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Abstract

We define a virtual cactus group and show that the cactus group action on Littel-
mann paths is compatible with the virtualization map defined by Pan–Scrimshaw in
[PS18]. Our virtual cactus group generalizes the group with the same name defined
for the symplectic Lie algebra by Azenhas–Tarighat-Feller–Torres in [ATFT22].

Mathematics Subject Classifications: 05E10, 05E05, 17B37

1 Introduction

Let g be a finite dimensional, complex, semisimple Lie algebra. Let D be the Dynkin
diagram associated to the root system of g, R its root system, ∆ = {αi : i ∈ D} ⊂ R
the set of simple roots, W = W (R) its Weyl group, generated by the simple reflections
{ri : i ∈ D}, and w0 ∈ W the longest element of the Weyl group. For a connected sub-
diagram J ⊆ D, of D, denote by θJ : J → J the unique Dynkin diagram automorphism
that satisfies αθJ (j) = −wJ

0αj, for any node j ∈ J , where wJ
0 is the longest element of the

parabolic subgroup W J ⊆ W (the Weyl group for g restricted to J) [BB05]. This leads
to the following definition by Halacheva.

Definition 1. [Hal20] The cactus group JD is the group with generators sJ , one for each
connected subdiagram J of D, and relations given as follows:

1. s2J = 1;

2. sIsJ = sJsI for I, J ⊆ D connected subsets if the union J ∪ I is disconnected;

3. sIsJ = sθI(J)sI if J ⊂ I.

Definition 1 is a generalization of the original definition of the cactus group defined
by Henriques–Kamnitzer in [HJK04], which was denoted by Jn and which corresponds to
the cactus group associated to the Dynkin diagram of type An−1.
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1.1 Main results and aim of the paper.

In this paper we will be concerned with pairs of Dynkin diagrams (X, Y ) related by fold-
ing, that is, there is an injection of sets of nodes X ↪→ Y which induces an injection of
the corresponding Lie algebras gX ↪→ gY as described in [BS17]. The main result and aim
of this paper is the “virtualization” of the cactus group JX , as defined by Halacheva in
[Hal20], and of its action on gX-crystals, transferring certain results obtained for the case
Cn ↪→ A2n−1 in [ATFT22] to the more general setup described above. This is carried out
in Theorem 4 and Theorem 9. It consists in defining a group monomorphism JX ↪→ JY
compatible with the action of JX and JY on gX , respectively gY -crystals. Moreover, by
using the virtualization map on Littelmann paths described by Pan–Scrimshaw in [PS18],
instead of the Baker virtualization map used in [ATFT22] for Kashiwara–Nakashima
tableaux, we obtain a simple rule to compute the partial Schützenberger–Lusztig invo-
lutions of Littelmann paths in gX-crystals in terms of partial Schützenberger–Lusztig
involutions of Littelmann paths in gY -crystals. This is carried out in Theorem 9.

2 The cactus group and crystals

Let Λ be the integral weight lattice and Λ+ ⊂ Λ be the dominant weights. Recall that
irreducible finite-dimensional representations of g are in one-to-one correspondence with
the set of highest weights Λ+. We now recall the definition of a semi-normal crystal as in
[BS17].

Definition 2. A semi-normal g-crystal consists of a non-empty set B together with maps

wt :B −→ Λ

ei, fi :B −→ B ⊔ {0} , i ∈ D

such that for all b, b′ ∈ B:

• b′ = ei(b) if and only if b = fi(b
′),

• if fi(b) ̸= 0 then wt(fi(b)) = wt(b)− αi;
if ei(b) ̸= 0, then wt(ei(b)) = wt(b) + αi, and

• φi(b)− εi(b) = ⟨wt(b), α∨
i ⟩,

where

εi(b) = max{a ∈ Z⩾0 : e
a
i (b) ̸= 0} and

φi(b) = max{a ∈ Z⩾0 : f
a
i (b) ̸= 0}.

To each such crystal B is associated a crystal graph, a coloured directed graph with vertex

set B and edges coloured by elements i ∈ D, where if fi(b) = b′ there is an arrow b
i→ b′.

We say that a crystal is irreducible if its corresponding crystal graph is connected and
finite.
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The finite irreducible semi-normal g-crystals are labeled by the dominant weights Λ+.
Given a highest weight λ ∈ Λ+, the corresponding irreducible crystal is usually denoted
by B(λ). It encodes important information about the corresponding irreducible finite
dimensional representation of g, V (λ). For instance, dim(V(λ)) equals the cardinality of
B, and, in the weight decomposition V (λ) = ⊕

µ⩽λ
V (λ)µ, dim(V (λ)µ) equals the cardinality

of the set of b ∈ B(λ) such that wt(b) = µ. Moreover, for a subinterval J ⊂ D, the crystal
corresponding to the Levi restriction of V (λ) corresponds to the gJ -crystal B(λ)J with
crystal graph obtained from the graph for B(λ) by deleting edges with labels i /∈ J . In
this paper, we will only deal with crystals whose crystal graphs decompose into connected
components, each of which is isomorphic to crystals of the form B(λ). These are also
known in the literature as normal crystals.

Schützenberger–Lusztig involutions

There is an elegant internal action of the cactus group Jg on crystals via partial
Schützenberger–Lusztig involutions, which are generalizations of Schützenberger–Lusztig
involutions originally studied by Berenstein–Kirillov [BK95] and generalized by Halacheva
[Hal20]. For a subinterval J ⊂ D, the partial Schützenberger–Lusztig involution is de-
fined as follows on B(λ). Let v ∈ B(λ)J be a highest weight element, and let vwJ

0
∈ B(λ)J

be a lowest weight element. In particular wt(vwJ
0
) = wJ

0 (wt(v)) Let b = fir · · · fi1(v)
for ij ∈ J, j ∈ [1, r]. Then the partial Schützenberger–Lusztig involution is the unique
involution ξJ : B(λ) → B(λ) which satisfies for each j ∈ J :

ξJ(ej(b)) = fθJ (j)(ξJ(b))

ξJ(fj(b)) = eθJ (j)(ξJ(b)) and

wt(ξJ(b)) = wJ
0 (wt(b)).

In fact, ξJ(b) = eθJ (ir) · · · eθJ (i1)(v). If J = D, ξJ is known as the Schützenberger–Lusztig
involution, and denoted simply by ξ. Each partial Schützenberger–Lusztig involution
acts as the corresponding Schützenberger–Lusztig involution applied to each connected
component of the Levi-branched crystal B(λ)J . If our normal crystal B is not connected,
partial Schützenberger–Lusztig involutions are defined in the same way as above, on each
connected component.

Theorem 3 (Halacheva, [Hal20]). Let B be a normal g-crystal. The cactus group Jg acts
on B via partial Schützenberger–Lusztig involutions, that is, for J ⊂ D a subinterval, the
assignment sJ 7→ ξJ induces a group action.

3 The virtual cactus group

Let X ↪→ Y be an embedding of a twisted Dynkin diagram X into a simply-laced Dynkin
diagram Y given by folding. More precisely, there is a Dynkin diagram automorphism
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aut : Y → Y of Y such that there is an edge-preserving bijection σ : X → Y/ aut.
The injection of Dynkin diagrams is reflected on the Lie algebras as follows. Let gX ,
respectively gY be the complex simple Lie algebras with Dynkin diagram X, respectively
Y . Then the Dynkin diagram automorphism aut induces a Lie algebra automorphism
aut : gY → gY . The set of fixed points under this automorphism has the structure of a
Lie algebra isomorphic to gX [Kac90]. This induces an injection gX ↪→ gY . Below we
list all such pairs, together with the values of θX and θY . We use the numbering of the
vertices given by [BS17].

X Y θX θY

Cn A2n−1 Id θY (i) = 2n − i

B2n−1 D2n Id Id

B2n D2n+1 Id θY (i) =

{
i if i < 2n

2n, 2n+ 1 if i = 2n+ 1, 2n resp.

G2 D4 Id Id

F4 E6 Id θY (i) =


6, 1 if i = 1, 6 resp.

5, 3 if i = 3, 5 resp.

i otherwise

We have aut = θY , except for the cases where Y = D2n, where

aut(i) =


i i < 2n− 1

2n i = 2n− 1

2n− 1 i = 2n.

We proceed to define a group monomorphism JX ↪→ JY . Its image will be isomorphic
to what we call the virtual cactus group, generalizing the concept of the virtual symplectic
cactus group defined in [ATFT22] for X = Cn and Y = A2n−1. We start by stating the
following lemma, which immediately follows from the description in the previous section.
We will abuse notation and consider the coset σ(I) ∈ Y/ aut, as a subset of Y , for I ⊂ X.
Each non-simply laced Dynkin diagram we consider has what we will call in this note a
branching point x0 ∈ X, described in the table below.

X x0
Cn n
F4 2
Bn n− 1
G2 2
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For the comfort of the reader we include the corresponding Dynkin diagrams as well below.

X Y

Cn

1 n− 1 n
A2n−1

1 n 2n− 1

F4

1 2 3 4
E6

1

2

3 4 5 6

Bn

1 n− 1 n
Dn+1

1 n− 1

n

n+ 1

G2

2 1
D4

1 2

3

4

We now consider the following elements:

s̃I =
∏

sY
Ĩ

where sY
Ĩ

are the generators of the cactus group JY and the product is taken over the

connected components Ĩ of σ(I). We will say that s̃I is the virtual image of sI . Our aim
for the rest of this section is to prove the following result.

Theorem 4. The map defined by

Φ : JX → JY

sI 7→ s̃I

is a monomorphism of groups.

Lemma 5. Let I, J ⊂ X such that J ⊂ I. Then

s̃I s̃J = s̃θI(J)s̃I

Proof. First assume that θY = Id. This means Y = D2n for some n ⩾ 2. If I = X then
σ(I) = Y , therefore the statement of Lemma 5 follows from θY = Id and the defining
Relation 3 for the cactus group JY . If I ⊂ X does not contain the branching point x0
then σ|I : I → Ĩ = σ(I) is an isomorphism, hence the statement follows trivially. If I is
not X but contains the branching point, then either I is of type A, σ(I) = Ĩ is of type
A and σ|I : I → Ĩ is an isomorphism, which implies the claim as in the previous case, or
I is of type G2, in which case the claim also follows easily since J is forced to consist of
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just one vertex.

Assume next that θY = aut. If I ⊂ X contains the branching point x0, then θI = IdI

and σ(I) = Ĩ is connected. Let us then assume first that x0 ∈ I. Now, if x0 ∈ J also,
then σ(J) = J̃ is connected and θĨ(J̃) = J̃ . Now, if J ⊂ I does not contain a branching
point but I does, then either

• σ(J) = J̃1⊔ J̃2 has two isomorphic connected components, in which case θĨ(J̃1) = J̃2
and θĨ(J̃2)) = J̃1, or

• σ(J) = J̃ is connected and isomorphic to J , in which case θĨ(J̃) = J̃ .

We conclude then that if x0 ∈ I and σ(J) = J̃ is connected, then

s̃I s̃J = sY
Ĩ
sY
J̃
= sY

θĨ(J̃)
sY
Ĩ
= sY

J̃
sY
Ĩ
= s̃J s̃I = s̃θI(J)s̃I ,

as desired. Now, if x0 ∈ I and σJ = J̃1 ⊔ J̃2, then we still have θI = Id, so θI(J) = J . We
have in this case

s̃I s̃J = sY
Ĩ
sY
J̃1
sY
J̃2

= sY
θĨ(J̃1)

sY
Ĩ
sY
J̃2

= sY
θĨ(J̃1)

sY
Ĩ(J̃2)

sY
Ĩ
= s̃J s̃I = s̃θI(J)s̃I .

This concludes the proof in the case x0 ∈ I.

Now let us assume that x0 /∈ I. We have two cases: The case where σ(I) is connected
is trivial because since θY = aut, we conclude that necessarily θσ(I) = aut |σ(I) = Idσ(I),
also σ(J) ⊂ σ(I) is connected for each J ⊂ I, and s̃J = sYσ(J) for each J ⊂ I. It remains

to consider the case where σ(I) has two connected components σ(I) = Ĩ1 ⊔ Ĩ2. It follows
that for each J ⊂ I we have a decomposition into connected components σ(J) = J̃1 ⊔ J̃2,
where J̃i ⊂ Ĩi, i = 1, 2. The following identity holds by case-by-case analysis:

σ(θI(J)) = θĨ1(J̃1) ⊔ θĨ2(J̃2). (1)

Therefore we have in this case:

s̃I s̃J = sY
Ĩ1
sY
Ĩ2
sY
J̃1
sY
J̃2

= sY
Ĩ1
sY
J̃1
sY
Ĩ2
sY
J̃2

= sY
θĨ1

(J̃1)
sY
Ĩ1
sY
θĨ2

(J̃2)
sY
Ĩ2

= sY
θĨ1

(J̃1)
sY
θĨ2

(J̃2)
sY
Ĩ1
sY
Ĩ2

= s̃θI(J)s̃I ,
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where the last equality follows from (1). This concludes the proof in the cases where
θY = aut and therefore the whole proof.

Definition 6. The virtual cactus group Jv
X is defined by generators sσ(I), for each I ⊂ X

connected subdiagram, and by the relations:

1. s2σ(I) = 1;

2. sσ(I)sσ(J) = sσ(J)sσ(I) if the union J ∪ I is disconnected;

3. sσ(I)sσ(J) = sσ(θI(J))sσ(I) if J ⊂ I.

It is clear from the definition that the virtual cactus group Jv
X is isomorphic to the

cactus group JX .

Proof of Theorem 4. To show that Φ is a group morphism, we need to show three rela-
tions:

1. s̃2I = Id,

2. s̃I s̃J = s̃J s̃I ,

3. s̃I s̃J = s̃θI(J)s̃I .

Note that the third relation has already been established in Lemma 5. To prove (1),
note that since the connected components of σ(I) are disjoint, the commutation relation
2. in Definition 1 implies

s̃2I =
∏

sY
Ĩ

2
= Id

To show the second relation, let I, J ⊂ X be two disjoint, connected intervals. Then
necessarily σ(I) and σ(J) are mutually disjoint. We have then

s̃I s̃J =
∏

sY
Ĩ

∏
sY
J̃
=

∏
sY
J̃

∏
sY
Ĩ

where the third equality follows from relation 2. for JY . Note that the image Φ(JX) is a
group isomorphic to the virtual cactus group J̃X via the isomorphism s̃I 7→ sσ(I), which
is well defined because σ(I) = σ(J) ⇐⇒ I = J . To see this assume that we have r ∈ JX
such that Φ(r) = Id in JY . Now, r is a product of generators sI of JX and Φ(r) is a
product of s̃I and therefore a product of sY

Ĩ
, where for each I ⊂ X, one sY

Ĩ
appears for

each connected component Ĩ of σ(I) ⊂ Y . Now the relations satisfied by the sY
Ĩ
’s are

all relations in the cactus group JY . Moreover, from the previous parts of this proof,
including the proof of Lemma 5, it follows by the case-by-case analysis carried out there
that the relations satisfied by the sY

Ĩ
imply the same type of relations among the s̃I and

therefore among the sI as well. Therefore r = Id in JX .
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4 Virtualization of the action of the cactus group on crystals of
Littelmann paths

In this section we will borrow most of our notation from [PS18] for practical purposes as
well as for the comfort of the reader. Let λ ∈ Λ+. We consider P(λ) to be the Littelmann
path model for λ with paths π : [0, 1] → ΛR of the form

π(t) =
∑
i∈D

Hi,π(t)Λi,

where Hi,π(t) = ⟨π(t), α∨
i ⟩ and where Λi ∈ Λ+ are the fundamental weights for i ∈ D. The

set P(λ) has the structure of a crystal isomorphic to B(λ) with weight map wt(π) = π(1).
We refer the reader to [PS18] for the definition of the crystal structure using the notation
we use in this section. The original and standard reference of the topic is the paper [Lit95]
by Littelmann.

Recall that in this paper we consider embeddings X ↪→ Y given by folding. Let ΛX

and ΛY be the corresponding integral weight lattices. The bijection σ : X → Y/ aut
induces a map

Ψ : ΛX → ΛY

given by the assignment

ΛX
i 7→

∑
j∈σ(i)

γi(Λ
Y )j,

where γi is given by Table 5.1 in [BS17] (included below) and where ΛX
i and ΛY

j denote
the fundamental weights in ΛX , respectively ΛY .

X γi
Cn γi = 1, 1 ⩽ i < r, γr = 2
Bn γi = 2, 1 ⩽ i < r, γr = 1
F4 γ1 = γ2 = 2, γ3 = γ4 = 1
G2 γ1 = 1, γ2 = 3

Definition 7. Let B̃ be a normal gY -crystal, and a subset V ⊂ B̃. The virtual root
operators of type X are, for i ∈ X:

evi =
∏

j∈σ(i)

ẽγij (2)

f v
i =

∏
j∈σ(i)

f̃γi
j , (3)

where ẽi, f̃i, i ∈ Y are the root operators for the gY -crystal B̃.
A virtual crystal is a pair (V, B̃) such that V has a gX-crystal structure defined by
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ei := evi fi := f v
i (4)

εi := γ−1
i ε̃jφi := γ−1

i φ̃j, (5)

where ε̃j, φ̃jj ∈ Y denote the maps given by

ε̃i(b) = max{a ∈ Z⩾0 : ẽ
a
i (b) ̸= 0} and

φ̃i(b) = max{a ∈ Z⩾0 : f̃
a
i (b) ̸= 0}.

If gX-crystal B is crystal isomorphic to a virtual crystal V ⊂ B̃ via an isomorphism
ϕ : B → V , then the isomorphism ϕ is called a virtualization map.

For λ ∈ Λ+
X , the weight ψ(λ) ∈ λY , is dominant, that is, ψ(λ) ∈ Λ+

Y . Given π ∈ P(λ),
consider the path Ψ(π) : [0, 1] → ΛY defined by

Ψ(π)(t) =
∑
i∈D

Hi,π(t)ψ(Λi) (6)

One of the main results in [PS18] is the following theorem.

Theorem 8 (Pan–Scrimshaw, [PS18]). The assignment π 7→ Ψ(π) induces a virtualiza-
tion map

P(λ) → P(ψ(λ))

π 7→ Ψ(π).

The principal aim of this section is to describe the action of the cactus group in terms
of the virtualization map of Pan–Scrimshaw. For this, given a connected subdiagram
I ⊂ X, let

ξ̃σ(I) :=
∏

ξY
Ĩ

where ξY
Ĩ
are the partial Schützenberger–Lusztig involutions in P(ψ(λ)) and the product

is taken over the connected components Ĩ of σ(I). Our next aim is to prove the following
result, which generalizes [ATFT22, Theorem 5, Theorem 6, Section 9.5].

Theorem 9. Let λ ∈ Λ+
X and P(λ) the corresponding Littelmann path model. Then the

following diagram commutes

P(λ) P(ψ(λ))

P(λ) P(ψ(λ))

Ψ

Ψ

ξXI ξ̃σ(I)

.

Moreover, the left inverse Ψ−1 can be explicitly computed on ξ̃Yσ(I)(Ψ(P(λ))).
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Proof. First note that since the Littelmann path model P(ψ(λ)) is stable under the root
operators ẽi, f̃i, it is also stable under the action of the operators ξ̃Yσ(I) for I ⊂ X connected.

Therefore, all paths in ξ̃Yσ(I)(Ψ(P(λ))) must be of the form (6), so the left inverse Ψ−1 can

be explicitly computed on ξ̃Yσ(I)(Ψ(P(λ))), simply by writing out the corresponding path

in this form. We now proceed to show that the diagram commutes. Let πν ∈ P(λ)I be a
highest weight path of weight wt(πν) = πν(1) = ν and π = fir · · · fi1πν for ij ∈ I, j ∈ [1, r].
Recall that

ξXI (π) = eθI(ir) · · · eθI(i1)ξXI (πν),

where ξXI (πν) is the corresponding lowest weight path in the connected component of
P(λ)I with highest weight path πν . Therefore by Theorem 8 we have

Ψ(ξXI (π)) = evθI(ir) · · · e
v
θI(i1)

Ψ(ξXI (πν)).

Now, by Definition 7 and Theorem 8 we have

ξ̃σ(I)(Ψ(π)) =
∏

ξY
Ĩ
(Ψ(π))

=
∏

ξY
Ĩ
(
∏

j∈σ(ir)

f̃
γir
j · · ·

∏
j∈σ(i1)

f̃
γi1
j (Ψ(πν)))

where the product is taken over the connected components Ĩ of σ(I). To continue our
computations we consider two cases separately:

1. The subdiagram σ(I) = Ĩ ⊂ Y is connected. Then θI = Id, we have γij = 1 if and

only if σ(ij) =
{
ĩ1j , ĩ

2
j

}
or σ(ij) =

{
ĩ1j , ĩ

2
j , ĩ

3
j

}
and γij = 2, 3 if and only if σ(ij) =

{
ĩj
}
.

In case γij = 1 we have θĨ (̃i
1
j) = ĩ2j and θĨ (̃i

2
j) = ĩ1j . Moreover, the root operators ẽĩ1j

and ẽĩ2j commute. In case γij = 2, 3 we have θĨ (̃ij) = ĩj. All together this implies:

ξ̃σ(I)(Ψ(π)) = ξY
Ĩ
(f v

ir · · · f
v
i1
(Ψ(πν)))

= evθI(ir) · · · e
v
θI(i1)

ξY
Ĩ
(Ψ(πν))

= evθI(ir) · · · e
v
θI(i1)

(Ψ(ξXI (πν)))

= Ψ(ξXI (π)).

2. The subdiagram σ(I) ⊂ Y is disconnected. Assume θY = aut. In this case we must
have |σ(I)| = 2|I|, that is, σ(I) = Ĩ1 ⊔ Ĩ2 is a disconnected union. In particular all
root operators ẽs, f̃t with s, t ∈ Ĩ1 commute with the operators ẽu, f̃v, with u, v ∈ Ĩ2.
Moreover γij = 1 for all j ∈ [1, r]. Altogether, this implies:
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ξ̃σ(I)(Ψ(π)) = ξY
Ĩ1
ξY
Ĩ2
(f v

ir · · · f
v
i1
(Ψ(πν)))

= ξY
Ĩ1
ξY
Ĩ2
(f̃i1r f̃i2r · · · f̃i11 f̃i21(Ψ(πν)))

= ξY
Ĩ1
ξY
Ĩ2
(f̃i2r · · · f̃i21 f̃i1r · · · f̃i11(Ψ(πν)))

= ξY
Ĩ1
(ẽθĨ2 (i

2
r)
· · · ẽθĨ2 (i21)f̃i1r · · · f̃i11(ξ

Y
Ĩ2
(Ψ(πν))))

= ξY
Ĩ1
(f̃i1r · · · f̃i11 ẽθĨ2 (i2r) · · · ẽθĨ2 (i21)(ξ

Y
Ĩ2
(Ψ(πν))))

= ẽθĨ1 (i
1
r)
· · · ẽθĨ(i11)ẽθĨ2 (i2r) · · · ẽθĨ2 (i21)(ξ

Y
Ĩ1
ξY
Ĩ2
(Ψ(πν)))

= ẽθĨ1 (i
1
r)
ẽθĨ2 (i

2
r)
· · · ẽθĨ1 (i11)ẽθĨ2 (i21)(ξ

Y
Ĩ1
ξY
Ĩ2
(Ψ(πν)))

= Ψ(ξXI (π)).

The case θY = Id occurs when Y = D2n. In this case σ(I) can only be disconnected in
Y when I consists solely of the vertex in X corresponding to the small root. We have
σ(I) = {2n− 1, 2n} for n > 2 (that is, X = B2n−1 and I = {2n− 1}) and σ(I) = {1, 3, 4}
for n = 2 (here X = G2 and I = {1}). In the first case we have

ξ̃σ(I)(Ψ(π)) = ξY{2n}ξ
Y
{2n−1}(f

v
2n−1)

d(Ψ(πν))

= ξY{2n}ξ
Y
{2n−1}(f̃2n−1)

d(f̃2n)
d(Ψ(πν))

= (ẽ2n−1)
d(ẽ2n)

dξY{2n}ξ
Y
{2n−1}(Ψ(πν))

= Ψ(ξXI (π)).

If X = G2 then we have

ξ̃σ(I)(Ψ(π)) = ξY{1}ξ
Y
{3}ξ

Y
{4}(f

v
1 )

d(Ψ(πν))

= ξY{1}ξ
Y
{3}ξ

Y
{4}((f̃1)

d(f̃3)
d(f̃4)

d(Ψ(πν)))

= (ẽ1)
d(ẽ3)

d(ẽ4)
d(ξY{1}ξ

Y
{3}ξ

Y
{4}(Ψ(πν)))

= Ψ(ξXI (π)).

Corollary 10. The virtual cactus group Jv
X acts on P(ψ(λ)) and preserves the image

Ψ(P(λ)) of Ψ.

Example 11. Let X = G2 and Y = D4. The cactus group JG2 has three genera-
tors: s{1}, s{2}, s{1,2} and relations: s2{1} = 1, s2{2} = 1, s2{1,2} = 1, s{2}s{1,2} = s{1,2}s{2},
s{1}s{1,2} = s{1,2}s{1} and no relation between s{1} and s{2}. Now, the virtual images of

the generators of JG2 in JD4 are s̃{1} = sD4

{1}s
D4

{3}s
D4

{4}, s̃{2} = sD4

{2} and s̃{1,2} = sD4

{1,2,3,4}. It is
clear that there is no relation between s̃{1} and s̃{2}, and that the relations defining JG2

the electronic journal of combinatorics 31(1) (2024), #P1.14 11



stated above are the only ones satisfied by the s̃I . The second part of our example involves
Littelmann paths. We calculate a Littelmann path model for the irreducible gG2-crystal
of highest weight ΛG2

1 as well as its virtualization in the gD4-crystal of highest weight
ΛD4

1 + ΛD4
3 + ΛD4

4 . We use SageMath [The16] for this, following [PS18, Appendix A ].

SageMath input:

G2 = RootSystem ([’G’,2]). weight_space()

LaG = G2.fundamental_weights()

A = crystals.LSPaths(LaG[1])

D4 = RootSystem ([’D’,4]).weight_space()

LaD = D4.fundamental_weights()

B = crystals.LSPaths( LaD[1]+ LaD[3] + LaD[4])

gens = B.module_generators

psi = A.crystal_morphism ( gens , codomain = B )

for x in A :

print( " G2 : ", x)

print(" D4 : ", psi(x))

SageMath output:

G2 : (Lambda[1],)

D4 : (Lambda[1] + Lambda[3] + Lambda[4],)

G2 : (-Lambda[1] + Lambda[2],)

D4 : (-Lambda[1] + 3*Lambda[2] - Lambda[3] - Lambda[4],)

G2 : (2*Lambda[1] - Lambda[2],)

D4 : (2*Lambda[1] - 3*Lambda[2] + 2*Lambda[3] + 2*Lambda[4],)

G2 : (-Lambda[1] + 1/2*Lambda[2], Lambda[1] - 1/2*Lambda[2])

D4 : (-Lambda[1] + 3/2*Lambda[2] - Lambda[3] - Lambda[4],

Lambda[1] - 3/2*Lambda[2] + Lambda[3] + Lambda[4])

G2 : (-2*Lambda[1] + Lambda[2],)

D4 : (-2*Lambda[1] + 3*Lambda[2] - 2*Lambda[3] - 2*Lambda[4],)

G2 : (Lambda[1] - Lambda[2],)

D4 : (Lambda[1] - 3*Lambda[2] + Lambda[3] + Lambda[4],)

G2 : (-Lambda[1],)

D4 : (-Lambda[1] - Lambda[3] - Lambda[4],)

One can see the effect of the partial and virtual partial Schützenberger involutions by
following the definitions in this case. The only i-string in the gG2-crystal of paths which
has more than one arrow is the 1-string which consists of the three middle paths displayed
above:

G2 : (2*Lambda[1] - Lambda[2],)

G2 : (-Lambda[1] + 1/2*Lambda[2], Lambda[1] - 1/2*Lambda[2])

G2 : (-2*Lambda[1] + Lambda[2],)

Therefore ξX{1} sends the first element above to the last one. So in this case we see explicitly

ξ̃σ(I)(Ψ(π)) = Ψ(ξXI (π)):
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sage: psi(A[2]).f(1).f(1)

(-2*Lambda[1] - Lambda[2] + 2*Lambda[3] + 2*Lambda[4],)

sage: psi(A[2].f(1).f(1)) == psi(A[2]).f(1).f(3).f(4).f(1).f(3).f(4)

True
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