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Abstract

The lattice size of a lattice polygon P is a combinatorial invariant of P that was
recently introduced in relation to the problem of bounding the total degree and the
bi-degree of the defining equation of an algebraic curve. In this paper, we establish
sharp lower bounds on the area of plane convex bodies P ⊂ R2 that involve the
lattice size of P . In particular, we improve bounds given by Arnold, and Bárány
and Pach. We also provide a classification of minimal lattice polygons P ⊂ R2 of
fixed lattice size ls�(P ).

Mathematics Subject Classifications: 52B20, 52C05, 11H06

1 Introduction

This paper is devoted to providing sharp lower bounds on the area of plane convex bodies
P , which involve the lattice size of P . This invariant was formally introduced by Schicho,
and Kastryck and Cools in [8, 15], although it had appeared implicitly earlier in the work
of Arnold [3], Bárány and Pach [5], Brown and Kaspzyck [6], and Lagarias and Ziegler [13].
The lattice size was further studied in [1, 2, 10], and [11].

We next reproduce the definition of the lattice size from [8] applying it now to a plane
convex body P .

Definition 1. The lattice size lsX(P ) of a convex body P ⊂ R2 with respect to a set
X ⊂ R2 is the smallest real non-negative l such that ϕ(P ) is contained in the l-dilate lX
of X for some transformation ϕ, which a combination of multiplication by a unimodular
matrix and a translation by an integer vector.

When X = [0, 1]×R, the lattice size of P with respect to X coincides with the lattice
width w(P ) of P , an important invariant in convex geometry and its applications. Two
other interesting invariants of P , denoted by ls∆(P ) and ls�(P ), arise when X is the
standard 2-simplex ∆ = conv{(0, 0), (1, 0), (0, 1)} or the unit square � = [0, 1]2.
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It was shown in [10, 11] that in dimension 2 a so-called reduced basis computes both
ls�(P ) and ls∆(P ), and that in dimension 3 it computes ls�(P ), but not necessarily
ls∆(P ). One can then use the generalized basis reduction algorithm, described and an-
alyzed in [10, 12, 14] to find the lattice size of a lattice polygon, which, as explained
in [10, 11], outperforms the “onion skins” algorithm of [8, 15]. See Definition 5 and Theo-
rem 8 for the definition of a reduced basis and for the precise formulation of the described
results from [10] and [11].

One of the questions that we address in this paper is the following: What is the
smallest possible nonzero area A(P ) of a lattice polygon P of fixed lattice size ls�(P )
or ls∆(P )? In Theorem 15 we prove a sharp bound A(P ) > 1

2
ls∆(P ) and describe the

lattice polygons on which this bound is attained. Since ls∆(P ) > ls�(P ) it follows that
A(P ) > 1

2
ls�(P ), and we show in Corollary 17 that this bound is sharp.

In the last section of the paper we classify inclusion-minimal lattice polygons P with
fixed lattice size ls�(P ), see Theorem 22. This classification provides an alternative proof
of Corollary 17. Note that a classification of inclusion-minimal lattice polygons P with
fixed lattice width w(P ) was provided in [7].

In both of the above bounds it is crucial that P is a lattice polygon, since a plane
convex body P of fixed lattice size ls∆(P ) or ls�(P ) may have an arbitrarily small area.
Hence, in the case of plane convex bodies, it makes sense to look for lower bounds on
the area that involve one of the lattice sizes, ls∆(P ) or ls�(P ), together with the lattice
width w(P ) of P . In the case of the lattice size with respect to the unit square, such
a bound was essentially proved by Fejes-Tóth and Makai in [9], where they showed that
for a plane convex body P one has A(P ) > 3

8
w(P )2, and that this bound is attained

at conv{(0, 0),
(
w, w

2

)
,
(
w
2
, w

)
}, where w = w(P ). By a simple rescaling argument we

establish in Theorem 12 a sharp bound A(P ) > 3
8

w(P ) ls�(P ).
In our main result, Theorem 14, we establish a version of the Fejes-Tóth–Makai result

where we bound the area in terms of ls∆(P ) and w(P ). For a plane convex body P
we show that A(P ) > 1

4
w(P ) ls∆(P ) and describe convex bodies on which this bound is

attained.
The idea of inscribing a lattice polygon inside a small multiple of the unit square had

appeared in [3, 5, 6, 13], before the lattice size was introduced formally. Both [3] and [5]
are devoted to estimating the order of the number of lattice polygons of given area, up to
the lattice equivalence, with [5] improving the result of [3]. It is shown in one of the steps
of the argument in [3] that for any lattice convex polygon P ⊂ R2 of nonzero area A(P )
there exists its lattice-equivalent copy inside a square of size 36A(P ). In terms of the
lattice size this means that ls�(P ) 6 36A(P ). Hence our result in Corollary 17 improves
Arnold’s bound from [3] to a sharp one replacing a constant of 36 with 2.

A similar result is proved in [5, Lemma 3]: For a convex lattice polygon P with nonzero
area A(P ) there exists a lattice-equivalent copy of P inside a rectangle [0, w]× [0, h] with
wh < 4A(P ). In Theorem 12 we improve the bound of Bárány and Pach to a sharp bound
A(P ) > 3

8
w(P ) ls�(P ). Note that our result from Theorem 15 can also be reformulated

in the spirit of [3, 5]: For any lattice polygon P of nonzero area A(P ) there exists a
lattice-equivalent copy of P contained in 2A(P )∆.
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2 Definitions

Recall that a plane convex body P ⊂ R2 is a compact convex subset of R2 with non-empty
interior. Given (a, b) ∈ R2, the width of P in the direction (a, b) is

w(a,b)(P ) = max
(x,y)∈P

(ax+ by)− min
(x,y)∈P

(ax+ by).

Consider the Minkowski sum of P with −P , its reflection in the origin, and let K :=
(P + (−P ))∗ be the polar dual of the sum. Then K is origin-symmetric and convex and
it defines a norm on R2 by

‖u‖K = inf{λ > 0 | u/λ ∈ K}.

For details see, for example, [4]. We then have

‖u‖K = inf{λ > 0 | u · x 6 λ for all x ∈ K∗} = max
x∈K∗

u · x =
1

2
wu(K∗) = wu(P ).

This, in particular, implies that u 7→ wu(P ) is a convex function on R2.
Recall that a vector u = (a, b) ∈ Z2 is called primitive if gcd(a, b) = 1. The lattice

width of P , denoted by w(P ), is the minimum of wu(P ) over all primitive directions u.
A lattice polygon is a convex polygon all of whose vertices have integer coordinates.

An integer square matrix A is called unimodular if detA = ±1. Two convex bodies in R2

are called lattice-equivalent if one of them is the image of the other under a map which is
a composition of multiplication by a unimodular matrix and a translation by an integer
vector.

Let ∆ = conv{(0, 0), (1, 0), (0, 1)} ⊂ R2 be the standard 2-simplex.

Definition 2. The lattice size ls∆(P ) of a convex body P ⊂ R2 with respect to the stan-
dard simplex is the smallest l > 0 such that the l-dilate l∆ contains a lattice-equivalent
copy of P .

Let � = [0, 1]2 ⊂ R2 be the unit square.

Definition 3. The lattice size ls�(P ) of a convex body P ⊂ R2 with respect to the unit
square is the smallest l > 0 such that the l-dilate l� contains a lattice-equivalent copy
of P .

Example 4. Consider P = conv{(4, 0), (5, 0), (2, 2), (0, 3), (1, 2)}, depicted in Figure 1.

Let ϕ(x, y) =

[
1 1
−1 −2

]
·
[
x
y

]
+

[
−3
6

]
. Then

ϕ(P ) = conv{(1, 2), (2, 1), (1, 0), (0, 0), (0, 1)}.

Hence ϕ(P ) ⊂ 2� and we conclude that ls�(P ) = 2. Also, since ϕ(P ) ⊂ 3∆ and P has
an interior lattice point while 2∆ does not, it is impossible to unimodularly map P inside
2∆, and hence we have ls∆(P ) = 3.
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Figure 1: Example 4

Definition 5. A basis (u1, u2) of the integer lattice Z2 ⊂ R2 is called reduced with respect
to a convex body P ⊂ R2 if wu1(P ) 6 wu2(P ) and wu1±u2(P ) > wu2(P ).

A fast algorithm for finding a reduced basis with respect to a convex body P ⊂ R2

was given in [12]. It was shown in [10] and [11] that if the standard basis is reduced then
one can easily find ls�(P ) and ls∆(P ), as we summarize in Theorem 8 below.

Definition 6. Let P ⊂ R2 be a plane convex body. We define nls∆(P ) to be the smallest
l > 0 such that ϕ(P ) ⊂ l∆ where ϕ is the composition of a multiplication by a matrix of

the form

[
±1 0
0 ±1

]
and a translation by an integer vector. Equivalently, if we let

l1(P ) := max
(x,y)∈P

(x+ y)− min
(x,y)∈P

x− min
(x,y)∈P

y,

l2(P ) := max
(x,y)∈P

x+ max
(x,y)∈P

y − min
(x,y)∈P

(x+ y),

l3(P ) := max
(x,y)∈P

y − min
(x,y)∈P

x+ max
(x,y)∈P

(x− y),

l4(P ) := max
(x,y)∈P

x− min
(x,y)∈P

y + max
(x,y)∈P

(y − x),

then nls∆(P ) is the smallest of the four li(P ).

Example 7. Let P = conv{(0, 0), (0, 3), (2, 2), (1, 3)}, depicted in Figure 2. Then l1(P ) =
4, l2(P ) = 5, l3(P ) = 3, and l4(P ) = 5. Hence nls∆(P ) = l3(P ) = 3.

Figure 2: Example 7
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Theorem 8. [10, 11] Let P ⊂ R2 be a convex body. If the standard basis is reduced with
respect to P , that is, w(1,0)(P ) 6 w(0,1)(P ) and w(1,±1) > w(0,1)(P ), then ls∆(P ) = nls∆(P ),
ls�(P ) = w(0,1)(P ), and w(P ) = w(1,0)(P )

For polygon P in Example 7 we have w(1,0)(P ) = 2, w(0,1)(P ) = 3, w(1,1)(P ) = 4, and
w(1,−1)(P ) = 3. Hence the standard basis is reduced with respect to P , and we conclude
that w(P ) = 2, ls�(P ) = 3, and ls∆(P ) = nls∆(P ) = 3.

Example 9. Let I = [(0, 0), (0, l)]. Then w(1,0)(I) = 0, w(0,1)(I) = l, w(1,1)(I) = l,
and w(1,−1)(I) = l, so the standard basis is reduced. Hence by Theorem 8 we have
ls∆(I) = nls∆(I) = l and ls�(I) = w(0,1) = l. It follows that for any lattice segment I
containing l + 1 lattice points we have ls�(I) = ls∆(I) = l.

Note that for u ∈ R2 and a unimodular matrix A of size 2 we have

wu(AP ) = max
x∈P

u · (Ax)−min
x∈P

u · (Ax) = max
x∈P

(ATu) · x−min
x∈P

(ATu) · x = wATu(P ).

Therefore, if the rows of A are u1 and u2, then w(1,0)(AP ) = wu1(P ) and w(0,1)(AP ) =
wu2(P ). In the next observation we show that if a plane convex body P is inscribed in
[0, h]2 and touches all of its sides, then ls�(P ) = h.

Proposition 10. Suppose that w(1,0)(P ) = w(0,1)(P ) = h. Then ls�(P ) = h and

w(P ) = min{h,w(1,1)(P ),w(1,−1)(P )}.

Proof. Let (a, b) ∈ Z2 be a primitive direction. Without loss of generality we can assume
that |a| > |b|. We then have

|a|h = w(a,0)(P ) 6 w(a,b)(P ) + w(0,b)(P ) = w(a,b)(P ) + |b|h,

and so we get w(a,b)(P ) > (|a| − |b|)h. Hence for |a| > |b| we conclude that w(a,b)(P ) > h.
Hence directions (±1,±1) are the only primitive directions with respect to which the
width of P could be less than h. Since no two out of these four directions can be used as
rows to form a unimodular matrix, the conclusion follows.

Definition 11. Let P ⊂ R2 be a lattice polygon and let p ∈ P be one of its vertices. We
say that a lattice polygon Q is obtained from P by dropping p if Q is the convex hull of
all the lattice points of P , except p.

3 Lower bounds on the area of a plane convex body in terms of
its width and lattice size.

Consider a convex body P ⊂ R2. Let w = w(P ) be its width and A(P ) be its area. It
was shown in [9] that A(P ) > 3

8
w2 and that this bound is attained only on the convex

bodies that are lattice-equivalent to conv{(0, 0),
(
w, w

2

)
,
(
w
2
, w

)
}. We formulate a result

which is a straight-forward corollary of this bound.
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Theorem 12. Let P ⊂ R2 be a convex body with h = ls�(P ) and w = w(P ). Then for
the area A(P ) of P we have A(P ) > 3

8
wh. This bound is sharp and attained only on the

convex bodies P that are lattice-equivalent to conv{(0, 0),
(
w, w

2

)
,
(
w
2
, w

)
}.

Remark 13. It was shown in Lemma 3 of [5] that for any lattice convex polygon P ⊂ R2

there exist numbers w, h > 0 with wh 6 4A(P ), such that [0, w]× [0, h] contains a lattice-
equivalent copy of P . Note that Theorem 12 strengthens this result replacing the constant
of 4 with 8

3
, and also extends the result to plane convex bodies.

Proof of Theorem 12. Let the standard basis be reduced with respect to P . Then by
Theorem 8 w(1,0)(P ) = w and w(0,1)(P ) = h. Let P ′ be the image of P under the map
(x, y) 7→ (x, w

h
y). We next check that the standard basis is also reduced with respect to P ′.

Denote by (x1, y1) and (x2, y2) points in P that, correspondingly, minimize and maximize
x+ y over P . Then we have w(1,1)(P ) = x2 + y2 − (x1 + y1) > h. Since y2 − y1 6 h, this
implies that x2 − x1 > 0. Hence

w(1,1)(P
′) > (x2 − x1) +

w

h
(y2 − y1) >

w

h
(x2 − x1) +

w

h
(y2 − y1) > w.

Similarly, first reflecting P in the line y = w/2, we conclude that w(1,−1)(P
′) > w, so

we have checked that the standard basis remains reduced as we pass from P to P ′. We
conclude that w(P ′) = w, and hence, as shown in [9], we have A(P ′) > 3

8
w2 and this

bound is attained at P ′ which are lattice-equivalent to conv{(0, 0),
(
w, w

2

)
,
(
w
2
, w

)
}. This

implies that A(P ) = h
w
A(P ′) > 3

8
wh and this bound can be attained only if P is lattice-

equivalent to conv{(0, 0),
(
w, h

2

)
,
(
w
2
, h

)
}. Since the standard basis is reduced with respect

to P , if w > h/2, we have w(1,−1)(P ) = w+h
2
> h, which implies w = h. If w < h/2 then

w(1,−1) = h − w/2 > h, which implies w = 0. We conclude that the bound is attained
exactly at P which are lattice-equivalent to conv

{
(0, 0),

(
w, w

2

)
,
(
w
2
, w

)}
.

Let P be a convex body with l = ls∆(P ), h = ls�(P ), and w = w(P ). We can assume
that P ⊂ [0, h]2 and hence P ⊂ [0, h]2 ⊂ 2h∆, so we conclude that ls∆(P ) 6 2 ls�(P ).
This implies that A(P ) > 3

8
wh > 3

16
wl. We now improve this bound to a sharp bound

A(P ) > wl
4

.

Theorem 14. Let P ⊂ R2 be a convex body with l = ls∆(P ) and w = w(P ). Then for
the area A(P ) of P we have A(P ) > wl

4
. This bound is attained only at P which are

lattice-equivalent to conv
{

(0, 0),
(
w, w

2

)
,
(
w
2
, w

)}
.

Proof. Let the standard basis be reduced with respect to P . Then by Theorem 8 we have
w = w(1,0)(P ) and h := ls�(P ) = w(0,1)(P ), so we can assume P ⊂ Π := [0, w] × [0, h].
We can also assume that P ⊂ l∆, where l = ls∆(P ) and P touches all three sides of l∆.

Suppose first that h = w and hence P ⊂ Π = [0, w]2. Pick points p1, p2, p3, and p4 in
P , one on each side of Π, and points q1, q2, q3, and q4 that maximize and minimize over
P the linear functions x+ y and x− y, as depicted in the first diagram of Figure 3. Note
that some of these eight points may coincide. Let Q = conv{p1, p2, p3, p4, q1, q2, q3, q4}.

If we move q4 within Π along the support line x+ y = l, the area of the triangle with
the vertices p3, q4, p4 will be the smallest when q4 is on y = w or x = w, depending on
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Figure 3: Case 0 reduction

the slope of the line connecting p3 and p4. Therefore, we can move q4 to the boundary
of Π not increasing the area, and preserving the width and both lattice sizes. Similarly,
we move q1, q2, and q3 along the corresponding support lines to the boundary of Π. If
we end up with the case when there is one of the qi on each side of Π, as in the second
diagram of Figure 3, we pass to R = conv{q1, q2, q3, q4}, depicted in the third diagram.

Note that passing from P to Q to R we did not increase the area and did not change
the minima and the maxima in the directions (1, 0), (0, 1), (1,±1). Hence the standard
basis remains reduced and there is no change in l1, l2, l3 and l4. Hence R has the same
l, w, and h as P , and ls∆(R) = l1(R) = l.

Let q1 = (0, b), q2 = (a, 0), q3 = (w, c), and q4 = (l − w,w). Note that since the
standard basis is reduced we have w(1,1)(R) = l − a > w, so l − w − a > 0. Also,
w(1,−1)(R) = w − c+ b > w, so b > c. We get

2A(P ) > 2A(R) = 2w2 − ab− (w − b)(l − w)− (w − a)c− (2w − l)(w − c)

= w2 + (b− c)(l − w − a) > w2 >
wl

2
,

where we used 2w > l which holds true since (w,w) is on x + y = l or outside of l∆. In
order for the inequality to be attained we would need w = l/2 and also b = c or l = w+a.
Let w = l/2 and b = c. Then we have l4(R) = w + b > l and c+ w 6 l since (c, w) ∈ l∆.
Hence b = c = l/2, but this contradicts l3(R) = 2w − c > l. If w = l/2 and l = w + a,
then a = l/2 and this contradicts l4(R) = 2w − a > l. We conclude that in this case the
inequality is strict.

Each of the qi’s may slide along the support lines in one of the two directions. Due
to the symmetry in the line x = y, we can assume that q4 slides toward y = w, as in
Figure 3. Since for each of q1, q2, q3 we have have two choices, there are eight cases total,
one of which we just covered and will refer to as Case 0. The remaining seven cases are
depicted in Figure 4, where we also introduce the notation for the coordinates for some
of the qi’s. In each of these cases, we move the qi’s to the boundary of Π not increasing
the area, after which we drop (see Definition 11) the pi’s on the sides of Π where we now
have a qi. We next cover each of these seven cases.
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Figure 4: Seven cases

In Case 1, let q3 = (c, 0) and q4 = (l − w,w), as depicted in the first diagram in
Figure 4. Then we have l3(R) = w + c > l, and hence the slope of the line connecting
(l − w,w) to (c, 0) is negative. This implies that we can slide p3 to (w,w − c) and then,
unless c = w, drop (c, 0), which reduces this case to Case 0.

In Case 2, l2(R) = 2w − a > l implies that the slope of the line connecting (0, a) to
(l − w,w) is at least 1, so we can slide (0, b) to (w − b, w) not increasing the area. This
reduces Case 2 to Case 6.

Figure 5: Case 3

In Case 3, if a 6 c, we can slide p2 to (a, 0) and, unless a = 0, drop (0, a) reducing to
Case 0. If a > c, we move p2 all the way to (w, 0) and, unless c = 0, drop (w, c). The
obtained quadrilateral S is depicted in Figure 5. We have A(S) 6 A(R), w(1,−1)(S) >
w(1,−1)(R), and l3(S) > l3(R), while all other parameters remain the same. Hence the
standard basis remains reduced and l1(S) = l1(R) = ls∆(S).
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We have

2A(S) = 2w2 − aw − (w − b)(l − w)− w(2w − l) = w(w − a) + b(l − w).

Since l2(S) = 2w − a > l we get 2A(S) > w(l − w) + b(l − w) = (w + b)(l − w). Also,
l4(S) = w + b > l and we can conclude that 2A(S) > wl

2
, provided that l > 3

2
w.

Suppose next that l 6 3
2
w. We have l4(S) = w + b > l and w(1,1)(P ) = l − a > w

and hence a 6 l − w 6 b. We conclude that T = conv{(0, l − w), (w, 0), (l − w,w)} is
contained in S and we get

2A(P ) > 2A(T ) =

∣∣∣∣ w −(l − w)
l − w 2w − l

∣∣∣∣ = w(2w − l) + (l − w)2

= w2 − (l − w)(2w − l) > w2 − w

2
(2w − l) =

wl

2
,

where we used l3(S) = 2w > l, so 2w − l > 0. The inequality turns into equality if and
only if l = 3

2
w and P is lattice-equivalent to T , that is, to conv

{
(w, 0) ,

(
w
2
, w

)
,
(
0, w

2

)}
,

which is lattice-equivalent to conv{(0, 0),
(
w
2
, w

)
,
(
w, w

2

)
} via the map (x, y) 7→ (w−x, y).

In Case 4, if b 6 a we move p1 to (0, w − b) and drop (b, w) to reduce to Case 0.
If b > a we move p1 all the way to (0, 0) and, unless a = 0, drop (a, 0). The obtained

Figure 6: Case 4

quadrilateral S is depicted in Figure 6. If 3w < 2l then

2A(S) = 2w2 − bw − wc− (w − c)(2w − l) = w(w − b) + (w − c)(l − w)

> w(l − w) + (w − c)(l − w) = (l − w)(2w − c) > wl

2
,

where we used l3(S) = 2w − c > l together with l − w > w/2.
If 3w > 2l, move (w, c) to (w, l−w), non-increasing the area, and let T = conv{(0, 0), (w, l−

w), (l − w,w)}. Then

2A(P ) > 2A(S) > 2A(T ) = 2wl − l2 = l(2w − l) > wl

2
.

the electronic journal of combinatorics 30(4) (2023), #P4.45 9



The inequality turns into equality if and only if 3w = 2l and P is lattice-equivalent to T ,
that is, to conv{(0, 0), (w

2
, w), (w, w

2
)}.

In Case 5, if w− b 6 a, we move p1 to (0, b) and remove (w− b, w), reducing this case
to Case 1. If w− b > a, we move p1 to (0, a) and remove (a, 0), reducing this case to Case
6.

In Case 6, we have l3(R) = w + c > l, and hence the area does not increase as we
move p3 to (w, 0) and then drop (c, 0), unless c = w, to get S. Then

2A(S) = 2w2 − aw − (w − a)b− (2w − l)w = (w − a)(w − b) + w(l − w).

Since l4(S) = 2w − b > l we get w − b > l − w and hence

2A(S) > (w − a)(l − w) + w(l − w) = (2w − a)(l − w).

We have l2(S) = 2w − a > l and hence, if we additionally assume that l > 3
2
w, we get

2A(R) > (2w − a)(l − w) > wl
2

.
Assume next that l 6 3

2
w. We have l3(S) = w + c > l and w(1,1)(S) = l − a > w.

Hence, dropping (b, w), unless b = l−w, and then moving (0, a) up to (0, l−w) we obtain
triangle T = conv{(0, l − w), (w, 0), (l − w,w)}, considered in Case 3.

In Case 7, if c 6 a, we can move p2 to (w − c, 0) and we are in Case 6. If c > a we
move p2 to (a, 0) and end up in Case 4, which completes the argument.

It remains to explain how the general case reduces to the case when h = w. Let
P ′ be the image of P under the map (x, y) 7→ (x, w

h
y). Then, as we have shown in

the proof of Theorem 12, the standard basis is also reduced with respect to P ′. Hence
w(P ′) = ls�(P ′) = w and ls∆(P ′) is the smallest of l1(P ′), l2(P ′), l3(P ′), and l4(P ′). Pick
(x1, y1) ∈ P that satisfies x1 + y1 = l. Then (x1,

w
h
y1) ∈ P ′ and we have

l1(P ′) > x1 +
w

h
y1 >

w

h
(x1 + y1) =

w

h
l1(P ) =

w

h
l.

Similarly, for i = 2, 3, 4 we get li(P
′) > w

h
li(P ) > w

h
l1(P ) = w

h
l and hence we can conclude

that ls∆(P ′) > w
h
l.

From the above argument we know that A(P ′) > ls∆(P ′) w(P ′)
4

. Together with ls∆(P ′) >
w
h
l and A(P ′) = w

h
A(P ) this implies A(P ) > wl

4
. The inequality for P ′ turns into equality

if and only if P ′ = conv
{

(0, 0),
(
w, w

2

)
,
(
w
2
, w

)}
. For such P ′ we have

P = conv

{
(0, 0),

(
w,
h

2

)
,
(w

2
, h

)}
.

We get A(P ) = 3
8
wh, ls∆(P ) = l1(P ) = w

2
+ h and w(P ) = w. It follows that A(P ) >

w(P ) ls∆(P )
4

turns into equality only if 3
8
wh = w

4

(
w
2

+ h
)
, which is equivalent to h = w.

4 Proving A(P ) > 1
2

ls∆(P ) for lattice polygons P .

If P ⊂ R2 is a lattice polygon with nonzero area then its width is at least 1 and Theorem 14
implies that A(P ) > 1

4
ls∆(P ). In this section we will improve this bound to a sharp bound
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A(P ) > 1
2

ls∆(P ). We will also observe that this implies that A(P ) > 1
2

ls�(P ), which is
again a sharp bound.

Theorem 15. Let P ⊂ R2 be a convex lattice polygon of nonzero area A(P ) and lattice
size l = ls∆(P ). Then A(P ) > 1

2
ls∆(P ). This bound is sharp and is attained exactly at

lattice polygons P that are lattice-equivalent to one of the following:

(a) conv{(0, 0), (l, 0), (0, 1)} for l > 1;

(b) [0, 1]2 for l = 2;

(c) T0 = conv{(0, 0), (1, 2), (2, 1)} for l = 3.

Remark 16. It follows from this theorem that for any lattice polygon P of nonzero area
A(P ) there exists a lattice-equivalent copy of P contained in 2A(P )∆.

Proof of Theorem 15. Let l = l1(P ) = ls∆(P ) so that P ⊂ l∆. For l = 1 and 2 the
conclusion is clear, so we will assume that l > 3. We first consider the case where P

contains one of the vertices of l∆. Note that ϕ :

[
x
y

]
→

[
−1 −1
1 0

] [
x
y

]
+

[
l
0

]
maps l∆

to itself rotating its vertices in the counterclockwise direction. Using map ϕ together
with the reflection in the line y = x we can assume that P contains the origin and point
(c, l − c) with l/2 6 c 6 l.

Denote I = [(0, 0), (c, l − c)]. Let m = max(x,y)∈P x be attained at p ∈ P . Since

l4(P ) = m+ max
(x,y)∈P

(y − x) > l,

we have max(x,y)∈P (y − x) > l −m. Let this maximum be attained at q ∈ P .

Figure 7: P contains the origin

Let Q = conv{(0, 0), (c, l − c), p, q}. Since the slope of I is at most 1 we can move
p and q to (m, l − m) and (0, l − m) correspondingly not increasing the area of Q, as
illustrated in Figure 7. Therefore the area of Q is bounded below by the area of

R = conv{(0, 0), (m, l −m), (0, l −m)}.
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For m 6 l − 2 we have 2A(P ) > 2A(R) = m(l − m) > 2m > l since m > c > l/2.
This inequality turns into equality if and only if m = c = 2 and l = 4. Then R =
{(0, 0), (2, 2), (0, 2)}, p = (2, 2), and the only options for q are (0, 2) and (1, 3). In both of
these cases we get ls∆(R) < 4, and hence the inequality is not attained under our current
assumptions.

If m = l, since P has nonzero area, it contains at least one lattice point outside
[(0, 0), (l, 0)]. Hence A(P ) > l/2, with equality if and only if P is lattice-equivalent to
conv{(0, 0), (l, 0), (0, 1)}.

Let m = l − 1 and assume that (l − 1, 0) ∈ P . If P contains a point with the
y-coordinate equal to at least 2, then A(P ) > l − 1 > l/2 and hence we can assume
that P ⊂ [0, l − 1] × [0, 1]. The lattice size of any lattice polygon properly contained in
[0, l − 1] × [0, 1] is less than l, and we conclude that P = [0, l − 1] × [0, 1], so A(P ) =
l − 1 > l/2.

If (l−1, 0) 6∈ P then P contains (l−1, 1) and we have max(x,y)∈P (x−y) = l−2. Hence
from l3(P ) > l we get max(x,y)∈P y > 2 and A(P ) is larger than or equal to the area of
Q = conv{(0, 0), (l − 1, 1), (l − 2, 2)}, whose area is l/2. Also, A(P ) > l

2
unless P = Q.

Also, l4(Q) = l − 1 unless l 6 3. Hence we get a strict bound l(P ) > l/2 for l > 3. For
l = 3 the bound is attained at {(0, 0), (2, 1), (1, 2)}.

Now we can assume that P contains a lattice triangle T with exactly one vertex on
each side of l∆, as depicted in Figure 8. Let the vertices of T be (a, 0), (0, b), and (c, l−c),
with a, b, c ∈ [1, l − 1]. As above, using map ϕ together with the reflection in the line
y = x, we can assume that a is the smallest of the six numbers a, l − a, b, l − b, c, l − c.
This, in particular, implies that a 6 b, a 6 c, and a 6 l/2. For a > 2 and b 6 l/2 we have

Figure 8: P contains lattice triangle T

2A(T ) = det

[
a −b
c l − b− c

]
= al − ab− ac+ bc = a(l − b) + c(b− a) > 2(l − b) > l.

Note that we get equality if and only if a = b = 2, l = 4, and c = 1, 2 or 3, but then
l2(T ) < l. This means that T ( P and hence 2A(P ) > l. If a > 2 and c 6 l/2 then
2A(T ) = a(l− c)+ b(c−a) > l with equality if and only if a = c = 2, l = 4, and b = 1, 2, 3
in each of which case we have l2(T ) < l, so we get the same conlclusion.

Suppose next that b > l/2, c > l/2, while a > 2. If we also have c > a+ 2 or b > a+ 2
then

2A(T ) = b(c− a) + a(l − c) > 2b > l or 2A(T ) = c(b− a) + a(l − b) > 2c > l.
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If we have both l/2 < b 6 a + 1 and l/2 < c 6 a + 1 then since a 6 l/2 we have
b = c = a+ 1. We get

2A(T ) = l + (a− 1)(l − 1− a) > l.

This inequality is in fact strict since a = l−1 would imply b = c = l and since we assumed
that a > 2.

Figure 9: The case a = b = 1

Finally, if a = 1 then 2A(T ) = bc+ l− b− c, and we have 2A(T ) > l unless bc 6 b+ c,
that is, b = c = 2 or one of b, c is equal to 1. Let b = c = 2 and assume that l = 3. Then
we see that the bound is attained at a triangle lattice-equivalent to T0. If l > 4 we have
2A(T ) = l and l2(T ) = l − 1, which means that P contains T properly and 2A(P ) > l.

If b = 1 then 2A(T ) = l−1 and l2(T ) = l−1, which implies T ( P . Even if (0, 0) ∈ P
we would still have l4(P ) < l and hence P has to contain a lattice point (x, y) ∈ l∆ such
that x > c+ 1 or y > l− c+ 1. In the first of these two cases the area of conv{T ∪ (x, y)}
would be minimal if (x, y) = (c + 1, l − c − 1), and in the second the area would be
minimal if (x, y) = (c − 1, l − c + 1). See Figure 9 for an illustration. In both cases we
get 2A(P ) > 2(l − 1) > l.

If c = 1 we have l2(T ) = l − 1 and hence P contains a point with the x-coordinate
equal to at least 2, which implies 2A(P ) > 2(l − 1) > l.

Corollary 17. Let P ⊂ R2 be a convex lattice polygon with nonzero area A(P ) and
ls�(P ) = h. Then A(P ) > 1

2
ls�(P ) and this inequality turns into equality if and only if

P is lattice-equivalent to conv{(0, 0), (h, 0), (0, 1)}.

Remark 18. It was shown in [3] that any convex lattice polygon P ⊂ R2 has a lattice-
equivalent copy inside a square of size 36A(P ). The corollary strengthens this result
replacing the constant of 36 with 2.

Proof of Corollary 17. If ls∆(P ) = l then P ⊂ l∆ ⊂ [0, l]2 and we have ls�(P ) 6 l =
ls∆(P ). Hence the result of Theorem 15 implies that A(P ) > 1

2
ls∆(P ) > 1

2
ls�(P ). The

bound is attained at P for which the bound of Theorem 15 is attained and also ls∆(P ) =
ls�(P ). We conclude that such P are lattice-equivalent to conv{(0, 0), (h, 0), (0, 1)}.
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5 Classification of minimal lattice polygons P of fixed ls�(P ).

Definition 19. We say that that a lattice polygon P with ls�(P ) = h is minimal if there
is no lattice polygon P ′ properly contained in P such that ls�(P ′) = h.

In this section we will classify all the minimal lattice polygons P of fixed lattice size
ls�(P ) = h. This classification will provide an alternative proof for Corollary 17.

Proposition 20. For integers a, b ∈ [1, h − 1] define T = conv{(0, 0), (a, h), (h, b)}, as
depicted in Figure 10. Then ls�(T ) = h. Such T is minimal if and only if a+ b > h.

Figure 10: Proposition 20

Proof. The first claim follows from Proposition 10. To prove the second claim, suppose
first that a + b > h. We need to show that for any lattice polygon P properly contained
in T we have ls�(P ) < h. We have

w(1,−1)(T ) = (h− b)− (a− h) = 2h− a− b 6 h.

Note that if we drop (a, h) from T to get to P (see Definition 11) then w(1,−1)(P ) < h.

Also, w(0,1)(P ) < h and hence

[
1 −1
0 1

]
composed with a lattice translation maps P inside

[0, h− 1]2. The case of dropping (h, b) is similar. If we drop (0, 0) then P ⊂ [0, h− 1]2.
Next assume that a + b 6 h− 1. If we drop (h, b) to get from T to P then (h− 1, b)

is in P and we get w(1,0)(P ) = h− 1, w(0,1)(P ) = h,

w(1,−1)(P ) = h− 1− b− (a− h) = 2h− 1− a− b > h.

Also, w(1,1)(P ) > h + a > h and hence the standard basis is reduced and by Theorem 8
we have ls�(P ) = h, so T is not minimal.

Proposition 21. For integers a, b, c, d ∈ [1, h− 1] define

Q = conv{(a, 0), (0, b), (h, h− c), (h− d, h)},

as depicted in Figure 11. Then we have ls�(Q) = h. Such Q is minimal if and only if

min{a, b}+ min{c, d} > h or max{a, c}+ max{b, d} < h.

Furthermore, if Q satisfies one of these inequalities it cannot satisfy the other. Also, if Q
satisfies one of them, it is lattice-equivalent to a quadrilateral that satisfies the other.
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Figure 11: Proposition 21

Proof. Since P touches all four sides of [0, h]2, by Proposition 10, we have ls�(P ) = h.
Now assume that one of the two inequalities is satisfied. Then

w(1,1)(Q) = max{2h− c, 2h− d} −min{a, b} = 2h− (min{a, b}+ min{c, d}) < h

or
w(1,−1)(Q) = max{a, c}+ max{b, d} < h.

If we drop one of the vertices from Q to get P , we would also have w(1,0)(P ) < h or

w(0,1)(P ) < h and hence we would be able to use one of

[
1 0
1 ±1

]
,

[
0 1
1 ±1

]
and a lattice

translation to fit P into a smaller square, so Q is minimal.
If neither of the two inequalities holds, we have w(1,1)(Q) > h and w(1,−1)(Q) > h.

If both of these inequalities are strict, then after we drop a vertex to get from Q to P
we would have w(1,1)(P ) > h and w(1,−1)(P ) > h, so the standard basis would still be
reduced. We would also have either w(1,0)(P ) = h or w(0,1)(P ) = h, so we can conclude
that ls�(P ) = h and hence Q is not minimal.

A similar argument works if we have w(1,1)(Q) = h and w(1,−1)(Q) > h, or w(1,1)(Q) > h
and w(1,−1)(Q) = h. We would need to drop a vertex that does not change the width in
the direction (1, 1) in the first case and in the direction of (1,−1) in the second.

If we have w(1,1)(Q) = h and w(1,−1)(Q) = h then max{a, c} + max{b, d} = h and
min{a, b} + min{c, d} = h. Since we have min{a, b} 6 max{b, d} and min{c, d} 6
max{a, c} we can conclude min{a, b} = max{b, d} and min{c, d} = max{a, c}. Hence
we get a = b = c = d = h/2, and then Q contains a horizontal segment of lattice length
h, so Q is not minimal.

Note that Q cannot satisfy both inequalities since then we would get

h < min{a, b}+ min{c, d} 6 max{a, c}+ max{b, d} < h.

If Q satisfies the second inequality then the transformation (x, y) 7→ (h − x, y) maps
Q to conv{(h − a, 0), (0, h − c), (h, b), (d, h)} ⊂ [0, h]2, and its parameters a′ = h − a,
b′ = h− c, c′ = h− b, d′ = h− d satisfy

min{a′, b′}+ min{c′, d′} = min{h− a, h− c}+ min{h− b, h− d}
= 2h−max{a, c} −max{b, d} > h.
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Theorem 22. Let P ⊂ R2 be a minimal lattice polygon with ls�(P ) = h. Then P is
lattice-equivalent to one of the following:

(a) The segment I = [(0, 0), (h, 0)];

(b) The triangle T = conv((0, 0), (a, h), (h, b)), where a and b are integers that satisfy
a, b ∈ [1, h− 1] and a+ b > h;

(c) The quadrilateral Q = conv{(a, 0), (0, b), (h, h − c), (h − d, h)}, where a, b, c, and d
are integers that satisfy a, b, c, d ∈ [1, h− 1] and min{a, b}+ min{c, d} > h.

Proof. We can assume that P ⊂ [0, h]2. Suppose first that P has lattice points on all
four sides of [0, h]2. One way this can happen is when P contains a segment connecting
two opposite vertices of the square. Then, since by Example 9 we have ls�(I) = h and
P is minimal, we conclude that P is lattice-equivalent to I. Next, P could be a lattice
triangle, one of whose vertices is a vertex of [0, h]2 and two other vertices are on the
adjacent sides of the square. In this case, by Proposition 20, P is lattice-equivalent to
T = conv((0, 0), (a, h), (h, b)) with a, b ∈ [1, h − 1] and a + b > h. Finally, P could
be a quadrilateral with exactly one vertex on each side of [0, h]2 and, in this case, by
Proposition 21, P is lattice-equivalent to

Q = conv((a, 0), (0, b), (h, h− c), (h− d, h))

with integers a, b, c, d ∈ [1, h− 1] that satisfy min{a, b}+ min{c, d} > h.
Suppose next that the standard basis is reduced and hence P ⊂ [0, h]2. If P touches all

four sides of [0, h]2, we are done by the above. If P touches only three sides, we can assume,
switching the basis vectors, that w(1,0)(P ) = h, w(0,1)(P ) < h, and also w(1,±1)(P ) > h.

If w(1,1)(P ) = h or w(1,−1)(P ) = h we can use one of

[
1 0
1 ±1

]
to reduce to the case of P

touching all four sides of h�. Hence we can assume that w(1,±1)(P ) > h. If P contains
the entire segment I = [(0, 0), (h, 0)], by the minimality of P and by Example 9 we have
P = I. Otherwise, we can assume that (h, 0) 6∈ P . Let (a, 0) with a < h be the rightmost
point of P in [(0, 0), (h, 0)] and assume that a > 0. We drop (a, 0) to get from P to P ′,
see the first diagram in Figure 12. Since 0 < a < h we have (a, 1) ∈ P and hence the
width in the directions (1,±1) could drop by at most 1. Hence we have w(1,0)(P

′) = h,
w(1,±1)(P

′) > h and we can conclude that ls�(P ′) = h, so P is not minimal.
Finally, let a = 0. Suppose that the highest point of P is on the line y = c and

let (b, c) be the leftmost point of P on this line. We then drop (b, c) to get from P to
P ′. If c > 1 and b < h then (b, c − 1) ∈ P and, as above, we conclude that P is not
minimal. If c = 1 or b = h, with the exception of the case (b, c) = (0, 1), we have
P ⊂ conv{(0, 0), (h, 0), (h, h)}, but then

w(1,−1)(P ) 6 w(1,−1) conv{(0, 0), (h, 0), (h, h)} = h.

If (b, c) = (0, 1) then (h, 1) ∈ P and P is not minimal.

the electronic journal of combinatorics 30(4) (2023), #P4.45 16



Figure 12: P touches three sides of [0, h]2

This classification leads to an alternative argument for Corollary 17. If P is of
nonzero area and contains a lattice segment of lattice length h, then A(P ) > h/2 and
in this case this inequality turns into equality if and only if P is lattice-equivalent to
conv{(0, 0), (h, 0), (0, 1)}. It remains to show that the strict form of this inequality
holds for triangles T and quadrilaterals Q from Theorem 22. For triangle T , we get
A(T ) = (h2 − ab)/2 > h/2 since ab < h(h− 1) as a, b 6 h− 1.

For quadrilateral Q, the inequality 2A(Q) > h rewrites as

2h2 − ab− cd− (h− a)(h− c)− (h− b)(h− d) = (h− a)(b+ c) + h(a+ d)− d(b+ c) > h

Reflecting in the line y = x, if necessary, we can assume that a+ d > b+ c, so

h(a+ d)− d(b+ c) > (h− d)(b+ c) > (b+ c).

Adding this up with (h− a)(b+ c) > b+ c we get

h(a+ d)− d(b+ c) + (h− a)(b+ c) > 2(b+ c) > 2(min{a, b}+ min{c, d}) > 2h,

and this completes the argument.

Acknowledgments

We are grateful to Gennadiy Averkov for pointing us to [9] and for explaining that The-
orem 12 is a corollary of a bound by Fejes-Tóth and Makai. We also would like no thank
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[9] L. Fejes-Tóth and E. Makai, Jr., On the thinnest non-separable lattice of convex
plates, Studia Sci. Math. Hungar. 9 (1974), pp. 191-193.

[10] A. Harrison and J. Soprunova, Lattice Size and Generalized Basis Reduction
in Dimension 3, Discrete Comput. Geom. 67, Issue 1 (2022), pp. 287-310.

[11] A. Harrison, J. Soprunova, and P. Tierney, Lattice Size of Plane Convex
Bodies, SIAM J. Discrete Math., 36, No 1 (2022), pp. 92-102.

[12] M. Kaib and C. Schnorr, The Generalized Gauss Reduction Algorithm, Journal
of Algorithms 21(3), (1996), pp. 565-578.

[13] J. Lagarias and G. Ziegler, Bounds for lattice polytopes containing a fixed num-
ber of interior points in a sublattice, Canadian Journal of Mathematics 43(5) (1991),
pp. 1022-1035.

[14] L. Lovász and H. Scarf, The Generalized Basis Reduction Algorithm, Mathe-
matics of Operations Research 17, Issue 3 (1992), pp. 751-764.

[15] J. Schicho, Simplification of surface parametrizations – a lattice polygon approach,
Journal of Symbolic Computation 36(3-4) (2003), pp. 535-554.

the electronic journal of combinatorics 30(4) (2023), #P4.45 18


	Introduction
	Definitions
	Lower bounds on the area of a plane convex body in terms of its width and lattice size.
	Proving A(P)12ls(P) for lattice polygons P.
	Classification of minimal lattice polygons P of fixed ls(P).

