
On 3-uniform hypergraphs avoiding
a cycle of length four

Beka Ergemlidzea Ervin Győrib Abhishek Methukuc

Nika Saliad Casey Tompkinsb

Submitted: Aug 10, 2022; Accepted: Apr 12, 2023; Published: Oct 6, 2023
c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We show that the maximum number of edges in a 3-uniform n-vertex hypergraph
without a Berge cycle of length four is at most (1+ o(1))n

3/2
√
10

. This improves earlier
estimates by Győri and Lemons, and by Füredi and Özkahya.
Mathematics Subject Classifications: 05C65, 05C38

1 Introduction

Given a hypergraph H, let V (H) and E(H) denote the set of vertices and edges of H.
A hypergraph is called r-uniform if all of its edges have size r. Berge [1] introduced the
following definitions of a path and a cycle in a hypergraph.

Definition 1. A Berge cycle of length ℓ 󰃍 2 in a hypergraph is a set of ℓ distinct vertices
{v1, . . . , vℓ} and ℓ distinct edges {e1, . . . , eℓ} such that {vi, vi+1} ⊆ ei with indices taken
modulo ℓ. A Berge path of length ℓ is a set of ℓ+ 1 distinct vertices {v1, . . . , vℓ+1} and ℓ
distinct edges {e1, . . . , eℓ} such that for 1 󰃑 i 󰃑 ℓ we have {vi, vi+1} ⊆ ei.

Let exr(n,BCℓ) denote the maximum number of edges in a r-uniform n-vertex hyper-
graph without a Berge cycle of length ℓ. In the case r = 2 we write simply ex(n,Cℓ).

A well-known result of Bondy and Simonovits [3] asserts that for all ℓ 󰃍 2 we have
ex(n,C2ℓ) = O(n1+1/ℓ), however, the order of magnitude is only known to be sharp in
the cases ℓ = 2, 3, 5. Erdős, Rényi and Sós [5] proved the asymptotic result ex(n,C4) =
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n3/2

2
+o(n3/2), see also [4, 8]. Győri and Lemons [11] extended this result (and the Bondy-

Simonovits theorem) and showed in particular that exr(n,BC4) = O(n3/2) for all r 󰃍 3.
It follows from the results of Füredi and Özkahya [9] that ex3(n,BC4) 󰃑 (1 + o(1))2

3
n3/2

(see Theorem 2 in [9]). In this note, we significantly improve this bound as follows.

Theorem 2.

ex3(n,BC4) 󰃑 (1 + o(1))
n3/2

√
10

.

Note that, the best known lower bound ex3(n,BC4) 󰃍 (1 − o(1))n
3/2

3
√
3

comes from a
construction of Bollobás and Győri [2] with a more general version stated in [10]. We
take a C4-free bipartite graph with color classes of size n/3 and (2n/3)3/2

2
√
2

= n3/2

3
√
3

edges
asymptotically. Fix one of the classes and for each vertex v in that class, we take an
additional vertex v′ and add it to every edge in the graph incident to v. This results in a
3-uniform hypergraph on n vertices with n3/2

3
√
3

edges asymptotically, and it is easy to verify
this hypergraph contains no Berge C4.

Related results. Let us briefly mention some important related results where one or
more short Berge cycles are forbidden. Recall that a hypergraph without a Berge cycle of
length two is linear (i.e., any two hyperedges intersect in at most one vertex). The famous
(6, 3)-problem is equivalent to determining ex3(n, {BC2, BC3}). This was considered by
Ruzsa and Szemerédi in their classical paper [13], where they showed that n

2− c√
logn <

ex3(n, {BC2, BC3}) = o(n2) for some constant c > 0. Lazebnik and Verstraëte [12] stud-
ied hypergraphs containing no Berge cycle of length less than five (i.e., girth five) and
showed that ex3(n, {BC2, BC3, BC4}) = 1

6
n3/2+ o(n3/2). Ergemlidze, Győri and Methuku

[6] strengthened their result by showing that the same bound holds even if one does not for-
bid the Berge triangle i.e., they showed ex3(n, {BC2, BC3, BC4}) ∼ ex3(n, {BC2, BC4}).
Bollobás and Győri [2] studied hypergraphs containing no Berge five cycle and showed
that (1+o(1))n

3/2

3
√
3
󰃑 ex3(n,BC5) 󰃑

√
2n3/2+4.5n. Ergemlidze, Győri and Methuku [7] im-

proved this result by showing that ex3(n,BC5) < (1+o(1))0.254n3/2. Moreover, in [6], the
same authors also studied the analogous question for linear hypergraphs and determined
the bound asymptotically by showing that ex3(n, {BC2, BC5}) = n3/2/3

√
3 + o(n3/2).

2 Proof of the upper bound in Theorem 2

Now we prove Theorem 2. Let H be a 3-uniform hypergraph with no Berge C4 and no
isolated vertices. A block B of a hypergraph H is defined to be a maximal subhypergraph
of H with the property that for any two edges e, f ∈ E(B), there is a sequence of edges
of H, e = e1, e2, . . . , et = f , such that |ei ∩ ei+1| = 2 for all 1 󰃑 i 󰃑 t − 1 and V (B) =
∪h∈E(B)h. It is easy to see that the blocks of H define a unique partition of E(H).

For a block B and an edge h ∈ E(B), we say h is a leaf if there exists x ∈ h such that
the only edge of B incident to x is h. Let B′ be the set of non-leaf edges of B. By the
definition, if B′ contains at least two edges it contains two edges sharing two vertices of H.
Let two such edges be {v, u, w} and {v, u, w′}. If there is an edge {w,w′, v} or {w,w′, u},
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note that at most one such edge may exist, then these three edges induce K
(3)−
4 , the

3-uniform hypergraph on 4-vertices and 3 edges, and B = K
(3)−
4 since H is Berge C4-free

hypergraph. If neither {w,w′, v} nor {w,w′, u} is an edge, then since {v, u, w} is not a
leaf edge there is an edge in B incident with vertices v and w or vertices u and w, without
loss of generality we assume there is an edge {v, w, v′}, for some vertex v′ distinct from
v, u, w, w′. Similarly, we have an edge {v, w′, v′′} or {u, w′, v′′} for some vertex v′′ distinct
from v, u, w, w′. This is a contradiction since w, u, w′, v, w induces a Berge C4 in H in
this order. Therefore we have that the set of non-leaf edges of a block B is either empty,
a single edge, or K

(3)−
4 . Even more, if the set of non-leaf edges of B is E(K

(3)−
4 ), then B

does not contain a leaf edge. Thus, the following classification of the blocks into type 1
and type 2 blocks is indeed partitioning of the set of all blocks B(H) := {B | B is a block
in H}.

• We say B ∈ B(H) is type 1 if there exists an edge e ∈ E(B) such that for all distinct
f1, f2 ∈ E(B), f1, f2 ∕= e, we have |e ∩ fi| = 2, for i = 1, 2 and f1 ∩ f2 ⊆ e. (Note
that if a block consists of a single edge it is a type 1 block since it trivially satisfies
the condition.)

• We say B ∈ B(H) is type 2 if B = K
(3)−
4 .

Define the 2-shadow of H to be the graph on the same set of vertices as H whose
edges are all pairs of vertices {x, y} for which there exists an edge e ∈ E(H) such that
{x, y} ⊂ e. We denote the 2-shadow of H by ∂H. The proof of Theorem 2 will proceed by
estimating the number of 3-paths (3-vertex paths) in the 2-shadow of H in two different
ways. To this end, we introduce several notions of the degree of a vertex. Given a vertex
v in a hypergraph H, d(v) denotes the classical hypergraph degree of v, in particular
d(v) = |{h ∈ E(H) : v ∈ h}|. Let ds(v) be the (graph) degree of v in the 2-shadow of the
hypergraph, in particular ds(v) = |{e ∈ E(∂H) : v ∈ e}|. The excess degree of the vertex
v to be dex(v) = ds(v) − d(v). Finally, we define the block degree db(v) to be the total
number of blocks containing an edge that contains v.

Notice that for every 4-cycle x1, x2, x3, x4, x1 of ∂H, there exists three distinct integers
1 󰃑 i < j < k 󰃑 4 such that {xi, xj, xk} ∈ E(H), otherwise H contains a copy of
Berge C4. We call this edge a representative edge of this 4-cycle. Note that each 4-cycle
of ∂H has either 1, 2 or 3 representative edges since H is Berge C4-free hypergraph. Two
edges of H sharing two vertices yield a C4 in ∂H. However, these are not the only types
of C4’s in ∂H. We call a 4-cycle x1, x2, x3, x4, x1 in ∂H rare if the sub-hypergraph of H
induced by the vertices {x1, x2, x3, x4} does not contain two disjoint edges e and f with
both containing {x1, x3} or {x2, x4}. In the following claim, we show that the number of
such cycles is small.

Claim 3. For every a, b ∈ V (H), there are at most two 3-paths not contained in a single
edge of H with endpoints a and b.

Proof. Suppose, by contradiction, that there are three distinct vertices v1, v2, v3 different
from a and b such that a, vi, b forms a 3-path of ∂H for all integers 1 󰃑 i 󰃑 3. It follows
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that there are three Berge paths a, ei, vi, fi, b, for integers 1 󰃑 i 󰃑 3 in H. Note that those
edges are not necessarily distinct. But we have ei ∕= fi for i ∕= j, since {a, vi} ⊂ ei and
{b, vj} ⊂ fj since H is 3-uniform. Note that if e2 = e3, then e2 = {a, v2, v3}, hence e1 ∕= e2.
Similarly we have either f1 ∕= f2 or f1 ∕= f3. We may assume, without loss of generality,
that e1 ∕= e2, e3. It follows that either a, e1, v1, f1, b, f2, v2, e2, a or a, e1, v1, f1, b, f3, v3, e3, a
is a Berge C4, a contradiction.

We now define a particular type of 3-path in ∂H. A 3-path, x1, x2, x3, is called good
if {x1, x2, x3} /∈ E(H) and there is no x ∈ V (H) such that x, x1, x2, x3, x is a rare cycle
of ∂H. From Claim 3 it follows that for every a, b ∈ V (H) there are at most two good
3-paths with endpoints a and b.

Claim 4. There are at most 6 |E(H)| rare 4-cycles in ∂H.

Proof. We fix an edge {a, b, c} ∈ E(H). It suffices to show that the edge {a, b, c} is
representative of at most 6 rare 4-cycles (that is, {a, b, c} is contained in the vertex set
of at most 6 rare 4-cycles). Suppose by contradiction that this is not true. Observe that
there are three possible positions for a fixed vertex v among the vertices of a rare 4-cycle in
∂H containing {a, b, c}. By the pigeonhole principle, there are 3 distinct vertices v1, v2, v3
different from a, b, or c with the same position in the 4-cycle. Without loss of generality,
we may assume they form a 4-cycle in the order vi, a, c, b, vi. Therefore from the definition
of a rare 4-cycle, there are at least three 3-paths not contained in a single edge of H from
a to b, a contradiction to Claim 3.

Using Claim 4, it is easy to see that the number of 3-paths in ∂H which are not good
is at most 3 |E(H)|+3 · 6 |E(H)| = 21 |E(H)|. Here we use the fact that each rare 4-cycle
induces an edge of H.

By conditioning on the middle vertex of the 3-path, we have the following estimate on
the number of 3-paths in ∂H:

#(3-paths in ∂H) =
󰁛

v∈V (H)

󰀕
ds(v)

2

󰀖
=

󰁛

v∈V (H)

󰀕
d(v) + dex(v)

2

󰀖
.

The following claim provides an upper bound on the number of good 3-paths in ∂H.

Claim 5.
#(good 3-paths in ∂H) 󰃑 2

󰀕
n

2

󰀖
− 4

󰁛

v∈V (H)

󰀕
db(v)

2

󰀖
.

Proof. Fix a vertex v and consider two adjacent edges {v, x1, x2} and {v, y1, y2} such that
they belong to the different blocks; clearly the vertices v, x1, x2, y1, y2 are all distinct. We
claim that there is at most one good 3-path, namely xi, v, yj, between xi and yj, for each
i, j ∈ {1, 2}. Suppose this is not the case, then without loss of generality, there exists
u ∕= v such that x1, u, y1 is a good 3-path. By the definition of a good 3-path, there are
two distinct edges hx, hy ∈ H such that x1, u ∈ hx and y1, u ∈ hy. If {v, x1, x2}, {v, y1, y2},
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hx and hy are all different edges, then clearly there is a Berge 4-cycle. Therefore either
{v, x1, x2} = hx or {v, y1, y2} = hy. Hence we have u ∈ {x2, y2}, without loss of generality
we may assume u = x2. Observe that the 4-cycle x1, x2, y1, v of ∂H contains a good
3-path and so by definition the 4-cycle x1, x2, y1, v is not a rare 4-cycle. Hence we have
a contradiction to the statement that edges {v, x1, x2} and {v, y1, y2} belong to different
blocks. We conclude that there is at most one good path between xi and yj. So there are
at least 4

󰁓
v∈V (H)

󰀃
db(v)
2

󰀄
pairs of vertices which have at most one good 3-path between

them. From Claim 3, for each pair of vertices, there are at most two of good 3-paths
in ∂H. These observations complete the proof of Claim 5.

Thus, since the number of 3-paths which are not good is at most 21 |E(H)|, we have
󰁛

v∈V (H)

󰀕
d(v) + dex(v)

2

󰀖
= #(3-paths in ∂H) 󰃑 2

󰀕
n

2

󰀖
− 4

󰁛

v∈V (H)

󰀕
db(v)

2

󰀖
+ 21 |E(H)| .

(1)

Claim 6. We have
󰁓

v∈V (H) dex(v) 󰃍 |E(H)| and
󰁓

v∈V (H) db(v) 󰃍 |E(H)|.

Proof. First, we prove lower bounds on the sums
󰁓

v∈V (H) dex(v) and
󰁓

v∈V (H) db(v). For
each block B and v ∈ V (B), let dBex(v) denote an excess degree of v inside the hyper-
graph B. If B is type 1, then every vertex v ∈ V (B) has dBex(v) 󰃍 1, so for type 1 blocks,󰁓

v∈V (B) d
B
ex(v) 󰃍 |V (B)|. It is easy to see that for every block B we have |V (B)| > |E(B)|,

so
󰁓

v∈V (B) d
B
ex(v) > |E(B)|, for every type 1 block B.

If B is a type 2 block, then
󰁓

v∈V (B) d
B
ex(v) = 3 = |E(B)| . Therefore,

󰁛

v∈V (B)

dBex(v) 󰃍 |E(B)|

for every block B in B(H). This together with the fact that the blocks define a partition
of the edges E(H) implies

󰁛

v∈V (H)

dex(v) =
󰁛

B∈B(H)

󰁛

v∈V (B)

dBex(v) 󰃍
󰁛

B∈B(H)

|E(B)| = |E(H)| .

On the other hand, a simple double-counting argument yields
󰁛

v∈V (H)

db(v) =
󰁛

B∈B(H)

|V (B)| 󰃍
󰁛

B∈B(H)

|B| = |E(H)| .

Using Claim 6, we have the upper bound

4 |E(H)| = 3 |E(H)|+ |E(H)| 󰃑
󰁛

v∈V (H)

(d(v) + dex(v)).

Since
󰀃
x
2

󰀄
is a convex function, by Jensen’s inequality we have

󰀕 1
n

󰁓
v∈V (H)(d(v) + dex(v))

2

󰀖
󰃑 1

n

󰁛

v∈V (H)

󰀕
d(v) + dex(v)

2

󰀖
.
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Combining the above two inequalities we get

n

󰀕4|E(H)|
n

2

󰀖
󰃑

󰁛

v∈V (H)

󰀕
d(v) + dex(v)

2

󰀖
. (2)

Similarly, by Claim 6 and Jensen’s inequality, we have

n

󰀕 |E(H)|
n

2

󰀖
󰃑

󰁛

v∈V (H)

󰀕
db(v)

2

󰀖
. (3)

Combining (1), (2) and (3) we obtain

n

󰀕4|E(H)|
n

2

󰀖
+ 4n

󰀕 |E(H)|
n

2

󰀖
󰃑 2

󰀕
n

2

󰀖
+ 21 |E(H)| . (4)

Rearranging (4) yields the desired bound,

|E(H)| 󰃑 (1 + o(1))
n3/2

√
10

.
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