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Abstract

The tropical moduli space Mtrop
0,n is a cone complex which parameterizes leaf-

labeled metric trees called tropical curves. We introduce graphic stability and de-
scribe a refinement of the cone complex given by radial alignment. We prove that
given a complete multipartite graph Γ, the moduli space of radially aligned Γ-stable
tropical curves can be given the structure of a balanced fan. This fan structure
coincides with the Bergman fan of the cycle matroid of Γ.

Mathematics Subject Classifications: 05E14, 14T15, 14D22, 05B35

1 Introduction

The tropical moduli spaceMtrop
0,n is a cone complex which parameterizes leaf-labeled metric

trees. Its structure is obtained by gluing positive orthants of Rn−3 corresponding to
trivalent trees. Speyer and Sturmfels [SS04] give an embedding of this cone complex (in
the context of phylogenetic trees) into a real vector space as a balanced fan where each top-
dimensional cone is assigned weight 1. In [AK06], Ardila and Klivans study phylogenetic
trees and show that the fan structure of Mtrop

0,n has a refinement which coincides with
the Bergman fan of the cycle matroid of Kn−1, the complete graph on n − 1 vertices.
As a generalization of Ardila and Klivans, it is shown by Cavalieri, Hampe, Markwig,
and Ranganathan in [CHMR16] that the fan associated to the moduli space of rational
heavy/light weighted stable tropical curves, Mtrop

0,w , and the Bergman fan of a graphic
matroid have the same support.

This paper investigates stability conditions defined by a graph rather than a weight
vector. We introduce rational graphically stable tropical curves (Definition 15) and write
Mtrop

0,Γ for the moduli space of these curves. We define these moduli spaces so that if we
begin with a graph that is also a reduced weight graph (Definition 2.13 of [CHMR16]) we
recover the corresponding weighted moduli space.

Department of Mathematical Sciences, Lewis and Clark College, Portland, Oregon, U.S.A.
(andyfry@lclark.edu).

the electronic journal of combinatorics 30(4) (2023), #P4.44 https://doi.org/10.37236/11337

https://doi.org/10.37236/11337


Keeping in mind that the Bergman fan of certain graphic matroids are a refinement
of Mtrop

0,n (also Mtrop
0,w ), we add the extra condition of radial alignment to Mtrop

0,n to define
the moduli space Mtrad

0,n . Radial alignment refers to an ordered partition on the vertices
of the combinatorial type of a curve.

The main result of this paper characterizes tropical moduli spaces given by a graphic
matroid.

Theorem 29 Let Mtrad
0,Γ be the refinement of Mtrop

0,Γ given by radial alignment. It has
the structure of a balanced fan and is naturally identified with B′(Γ) if and only if Γ is a
complete multipartite graph.

Our motivation for this paper comes from the theory of tropical compactifications and
log geometry. From works of Tevelev [Tev07] and Gibney and Maclagan [GM11] it has
been shown that there is an embedding of M0,n into the torus of a toric variety X(Σ)
where the tropicalization ofM0,n is a balanced fan Σ ∼=Mtrop

0,n . This embedding is special

in the sense that the closure of M0,n in X(Σ) is M0,n. Cavalieri et al. [CHMR16] show
a similar embedding can be constructed for weighted moduli spaces when the weights
are heavy/light spaces. In [RSPW19] Ranganathan, Santos-Parker, and Wise describe
radial alignments of genus 1 tropical curves and show how this extra data can be used for
desingularization. The subdivision given by radial alignments has been studied before in
[AK06] and [FS05] but we use a rephrasing in order to relate it to log geometry and the
results of Ranganathan et al. The main results of this paper provide the technical combi-
natorial conditions which is needed to classify which moduli spaces of graphically stable
rational pointed curves give rise to tropical compactifications. The geometric aspects of
this story will be formalized in a future paper.

The paper is organized as follows. In Section 2 we define a matroid using independence
axioms. Then we restrict our attention to the cycle matroid where we define the relevant
concepts and discuss necessary graph theory terminology.

In Section 3 we begin by defining the moduli space of rational n-marked tropical
curves, Mtrop

0,n . We also describe an embedding as a balanced fan into a real vector space
as in [GKM09]. In Section 3.1, we define the Bergman fan of a matroid and also define
radially aligned rational n-marked tropical curves by imposing a weak ordering on the
vertices given by their distances from the root vertex.

Section 3.2 contains original work motivated by [CHMR16]. In subsection 3.2.1, we
define a new tropical moduli space using graphic stability. We also investigate projections
of Mtrad

0,n and the reduced Bergman fan B′(Kn−1) by forgetting coordinates of rays corre-
sponding unstable curves. We show that the fans coincide with B′(Γ) and relate it to the
work of Shaw [Sha13]. In subsection 3.2.2 we investigate an obstruction that stopsMtrad

0,Γ

from being embedded as a balanced fan. Finally, we prove our main result that states
Mtrad

0,Γ and B′(Γ) are isomorphic as balanced fans only when Γ is a complete multipartite
graph.
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2 Matroids

A matroid is a tuple M = (E, I) where E is a finite set (called the ground set) and I is
a collection of subsets of E such that (I1)–(I3) are satisfied.

(I1) ∅ ∈ I

(I2) If X ∈ I and Y ⊆ X, then Y ∈ I

(I3) If U, V ∈ I with |U | = |V |+ 1, then there exists x ∈ U \ V such that V ∪ x ∈ I.

The elements of I are called independent sets and we thusly call (I1), (I2), and (I3) the
independence axioms. If a subset of E is not independent, then we call it dependent. More
commonly (I3) is known as the exchange property. Other relevant matroid terms include
circuit, rank, and flat but in this paper we only use cycle matroids so we define them in
that context. For a more thorough introduction see [Oxl06] or [GM12].

We consider the matroid of a finite simple (no loops or multiedges) connected graph
Γ = (V,E) where V is the ordered vertex set and E = E(Γ) is the edge set. We define
eij ∈ E to be an edge between vertices vi and vj. A graph is complete if each pair of
distinct vertices has an edge between them. The complete graph on n vertices is denoted
by Kn. A clique is a subgraph that is complete, denoted by KS, where S is the set of
vertices with edges between them. A disjoint union of complete graphs is called a cluster
graph.

Often called the cycle matroid, a matroid defined by a graph is given by M(Γ) =
(E(Γ), I) where I is the collection of all forests of Γ. A circuit is a path in which the
initial and terminal vertices are the same and no other vertices repeat. The rank of a
set of edges E ′ is the number of edges in a spanning forest of ΓE′ , the subgraph induced
by E ′. Alternatively, the rank of a subgraph G ⊂ Γ is n − k, where n is the number
of non-isolated vertices in G and k is the number of connected components of among
non-isolated vertices of G. An isolated vertex is a vertex that is not a part of an edge.

We restrict our attention to Γ = Kn to examine flats. A flat of M(Kn) is a cluster
graph,

∐k
j=1KIj . For a subgraph G of Kn, whose connected components are given by

vertex sets V1, . . . , Vk, the closure of G is the flat cl(G) =
∐k

j=1KVj . The closure of a
graph can be seen as completing each connected component.

One natural operation on a graph is to delete edges. The cycle matroid respects
this operation in the sense that a subgraph induces a submatroid, called the restriction
matroid. Rather than deleting edges, we may think of restricting the edge set to a subset
of edges.
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Lemma 1. (Follows from Property 3.1.2 in [Oxl06]) Let G be a subgraph of Kn and denote
M(Kn) = (E, I). Let I|G = {X|X ⊆ E(G) and X ∈ I} be the restriction of forests of
Kn to the edge set of G. Then I|G is the set of independent sets of M(G).

Next we introduce some notation and write a technical lemma used for Proposition 26.
The proof is purely graph theoretic so we prove it here.

Definition 2. Let Γ be a subgraph of Kn. The restriction morphism rΓ : M(Kn)!M(Γ)
is a map of flats given by

rΓ(F ) := F ∩ Γ. (1)

The previous definition is non-standard but useful for our purposes in Section 3.2.
The definition is well-defined by the following discussion. Fix a graph Γ, a subgraph G
of Γ, and a subset A of edges of E(G). The forests of G can be obtained by intersecting
a forest of Γ with G. Denote the closure operators for M(Γ) and M(G) as clΓ and clG,
respectively. They are related by

clG(A) = clΓ(A) ∩G. (2)

Unlike the closure operator, there is no ambiguity between the rank functions on M(G)
and M(Γ) so we will denote both as rk(A).

Lemma 3. Let Γ be a simple graph, not necessarily connected, and let G be a subgraph
of Γ. Then rk(Γ) = rk(G) if and only if G and Γ share a common spanning forest.

Proof. The backwards direction follows from the definition of rank so let us assume that
G and Γ have the same rank. Let T ′ be a spanning forest of G. Then there exists T a
spanning forest of Γ such that T ∩G = T ′. By assumption we know that rk(T ) = rk(T ′)
and therefore they have the same number of edges. Since T ′ is a subgraph of T , they
must be the equal.

Here we define the complete multipartite graph and discuss some facts about it. A
k-partite graph (or multipartite graph) is a graph on n =

∑k
i=1 ni vertices, partitioned

into k sets (called independent sets) such that no two vertices from the same set are ad-
jacent. A k-partite graph is a complete k-partite graph if each pair of vertices in different
sets are adjacent. The complete k-partite graph on n =

∑k
i=1 ni vertices is denoted by

Kn1,...,nk
. Alternatively, we may obtain a complete k-partite graph by removing from Kn−1

the disjoint cliques on vertices given by the independent sets. Thus, the complement of a
complete multipartite graph is a cluster graph.

The following lemma describes some useful characterizations of a complete multipartite
graph.

Lemma 4. Let G be a graph. The following are equivalent:

1. G is a complete multipartite graph.
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2. If eij is an edge of G, then for any vertex vk, either eik or ejk is an edge of G.

3. There do not exist 3 vertices whose induced subgraph has exactly 1 edge.

Proof. We can see that all three conditions express that the complement of G is a disjoint
union of cliques.

3 Tropical Moduli Spaces as Bergman Fans

We begin by introducing necessary background terminology on tropical moduli spaces.
For a more thorough survey of tropical moduli spaces see [MS15]. Consider the space of
genus 0, n-marked abstract tropical curves Mtrop

0,n . Points of C ∈ Mtrop
0,n are in bijection

with metrized trees with bounded edges having finite length and n unbounded labeled
edges called ends. By forgetting the lengths of the bounded edges of C we get a tree
with labeled ends called the combinatorial type of C. The space Mtrop

0,n naturally has the
structure of a cone complex where curves of a fixed combinatorial type with d bounded
edges are parameterized by Rd

>0. We obtain Mtrop
0,n by gluing several copies of Rn−3

>0 via
appropriate face morphisms, one for each trivalent combinatorial type.

The space Mtrop
0,n may be embedded into a real vector space as a balanced, weighted,

pure-dimensional polyhedral fan as in [GKM09]. We briefly recall this construction. A
weighted fan (X,ω) is a fan X in Rn where each top-dimensional cone σ has a positive
integer weight associated to it, denoted by ω(σ). A weighted fan is balanced if for all cones
τ of codimension one, the weighted sum of primitive normal vectors of the top-dimensional
cones σi ⊃ τ is 0, i.e., ∑

σi⊃τ

ω(σi) · uσi/τ = 0 ∈ V/Vτ

where uσi/τ is the primitive normal vector, V is the ambient real vector space, and Vτ
is the smallest vector space containing the cone τ . See [GKM09, Construction 2.3] for a
construction of the primitive normal vectors uσi/τ .

For a curve C, define dist(i, j) as the sum of lengths of all bounded edges between the
ends marked by i and j. Then the vector

d(C) = (dist(i, j))i<j ∈ R(n
2)/Φ(Rn) = Qn

identifies C uniquely, where Φ : Rn ! R(n
2) by x 7! (xi + xj)i<j.

The combinatorial type of an abstract n-marked tropical curve C with one bounded
edge splits the set of ends [n] into I t Ic where we adopt the convention that 1 ∈ Ic. We
denote the ray corresponding to C by d(C) = ρI = ρIc . In [KM09], Kerber and Markwig
prove the relation ∑

S∈V1

ρS = 0 ∈ Qn (3)
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where V1 = {I | 1 6∈ I, |I| = 2}. They also show that for a subset I ⊂ [n] \ {1}∑
S∈(I

2)

ρS = ρI ∈ Qn (4)

where
(
I
2

)
is the set of all size-2 subsets of a set I.

Remark 5. Equation (3) tells us that any set of
(
n−1

2

)
− 1 combinatorial types of curves

with one bounded edge and a trivalent vertex not containing the end 1 corresponds to a
basis of Qn. Equation (4) gives us the unique way to write any ray of Mtrop

0,n as a linear
combination of our basis.

Consider the combinatorial type of a tropical curve C with d bounded edges. We con-
struct d splits, I1, . . . , Id, in the following way. A split Ij is defined by the combinatorial
type one obtains by contracting all but the jth bounded edge of C. The cone correspond-
ing to the combinatorial type of C is the span of rays ρI1 , . . . , ρId . The combinatorial type
of C may be uniquely reconstructed from the rays ρI1 , . . . , ρId (see “Tree Popping” [Ste16,
Section 2.4]).

3.1 Tropical moduli spaces of rational stable curves as Bergman fans

Given any matroid M with ground set E we define a polyhedral fan called the Bergman
fan

B(M) := {w ∈ R|E| | Mw is loop-free} ⊆ R|E|,

where Mw is the matroid on E whose bases are all bases B of M which have maximal
w-weight Σi∈Bwi. A loop of a matroid is an element whose rank is 0.

A more useful definition for our purposes is from Ardila and Klivans [AK06]. They
show that B(M), as a polyhedral cone complex, coincides with the order complex of the
lattice of flats of M . An order complex of a poset P is defined to be the simplicial complex
whose vertices are the elements of P and whose faces are chains of elements of P . In other
words, given a chain of flats F in M

∅ ( F1 ( · · · ( Fr ( Fr+1 = E,

we let CF be the cone in R|E| spanned by the rays ρF1 , . . . , ρFr+1 , with lineality space
spanned by ρE. Here ρF = −Σe∈Fve, where ve is a standard basis vector of R|E|.

Any Bergman fan contains the vector (1, 1, . . . , 1) as a ray. So rather than studying
B(M) we quotient out the lineality space L, spanned by the vector (1, 1, . . . , 1), to get
the reduced Bergman fan

B′(M) := B(M)/L.

Thus we identify a chain of flats F by its nontrivial flats F1, . . . , Fr and set r to be its
length. Note that a chain of flats of length r corresponds to a cone of dimension r in the
Bergman fan. This polyhedral structure is known as the fine subdivision of B′(M).
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Note 6. For the remainder of the paper we write Γ to represent both the simple connected
graph and the cycle matroid of Γ (replacing M(Γ)).

It is shown in [AK06, Section 4] and [FR13, Example 7.2] that there is a linear isomor-
phism between R|E| and Qn that identifies the supports of Mtrop

0,n and B′(Kn−1). Ardila
and Klivans and separately Feichtner in [FS05, Remark 3.4] confirm that cone complex
of B′(Kn−1) is a refinement of Mtrop

0,n .
We define the root vertex of a tropical curve C to be the vertex containing the end with

marking 1, and we denote it V0. Given a labeling of the non-root vertices of C, V1, . . . ,Vd,
we define `i to be the distance from the root vertex to Vi. We set `0 = 0.

Definition 7. A radially aligned tropical curve C is a tropical curve with the additional
data of a weak ordering on the vertices given by the weak ordering on {`i}di=0. De-
fine1 Mtrad

0,n as the moduli space of genus 0, n-marked radially aligned abstract tropical
curves. The radially aligned combinatorial type is obtained by forgetting the lengths of
the bounded edges but keeping the weak ordering on the vertices.

Remark 8. The choice of the name “radially aligned” is motivated by [RSPW19] and is
discussed in Example 13. In [RSPW19], there is a natural choice of a “root” (the unique
genus 1 component). In our setting, fixing a special marking is influenced algebraically.
The algebraic moduli space M0,n parameterizes n points on P1. By fixing one of the
points to be ∞, M0,n can be thought of as the complement of a coordinate hyperplane
arrangement in Cn−1. This is a useful property in many settings in algebraic geometry;
see geometric tropicalization [Cue11], [HKT09]. For more details on M0,n see [KV07].

Remark 9. A weak ordering on the vertices can be viewed as a partition of the vertices
into disjoint subsets together with a total ordering on the subsets. Thus the number of
cones ofMtrad

0,n can be counted using ordered Bell numbers or Fubini numbers (highlighted
in Example 11).

Although the supports of Mtrop
0,n and Mtrad

0,n in Qn are the same, as a cone complex

Mtrad
0,n is different from Mtrop

0,n . It is a refinement called the radially aligned subdivision.

The next two examples illustrate particular 3-dimensional cones of Mtrop
0,n that become

subdivided in the radially aligned subdivision.

Example 10. Consider the combinatorial type C ∈ Mtrop
0,6 with splits I1 = {2, 3}, I2 =

{4, 5, 6}, I3 = {5, 6}; see Figure 1a. InMtrop
0,6 , the combinatorial type of such a curve cor-

responds to a single 3-dimensional cone with faces consisting of three 2-dimensional cones,
and three rays. The 2-dimensional faces correspond to the combinatorial types obtained
by shrinking the length of a bounded edge to 0. The rays correspond to contracting two
bounded edges. In Mtrad

0,6 , the radially aligned subdivision yields three distinct isomor-
phism classes, i.e., three 3-dimensional cones. By contracting the various bounded edges,
there are seven 2-dimensional cones and five rays; see Figure 1b. The weak orderings are
compiled in the 15 strings of inequalities listed below.

1“trad”=“tropical radial” as “rad”=“radial” in [RSPW19]
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0 = `1 < `2 = `3

0 < `1 = `2 = `3

0 = `2 = `3 < `1

0 = `2 < `1 = `3

0 = `2 = `1 < `3

0 = `1 < `2 < `3

0 < `1 < `2 = `3

0 < `2 = `3 < `1

0 = `2 < `3 < `1

0 = `2 < `1 < `3

0 < `2 = `1 < `3

0 < `2 < `1 = `3

0 < `1 < `2 < `3

0 < `2 < `1 < `3

0 < `2 < `3 < `1

The number of strict inequalities is the same as the dimension of the corresponding
cone, i.e., the columns, from left to right, correspond to the rays, 2D cones, and 3D cones
of Mtrad

0,6 which are ordered by A-E, 1-7, and (I, II, III), respectively.

v1

2

3

`1

v0

1
`2

v2

4
`3 − `2

v3

5

6

(a) Tropical curve of Mtrop
0,6 with splits I1 =

{2, 3}, I2 = {4, 5, 6}, I3 = {5, 6}.

1

2

3 4

5

6

7

EA

C

B D

I

II

III

(b) A slice of a cone of Mtrad
0,6 .

Figure 1

Example 11. Now consider the combinatorial type of a curve C ∈ Mtrop
0,7 with splits

I1 = {2, 3}, I2 = {4, 5}, I3 = {6, 7}; see Figure 2a. Similar to Example 10, in Mtrop
0,7 ,

this combinatorial type corresponds to a single 3-dimensional cone with faces consisting
of three 2-dimensional cones, and three rays. The radially aligned subdivision yields six
3-dimensional cones, twelve 2-dimensional cones, and seven rays; see Figure 2b. If we also
consider the 0-dimensional cone which is the intersection of all of these cones there are
26 in total. We may also obtain 26 by doubling the ordered Bell number on a set of three
elements. The factor of 2 is due to having a distinguished least element of `0 = 0.

Lemma 12. The cone complexes Mtrad
0,n and B′(Kn−1) are equal ([AK06, Section 4],

[FR13, Example 7.2]), in the sense that there is a bijection Ψ between the set of chains of
flats of Kn−1 and the set of radially aligned combinatorial types of Mtrad

0,n preserving the
poset structure.

Rather than presenting a tedious combinatorial proof of this lemma, we illustrate, in
an example, the strategy that is used to construct the necessary explicit bijection.
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v1

2

3

`1

v0

1

`2

v2

4 5

`3

v3

6

7

(a) Tropical curve of Mtrop
0,7 with splits I1 =

{2, 3}, I2 = {4, 5}, I3 = {6, 7}. (b) A slice of a cone of Mtrad
0,7 .

Figure 2

Example 13. The radially aligned tropical curve as pictured inMtrad
0,8 in Figure 3 corre-

sponds to the following chain of flats of length 3,

K{4,5} tK{6,7} ⊂ K{4,5,6,7} tK{2,3} ⊂ K{4,5,6,7} tK{2,3,8}.

Beginning with a radially aligned tropical curve, consider a circle centered at the root
vertex encompassing the tropical curve. We recover the chain of flats by shrinking the
circle and recording a new flat each time the circle passes over a vertex of the tropical
curve.

Starting with a chain of flats, we recover the radially aligned tropical curve by exam-
ining the chain of flats in the descending direction. Each time a label disappears or a flat
splits up, we add structure to the tropical curve. For instance, having two components in
the 3rd flat means that there are two bounded edges emanating from the root vertex.

v0

1

v1

8

v2

2

3

v3

v4

4 5

v5

6 7

1

1

2 1 1

Figure 3: Tropical curve in Mtrad
0,8 .

Up to here we only compared the cone complex structures of Mtrad
0,n and B′(Kn−1).

Now we look at their fan structures. We say that two fans are equivalent if they share
a common refinement. The bijection from Lemma 12 induces a linear isomorphism of
vector spaces, also denoted by Ψ,
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Mtrad
0,n B′(Kn−1)

Qn R|E(Kn−1)|/L

Ψ

=

�

Ψ

∼=

(5)

which preserves the cone complex structures of Mtrad
0,n and B′(Kn−1), and hence induces

an equivalency of fans.

Example 14. It is known that the cone complex of Mtrop
0,5 is given by the cone over the

Petersen graph. The Bergman fan B′(K4) is the refinement of that cone complex where
3 2D cones are subdivided; see Figure 4a. Label the lattice of flats of K4 in the following
way:

Rank 1 : F1 = {e23}, F2 = {e24}, F3 = {e34}, F4 = {e35}, F5 = {e45}, F6 = {e25}
Rank 2 connected : F7 = {e23, e24, e34}, F8 = {e23, e35, e25}, F9 = {e34, e35, e45},

F10 = {e24, e45, e25}
Rank 2 disconnected : F11 = {e23, e45}, F12 = {e24, e35}, F13 = {e25, e34}.

See Figure 5 for a visual representation of the flats F1, F7, and F11.
The cone complexes can be embedded into a five dimensional real vector space. Let

~ei be the standard basis vectors of R5. Given our labeling above and the discussion in
Remark 5, we may choose which rank one flats form can be assigned to the standard basis
vectors of R5. Hence, we write the rays associated to the connected flats of the Bergman
fan B′(K4) as

~vF2 = ~v{2,4} = ~e1

~vF6 = ~v{2,5} = ~e2

~vF3 = ~v{3,4} = ~e3

~vF4 = ~v{3,5} = ~e4

~vF5 = ~v{4,5} = ~e5

~vF1 = ~v{2,3} = −~1

~vF7 = ~v{2,3,4} = (0,−1, 0,−1,−1)

~vF8 = ~v{2,3,5} = (−1, 0,−1, 0,−1)

~vF10 = ~v{2,4,5} = (1, 1, 0, 0, 1)

~vF9 = ~v{3,4,5} = (0, 0, 1, 1, 1)

Consider the top-dimensional cone σ in Mtrop
0,5 corresponding to a combinatorial type

that has a root vertex V0 with two bounded edges and adjacent vertices V1 and V2 with
ends marked by I1 = {2, 5} and I2 = {3, 4}. An abstract tropical curve C with this
combinatorial type has edge lengths `1, `2 ∈ R+; see Figure 4b. Embedded in Q5

∼= R5, σ
is a two-dimensional cone spanned by ~e2 and ~e3.

In B′(K4), and thereforeMtrad
0,5 , we see that this cone is subdivided into σ1 = cone(ρF6 ,

ρF13) and σ2 = cone(ρF13 , ρF3) with their intersection being a ray ρ = ρF13 . The ray ρ
corresponds to C where `1 = `2 and σi is the cone corresponding to the abstract tropical
curve C where `i > `j.

the electronic journal of combinatorics 30(4) (2023), #P4.44 10



F11

F13

F12

F6

F5

F3

F10

F9

F8

F1

F7

F2 F4

(a) A slice of the Bergman fan B′(K4) with
rays labeled by their corresponding flats.

v1

2

5

`1

v0

1
`2

v2

3

4

(b) A tropical curve of Mtrop
0,5 with splits I1 =

{2, 5} and I2 = {3, 4}.

Figure 4

2

34

5

e23

(a) Flat F1.

2

34

5

e23e24

e34

(b) Flat F7.

2

34

5

e23

e45

(c) Flat F11.

Figure 5: Some flats of K4.

3.2 Moduli spaces of rational graphically stable tropical curves as Bergman
fans

The main point of Section 3.2.1 is to define Γ-stability and set up Theorem 29. We note
that Lemma 22 and Lemma 23 are corollaries of Shaw’s Proposition 2.22 in [Sha13] but
they are useful in building up the context in this paper.

3.2.1 A projection of Mtrad
0,n is isomorphic to B′(Γ)

Motivated by [CHMR16] we define the space of graphically stable tropical curves and
investigate its ability to be embedded as a balanced fan. In particular, we explore the
relationship betweenMtrop

0,Γ ,Mtrad
0,Γ , and B′(Γ). Let Γ be a simple connected graph whose

vertices are labeled 2, . . . , n.
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Definition 15. A stable rational tropical curve C with n ends is Γ-stable, if at each vertex
in C with exactly 1 bounded edge (and thus has two ends whose labels are i and j), there
exists an edge eij ∈ E(Γ). Define Mtrop

0,Γ to be the moduli space of all rational n-marked

Γ-stable abstract tropical curves. Similarly, we define Mtrad
0,Γ to be the moduli space of

rational n-marked Γ-stable radially aligned abstract tropical curves.

Just as in the stable case,Mtrad
0,Γ is a refinement ofMtrop

0,Γ for each Γ. These spaces are
well-defined as cone complexes but do not necessarily admit an embedding into a vector
space and a weight function making them balanced fans.

Definition 16. We define the contraction morphism

cΓ :Mtrop
0,n −!M

trop
0,Γ (6)

which successively contracts bounded edges adjacent to Γ-unstable vertices.

The previous definition is a well-defined map of sets (of curves and cone complexes)
but typically is not induced by the restriction of a vector space homomorphism. We also
define a section ι to be the natural inclusion map in the opposite direction by recalling
that a Γ-stable curve is necessarily stable.

The next three examples show that the collection of moduli spaces of weighted stable
rational tropical curves and the collection of moduli spaces of Γ-stable rational tropical
curves have an intersection but that neither is contained in the other. For the reader
that is not familiar with weighted spaces, see [Has03] for the construction of the algebraic
moduli spaces and [CHMR16] for tropical moduli spaces.

Example 17. Let Γ be a path on three vertices. Then Mtrop
0,Γ is exactly the tropical

moduli space of weighted stable rational tropical curves Mtrop
0,A with weight data A =

(1, 1, 1/2, 1/2). The fan associated to this moduli space lives in R and contains a node at
the origin and two rays pointing in opposite directions.

Example 18. Let Γ be the complete bipartite graph obtained from K4 by removing two
disjoint edges. In this case, Mtrop

0,Γ is not isomorphic to a tropical moduli space with
weighted points.

Example 19. Consider the weight data A = (1, 1, 1/2, 1/2, 1/2). We wish to find a graph
with an equivalent weight data to A. The graph obtained by deleting a single edge, e45,
has a weight data equivalent to (1, 1, 1, 1/2, 1/2). The graph obtained by deleting a second
edge, e35, has a weight data equivalent to (1, 1, 2/3, 2/3, 1/3). The graph Γ obtained by
deleting a third edge, e34, has a weight data equivalent to (1, 1, ε, ε, ε). We can see the
difference by looking at a curve with split I = {3, 4, 5}. The curve is A-stable but not
Γ-stable.

To relate the theory of Bergman fans to the graphically stable moduli spaces we define
Γ-stability of flats and chains of flats of Kn−1.
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Definition 20. A flat F of Kn−1 is Γ-stable if the associated combinatorial type of the
radially aligned tropical curve is Γ-stable (see Lemma 12). A chain of flats is Γ-stable if
each of its flats is Γ-stable.

Recall that a flat of Γ can be thought of as a flat of Kn−1 restricted to the edge set
of Γ, i.e., a flat of Γ is F ∩ Γ where F is a flat of Kn−1. Consider a combinatorial type C
with splits I1, . . . , Id and its corresponding cluster graph FC =

∐d
j=1 KIj . Then C and FC

are Γ-unstable if and only if there is a split Ij such that KIj ∩ Γ has no edges. In other
words, Γ-unstability is caused by deleting entire cliques from Kn−1. This is illustrated in
the following example.

Example 21. Let Γ be the graph obtained from K4 by removing edge e45; see Figure 6a.
Using the labeling from Example 14, the flat F5 = {e45} is not Γ-stable but the flat
F9 = {e34, e35, e45} is Γ-stable. In Figure 6, the dashed edges are treated as normal edges
or missing edges depending on whether we view F5 and F9 as flats of K4 or Γ, respectively.

2

34

5

e23e24

e25

e34

e35

(a) Graph Γ.

2

34

5e45

(b) Flat F5, not Γ-stable.

2

34

5

e34

e35e45

(c) Flat F9, Γ-stable.

Figure 6: Figure for Example 21.

Now consider the map

prΓ : R|E(Kn−1)|/L −! R|E(Kn−1)|/(L+ S) (7)

where L is the lineality space spanned by the vector (1, 1, . . . , 1) and S = span{ve | e 6∈ Γ}
is the span of basis vectors corresponding to edges not in Γ. Note that prΓ is the natural
projection map that forgets the coordinates corresponding to edges that are not in Γ.

Simultaneously, define

p̃rΓ : Qn −! Qn/U (8)

where U is the linear span of Γ-unstable rays of Mtrop
0,n . As described in Remark 5, a set

of
(
n−1

2

)
− 1 combinatorial types of curves with splits I of size 2 correspond to a basis of

Qn. We also know that a split of size 2 corresponds to an edge of Γ. Thus U is generated
by combinatorial types of curves corresponding to the edges removed from Kn−1 when
building Γ.
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Lemma 22. There is a linear isomorphism Ψ′ : Qn/U ! R|E(Kn−1)|/(L + S) that
matches the supports of the underlying cone complexes of p̃rΓ(Mtrad

0,n ), p̃rΓ(Mtrop
0,n ), and

prΓ(B′(Kn−1)). Furthermore, via Ψ′ p̃rΓ(Mtrad
0,n ) ∼= prΓ(B′(Kn−1)) as fans.

Proof. From the discussion leading up to this lemma the diagram in Figure 7 is commuta-
tive because both projections forget the coordinates corresponding to edges that are not
in Γ. Since Ψ preserves the cone complex structures, we obtain an isomorphism Ψ′ that
also preserves the cone complex structures.

Qn R|E(Kn−1)|/L

Qn/U R|E(Kn−1)|/(L+ S)

p̃rΓ

Ψ

∼=

� prΓ

∼=
Ψ′

∼=

Figure 7: Diagram for Lemma 22.

Note that the support of B′(Γ) is a subset of R|E(Γ)|/L, where L is the lineality space
spanned by the all ones vector. It is a straightforward computation to see that the
dimension of R|E(Kn−1)|/(L + S) is the same as the dimension of R|E(Γ)|/L. There is a
natural isomorphism between these two vector spaces given by underlying the matroidal
structure of Kn−1 and Γ. In other words, the standard basis vectors of each vector space
can be given by a choice of all but one of the edges in Γ.

Lemma 23. Let Γ be a connected graph on n− 1 vertices. Then p̃rΓ(Mtrad
0,Γ ) ∼= B′(Γ) as

balanced fans with constant weight function 1.

Proof. This is an immediate corollary to [Sha13, Proposition 2.22].

3.2.2 B′(Γ) equals Mtrad
0,Γ for Γ complete multipartite

In general, the cone complex structures of Mtrad
0,Γ and B′(Γ) do not coincide. Both Mtrop

0,Γ

and Mtrad
0,Γ are well-defined as cone complexes but may not be embedded into Qn/U as

balanced fans. Geometrically, it may happen that these cone complexes contain cones
which are adjacent to only one maximal cone, and thus their image cannot be balanced.
We will characterize the obstruction by studying the relationship between the contraction
morphism cΓ (Equation 6) and the restriction morphism rΓ (Equation 1).

Consider the locus in Mtrad
0,n of Γ-stable curves given by the section ι. Define ΨΓ :=

rΓ ◦ (Ψ ◦ ι) to be the map between the set of Γ-stable radially aligned combinatorial types
and the set of chains of flats of Γ where Ψ is the bijection from Lemma 12. The map of
sets ΨΓ induces a map (denoted by the same name) of cone complexes between Mtrad

0,Γ

and B′(Γ). Additionally, the map of cone complexes induced by rΓ is the same map given
by prΓ, so we have the following diagram.
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Mtrad
0,n B′(Kn−1)

Mtrad
0,Γ B′(Γ)

cΓ

Ψ

=

prΓι

ΨΓ

Note that Ψ ◦ ι is a bijection between the set of Γ-stable radially aligned combinatorial
types and the set of Γ-stable chains of flats of Kn−1. Hence statements about ΨΓ are
equivalent to statements about rΓ restricted to Γ-stable flats.

By showing ΨΓ is a bijective map between the set of Γ-stable radially aligned com-
binatorial types and the set of chains of flats of Γ, we obtain an induced bijection of
the cone complexes of Mtrad

0,Γ and B′(Γ), preserving the poset structure. The next lemma
shows that surjectivity of this map follows from the fact that flats of Γ are flats of Kn−1

restricted to the edge set of Γ.

Lemma 24. The map ΨΓ is surjective.

Proof. Consider the chain of flats F of Γ given by F1 ⊂ · · · ⊂ Fr where Fi has ki connected
components. Write the vertex set of each connected component of Fi as I ij. Construct
the chain of flats G of Kn−1 as

G :

k1∐
j=1

KI1
j
⊂ · · · ⊂

kr∐
j=1

KIrj
.

Then we have prΓ(G) = F , and thus ΨΓ is surjective.

The map ΨΓ is not always injective because flats of Γ are not always uniquely deter-
mined by Γ-stable flats. The obstruction is highlighted in the following example.

Example 25. Let Γ be the subgraph of K4 with edges e35 and e45 removed; see Figure 8.
InMtrop

0,Γ , there are now eight combinatorial types with one bounded edge and nine com-

binatorial types with two bounded edges that are Γ-stable. This means that Mtrop
0,Γ , as a

cone complex, has eight rays and nine 2-dimensional cones and Mtrad
0,Γ has nine rays and

ten 2-dimensional cones, as described in Example 14.
It is important to note that as cone complexes B′(Γ) is not equal to Mtrop

0,Γ nor

Mtrad
0,Γ ; see Figures 9a and 9b. The obstruction lies in the ray ρ = ρ{3,4,5} and the cone

σ = cone(ρ{3,4,5}, ρ{3,4}). Let Cρ and Cσ be their corresponding combinatorial types. Ge-
ometrically, ρ is adjacent to only one Γ-stable maximal cell, meaning it is impossible to
embed ρ and σ into any vector space as a balanced fan.

Write the lattice of flats of Γ with the same labels as in Example 14:

Rank 1 : F1 = {e23}, F2 = {e24}, F3 = {e34}, F6 = {e25}
Rank 2 connected : F7 = {e23, e24, e34}, F8 = {e23, e25}, F10 = {e24, e25}
Rank 2 disconnected : F13 = {e25, e34}
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2

34

5

e23e24

e25

e34

Figure 8: The graph Γ in Example 25.

The flat corresponding to ρ{3,4,5} in K4, i.e., (Ψ◦ ι)(Cρ), is K{3,4,5} = F9. When restricting
the edge set to E(Γ) we have

K{3,4,5} ∩ Γ = K{3,4} = F3.

Similarly, (Ψ ◦ ι)(Cσ) is the chain of flats K{3,4} ⊂ K{3,4,5}, and this chain of flats reduces
to the single flat K{3,4} when restricting the edge set. That is to say, there are three
radially aligned combinatorial types of Mtrad

0,Γ whose cones all coincide in B′(Γ), namely

ΨΓ(Cρ) = ΨΓ(Cσ) = ΨΓ(Cρ{3,4}) = ρF3 .

The map ΨΓ sends the cone complex depicted in Figure 9a to the one in Figure 9b. Here
we can see that the cone σ and ray ρ in Mtrad

0,Γ gets collapsed in B′(Γ) by ΨΓ.
For convenience, each of the rays in B′(Γ) are written coordinate-wise.

~vF2 = ~v{2,4} = (1, 0, 0) ~vF6 = ~v{2,5} = (0, 1, 0) ~vF3 = ~v{3,4} = (0, 0, 1)

~vF1 = ~v{2,3} = (−1,−1,−1) ~vF7 = ~v{2,3,4} = (0,−1, 0) ~vF8 = ~v{2,3,5} = (−1, 0,−1)

~vF10 = ~v{2,4,5} = (1, 1, 0) ~vF9= ~v{3,4,5}= (0, 0, 1) ~vF13 = ~v{2,5},{3,4} = (0, 1, 1)

We see in Example 25 that rΓ is not injective on flats which dropped in rank. It
follows that the obstruction is Γ containing a K3 subgraph which had two of its three
edges deleted. So in order for rΓ to be injective we can only allow a graph Γ if it has the
property that if two edges of a K3 subgraph are deleted, then the third edge must also be
deleted (part (3) of Lemma 4).

The following series of results build up to the central result of the paper, namely
Theorem 29.

Proposition 26. The map rΓ is injective on Γ-stable flats if and only if for any Γ-stable
flat F , rk(F ) = rk(rΓ(F )).

Proof. First assume that rΓ is injective. Let F be a Γ-stable flat of Kn−1 and let T be a
spanning forest of rΓ(F ) = F∩Γ. By way of contradiction, suppose that rk(F∩Γ) < rk(F ).
Consider clKn−1(T ) as a flat of Kn−1. Then we have

rΓ(F ) = F ∩ Γ = clΓ(T ) = clKn−1(T ) ∩ Γ = rΓ(clKn−1(T )).
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F13

F6

F3

F10

F9

F8

F1

F7

F2

(a) A slice of the cone complex of Mtrad
0,Γ with

rays labeled by their corresponding flats.

F13

F6

F3

F10

F8

F1

F7

F2

(b) A slice of the cone complex of B′(Γ) with
rays labeled by their corresponding flats.

Figure 9

But since rk(clKn−1(T )) = rk(T ) < rk(F ), clKn−1(T ) 6= F . This contradicts the injectivity
of rΓ on Γ-stable flats.

Now we prove the backwards direction. Suppose that for any Γ-stable flat F , rk(F ) =
rk(rΓ(F )). Let F and G be Γ-stable flats of Kn−1 with rΓ(F ) = rΓ(G). By our hypothesis,
we deduce that rk(F ) = rk(G). By Lemma 3, F and G share a spanning forest; call it
T . Then by definition, clKn−1(T ) = F and clKn−1(T ) = G. This proves rΓ is injective,
completing the proof.

Lemma 27. Suppose C is a clique of Kn−1 and that Γ is a complete multipartite graph
labeled by the same n− 1 vertices. Then rk(C) = rk(rΓ(C)) or rk(rΓ(C)) = 0.

Proof. Suppose that rk(rΓ(C)) 6= 0, i.e., rΓ(C) is not the empty graph. Fix an edge eij of
Γ ∩ C between vertices vi and vj of C. By Lemma 4, for any other vertex vk of C, either
eik or ejk exists in Γ. So there is a path between any two vertices of rΓ(C) going through
the edge eij. This means that rΓ(C) is connected and any spanning tree contains all n−1
vertices, proving the lemma.

Lemma 28. The map rΓ is injective on Γ-stable flats if and only if Γ is a complete
multipartite graph.

Proof. First we prove the backwards direction. Let F be a Γ-stable flat of Kn−1. Note
that F is a disjoint union of cliques, Ci. By assumption, the image of each clique under
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rΓ is not empty. Using Lemma 27, we have

rk(F ) =
k∑
i=1

rk(Ci) =
k∑
i=1

rk(Ci ∩ Γ) = rk(F ∩ Γ) = rk(rΓ(F )).

By Proposition 26, rΓ is injective on Γ-stable flats.
Now suppose that rΓ is injective on Γ-stable flats. It is enough that Γ satisfies (3)

from Lemma 4. Let vi and vj be vertices of Γ such that eij is an edge of Γ. Fix another
vertex vk. Consider the flat F = K{vi,vj ,vk}. We know that

K{vi,vj} ⊂ rΓ(F ).

Since rk(rΓ(F )) = rk(F ) = 2, either eik or ejk must exist as edges in Γ.

Lemma 27 and Lemma 28 show that when Γ is a complete multipartite graph, the
cone complex Mtrad

0,Γ will not contain a ray which is adjacent to only one maximal cell.
Hence the tropical moduli space Mtrad

0,Γ can be embedded as a balanced fan into a real
vector space because of the structure it shares with B′(Γ).

Theorem 29. Via the embedding induced by p̃rΓ ◦ dist and the constant weight function
1, the cone complex underlying Mtrad

0,Γ has the structure of a balanced fan if and only if Γ
is a complete multipartite graph. The linear isomorphism Ψ′ identifies it with B′(Γ).

Proof. By Lemma 28 and Proposition 26, rΓ induces a bijection between the set of Γ-
stable flats of Kn−1 and flats of Γ only when Γ is a complete multipartite graph. Only
in this case is ΨΓ a bijection between the set of Γ-stable radially aligned combinatorial
types of Mtrad

0,Γ and the set of flats of Γ. Thus the map ΨΓ induces an bijection of cone
complexes preserving the poset structure. We finish the proof by noting that Mtrad

0,Γ is a
balanced fan with constant weight function 1 by the fact that it has the same structure
as the equivalent balanced fans prΓ(Mrad

0,n) and B′(Γ).
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