T (since those copies each contain u and one of m edges). Finally, it is easy
to see that placing extra edges inside the smaller parts creates more copies of Kk.

The lower bound in (ii) is obvious. The upper bound in the case r = 2 follows from
Theorem 12, thus we assume that r > 2, consider an n-vertex Br,1-free graph G with
ex(n,H,Br,1) copies of H and apply Theorem 3. In this case we need to show that if
there are two edges inside parts in G, then G′ contains no less copies of H than G. Instead
of this, we show the stronger statement that there cannot be two edges inside parts in G.

Assume that there are at least two edges u1v1 and u2v2 inside parts. We pick a vertex
v that is a common neighbor of these vertices in another part. Then we embed the
intersection of the two cliques of Br,1 to v. We embed two vertices of one of the cliques
to u1 and v1 and two vertices of the other clique to u2 and v2. We embed the remaining
vertices one by one to the other parts, each time picking a vertex that is in the common
neighborhood of the vertices already picked for that clique.

Finally, we show two simple ways to obtain weakly F -Turán-stable graphs. Let us
consider the longest odd cycle C2k+1 such that F is subgraph of a p-blow-up of C2k+1 for
some p, i.e., of the graph obtained the following way: we replace each vertex v of C2k+1
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with p vertices v1, . . . , vp, and each edge uv with p2 edges uivj, i, j ≤ p. Let c(F ) = 2k+1
and b(F ) denote the smallest p such that the above property holds. The connection of
c(F ) to Turán-goodness was studied in [13].

Theorem 14.

(i) Let χ(F ) = r + 1 and H be a weakly F -Turán-stable graph. Assume that H has a
unique r-coloring and H ′ is an r-chromatic graph obtained by adding edges but no
vertices to H. Then H ′ is weakly F -Turán-stable.

(ii) Let χ(F ) = 3 and H be a weakly F -Turán-stable graph. Let us assume that H
contains the b(F )-blow-up of Pc(F )−1, where u1, . . . , ub(F ) replace the first vertex and
v1, . . . , vb(F ) replace the last vertex of the path. Let H ′ be the graph obtained by
adding vertices w1, . . . , ws, x1, . . . xt and edges uiwj, vix` for i ≤ b(F ), j ≤ s and
` ≤ t. Assume that

(
t−s
2

)
≤ s ≤ t. Then H ′ is F -Turán-stable.

We remark that (i) is a straightforward extension of a proposition from [12], which
states the same result with weakly F -Turán-good instead of weakly F -Turán-stable. Ob-
serve that in (ii), if F = K3, then we just add leaves to the endpoints of an edge.

Proof. To prove (i), assume that there are p ways to obtain H ′ from H by adding edges,
and H ′ contains q copies of H. Then we have N (H ′, G) ≤ qN (H,G)/p for every graph
G. Observe that if a copy of H is in a complete r-partite graph G0, then all the p ways
to obtain H ′ create a subgraph of G0, thus N (H ′, G0) = qN (H,G0)/p.

We claim that ex(n,H, F ) = qex(n,H ′, F )/p−o(n|V (H)|). Let G′ be an n-vertex F -free
graph with ex(n,H, F ) copies of H.

Let G0 be the complete r-partite graph obtained by adding and deleting o(n2) edges
from G′, then G0 contains N (H,G′) − o(n|V (H)|) copies of H. Since G0 contains
pN (H,G0)/q copies of H ′, we have that

ex(n,H, F ) = N (H,G′) = N (H,G0)− o(n|V (H)|)

= qN (H ′, G0)/p− o(n|V (H)|)

= qex(n,H ′, F )/p− o(n|V (H)|).

Let G be an n-vertex F -free graph with ex(n,H ′, F ) − o(n|V (H)|) copies of H ′. Clearly
G contains at least qex(n,H ′, F )/p − o(n|V (H)|) = ex(n,H, F ) − o(n|V (H)|) copies of H.
Therefore, by the weak F -Turán-stability of H, G can be obtained from a complete
r-partite graph by adding and removing o(n2) edges, completing the proof.

To prove (ii), let G be an n-vertex F -free graph. We first embed H and then the
additional vertices. Let Q be a copy of H and observe that there are at most b(F ) − 1
common neighbors of u1, . . . , ub(F ), v1, . . . , vb(F ) in G. Let A denote the set of vertices that
are common neighbors of u1, . . . , ub(F ) and B denote the set of vertices that are common
neighbors of v1, . . . , vb(F ) in G, then |A ∩B|≤ b(F )− 1. We need to pick s vertices from
A and t vertices from B.

Observe that the number of ways to do this while avoiding the vertices in A ∩ B is
the same as the number of ways to pick Ks,t from K|A\B|,|B\A|. This is asymptotically
the largest if |A|= |B| by a result of Brown and Sidorenko [2], using that

(
t−s
2

)
≤ s ≤ t.

Note that they did this optimization in a slightly different context. Observe that A ∩ B
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is negligible, thus we have at most (1 + o(1))N (Ks,t, T (n− |V (H)|, 2)) ways to extend a
copy of H to H ′. Therefore, the number of copies of H ′ in G is at most the number of
copies of H times (1 + o(1))N (Ks,t, T (n − |V (H)|, 2)), divided by some fixed number q
of automorphisms of H ′.

Observe that removing |V (H)| vertices of T (n, 2), the resulting graph has edit distance
O(n) from T (n−|V (H)|, 2). ThusN (H ′, T (n, 2)) = (1+o(1))N (H,T (n, 2))N (Ks,t, T (n−
|V (H)|, 2))/q. Assume now that G has

ex(n,H ′, F )− o(n|V (H′)|) ≥ (1 + o(1))N (H,T (n, 2))N (Ks,t, T (n− |V (H)|, 2))/q

copies of H ′. Then G has to contain N (H,T (n, 2))−o(n|V (H)|) = ex(n,H, F )−o(n|V (H)|)
copies of H, thus G has edit distance o(n2) from T (n, 2) by the F -Turán-stable property
of H, completing the proof.
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