
Lower bounds for the Turán densities of daisies

David Ellisa Dylan Kingb

Submitted: Apr 22, 2022; Accepted: Aug 17, 2023; Published: Oct 6, 2023

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For integers r ⩾ 2 and t ⩾ 2, an r-uniform t-daisy Dt
r is a family of

(
2t
t

)
r-element

sets of the form
{S ∪ T : T ⊂ U, |T | = t}

for some sets S,U with |S| = r − t, |U | = 2t and S ∩ U = ∅. It was conjectured
by Bollobás, Leader and Malvenuto (and independently by Bukh) that the Turán
densities of t-daisies satisfy lim

r→∞
π(Dt

r) = 0 for all t ⩾ 2 (an equivalent conjecture

was made independently by Johnson and Talbot). This has become a well-known
problem, and it is still open for all values of t. In this paper, we give lower bounds for
the Turán densities of r-uniform t-daisies. To do so, we introduce (and make some
progress on) the following natural problem in additive combinatorics: for integers
m ⩾ 2t ⩾ 4, what is the maximum cardinality g(m, t) of a subset R of Z/mZ such
that for any x ∈ Z/mZ and any 2t-element subset X of Z/mZ, there are t distinct
elements of X whose sum is not in the translate x + R? This is a slice-analogue
of an extremal Hilbert cube problem considered by Gunderson and Rödl as well as
Cilleruelo and Tesoro.

Mathematics Subject Classifications: 05C65, 05D40

1 Introduction

For integers r ⩾ 2 and t ⩾ 2, an r-uniform t-daisy Dt
r is a collection of

(
2t
t

)
r-element sets

of the form
{S ∪ T : T ⊂ U, |T | = t}

for some sets S, U with |S| = r− t, |U | = 2t and S∩U = ∅. As usual, for an integer n ⩾ 3
we write ex(n,Dt

r) for the nth Turán number of Dt
r, i.e. the maximum possible cardinality

of a family of r-element subsets of {1, 2, . . . , n} which is Dt
r-free, and we write

π(Dt
r) = lim

n→∞

ex(n,Dt
r)(

n
r

)
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for the Turán density of Dt
r.

In the case r = 2, we have π(D2
2) = 2/3 by Turán’s theorem for K4’s. The first

unknown case occurs when r = 3; in this case, Bollobás, Leader and Malvenuto show
in [2] that π(D2

3) ⩾ 1
2
, by taking the complement of the Fano plane, blowing up and

iterating, and conjecture that in fact equality holds. In Proposition 4.3 of [5], Falgas-
Ravry and Vaughan use the semidefinite programming approach developed by Razborov
to show that π(D2

3) ⩽ 0.504081. For larger t ⩾ 2 and r ⩾ 3, even less is known concerning
π(Dt

r). The following conjecture was made by Bollobás, Leader and Malvenuto in [2] (and
independently by Bukh, see [2]).

Conjecture 1 (Bollobás-Leader-Malvenuto / Bukh). For all t ⩾ 2, lim
r→∞

π(Dt
r) = 0.

This is still open even for t = 2. Johnson and Talbot independently made an equivalent
conjecture in [8], which we now describe. To state it, we need the (standard) definition
of a subcube of the Boolean cube.

Definition 2. For n, d ∈ N with 1 ⩽ d ⩽ n, a d-dimensional subcube of the n-dimensional
Boolean cube {0, 1}n is a subset of {0, 1}n of the form

{x ∈ {0, 1}n : xi = ai ∀ i ∈ I}

for some set I ∈
(

[n]
n−d

)
and values ai such that ai ∈ {0, 1} for each i ∈ I. (The elements of

the set I are called the fixed coordinates of the subcube; the elements of [n] \ I are called
the moving coordinates.)

(Here, and henceforth, we write [n] := {1, 2, . . . , n} for the standard n-element set.)

Conjecture 3 (Johnson-Talbot). Let d ⩾ 2 and δ ∈ (0, 1]. Then for n sufficiently large
depending on d and δ, and any set A ⊂ {0, 1}n with |A| ⩾ δ2n, there exists a d-dimensional
subcube C with |A ∩ C| ⩾

(
d

⌊d/2⌋

)
.

It is easy to verify Conjecture 3 for d = 2 and d = 3, but it remains open for all d ⩾ 4. It
is easy to see that Conjectures 1 and 3 are equivalent for d = 2t; the reader is referred to
[2] for details.

The value π(Dt
r) is clearly nondecreasing in t for fixed r, since an r-uniform family

that is free of t-daisies is also free of t′-daisies for all t′ > t. It is also easy to see (by
averaging over links of vertices) that the value π(Dt

r) is nonincreasing in r for each fixed
t.

In [2], a lower bound of π(D2
r) ⩾ r!/rr is observed; this comes from considering the

r-partite r-uniform hypergraph on [n] with parts of sizes as equal as possible. However,
this lower bound is exponentially small in r. In this paper, we obtain the following
improved lower bound, which is polynomial in r, and linear when t = 2, using an additive-
combinatorial construction. We also raise a question in additive combinatorics which may
be of interest in its own right.
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Theorem 4. We have π(D2
r) = Ω(1/r). Furthermore, for each t ⩾ 3, we have

π(Dt
r) ⩾ r

− 4t−2

(2tt )−1
−O(1/

√
log r)

.

Our proof of Theorem 4 relies upon the existence of a subset of Zm := Z/mZ that
avoids a certain additive structure, which we define now.

Definition 5. For positive integersm, t ⩾ 2 withm ⩾ 2t, let g(m, t) denote the maximum
possible size of a subset R ⊂ Zm such that for any x0 ∈ Zm and any (2t)-element subset
X of Zm, there are t distinct elements of X whose sum is not contained in R− x0, i.e.{

x0 +
∑
x∈T

x : T ⊂ X, |T | = t

}
̸⊂ R.

For brevity, given a set X ∈
(Zm

2t

)
we write

C(X) :=

{∑
x∈T

x : T ⊂ X, |T | = t

}
for the set of sums of t distinct elements of X; g(m, t) is the maximum size of a subset of
Zm containing no translate of C(X) for any |X| = 2t.

The function g(m, t) is related to a question raised by Gunderson and Rödl in [7],
concerning Hilbert cubes.

Definition 6. If B is a ring, the d-dimensional Hilbert cube generated by x1, . . . , xd ∈ B
is the set {∑

i∈I

xi : I ⊂ {1, 2, . . . , d}

}
⊂ B.

Gunderson and Rödl considered large sets of integers which do not contain any trans-
late of a Hilbert cube (working over the integers, i.e., the B = Z case of Definition 6). In
particular, they prove the following (Theorem 2.3 and Theorem 2.5 of [7]).

Theorem 7. For each integer d ⩾ 3, there exists cd > 0 such that any set of integers

A ⊂ [m] with |A| ⩾ cd(
√
m+1)2−

1

2d−2 contains a translate of a d-dimensional Hilbert cube.

Furthermore, for all m there exists a set of integers A ⊂ [m] with |A| ⩾ m
1− d

2d−1
−O(1/

√
logm)

that does not contain any translate of a Hilbert cube.

We consider the case R = Zm, but for our purposes, the structural differences between
[m] and Zm will not be particularly important. Estimating g(m, t) is a natural variant
of the Gunderson-Rödl problem, where we avoid only the middle slice of a Hilbert cube
of dimension 2t. We make a small but important change in that, in Definition 5, we
require that X be composed of 2t distinct elements, while a Hilbert cube may even have
x1 = x2 · · · = xd. In this case, the Hilbert cube is a (d+1)-element arithmetic progression,
but C(X) is a singleton.

We obtain the following bounds on g(m, t).
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Theorem 8. For all t ⩾ 3 and m ⩾ 4 we have

g(m, t) ⩾ m
1− 2t

(2tt )−1
−O(1/

√
logm)

,

and if furthermore m is prime, then

g(m, t) ⩾ m
1− 2t−1

(2tt )−1
−O(1/

√
logm)

.

For t = 2 and m ⩾ 64 we have g(m, 2) ⩾
√
m/8.

Theorem 9. For each t ⩾ 2 and all m sufficiently large depending on t, we have

g(m, t) ⩽ 41−1/22t(
√
m+

√
2t)2−1/22t−1

.

(Here, we use the standard asymptotic notation: if X is a set and f, h : X → R+, we
write f = O(h) if there exists an absolute constant C > 0 such that f(x) ⩽ Ch(x) for all
x ∈ X.)

It would be of interest to narrow the gap between our upper and lower bounds on
g(m, t).

The proofs of Theorem 9 and of the first part of Theorem 8 (i.e. the t > 2 case) are
very similar to those used in [7] to prove Theorem 7 above. The proof of our lower bound
for t > 2 consists of a probabilistic construction very similar to that of Gunderson and
Rödl in [7]; we have to choose a random set of slightly lower density as we must avoid
the middle slice of a Hilbert cube, as opposed to an entire Hilbert cube. At first sight,
it might seem that an upper bound on g(m, t) follows from the upper bound given in
Theorem 7, since a set which contains a Hilbert cube contains its middle layer, but one
must make small changes to the proof in [7] so as to ensure that the generators of the
Hilbert cube we find (viz., the xi in the above definition), are distinct. In fact, we find an
entire Hilbert cube generated by these xi, not just the middle layer of such, so there may
be some room for improvement.

We give an explicit construction for the t = 2 case in Theorem 8: this construction
outperforms the probabilistic one in the case t = 2. The probabilistic approach does not
sample directly from the ground set but instead from a large 3-AP-free set. This choice
is critical in (optimizing) the argument, since it destroys additive structure in the (still
large) set we obtain.

Having introduced the background and general structure of our approach, we briefly
consider the asymmetric version of the daisy problem. For t ⩾ 1 and s ⩾ t + 1, an
r-uniform (s, t)-daisy Ds,t

r is defined to be a set of the form

{S ∪ T : T ⊂ U, |T | = t}

for some sets S, U with |S| = r − t, |U | = s and S ∩ U = ∅. (So D2t,t
r := Dt

r.) In
this language, we have so far only considered (2t, t)-daisies. Conjecture 1 immediately
implies the analog for asymmetric daisies (s ̸= 2t), since an (s, t)-daisy is contained in a
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(2max{t, s− t},max{t, s− t})-daisy. In [2] Bollobás, Leader, and Malvenuto focus on the
symmetric case (s = 2t), and in this article we do the same. However, the proofs in the
sequel may be modified in the obvious way to obtain the following asymmetric analogue
of Theorem 4.

Theorem 10. For each t ⩾ 2 and s ⩾ 4 with (s, t) ̸= (4, 2), we have

π(Ds,t
r ) ⩾ r

− 2s−2

(st)−1
−O(1/

√
log r)

.

The remainder of this paper is structured as follows. In Section 2, we prove Theorem 4
using Theorem 8. In Section 3, we prove Theorems 8 and 9. Note that we do not require
the latter in our study of the Turán density of daisies, but it may be of independent
interest.

2 The Proof of Theorem 4

Proof. In proving Theorem 4, by an appropriate choice of c (and of the absolute constant
implicit in the big-O notation), we may clearly assume that r ⩾ 8. For r, t ∈ N with r ⩾ 8
and n sufficiently large depending on r and t, we proceed to construct a Dt

r-free family of
r-element subsets of [n]. We may assume that n ⩾ 2r2. Let L be a prime number such
that r2 < L < 2r2 (such exists, by Bertrand’s postulate). We use a ‘partite’ construction,
partitioning [n] into L blocks, and then taking only r-sets containing at most one element
from each block. Formally, the block of vertex i will be denoted by a variable xi, where
for i ∈ [n] we set xi =

⌊
L i−1

n

⌋
; note that 0 ⩽ xi < L for each i ∈ [n]. By Definition 5,

there exists a set R ⊂ ZL of size |R| = g(L, t) with the property that for any X ⊂ ZL

with |X| = 2t and for any x0 ∈ ZL, we have x0 + C(X) ̸⊂ R. Define a family FR ⊂
(
[n]
r

)
by

FR =

{
S ∈

(
[n]

r

)
|
∑
i∈S

xi ∈ R and (∀i, j ∈ S)(xi = xj ⇒ i = j)

}
.

First, we check that FR is Dt
r-free. Indeed, suppose for the sake of a contradiction that

FR contains a daisy D = {S0∪T : T ⊂ U, |T | = t}, where S0, U ⊂ [n] with |S0| = r− t,
|U | = 2t and S0 ∩ U = ∅. Let x0 :=

∑
i∈S0

xi. By the above property of R, the (2t)-element

set
X = {xi : i ∈ U} ⊂ ZL

must satisfy x0+C(X) ̸⊂ R, and therefore there is a t-sum, indexed by T = {i1, i2, . . . , it} ⊂
U , say, such that

x0 + xi1 + xi2 + · · ·+ xit = x0 +
∑
i∈T

xi ̸∈ R.

It follows that S := S0 ∪ T /∈ FR and therefore D ̸⊂ FR, a contradiction, as required.
Now to finish the proof of Theorem 4 we bound |FR| from below. First note that

there are at least 1
2

(
n
r

)
sets S ∈

(
[n]
r

)
with xi ̸= xj for all i ̸= j, i, j ∈ S. Indeed, choose
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a set S uniformly at random from
(
[n]
r

)
. Since the probability that a uniformly random

two-element subset {i, j} of [n] has xi = xj is at most 1/L, we have

P(xi = xj for some i ̸= j, i, j ∈ S) ⩽ (1/L)

(
n

2

)(
n− 2

r − 2

)
/

(
n

r

)
= r(r − 1)/(2L)

⩽ 1/2.

The family F = FR, defined above, is Dt
r-free even if the set R is replaced by a translate

Ra := R+ a for some a ∈ ZL. Averaging over all such translates yields some translate Ra

of R such that |FRa | ⩾ 1
2

(
n
r

) |R|
L
, and therefore

π(Dt
r) ⩾

g(L, t)

2L
.

Now we may apply Theorem 8, recalling that r2 < L < 2r2 is prime. When t = 2 and
L = m ⩾ 64 (which follows from r ⩾ 8), we have

π(D2
r) ⩾

g(L, 2)

2L
⩾

√
L

16L
⩾

√
r2

32r2
=

1

32r

and when t > 2 we have

π(Dt
r) ⩾

L
1− 2t−1

(2tt )−1
−O(1/

√
logL)

L
⩾ (r2)

− 2t−1

(2tt )−1
−O(1/

√
log r)

= r
− 4t−2

(2tt )−1
−O(1/

√
log r)

,

as required.

3 Bounds on g(m, t)

The focus of this section is the analysis of g(m, t).

3.1 Proof of Theorem 8

Proof. First assume t ⩾ 3. In this case, we use the idea of Gunderson and Rödl (in [7])
of passing to a fairly dense subset of Zm which is free of 3-term arithmetic progressions;
this ‘destroys’ a lot of the additive structure we want to avoid.

By the well-known construction of Behrend in [1], there exists a set R0 ⊂ [⌊m/2⌋]
with |R0| = m1−γ(m) for γ(m) := 4√

log (m/2)
(here, and elsewhere, log denotes the natural

logarithm), such that R0 contains no 3-term arithmetic progression. Let R1 ⊂ Zm be the
natural embedding of R0 into Zm. Then R1 also contains no 3-term arithmetic progression.
Set

p =


1
8
m

− 2t−1+γ(m)

(2tt )−1 if m is prime,

1
8
m

− 2t+γ(m)

(2tt )−1 otherwise,
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and choose a set R2 ⊂ R1 by including each element of R1 independently at random with
probability p. A standard Chernoff bound (for example Theorem 4.5 in [9]) yields

P(|R2| ⩽ |R1|p/2) ⩽ e−|R1|p/8. (1)

Define the random variable

Y = |{x0 + C(X) : x0 ∈ Zm, X ⊂ Zm, |X| = 2t, x0 + C(X) ⊂ R2}|.

Since R2 does not contain any 3-term arithmetic progressions, for any set of the form
x0+C(X) lying within R2, we must have |x0+C(X)| = |C(X)| =

(
2t
t

)
. Indeed, suppose for

a contradiction thatX = {x1, . . . , x2t} is a (2t)-element subset of Zm with x0+C(X) ⊂ R2,
where x0 ∈ Zm and |C(X)| <

(
2t
t

)
. Then there exist two distinct t-element subsets of X,

{xi1 , . . . , xit} = S1 and {xi′1
, . . . , xi′t

} = S2 say, such that

xi1 + · · ·+ xit = xi′1
+ · · ·+ xi′t

;

we may assume without loss of generality that xi1 ∈ S1 \ S2 and xi′1
∈ S2 \ S1, so that

xi1 ̸= xi′j
for all j and xi′1

̸= xij for all j. Then

{xi′1
+ xi2 + · · ·+ xit , xi1 + xi2 + · · ·+ xit , xi1 + xi′2

+ · · ·+ xi′t
} ⊂ R2

is a (nontrivial) 3-term arithmetic progression in R2, a contradiction.
We now proceed to bound EY from above. In the case that m is not prime we may

crudely bound the number of possible sets of the form x0 + C(X) from above by m2t+1,
which is the number of choices for x0, x1, . . . , x2t ∈ Zm. If m is prime then we may assume
each such set has x0 = 0, by translating each of x1, . . . , x2t by −t−1x0, leaving only m2t

choices. The probability that each fixed set of the form x0 + C(X) lies in R2 is of course

p(
2t
t ). It follows that

EY ⩽

{
m2tp(

2t
t ) if m is prime

m2t+1p(
2t
t ) otherwise

}
⩽ m1−γ(m) p

8
.

It follows from Markov’s inequality that

P(Y ⩾ m1−γ(m)p/4) ⩽ 1/2. (2)

Combining (1) and (2), we obtain

P
(
|R2| > m1−γ(m)p/2 and Y < m1−γ(m)p/4

)
⩾ 1− e−m1−γ(m)p/8 − 1

2
. (3)

Clearly, for any t ⩾ 2 andm sufficiently large depending on t, we have 1−γ(m)− γ(m)+2t

(2tt )−1
>

0, so for large enough m, the probability in (3) is positive, and therefore there exists a
set R2 ⊂ Zm with |R2| > m1−γ(m)p/2 and Y < m1−γ(m)p/4. Now for each set of the form
x0 + C(X) ⊂ R2 for (x0, X) = (x0, {x1, . . . , x2t}) we remove a single element from R2,
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chosen arbitrarily from x0 + C(X). The total number of elements deleted from R2 is at
most Y < m1−γ(m)p/4 and we are still left with

|R2| − Y ⩾ m1−γ(m) p
4
=


1
32
m

1−γ(m)− 2t−1+γ(m)

(2tt )−1 if m is prime

1
32
m

1−γ(m)− 2t+γ(m)

(2tt )−1 otherwise

elements, finishing the proof of the first statement of Theorem 8.
Finally, in the case t = 2, we give an algebraic construction that improves upon the

random one. First, we recall the definition of a Sidon set.

Definition 11. A Sidon set in an Abelian group G is a subset S ⊂ G such that the only
solutions to the equation a + b = c + d with a, b, c, d ∈ S, are the trivial ones (meaning,
those with {a, b} = {c, d}).

It follows from the classical construction of Singer [10] that for any prime p there is
a Sidon set of size p + 1 inside Zp2+p+1. Assume that m ⩾ 64 and let p be a prime with√
m/8 ⩽ p ⩽

√
m/4 (such is furnished by Bertrand’s postulate). Let R0 be a Sidon set of

size at least
√
m/8 inside Zp2+p+1. The image R of R0 under the natural inclusion map

from Zp2+p+1 to Zm is a Sidon set in Zm (here, we use p2+p+1 ⩽ m/16+
√
m/4+1 < m/2).

Now we will show that for any x0 and X = {x1, x2, x3, x4} ∈
(Zm

4

)
we have x0 + C(X) =

x0 + {x1 + x2, x1 + x3, x1 + x4, x2 + x3, x2 + x4, x3 + x4} ̸⊂ R. Suppose for a contradiction
that x0 + C(X) ⊂ R; then

(x0 + x1 + x2) + (x0 + x3 + x4) = (x0 + x1 + x3) + (x0 + x2 + x4)

and each term in brackets is an element of R. Since R is a Sidon set, this implies x2 = x3

or x1 = x4, contradicting the fact that the xi are distinct. We have |R| ⩾
√
m/8 and

therefore we are done in the case t = 2.

Remark 12. We were not able to generalize the Sidon set approach to t > 2, hence our
reliance on the probabilistic construction avoiding middle layers of Hilbert cubes. There
are some improvements upon Behrend’s construction, for example by Elkin in [4] and
Green and Wolf in [6]. Using these yields, for t ⩾ 3, a slightly better error-term in the
exponent of r, but this does not affect the main term in the exponent.

3.2 Proof of Theorem 9

Proof. We begin with a quick calculation.

Lemma 13. Ifm, d, and b are positive real numbers with m ⩾ d+1 and b ⩾ max{
√
m+

√
d

2
√
d

, 4d+

1}, then (b2)−db

m−d
⩾ b2

4(
√
m+

√
d)2

.

Proof. Since
1

b
⩽

2
√
d

√
m+

√
d
,
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we have
b− 1

b
⩾

√
m−

√
d

√
m+

√
d
.

Since b ⩾ 4d+ 1 we have
(
b
2

)
− db ⩾ b(b−1)

4
, and therefore(

b

2

)
− db ⩾

b2

4

√
m−

√
d

√
m+

√
d
.

Dividing by m− d yields the result.

We may now obtain our upper bound on g(m, t). Let A ⊂ Zm such that

|A| ⩾ 41−1/22t(
√
m+

√
2t)2−1/22t−1

. (4)

We will show that x0 + C(X) ⊂ A for some x0 ∈ Zm and X ∈
(Zm

2t

)
. For x1, . . . , xd ∈ Zm

and A ⊂ Zm we define Ax1 := A∩(A−x1), Ax1,x2 := Ax1 ∩(Ax1 −x2), and more generally,

Ax1,...,xd−1,xd
:= Ax1,...,xd−1

∩ (Ax1,...,xd−1
− xd).

Then Ax1,...,xd
= {x ∈ Zm : x+

∑
i∈I xi ∈ A ∀ I ⊂ [d]} and so A will contain a translate

of C({x1, . . . , x2t}) if |Ax1,...,x2t | ⩾ 1. We will find these xi inductively, using the following
claim.

Claim 14. Provided m is sufficiently large depending on d, for each 0 ⩽ d ⩽ 2t there
exist d distinct elements x1, . . . , xd ∈ Zm such that

|Ax1,...,xd
| ⩾ |A|2d

42d−1(
√
m+

√
2t)2d+1−2

.

(Note that when d = 0, the left-hand side of the above is defined to be |A|.)

Proof of Claim. The proof is by induction on d (with base case d = 0, for which the claim
holds trivially). Suppose the claim holds for d for elements x1, . . . , xd. Since every pair of
elements in Ax1,...,xd

uniquely determine a difference y, we have∑
y∈Zm

|Ax1,...,xd,y| ⩾
(
|Ax1,...,xd

|
2

)
.

Therefore, when forbidding y to assume the values {x1, . . . , xd}, we crudely obtain∑
y∈Zm\{x1,...,xd}

|Ax1,...,xd,y| ⩾
(
|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|.

By averaging over y ∈ Zm \ {x1, . . . , xd}, there exists y′ ∈ Zm \ {x1, . . . , xd} such that

|Ax1,...,xd,y′| ⩾
(|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|
m− d

.
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We now wish to apply Lemma 13 with b = |Ax1,...,xd
|. The hypotheses that m ⩾ d+1 and

b ⩾ 4d + 1 are satisfied for m large enough (depending on t), so to apply Lemma 13 it

remains only to check that b ⩾
√
m+

√
d

2
√
d

, which follows from our inductive hypothesis and

our lower bound (4) on |A|, as well as the fact that d < 2t in the inductive step:

b = |Ax1,...,xd
|

⩾
|A|2d

42d−1(
√
m+

√
2t)2d+1−2

⩾
42

d−2d−2t
(
√
m+

√
2t)2

d+1−2d−2t+1

42d−1(
√
m+

√
2t)2d+1−2

⩾ 41−2d−2t

(
√
m+

√
2t)2−2d−2t+1

⩾

√
m+

√
d

2
√
d

.

Hence, applying Lemma 13 we have

|Ax1,...,xd,y′ | ⩾
(|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|
m− d

⩾
|Ax1,...,xd

|2

4(
√
m+

√
d)2

⩾
|A|2d+1

42d+1−2+1(
√
m+

√
d)2d+2−4+2

,

as required. We may therefore choose xd+1 = y′.

Applying Claim 14 with d = 2t, and using our lower bound (4) on |A|, we obtain
distinct x1, . . . , x2t ∈ Zm such that |Ax1,...,x2t | ⩾ 1, completing the proof of Theorem
9.
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