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Abstract

A curious generating function So(z) for permutations of [n] with exactly n inver-
sions is presented. Moreover, (zC(x))!Sp(x) is shown to be the generating function
for permutations of [n] with exactly n — ¢ inversions, where C(z) is the generating
function for the Catalan numbers.

Mathematics Subject Classifications: 05A05, 05A15, 05A19

1 Introduction

The famous triangle of Mahonian numbers starts as follows:

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 2 2 1 0 0 0 0 0 0
1 3 5 6 5 3 1 0 0 0
1 4 9 15 20 22 20 15 9 1
1 ) 14 29 49 71 90 101 101 90
1 6 20 49 98 169 259 359 455 531
1 7 27 76 174 343 602 961 1415 1940
1 8 35 111 285 628 1230 2191 3606 5545
Its n-th row records the distribution of inversions on permutations of [n] = {1,2,...,n}.

The corresponding generating function is [6]

(1+m)(1+x+x2)---(1—l—x+---—I—x”_l):ﬁll__a;j. (1)

Jj=1
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We shall derive generating functions for the subdiagonals on or below the main diagonal
of the table above. The first three of those are

So(z) = 1+ 2° + 52" + 222° + 902° + 35927 + 14152° + - - -

Si(x) = o+ 2 + 22° + 62 + 202° 4 712° 4 25927 + 9612° + - -

Sy(z) = 2% 4 223 + 5 + 152° + 492° 4 16927 4 6022° + - - -
In general, if i is a non-negative integer, then S;(z) is the generating function for per-

mutations of [n] with exactly n — i inversions. In other words, if we let I,,(k) denote the
number of permutations of [n] with k inversions, then

Si(x) =Y ILi(n—i)"

It should be noted that there is a known closed expression for I,,(k) when k < n, namely
the Knuth-Netto formula [4, 7]:

n+k—1 - (n+k—u;—j5—1 - An+k—u;—1
L(k) = —1)y i —1y J
=" ) e () e ()
Jj=1 j=1
where u; = j(3j — 1)/2 is the j-th pentagonal number. This formula can be proved using
(1) and Euler’s pentagonal number theorem [1]. For instance, u; = 1, uy = 5, and the
coefficient of z° in Sy(z) is

11 10 —uy 11 —uy 11 — uy
Is(6) = — — = 90.
0= (o)~ (o) (o)« (G2)
Let C(z) = (1 — /1 —4x)/(2x) be the generating function for the Catalan numbers,
Cn = (*")/(n+1). We show (Theorem 3) that, for any non-negative integer 4,
Si(x) = (2C(x)) So(x),

thus reducing the problem of determining S;(x) to that of determining Sy(x).
Denote by o(n) the sum of divisors of n, and denote by p(n) the number of integer
partitions of n. We show (Theorem 4) that

So(x) = R(xC’(x)),

where the power series R(z) can be expressed in any of the following three equivalent
ways

R(z) = ==L T[(1 - )

1—2x ey
log R(z) = 32" — o(n) - 1)%";
1/R(x) = 1= (p(1) +p(2) + -+ p(n—1) — p(n))a".

See Equation (3), Proposition 12 and Proposition 13.
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2 Factoring permutations with few inversions

Let S,, denote the set of permutations of [n]. The inversion table of 1 = ajas---a, in S,
is defined as b,b, - - - b, where b; is the number of elements to the left of and larger than
a;; in other words, b; is the cardinality of the set {j € [¢ — 1] : a; > a;}. For instance, the
inversion table of 3152746 is 0102021. The number of inversions in 7, denoted inv(7), is
simply the sum of the entries in the inversion table for 7. We will work with an invertible
transformation of the inversion table that we call the cumulative inversion table. 1t is
obtained by taking partial sums of the inversion table: by, by + by, by + by + b3, etc. The
cumulative inversion table of 3152746 is 0113356.

A subdiagonal sequence is a sequence of non-negative integers whose k-th entry is
smaller than k. It is easy to see that the inversion table of a permutation is a subdiagonal
sequence and that any such sequence is an inversion table, so the two concepts can be
used interchangeably.

2n

) /(n+ 1) weakly increasing subdiagonal sequences

Lemma 1. There are exactly C,, = (
of length n.

Proof. Let a weakly increasing subdiagonal sequences bibs - - - b, be given, and form the
sequence aias - - - a, by setting a; = b; + 1. Then a; <7and 1 < a; <as < --- < a,. By
Exercise 6.19(s) in [9] there are exactly C,, such sequences. O

Let Sk = {r € S, : inv(7) = k} be the set of permutations of [n] with k inversions,
and let C, be the subset of S"~! consisting of those permutations whose every prefix of
length &£ > 1 has fewer than k inversions. For n = 0,1,2,3,4 those are 0, {1}, {21},
{231,312}, and {1432, 2341, 2413, 3142, 4123}.

Lemma 2. Forn > 1 we have |C,| = C,,_1.

Proof. Clearly, the cumulative inversion table v = ¢yco - - - ¢, of any permutation 7 € S,
is weakly increasing. Also, the last letter, ¢,, of v is the number of inversions in 7. In
particular, if 7 € C, then ¢, = n — 1 and 7 is uniquely determined by v = cico -+ - ¢,1.
Now, any k-prefix of v is the cumulative inversion table of a permutation with fewer than
k inversions. Moreover, since the only condition on 7 is that each k-prefix has fewer than k
inversions, any weakly increasing subdiagonal sequence of length n — 1 is the cumulative
inversion table of such a permutation. As pointed out in Lemma 1, such sequences are
counted by the Catalan numbers. O

Recall that S;(x) is the generating function for permutations of length n with n — 4

inversions: .
Si(x) =[S am.

n=0

Also, let C(z) = (1 —+/1 —42)/(2x) be the generating function for the Catalan numbers,
C,=(")/(n+1).
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Theorem 3. Fori > 0 we have

n
St S x Co
k=0

and thus the generating functions Sii1(x) and S;(x) satisfy the identity
Sit1(x) = 2C(x)S;(z),

Equivalently,
! ’ Si(z) = (2C(x))"So(x).

Proof. Let m = ajay -+ - a, € 8" "1 We shall “factor” 7 into two parts o and 7 such that,
for some k in {0,1,...,n}, o belongs to S,’j_i and 7 belongs to C,_,. For any permutation
p, let A(p) = inv(p) — |p|. Consider what happens if we apply A to successive prefixes of
7. In other words, consider the sequence

Ale), Alay), Alaraz), ..., Alaay - - ay,), (2)

where € denotes the empty prefix. Clearly, this sequence can decrease by at most one at
a time. Moreover, A(e) = 0 and A(ajaz---a,) = A(r) = —i — 1, and thus the value
—i occurs at least once. Note that the assumption ¢ > 0 is crucial for this argument to
work. Let o = a; - - a; be the longest prefix of 7 such that A(o) = —i. Additionally, let
T = Q41 Gy be such that 7 = o7. For instance, if 7 = 4213675 € 8¢, then i = 0, the
sequence (2) is (0,—1,—1,0,0,—1,—2,—1), and 7 factors into o = 4213 and 7 = 675.

By definition, inv(c) = k — ¢. We shall prove that ¢ is a permutation of [k], and thus
7 is a permutation of {k+ 1,k +2,...,n}. Let

d=#{(i,j) : ai>a;, i<k, j>k}.

That is, d is the number of inversions in 7 with one leg in o (i < k) and the other leg in
7 (j > k). Then inv(m) = inv(o) + inv(7) + d. We want to prove that d = 0. Suppose
to the contrary that d > 1 and let 7" be the shortest prefix of 7 such that 7’ = o7’ has
an inversion with one leg in ¢ and the other in 7. Now, in any such inversion the “leg”
in 7/ must in fact be the last element of 7" due to the minimality of 7/. Thus there is an
element of o larger than the last element of 7/, but smaller than all the other elements
of 7/, and hence the last element of 7’ is its smallest. In particular, inv(7") > |7| — 1.
Now, consider inv(7') = inv(o7’). By definition, inv(c) = |o| —i. We have just seen that
inv(7’') > |7'| — 1 and, by assumption, there is also at least one inversion with one leg in
o and the other in 7/. Thus,

inv(7') = (lof —=2) + (|7 = 1) + 1 = || —i

and A(7") > —i. Now, by the same intermediate value type argument as above, there is
some prefix o’ of 7 containing 7’ that satisfies A(o’) = —i, contradicting the maximality
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of . Thus there are no inversions with one leg in ¢ and the other in 7, and consequently
o is a permutation of [k] and 7 a permutation of {k +1,...,n}.

Having proved that o € ;" it immediately follows that inv(t) =n—i—1— (k—i) =
n — k — 1. It remains to prove that 7 has no nonempty prefix with as many inversions as
letters. Suppose that A(7') > 0 for some nonempty prefix 7’ of 7. Then some nonempty
prefix 77 of 7 would satisfy A(7”) = 0 by a similar argument as above, but then the prefix
o1” of m would satisfy A(o7”) = —i, contradicting the maximality of o. O

While the above theorem represents some progress in understanding permutations
with few inversions one crucial piece of the puzzle is missing. Theorem 3 relates all the
Si(z)’s to Sp(x), but we need a formula for Sy(z), which is what we shall offer in the next
section.

3 A formula for Sy(x)

Let us write A = n to indicate that A is an integer partition of n, and u F n to indicate
that p is an integer composition of n. Further, let

1 11—z
Par(z) = H Tk and Comp(z) = T 50

E>1

be the generating functions for integer partitions and compositions. With Par,(x) =
Par(z) — 1 denoting the generating function for nonempty integer partitions we have

1

Par(z) ' = ——
ar(z) 1+ Par(z)

= 3 (- D (Par. ()

k>0

Thus Par(z)~! counts signed tuples of nonempty integer partitions, where the sign of such
a tuple (AL, ..., \F) is (=1)*. Define

R(z) = Comp(z)Par(z) " (3)
=1+ 2%+ 22" + 52° + 92° + 1927 + 372% + - -

Then R(z) counts elements of the set

where the sign of the tuple (A\!, ..., \f;pu) is (—=1)F. Writing (AL,...,\*;u) F n when
(AL, ..., A% u) is in R, we then have, by definition,
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For illustration we list the elements of R3 below. Negative elements are found in the
left column and positive elements in the right column:

, (0;111)
L
(1,1,156) (0;21)
(11;1) 1(?5?
(1115¢) (1,1:1)
@  (L1L9
231 ﬁf?
B9 @i

Here, € denotes the (empty) integer composition of 0 and () denotes an empty tuple (of
integer partitions). The sequence 1,0,0,1,2,5,9,19,37,74, ... of coefficients of R(z) is
recorded in entry A178841 of the OEIS [8]. There it is said to count the number of pure
inverting compositions of n; see Propositions 2 and 3 in [5].

We are now in position to state our main result regarding Sp(x).

Theorem 4. We have Sy(z) = R(zC()), or, equivalently, So(z(1 — z)) = R(x), which,
by Theorem 3, implies that Si(z) = (2C(z)) R(zC(z)).
Before proving this we need to better understand what combinatorial structures R(x)

enumerates, so we shall define a sign-reversing involution ¢ on R that singles out a positive
subset Fix(¢) of R for which

R(z) = | Fix(¢) N Ry| 2",

n=0

First, however, we define the auxiliary function
split:{u:,uF:n}—)U{)\:)\l—@'}x{u:/LI:n—i}
i=0

by split(p) = (A, i/) where p = A/ and A is the longest prefix of u that is weakly de-
creasing, and thus defines a partition. For instance, split(311212) = (311, 212), split(21) =
(21, €), split(12) = (1, 2) and split(e) = (¢, €). Let lir(x) be the length of the longest strictly
increasing prefix (also called leftmost increasing run) of p. For instance, lir(121) = 2,
lir(213) = lir(1122) = 1 and lir(e) = 0.

Lemma 5. Let A\ be a nonempty partition and p a composition such that lir(p) is even.
Then lir(Ap) is odd. Moreover, if a is the last element of A\, then

(A €) if p =€ is empty
OV = § (A g) if (b ) = split() and a < b;
(Ao, 1) af (b, i) = split(u) and a > .
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Note that if 11 is nonempty and lir(x) is even, then the first element of  must be smaller
than the second, and hence the longest weakly decreasing prefix of u is a singleton (the
first letter of w). Thus the lemma above covers all cases. We now define the promised
involution ¢ on R,,.

Definition 6. Let (A',..., \¥;u) = n. If lir(u) is even then

(0; ) if k= 0;

M W) =
! ) {(Al,...,xk—l;xku) it k> 0.

If lir(p) is odd and (pz, ') = split(x) then

(AL AR pas ) if lir(y) is even;

MR ) =
# ) {(Al,...,kk,p;x,u’) if lir(y') is odd.

The idea behind the map is that we can create an involution by moving a partition A
back and forth between being considered as part of the list of partitions or as a prefix of
our composition . The parity of lir(u) allows us to know if we, so to speak, have already
prepended a A or not; indeed lir(Au) is odd if lir(u) is even.

Let us look at a few cases illustrating Definition 6. A simple case is that of a fixed
point: lir(3644) = 2 is even and

&(0; 3644) = (0; 3644).
Consider (A ) = (6211;¢€) = 10. Then lir(z) = 0 is even, k = 1 and
#(6211;€) = (0;6211).
Another example of when lir(x) is even is
6(11,62; 243352) = (11;62243352).

Finally, three cases when lir(u) is odd are

o(11,62; 643452) = (11,62, 643; 452);
$(11,62; 643425) = (11,62, 64; 3425);
B(0;643425) = (64; 3425).

Lemma 7. The map ¢ is a sign-reversing involution on R, whose fixed points are of the
Jorm (0; ) with pE n and lir(n) even.

Proof. Let w = (A',...,\*; u) F n be given. It is clear that ¢(w) F n and that the first
case of the definition, namely lir(u) is even and k& = 0, covers all fixed points. Further,
the second case shortens the list of partitions by one while the third and fourth cases

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(4) (2023), #P4.7 7



lengthen the same list by one. In all three cases the sign of w is thus reversed. It remains
to show that ¢(¢(w)) = w and we consider each of the last three cases of the definition
of ¢ separately.

If lir(u) is even and k > 0, then ¢p(w) = (A, ..., \*=1: \fp). To show that ¢(¢(w)) = w
we consider the three cases of Lemma 5. If i is empty then split(\*u) = (A*, €), lir(e) = 0
is even and

BN TR = (VL T A ) = w,

If u is nonempty then let (b, 1) = split(u). Also, let a be the last element of A\*. If a < b
then split(\*p) = (¥, i), lir(u) is even (by assumption) and

AL AT NEL) = (AL NN ) =
If @ > b then split(\pu) = (\*b, /), lir(p') = lir(p) — 1 is odd and
SN, AT NEL) = (AL N R ) = (A0 ) = w
If lir(p) is odd then let (pz, p') = split(p). If, in addition, lir(x') is even, then
d(d(w)) = d(A, .. N pmp) = (A, N pap) = w.
If lir(/) is odd, then ¢(w) = (AL, ..., \¥ p;zp) and, since lir(zy/) is even,
d(p(w)) = ¢\ N prap’) = (N, N pap) = w,
which concludes the last case and thus also the proof. O
Next we aim at proving Theorem 4. That is, we wish to prove that
So(z(1 —x)) = R(x). (4)

The proof is somewhat involved and we have divided it into three lemmas that we now
outline:

e Lemma 7 above gives a convenient combinatorial interpretation of the right-hand
side of (4). In Lemma 8 we provide a (signed) combinatorial interpretation of left-
hand side of (4): We define a family of sets {7}, },>0 such that the coefficient of z™

in Sp(x(1 —x)) is
(z(1 —x)) S s 5

(S,8) €Tn

e The next step would ideally be to define a sign-reversing involution on 7, whose
fixed-points are all positive and thus arrive at a result akin to Lemma 7. What we
have found is a sign-reversing involution that does not quite fulfill this ideal, in that
some fixed-points are negative: Lemma 10 shows that the sum (5) can be rewritten

> =l (6)
A\wp)lEn
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where the meaning of (A, ) I n is given in Definition 9 below. This sum is
preferable to (5) for two reasons. First, it has fewer terms. Second, the combinatorial
structures being summed over are closer in spirit to the fixed points of ¢ (Lemma 7)
than the members of T,, are.

e Finally, by means of a natural equivalence relation, Lemma 11 shows that the value
of the sum (6) equals the number of fixed points of ¢ on R,, as desired.

Having presented an outline of the proof of (4) we now dive into the details. Let T}, x
be the set of pairs (S, 3), where S C [n — k], |S| = k, and

6 = (617527 cee 7ﬁn—k>
is a subdiagonal sequence with sum 3 + B2 + -+ + B, = n — k. Also, let

T, = O Ty
k=0

For instance, To = {(0,¢€)}, T1 and T3 are empty, T3 = {(0,012)}, and T} consists of the
following 8 elements:

(0,0121), (0,0112), (9,0103), (@,0022), (B,0013),
({1},012), ({2},012), ({3},012).
Lemma 8. We have
So(z(1—2x)) = Z( Z (—1)"9')30“.
n=0 \(S,8) € T

Proof. Let (S,5) € T, . View [ as an inversion table and let m be the corresponding
permutation on [n — k]. Note that 7 has exactly n — k inversions and thus the cardinality
of T, 1 is |Sr’;”:f ("_k) The result now follows from a direct calculation:

k
So(x(l—x)) =Y _|Spa"(1—a)"
n=0
" /n
=S8y <k) (=1)*a"
n=0 k=0
B n n—k n—k‘ _1\k n
(EwC )
(S )
n=0 k=0 \(S,8) € Ty,
_ <—1>'S'>x”- -
n=0 \(S,8) €Ty,
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We shall show that the set T}, in the inner summation in Lemma 8 can be replaced
with a smaller set, but first we give a few definitions.
For a composition p = (p1, . .., px) define dmax(p) as 0 if £ < 1 and

dmax(p) =max{py; —j+1:2<j <k}

otherwise. If we plot y; against j this is the largest distance it goes over the line y = z—1,
excluding p; for technical reasons. For instance, if u = 3241261 then dmax(pu) = uz — 3+
1 = 2 as depicted below:

M1 H2 B3 p4 K5 He U7

Up until this point we have listed the parts of a partition A in weakly decreasing order.
In what follows, it will be convenient to instead list them in weakly increasing order. For
instance, we may write A = (A1, Ao, A3) = (1,3,4) F 8.

Definition 9. Let A\ be an integer partition and p an integer composition. Let their total
sum be n and let d = dmax(u). We shall write

(A p)lEn
if the following three conditions hold:
e )\ has distinct parts (and is hence strictly increasing);
e ANFe = A\ <d,
o u#e = u <d.

For instance, (A, ) with g = 3241261 as in the example above does not satisfy Defini-
tion 9 regardless of what the partition \ is; the reason being that 3 = p; > dmax(u) = 2.
Let us consider the sets of pairs (A, u) IF n for small n. For n = 0 there is a single pair,
(€,€); for n = 1,2 there are none; for n = 3 there is a single pair, (¢, 12); for n = 4 there
are two, (€,121) and (¢, 13); and for n = 5 there are seven:

(6,113), (6,1211), (¢,122), (€, 131), (¢, 14), (¢,23), (1,13).
As a larger example we offer (134,161121) IF 20.

Lemma 10. We have
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Proof. We shall give a sign-reversing involution on 7;, whose fixed points can be bijectively
mapped to pairs (A, p) IF n.

Let (S,8) € Thn—r with B = (81, B2, ..., 5). We will say that f; is marked if i € S.
An index 7 such that g; = 0 and §;;1 > 0 will be called a 0-ascent. If 5; = ¢ — 1, then we
call 7 a diagonal index and (; a diagonal entry. We shall now define an endofunction

V1, =T,

which we will later prove is a sign-reversing involution. Consider the entries 3; in descend-
ing order by index and define ¥ (S, ) according to which of the following four mutually
exclusive cases is encountered first:

1. If B; is marked and there is no 0-ascent j > i, then we replace ; with an unmarked
bigram zy whose first letter is zero, = 0, and whose last letter is y = §; + 1. In
particular, S is mapped to S\ {i}.

2. If B; is marked, 7 is not a diagonal index and there is a 0O-ascent j > 4, then we
replace 3; with an unmarked (3; + 1 and append an unmarked zero to the end of .
Again, S is mapped to S\ {i}.

3. If B; and (;,1 are both unmarked, 7 is a 0-ascent and there is no diagonal index
J > 1+ 1, then we replace the bigram (;3;,1 by a single marked ;11 — 1. Here, S
is mapped to S U {i}.

4. If ; # 0 is unmarked, 5, = 0 and there is some 0-ascent j > i, then we replace (3;
by a marked ; — 1 and remove .. Here, S is mapped to S U {i}.

If none of these cases are encountered we let ¥(S, 5) = (S, 5) be a fixed point. It is
easy to see that each case preserves subdiagonality. Cases 1 and 2 remove a mark, increase
the sum by one and add an element; consequently the image (95, ) is in T, ,—,—1. Cases
3 and 4 add a mark, decrease the sum by one and remove an element, so in these two
cases (S, ) is in T}, ,—p41. Thus ¢ is well-defined and sign-reversing. Let us consider
some examples:

o Case 1 ati=3: ¢({1,3},0103) = ({1},01013)
o Case 2 at i = 3: ({2,3},0010150) = ({2}, 00201500)
e Case 3 at i =4: ¥({1},002040) = ({1, 4}, 00230)

Case 4 at i = 2: 1({3},0120250000) = ({2,3},002025000)

A fixed point: ({1, 3},0020152000) = ({1,3},0020152000).
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Next we shall prove that ¢ is an involution; that is, ¥(1(S, 8)) = (S, 5). If (S, ) is
a fixed point, then the claim is trivially true, so we can assume that we encounter one of
the four cases above. Suppose (S, 3) = (T,7) after falling into one of the cases at ;.
We want to show that ¥(T,v) = (S, ). The map 1 leaves the suffix ;428,13 of 8
unchanged, aside from possibly appending an unmarked trailing zero; hence this suffix,
with possibly an appended zero, will also be present in . If no zero was appended then
clearly none of the cases apply to (7,7) at j > i, or else that case would have applied to
(S, ) as well. Suppose a zero was appended. Since this trailing zero is unmarked (7', )
cannot fall into case 1 or 2 for any j > i. Adding a zero at the end cannot introduce a
0-ascent, so (T',7) cannot fall into case 3 for 7 > i. Case 4 is also easy to exclude, so we
conclude that (7',7) cannot fall into any of the four cases at an index j > 1.

Going through each of the cases at index 7, we see that if g; falls into case 1, then ~;
must fall into case 3, which undoes what case 1 just did. Similarly, case 2 is cancelled by
case 4, 3 by 1, and 4 by 2; thus, v is an involution.

We now consider the fixed points of ). We wish to show that any nonempty fixed
point (S, ) of 1, when considered as a marked sequence, can be written

oT(

where each letter of ¢ is either a marked diagonal entry or an unmarked zero, ending in an
unmarked zero; 7 consists of unmarked positive entries at least one of which is a diagonal
entry; and ( is a (possibly empty) sequence of zeros. One instance of a fixed point is
(0,0121) in which 0 = 0, 7 = 121 and ¢ = e. Another instance is ({1,3},0020152000) in
which o = 0020, 7 = 152 and ¢ = 000.

Since [ is subdiagonal it starts with a zero. Moreover, its sum r is positive, and hence
it must contain a 0-ascent. Let o be the prefix of § consisting of every letter of S up
to and including the rightmost 0-ascent. Define 7 as the subsequent contiguous run of
positive entries in 5 and let the remaining suffix be (. In particular, 7 is nonempty. Also,
¢ must consist entirely of zeros; otherwise, it would contain a 0-ascent, contradicting that
(¢ is right of the rightmost 0-ascent in 3. Now, if ; is marked and there is no 0-ascent
J > 1, then case 1 would apply at ;. Thus every entry of o|,/7¢ must be unmarked. There
also has to be a diagonal entry in 7, otherwise the bigram o|,7; would make us fall into
case 3. Thus, there is an ¢ > 1 such that 7, = ¢ — 1+ |o|. If o; is marked, then i is a
diagonal index, else we would fall into case 2 at o; because it is to the left of a 0-ascent.
To show that o is of the desired form we shall consider two cases.

Suppose ( is empty. Every element to the right of 7, is > 1, and 7; > 0, so

AT+ A+ T 21+ (= 14]o|)+ (r— o] =€) >

The sum of entries in § is r (by definition of 7}, ,_,) and consequently the sum above is
exactly r. Thus, every entry of o is zero. Aside from the first one, none of those zeros can
be marked, or else we would have a contradiction with the earlier result that any marked
element of o is a diagonal entry. Thus o is of the desired form.

Suppose ( is nonempty. There cannot be any positive unmarked o; since then we
would fall into case 4 at o;. Thus, ¢ is of the desired form by the same argument as
above.
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Let us now define a function # mapping fixed points of ¥ to pairs (A, 1) IF n. Given a
fixed point (5, 8) factored as o7¢ we let (S, 5) = (A, i), where X consists of the marked
indices of ¢ written in increasing order and p = 7. In other words, the entries of A\ are
the elements of S, the reason being that 7 and ( contain only unmarked elements. For
example 6(0),0121) = (¢, 121) and 6({1, 3},0020152000) = (13, 152). It is clear that A has
distinct parts and that p defines a composition. Furthermore, the sum of values in A and
1 is the sum of elements in S plus the number of marked elements, which is r+n—r = n.
Note that the sign simply is (—1)".

We wish to show that (A, ) IF n. Our diagonal index ¢ gives us

dmax(p) = pe — 0+ 1
:Tg—g—{—l
=(l—-1+|o])—L+1=|0]|.

Suppose dmax(p) = p; — j + 1. Then

dmax(p) = Bjte) — J + 1
<j+lol—=1—j+1=]o|.

in which the inequality is a consequence of subdiagonality. Thus dmax(u) = |o|. If A
is nonempty, then \; corresponds to a marked diagonal index, which must then be in o.
Thus A\ < |o| = dmax(p) since o ends on a zero. If u is nonempty, then p; = 7 < |o| by
subdiagonality, and hence p; < dmax(u). Thus (A, ) IF n.

To complete our proof we have to show that @ is bijective, which we do by constructing
its inverse. Assume that (A, p) IF n and k = dmax(u). Let 0 = 0105 - - - 0%, where 0; = i—1
is a marked diagonal entry if i = A; for some j € [|A]], and o; = 0 is an unmarked zero
otherwise. Also, let 7 = p and let { be a segment consisting of n — |o| — |7| unmarked
zeros. By the same argument as above we have |A| marked elements, and the sum of all
elements in A and g is n — ||, so r = |A|. Since A # € = \; < dmax(;) we have o), = 0.
Thus the image is in 7}, ,—, and § maps o7( back to (A, ), completing our proof. O

Lemma 11. We have

Z (=) = [{p & n :lir(p) even}.

(A p)lFn

Proof. Let ~ be the equivalence relation generated by postulating that

(Aa, p) ~ (A, ap)

whenever both (Aa, i) IF n and (A, ap) IF n hold. For example, when n = 5 the equivalence
classes are all singletons except the class {(e, 113), (1,13)}. For n = 6 there are three non-
singleton classes, namely

{(e,1131), (1,131)}, {(e, 114), (1,14)} and {(e, 123), (1,23)}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(4) (2023), #P4.7 13



We wish to show that the inner sum in the expression for R(z) above when restricted
to a single equivalence class is 0 or 1. In other words, if C' is an equivalence class, then

> (—=neqo1}.

) ec

Assume (Aa, i) IF n. Then a < dmax(u), but dmax(ap) > dmax(u)—1, so a < dmax(ap).

Furthermore, if A is nonempty, then Ay, < a because Aa is strictly increasing. Thus

Ay < @ < dmax(ap), and so (A, ap) I n. By induction on the number of elements moved

we see that (A, ) is in the same equivalence class as (e, Au). Clearly we cannot have two

pairs of the form (e, i) in the same equivalence class, so we make them our representatives.
Let (e, 1) be such a representative. We will call k valid if

(pa = ey pern == pigg) 1E e

Let X = py---pp and v = piyq1--- - By the argument above, if some k is valid,
then all smaller k& are valid too. We want to find the largest valid k. The sign of
(f1++* fgg, pos1 -+ - fyp) 18 (—=1)%, so if the largest valid value is ¢, then the sum of the
equivalence class of (e, u) is (—1)°+ (=1)! + - + (=1)%, which is zero if £ is odd and 1 if
( is even.

Let s = lir(1). We wish to show that ¢ and s have the same parity. Clearly, ¢ < s
since otherwise A = p - - - py would not be strictly increasing. If £ = s we have nothing
left to prove, so we can assume that ¢ < s. Then v is nonempty and v, < dmax(v), so
lv| >2and ¢ < s—2. Let k = s—2. Then A = p - - - puy, is strictly increasing and vy < vs.
Thus dmax(v) > vs — 1 > v4. If A is nonempty, then Ay < v; < dmax(v). Thus k = s — 2
is valid, so £ = s — 2, which has the same parity as s. The representatives (e, u) whose
equivalence classes have sum one are hence exactly those where lir(x) is even. O

Theorem 4 follows directly from Lemmas 7, 8, 10 and 11.

4 Structure of R(x)

By Lemma 7 the elements of Fix(¢) N R, are of the form (0; u) with u E n and lir(p)
even. With this in mind let

Fix,(¢) = {pu E n : lir(u) even}.

Let M., be the set of compositions of n that start with an ascent and are weakly decreasing
after the initial ascent and let M (z) be the corresponding generating function. That is,
(1, ) € My ifandonlyif kb > 2, g < po > psz = ... = g and py+- - -+ = n. For
instance, M,, = § for n < 2, M3 = {12}, My = {121,13}, M5 = {1211,122, 131, 14, 23}
and the first few terms of the power series M (x) are

M(z) = 2® + 22 4 52° + 82° + 152" 4 232° + 372° 4 - -
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Let pt, 1%, ..., u* be compositions with u* € M,,. Their concatenation

po=ptp?pt
is a composition of n = ny + - - - 4+ ny with lir(x) even, and so p € Fix,(¢).

Conversely, given a composition yu € Fix,(¢), let u' be the longest suffix of p that
belongs to M,,,, where n; is the length of p'. Writing u = vu' we can recursively do the
same with v, stopping if v is empty. This works because pu starts with an ascent, so if v
is nonempty then v starts with an ascent as well. This way we arrive at a factorisation
p = pkp?pt with gt € M,,, and n = n; + --- + ng. For instance, the factors of
123511211 € Fixy7(¢) are 12, 351 and 1211.

In terms of generating functions the factorisation we have established translates to the
functional equation R(z) = (1 — M(x))~*. Now, by (3),

X

M(z) =1+ (1 - 1) Par(z).

-
Thus, aside from the constant term, the coefficient of ™ in M (z) equals
p(0) +p(1) +--- +p(n—1) —p(n) (7)

and coincides with sequence A058884 in the OEIS [8]. Moreover, (7) is the number of
compositions with exactly one inversion according to Theorem 4.1 of [3]. To summarise
we have established the following proposition.

Proposition 12. With p(n) denoting the number of partitions of n,
-1
R(x) = (1= (p(1) +p(2) + - +p(n = 1) = p(m)a") .
n=1

An alternative formula can be obtained from considering the logarithmic derivative of

R(x):
Proposition 13. With o(n) denoting the sum of the divisors of n,
:L.n
R(x) = exp (2" —o(n)—1)—|.
Proof. Taking the logarithmic derivative of (3) we get

_ xComp’(z)  xPar'(z)

z(log R(x)) = Comp(z)  Par(z)
B T kak
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An expression of the form F(z) = Y, apa®/(1 — 2%) is called a Lambert series, and it
is well known, and easy to see, that

F(z) = an:c", where b,, = Zak.

n>1 kln
In our case a; = k and hence b, = o(n). Consequently,
r(log R(z)) =Y (2" =1 —o(n))z" (8)
n=1
and it follows that

log R(z) = /Or 2(2” —1—o(n))t" 'dt

n>1

=> (2"—1- a(n))%,

n=1
which proves the claim. O

Corollary 14. The cardinalities r, = |R,| can be computed recursively by ro = 1 and,
forn >1,
1 n
Tp = — E Pook(2F — o (k) — 1).
n
k=1

Moreover, we have the closed formula

rn:% Z H (2" —o(0) — 1),

" weSym(n) LeC(r)

where Sym(n) is the symmetric group of degree n and C(m) is a multiset that encodes the
cycle type of m, that is, there is an ¢ € C(w) for each (-cycle of .

Proof. Since (log R(z))' = R'(x)/R(x) it follows from (8) that

rR(z) = R(z) Y (2" —1—0o(n))z"

n>1

and on identifying coefficients we get the claimed recursion. For the closed formula we
refer to Equation (8) in [2] and the paragraph preceding that formula. O

It easy to see that the coefficient of 2™ in xM'(x)/(1— M (z)) is 2" —o(n) — 1. Thus, if
we consider the factorisation p = p'p?--- ¥ of elements in R, as above, together with a
distinguished site of p!, then such structures should be counted by 2" — o(n) — 1. Finding
a bijective proof of this remains an open problem.
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5 Superdiagonals

Having derived formulas for the main diagonal and the subdiagonals of the Mahonian
triangle one naturally wonders if similar formulas exist for the superdiagonals. In other
words, does Theorem 3 generalize to negative i? If so then, in particular, S_;(x)x —
So(x)C(z)~! would be the zero power series. This is, however, not the case and experi-
mentally we have found that this difference is the rational power series (—1+2z)/(1 —z).
More generally, it appears that the coefficients of S_;(z)z* — Sp(z)C(z)™" are linearly
recurrent with minimal polynomial (1 — ), and we make the following conjecture, which
has been verified for 1 <7 < 50 and power series truncated to their initial 150 terms.

Conjecture 15. For any i > 1, there is a polynomial P;(z) € Z[z] of degree 3i — 2 such
that

Fi(x)
—a)

S_i(z)a" = Sp(x)C(z) ™" +

In particular, the first four polynomials P;(z), Pa(x), P3(x) and Py(x) are

— 1+ 2z;

—1+4x — 42 + 23 + 2,

— 1+ 6z —122% +102® — 22" — 2° 4+ 225 — 2";

— 1+ 8z — 242® + 352° — 252" + 62° + 42° — 327 + 32° — 327 + 2",
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