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Abstract

Rhoades defined a skein action of the symmetric group on the linear span of
noncrossing set partitions which generalized an action of the symmetric group on
the linear span of matchings. The Sn-action on matchings is made possible via the
Ptolemy relation, while the action on set partitions is defined in terms of a set of
skein relations that generalize the Ptolemy relation. The skein action on noncrossing
set partitions has seen applications to coinvariant theory and coordinate rings of
partial flag varieties. In this paper, we will show how Rhoades’ Sn-module can
be embedded into the Sn-module generated by matchings, thereby explaining how
Rhoades’ generalized skein relations all arise from the Ptolemy relation.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

This paper concerns two actions of Sn. The first, due to Rhoades [7], is on the vector
space with basis given by the set of noncrossing set partitions of [n] := {1, 2, . . . , n}. We
will refer to this action as the skein action on noncrossing set partitions as it is defined in
terms of three skein relations, the simplest of which is the Ptolemy relation shown below.

7→ +

The second is a well-known action on noncrossing matchings first studied by Rumer,
Teller, and Weyl, then further developed by Temperley and Lieb, Jones, Kauffman, Ku-
perberg, and others [1, 2, 4, 10, 11]. If V is the defining representation of SL2, then the
SL2 invariants of V ⊗n have a basis, called the SL2 web basis or Temperley-Lieb basis,
indexed by noncrossing matchings. The Sn action on V ⊗n which permutes tensor factors
thus induces a Sn-action on the linear span of noncrossing matchings. Combinatorially,
this action can be understood via the Ptolemy relation. A permutation in Sn acts on
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a matching by swapping elements, then, if crossings were introduced, resolving those
crossings via the Ptolemy relation.

The skein action on noncrossing set partitions was originally defined to provide a
representation theoretic proof of a cyclic sieving result on noncrossing set partitions.
Noncrossing set partitions of [n] are counted by the Catalan numbers, and noncrossing
set partitions of [n] with exactly n− k blocks are counted by the Narayana numbers:

N(n, k) :=
1

n

(
n

k

)(
n

k + 1

)
.

Reiner, Stanton and White [6] showed that a q-analogue of the Narayana numbers:

N(n, k, q) :=
1

[n]q

[
n
k

]
q

[
n

k + 1

]
q

qk(k+1)

exhibits the cyclic sieving phenomenon for the natural cyclic action on noncrossing set
partitions with n − k blocks. Their proof proceeded via direct calculation of N(n, k, q)
and sizes of fixed point sets; the skein action allowed for an alternate proof utilizing
Springer’s theorem on regular elements [7, 9]. The skein action has since been found within
coinvariant rings and coordinate rings of certain partial flag varieties [3, 5], strengthening
the claim that it is an action worth studying in its own right.

The skein action on noncrossing set partitions is defined combinatorially in an analo-
gous way to the action on noncrossing perfect matchings. In fact, since noncrossing perfect
matchings are a subset of noncrossing set partitions, it can be considered a generalization
of the matching action to all noncrossing set partitions. To act by a transposition (i, i+1)
on a noncrossing matching, swap i and i+1, then if a crossing was introduced, use one of
the following skein relations to resolve it, depending on the sizes of the blocks that cross:

Rhoades was able to determine the Sn-irreducible structure of the skein action on
mathbbC[NCP (n)], the span of noncrossing set partitions [7]. In particular, C[NCP (n)0],
the span of all singleton-free noncrossing set partitions with exactly k blocks is an Sn-
irreducible of shape (k, k, 1n−2k), and the span of all noncrossing set partitions with exactly
s singletons and exactly k non-singleton blocks is isomorphic to an induction product of
S(k,k,1n−2k−s) with the sign representation ofSs. The structure of the noncrossing matching
action is similar; the submodule spanned by noncrossing matchings with exactly k pairs is
isomorphic to the induction product of S(k,k) and a sign representation of Sn−2k. By the
Pieri rule, this induction product is a direct sum of three irreducible submodules, one of
which is isomorphic to S(k,k,1n−2k), so there exists a unique embedding of C[NCP (n)0], the
span of all singleton-free noncrossing set partitions in C[NCP (n)], into C[NCM(n)]. The
first main result of this paper (appearing as Theorem 15 in section 3) explicitly describes
the embedding as follows:

Theorem 1. The linear map fn : C[NCP (n)0] → C[NCM(n)] defined by

fn(π) =
∑

m∈Mπ(n)

m
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7→ +

7→ + −

7→ + − −

7→ +

7→ + −

7→ + − −

Figure 1: The three skein relations defining the action of Sn on C[NCP (n)]. The red
vertices are adjacent indices i, i + 1 and the shaded blocks have at least three elements.
The symmetric 4-term relation obtained by reflecting the middle relation across the y-axis
is not shown.

is an Sn-equivariant embedding of vector spaces. Here Mπ(n) is defined to be the set of
all matchings m in M(n) for which each block of π contains exactly one pair in m.

For an example of this map, let π = {{1, 2, 3}, {4, 5}} then

fn(π) = {{1, 2}, {4, 5}}+ {{1, 3}, {4, 5}}+ {{2, 3}, {4, 5}}

is a sum of 3 matchings in C[NCM(n)]. The proof of Theorem 1 also gives an alternate
proof that the skein action on noncrossing set partitions is well-defined, see Remark16.
The skein action being well-defined was originally shown through a laborious verification
of the braid relations [7].

The second main result of this paper (appearing as Theorem 20 in section 4) is to
then describe the image of this map within C[NCM(n)]. For this purpose, as well as the
purpose of simplifying the proof of Theorem 1, it is helpful to introduce a multiplicative
structure to C[NCM(n)], where multiplication corresponds to union when matchings are
disjoint, and gives 0 otherwise. With this added structure, the image of fn is a principal
ideal:

Theorem 2. Let Hn be the ideal of C[NCM(n)] generated by fn([n]). Then

im(fn) = Hn.

The SL2 web basis has generalizations to other Lie groups. The first generalizations,
to Lie groups of rank two and their quantum deformations was given by Kuperberg, with
indexing sets given by certain planar diagrams embedded in a disk [4]. We propose a
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set of combinatorial objects which might serve as an analog of noncrossing set partitions
for the SL3 web basis, as their enumeration conjecturally matches the dimension of the
Specht module S(k3,n−3k).

The rest of the paper is organized as follows. Section 2 will provide necessary back-
ground information. Section 3 will prove our first main result, the embedding from
C[NCP (n)0] to C[NCM(n)]. Section 4 will determine the image of this embedding
within C[NCM(n)]. Section 5 will describe the conjectural analog for the SL3 web basis.

2 Background

2.1 Noncrossing matchings

A matching of [n] is a collection of disjoint size-two subsets of [n]. A matching is non-
crossing if it does not contain two subsets {a, c} and {b, d} with a < b < c < d. Let M(n)
denote the set of all matchings of [n], and let NCM(n) denote the set of all noncrossing
matchings of [n]. The symmetric group Sn acts naturally on M(n) as follows. If σ ∈ Sn

and m = {{a1, b1}, . . . , {ak, bk}} is a matching, then

σ ◦m = sign(σ){{σ(a1), σ(b1)}, . . . , {σ(ak), σ(bk)}}. (1)

We can extend this action to an action on C[M(n)], the C-vector space with basis given
by matchings of [n]. The action on matchings does not descend to an action on NCM(n)
since permuting elements in a noncrossing matching could introduce crossings. However,
we can linearize and define an action on C[NCM(n)], the C-vector space with basis
given by noncrossing matchings of [n]. For any noncrossing matching m and adjacent
transposition si = (i, i+ 1), define

si ·m =

{
si ◦m si ◦m is noncrossing

m+m′ otherwise.
(2)

Here ◦ denotes the action on all matchings and m′ is the matching where the subsets
of m containing i and i + 1, call them {i, a} and {i + 1, b} have been replaced with
{i, i + 1} and {a, b} and all other subsets remain the same. In other words, si ◦ m, m,
and m′ form a trio of matchings that differ only in a Ptolemy relation. It can be shown
that this definition satisfies the braid relations and thus gives an action of the symmetric
group on C[NCM(n)]. There exists an Sn-equivariant linear projection pM : C[M(n)] →
C[NCM(n)] given for any matching m by

m 7→ w−1 · (w ◦m), (3)

where w is any permutation for which w ◦ m is noncrossing. This projection can be
thought of as a way to“resolve” crossings in a matching and obtain a sum of noncrossing
matchings. The following proposition is not new, but we were unable to find a suitable
reference and thus include a proof for completeness.
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Proposition 3. The kernel of the projection pM : C[M(n)] → C[NCM(n)] is spanned by
elements of the form

{{a1, a2}, {a3, a4}, {a5, a6}, . . . , {a2k−1, a2k}}
+ {{a1, a3}, {a2, a4}, {a5, a6}, . . . , {a2k−1, a2k}}

+ {{a1, a4}, {a2, a3}, {a5, a6}, . . . , {a2k−1, a2k}} (4)

for any a1, . . . , a2k ∈ [n], i.e. sums of three matchings which differ by a Ptolemy relation.

Proof. Let β denote the set of all elements of the form given in (4). To see that the span
of β is contained in the kernel of pM , note that by the Sn-equivariance of pM it suffices
to check that applying pM gives 0 in the case where ai = i for all i. In this case, we have

pM({1, 2}, {3, 4}, . . . , {2k − 1, 2k}}+ {{1, 3}, {2, 4} . . . , {2k − 1, 2k}}
+ {{1, 4}, {2, 3} . . . , {2k − 1, 2k}})

= {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}+ (2, 3) · (−{{1, 2}, {3, 4}, . . . , {2k − 1, 2k}})
+ {{1, 4}, {2, 3}, . . . , {2k − 1, 2k}} = 0 (5)

To see that the kernel is contained in the span, note that since pM is a projection,
the kernel is spanned by m − pM(m) for any matching m. Let t denote the minimum
number of transpositions si1 , . . . , sit for which (si1 · · · sit) ◦m is noncrossing, and let w =
si1 · · · sit . We will show by induction on t that m − pM(m) ∈ span(β). When t = 0,
then m − pM(m) = 0, so the claim is true. Otherwise, assume the claim holds for t − 1.
We have m − pM(m) = si1 ◦ (si1 ◦ m) − si1 · pM(si1 ◦ m). By our inductive hypothesis,
si1 ◦m− pM(si1 ◦m) lies in the span of β, so it suffices to verify for any b ∈ β, that if we
apply si1 ◦ (−) to every crossing term of b and apply either si1 · (−) or si1 ◦ (−) to every
noncrossing term of b, we remain in the span of β. This is true because β is closed under
the ◦ action, and for every noncrossing matching m1, either

si1 ◦m = si1 ·m

or
si1 ·m1 = si1 ◦m1 − (si1 ◦m1 +m1 +m′

1)

where m′
1 is obtained by replacing the sets {i, a} and {i+1, b} with the sets {i, i+1} and

{a, b}. In the second case, si1 ◦m1 +m1 +m′
1 is in β.

2.2 The skein action

A set partition of [n] is a collection of disjoint subsets of [n] whose union is [n]. A set
partition is noncrossing if there do not exist distinct blocks A and B and elements a, c ∈ A,
b, d ∈ B with a < b < c < d. Let Π(n) denote the set of all set partitions of n, and let
NCP (n) denote the set of all noncrossing set partitions of [n]. We can define an action of
Sn on C[Π(n)] analogous to the action on C[M(n)]. Rhoades defined an action of Sn on
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C[NCP (n)] as follows [7]. For any noncrossing set partition π and adjacent transposition
si,

si · π =


−π i and i+ 1 are in the same block of π

−π′ at least one of i and i+ 1 is in a singleton block of π

σ(π′) i and i+ 1 are in different size 2 or larger blocks of π

where π′ is the set partition obtained by swapping which blocks i and i+1 are in, and σ is
defined for any almost-noncrossing (i.e. the crossing can be removed by a single adjacent
transposition) partition π by σ(π) = π+π2−π3−π4 where, if the crossing blocks in σ are
{i, a1, . . . , ak} and {i+ 1, b1, . . . , bl}, then π2, π3 and π4 are obtained from π by replacing
these blocks with

• {i, i+ 1} and {a1, . . . , ak, b1, . . . , bl} for π2

• {i, i+ 1, a1, . . . , ak} and {b1, . . . , bl} for π3

• {i, i+ 1, b1, . . . , bl} and {a1, . . . , bk} for π3

when k, l ⩾ 2. If k = 1 then π4 = 0 instead and if l = 1 then π3 = 0 instead. The
sum of partitions given by σ(π) is best described with a picture, see Figure 1 in the
introduction. The three possibilities (depending on whether k, l ⩾ 2) are the three skein
relations mentioned in the introduction. A more detailed description of this action can
be found in [7].

We again have an Sn-equivariant linear projection pΠ : C[Π(n)] → C[NCP (n)] given
for any set partition π by

π 7→ w−1 · (w ◦ π), (6)

where w is any permutation for which w ◦ π (here ◦ denotes the action of Sn on all set
partitions) is noncrossing. We have the following proposition, analogous to Proposition 3,
and with an analagous proof.

Proposition 4. The kernel of the projection pΠ : C[Π(n)] → C[NCP (n)] is spanned by
elements of the form

w ◦ (si ◦ π + σ(π))

for any permutation w and singleton-free almost noncrossing set partition π, i.e. sums of
set partitions which differ by a skein relation.

2.3 Sn-representation theory

For n ∈ Z⩾0, a partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of
positive integers such that λ1 + · · · + λk = n. A partitions of n can be represented by a
Young diagram, which is an arrangement of square boxes into n left-justified rows, with
the ith row containing λi boxes.

Irreducible representations of the symmetric group Sn are naturally indexed by par-
titions of n. Let Sλ denote the Sn-irreducible corresponding to partition λ. Given two
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representations V and W of Sm1 and Sm2 respectively, with m1 +m2 = n, the induction
product V ◦W is given by

V ◦W = IndSn
Sm1×Sm2

V ⊗W

where Sm1×Sm2 is identified with the parabolic subgroup of Sn which permutes the first
m1 elements, {1, . . . ,m1}, and last m2 elements, {m1 + 1, . . . , n}, separately. When V is
an irreducible representation Sµ for some partition µ of m1 and W is a sign representation
of Sm2 , the dual Pieri rule describes how to express V ◦W in terms of irreducibles,

Sµ ◦ signSm2

∼=
∑
λ

Sλ (7)

where the sum is over all partitions λ whose young diagram can be obtained from that of
µ by adding m2 boxes, no two in the same row. For further background, see [8].

3 The embedding

In order to prove that our map is an embedding, it will be helpful to introduce a multi-
plicative structure to work with. To do so we will introduce three commutative graded
C-algebras Rn, An, and Mn, all with Sn-actions. If we forget the multiplicative structure,
the underlying Sn-modules of Rn, An, and Mn will contain a copy C[Π(n)], C[M(n)], and
C[NCM(n)] respectively. In the case of Mn, this copy will be all of Mn. The structure
of this proof is best explained via a commutative diagram, see Figure 2. We will define a
map hn ◦ ιΠ : C[Π(n)0] → Mn, and show that its kernel is equal to the kernel of pΠ. The
desired embedding fn then follows from the first isomorphism theorem.

Rn An Mn

C[M(n)] C[NCM(n)]

C[Π(n)0] C[NCP (n)0]

gn

hn

q

∼=

pM

ιM

ιΠ

pΠ

fn

Figure 2: A commutative diagram of the maps used in the following proofs. All maps
shown areSn-equivariant linear maps. Maps between Rn, An, andMn are also morphisms
of C-algebras. The desired embedding is shown as a dashed arrow.

We begin with the definition of Rn.

Definition 5. Let n ∈ N. Define Rn to be the unital commutative C-algebra generated
by nonempty subsets of [n]. Define a degree-preserving action of Sn on Rn by

π · {a1, . . . , ak} = sign(π){π(a1), . . . , π(ak)}

the electronic journal of combinatorics 31(1) (2024), #P1.17 7



for any permutation π ∈ Sn and generator {a1, . . . , ak} ∈ Rn.

The ring Rn can be thought of as the ring of multiset collections of subsets of [n]
with multiplication given by union of collections and addition purely formal. It is in this
sense that it contains a copy of C[Π(n)], as set partitions of n are particular collections of
subsets of [n]. To be precise, there exists an Sn-module embedding ιΠ : C[Π(n)0] ↪→ Rn,
given by sending any singleton-free set partition π to the product of its blocks. For the
proofs in this section, the main benefit of working with Rn instead of C[Π(n)] is that it
allows us to work with only those two parts of a set partition which vary between terms in
the skein relations, rather than carrying around excess notation for the unchanging parts.

The ring An is a subring of Rn designed to model matchings in much the same way
which Rn models set partitions. It is defined as follows.

Definition 6. Let n ∈ N and define An to be theSn-invariant subalgebra of Rn generated
by the size two subsets of [n]. The subring An is invariant under the Sn-action of Rn,
and thus inherits a graded Sn-action from Rn.

Like Rn, the ring An can be thought of as the ring of multiset collections of size-two
subsets of [n]. As matchings are particular collections of size-two subsets of [n], we again
have an Sn-module embedding ιM : C[M(n)] ↪→ An, given by

{{a1, b1}, . . . , {ak, bk}} 7−→ {a1, b1} · · · {ak, bk}

for any matching {{a1, b1}, . . . , {ak, bk}}).
Our final ring, Mn, is defined as a quotient of An in the following way.

Definition 7. Define In to be the ideal of An generated by elements of the following
forms

• {a, b} · {a, b}

• {a, b} · {a, c}

• {a, b} · {c, d}+ {a, c} · {b, d}+ {a, d} · {b, c}

for any distinct a, b, c, d ∈ [n]. Then In is a Sn-invariant ideal of An, so define Mn to be
the Sn-module Mn := An/In. Let q : An → Mn be the quotient map.

The first two types of elements listed in the definition of In serve the purpose of
removing collections of size-two subsets which are not actually matchings. The third is
the Ptolemy relation used to define the action of Sn on C[NCM(n)], so quotienting by
this ideal gives an Sn-module isomorphic to C[NCM(n)], as per the following argument.

Proposition 8. There is an Sn-module isomorphism from C[NCM(n)] to Mn, given by

{{a1, b1}, . . . , {ak, bk}} 7−→ {a1, b1} · · · {ak, bk}

for any noncrossing matching {{a1, b1}, . . . , {ak, bk}}.
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Proof. Let q : An → Mn be the quotient map. Consider the map q ◦ ιM : C[M(n)] → Mn.
The kernel of q ◦ ιM is the preimage ι−1

M (In). The image of ιM is the span of all monomials
consisting of nonintersecting generators, so In ∩ ιM is the linear span of elements of the
form

({a, b} · {c, d}+ {a, c} · {b, d}+ {a, d} · {b, c})m
where a, b, c, d ∈ [n] are distinct and m is a monomial not containing a, b, c, d. The kernel
of q ◦ ιM is therefore spanned by the preimage of these elements. This is equivalent to the
description of ker(pM) given in Proposition 3, so the kernel of q ◦ ιM is equal to the kernel
of pM . The image of q ◦ ιM is all of Mn. To see this, note that products of generators of
An form a vector space basis for An, and every such basis element is either in the image
of ιM or in In. We therefore have

C[NCM(n)] ∼= C[M(n)]/ker(pM) = C[M(n)]/ker(q ◦ ιM) ∼= im(q ◦ ιM) = Mn (8)

where the isomorphism on the left is induced by the map pM and the isomorphism on
the right is induced by the map q ◦ ιM . Composing these isomorphisms gives the stated
map.

The following definition is the key idea behind our main theorem.

Definition 9. Let n ∈ N. Define the C-algebra map gn : Rn → An by

gn(A) =
∑

{a,b}⊆A

{a, b}

for generators A ∈ Rn. Singleton sets are sent to 0 by gn. Define hn := q ◦ gn where q is
the quotient map An → Mn.

We give the definition in terms of Rn, An, and Mn for simplicity and ease of proofs
later, but the map we really care about is hn ◦ ιΠ : C[Π(n)] → Mn. Under this map, a set
partition π is sent to the product of its blocks, then each block is sent to the sum of all
size-two subsets it contains. After distributing, we get a sum of all ways to pick a size two
subset from each block. Composing with the isomorphism between Mn and C[NCM(n)]
we get the sum of all matchings such that each block of π contains exactly one pair of the
matching, as in Theorem 15.

We will now show that hn ◦ ιΠ factors through the projection map pΠ to produce an
injective map. To do so, we will show that the kernels of these two maps agree. To
show that the kernel of hn ◦ ιΠ contains the kernel of pΠ, we introduce an element of Rn

modelling the five term skein relation depicted in Figure 1.

Definition 10. Let i, j ⩾ 2 and let p1, p2, . . . , pi and q1, q2, . . . , qj be distinct in [n]. Define
κn ∈ Rn by

κn := {p1, . . . , pi} · {q1, . . . , qj} − {p1, . . . , pi−1} · {q1, . . . , qj, pi}
− {p1, . . . , pi, qj} · {q1, . . . , qj−1}+ {p1, . . . , pi−1, qj} · {q1, . . . , qj−1, pi}
+ {p1, · · · , pi−1, q1, · · · , qj−1} · {pi, qj} (9)
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Note that κn is implicitly depending on a choice of p1, . . . , pi, and q1, . . . , qj, we omit these
from the notation to avoid clutter.

When i, j > 2, the element κn corresponds to the five-term skein relation depicted in
Figure 1. If i equals 2, then {p1, · · · pi−1} = {p1} is a one element set and therefore sent
to 0 by hn, removing the term containing {p1} corresponds to the four-term skein relation
depicted in Figure 1. Similarly, if j equals 2 or i and j both equal two, removing the
terms in κn which are individually sent to 0 corresponds to the four or three-term skein
relation depicted in Figure 1.

We have the following calculation.

Proposition 11. The element κn ∈ Rn lies in the kernel of hn.

Proof. Applying hn to κn gives

hn(κn) =
∑

{a,b}⊆{p1,...,pi}
{c,d}⊆{q1,...,qj}

{a, b} · {c, d}

−
∑

{a,b}⊆{p1,...,pi−1}
{c,d}⊆{q1,...,qj ,pi}

{a, b} · {c, d}

−
∑

{a,b}⊆{p1,...,pi,qj}
{c,d}⊆{q1,...,qj−1}

{a, b} · {c, d}

+
∑

{a,b}⊆{p1,...,pi−1,qj}
{c,d}⊆{q1,...,qj−1,pi}

{a, b} · {c, d}

+
∑

{a,b}⊆{p1,...,pi−1,q1,··· ,qj−1}
{c,d}⊆{pi,qj}

{a, b} · {c, d} (10)

Note that the pairs of sets defining the first and second summations in the above expression
differ only in the location of pi, and similarly for the third and fourth. Since these
summations come with opposite signs, the {a, b}, {c, d} terms in the above expression will
cancel unless one of a, b, c, d is equal to pi. Similarly, comparing the first and third sums
and the second and fourth sums we find cancellation unless at least one of a, b, c, d is equal
to qj. If the remaining two elements of a, b, c, d are both p’s or both q’s, then {a, b} · {c, d}
also cancels. Therefore we have

hn(κn) =
∑

a∈{p1,...,pi−1}
b∈{q1,...,qj−1}

{a, pi} · {b, qj}+ {a, qj} · {b, pi}+ {a, b} · {pi, qj} (11)

which is manifestly a sum of the definining relations of Mn.

To show that the kernel of hn ◦ ιΠ is no larger than the kernel of pπ, we will show
that the images of singleton-free noncrossing set partitions under hn ◦ ιΠ are linearly
independent. To do so, we introduce a term order on Mn.
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Definition 12. Define a total order on the generators of Mn as follows by

• If a < b, c < d, and a < c, then {a, b} < {c, d}

• If a < b, c < d, a = c and b > d, then {a, b} < {c, d}

Let ⩽ denote lexicographic order on monomials of Mn with respect to this order on the
generators. Note that b > d in the second condition is not a typo, earlier generators have
small smallest element and large largest element, e.g. {1, n} is the first in this total order.

With this monomial order we have the following.

Proposition 13. The set {hn ◦ ιΠ(π) | π ∈ NCP (n)0} is linearly independent.

Proof. By Proposition 8, Mn has a basis consisting of monomials corresponding to non-
crossing matchings. We claim that the leading term of hn ◦ ιΠ(π) when expanded in this
basis is unique. By the definition of the term order, the leading term of hn ◦ ιΠ(π) is the
noncrossing matching obtained by matching the smallest element of each block of π to the
largest element of the same block. We can recover π be placing every unmatched element
j in a block with the matched pair {i, k} for which i < j < k and k − i is minimal, and
the result follows.

Corollary 14. The kernel of hn ◦ ιΠ is spanned by the set of all elements of the form
w ◦ (si ◦ π + σ(π)) (the skein relations) for any permutation w, adjacent transposition si,
and singleton-free almost noncrossing set partition π.

Proof. By Proposition 11, all such elements lie in the kernel. By Proposition 13 and a
dimension count it is no larger.

We can now prove our main result.

Theorem 15. The linear map fn : C[NCP (n)0] → C[NCM(n)] defined by

fn(π) =
∑

m∈Mπ(n)

m

is a Sn-equivariant embedding of vector spaces. Here Mπ(n) is defined to be the set of all
matchings m in M(n) for which each block of π contains exactly one pair in m.

Proof. By Corollary 14 and Proposition 4, the kernel of h ◦ ιΠ is equal to the kernel of
pΠ. So we have

C[NCP (n)0] ∼= C[Π0(n)]/ker(pΠ) ∼= im(h ◦ ιΠ) ⊂ Mn
∼= C[NCM(n)] (12)

where the isomorphism on the left is induced by pΠ and the isomorphism on the right is
induced by h ◦ ιΠ. Chasing these isomorphisms and inclusions results in the map fn.

Remark 16. Theorem 15 gives an alternate proof that the skein action is well defined.
Instead of defining the skein action via the skein relations and checking that it satisfies
the braid relations, we can instead define it as the pullback of the action on Mn through
fn. Corollary 14 shows that this pullback can then be interpreted via the skein relations.
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4 The image

We have an embedding fn : C[NCP (n)0] ↪→ C[NCM(n)], so it is a natural question to
ask for a description of the image of fn within C[NCM(n)]. Via the commutative diagram
in Figure 2,we have an isomorphism of images

im(hn) ∼= im(fn). (13)

So it is equivalent to describe the image of hn, and the multiplicative structure of Mn

will make describing the image of hn easier. This section will show that the image of hn

has a simple description as a principal ideal, the proof of which will require the following
lemmas.

Lemma 17. Let A ⊆ [n]. Then hn(A)
2 = 0.

Proof. Applying the definition of hn gives

hn(A)
2 =

∑
a,b∈[n]
a̸=b

∑
c,d∈[n]
c ̸=d

{a, b} · {c, d} (14)

Using the defining relation of Mn that

{a, b} · {a, c} = 0

we have∑
a,b∈[n]
a̸=b

∑
c,d∈[n]
c̸=d

{a, b} · {c, d} =
1

3

∑
a,b,c,d∈[n]

a,b,c,d distinct

{a, b} · {c, d}+ {a, c} · {b, d}+ {a, d} · {b, c}. (15)

The right hand side of the above equation equals 0 because

{a, b} · {c, d}+ {a, c} · {b, d}+ {a, d} · {b, c} = 0

for any distinct a, b, c, d ∈ [n].

Lemma 18. Let A,B be disjoint subsets of [n]. Then

hn(A) ·

∑
a∈A
b∈B

{a, b}

 = 0.

Proof. Applying hn gives

hn(A) ·

∑
a∈A
b∈B

{a, b}

 =
1

3

∑
a1,a2,a3∈A

b∈B

{a1, a2} ·{a3, b}+{a1, a3} ·{a2, b}+{a2, a3} ·{a1, b} = 0
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Lemma 19. Let B1, . . . , Bk be the blocks of a singleton free set partition of [n]. Then

hn

(
k∏

i=1

Bi

)
= hn

(
[n] ·

k−1∏
i=1

Bi

)

Proof. We have the following calculation:

hn

(
[n] ·

k−1∏
i=1

Bi

)
=

 ∑
a,b∈[n]
a<b

{a, b}

 · hn

(
k−1∏
i=1

Bi

)

=


(

k∑
i=1

hn(Bi)

)
+

 ∑
1⩽i<j⩽k

∑
a∈Bi
b∈Bj

{a, b}


 · hn

(
·
k−1∏
i=1

Bi

)

= hn(Bk) ·

(
·
k−1∏
i=1

hn(Bi)

)
.

The last line follows by the preceeding two lemmas. Lemma 18 shows that every term in
the outer sum of ∑

1⩽i<j⩽k

∑
a∈Bi
b∈Bj

{a, b}

is annihilated by some term in the product

k−1∏
i=1

hn(Bk).

Similarly, Lemma 17 shows that every term except the i = k term in the sum

k∑
i=1

hn(Bi)

is annihilated by some term in the product

k−1∏
i=1

hn(Bk).

We can now describe the image of hn.

Theorem 20. Let Hn be the ideal of Mn generated by hn([n]). Then

im(hn) = Hn.
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Proof. It is immediate from Lemma 19 that the image of hn is contained in Hn, so it
suffices to show that Hn is no larger. We will do so by showing the dimension of Hn is no
larger than the dimension of the image of hn, i.e.

dim(Hn) ⩽ dim(im(hn)) = dim(im(fn)) = #NCP (n)0 (16)

We begin by finding a spanning set for Hn: note that for any fixed a ∈ [n],

hn([n]) ·

∑
b∈[n]
b ̸=a

{a, b}

 =
1

3

∑
b∈[n]
b ̸=a

∑
c∈[n]
c ̸=a

∑
d∈[n]
d̸=a

({a, b} · {c, d}+ {a, c} · {b, d}+ {a, d} · {b, c}) = 0

so

hn([n]) · {1, a} = −hn([n]) ·

∑
b∈[n]
b̸=a,1

{a, b}

 .

Let M
(2)
n denote the subspace of Mn spanned by noncrossing matchings of {2, . . . , n}. By

the above computation, Hn is spanned by elements of the form

hn([n]) ·m

for m ∈ M
(2)
n .

The dimension of Hn is thus the rank of the map M
(2)
n → Mn given by multiplication

by hn([n]). To give an upper bound for the rank, we give a lower bound on the nullity.

Let π̃ be a set partition of {2, . . . , n}. Consider the element f̃n(π̃) of M
(2)
n given by

f̃n(π̃) :=
∏
B∈π̃

hn(B)

for any singleton free noncrossing set partition π̃ of {2, . . . , n}. The notation is meant to
highlight that this is an analogous definition to the definition of f . We will show that
f̃n(π̃) is in the kernel of the multiplication by hn([n]) map. Indeed, let B1 be the block
of π̃ containing 2, and let π be the set partition of [n] obtained by adding 1 to block B1.
We have

hn([n]) · f̃n(π̃) = hn([n]) ·
∏
B∈π̃

hn(B)

= hn(B1) · hn

[n] ·
∏
B∈π

B ̸=B1∪{1}

B


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= hn(B1) · hn

(∏
B∈π

B

)

= hn(B1)hn(B1 ∪ {1})hn

 ∏
B∈π

B ̸=B1∪{1}

B


= 0

The third equality follows from Lemma 19 and the final equality follows from the fact
that

hn(B1)hn(B1 ∪ {1}) = hn(B1)
2 + hn(B1)

(∑
b∈B1

{1, b}

)
= 0

which follows from Lemma 18 and Lemma 17. The collection of f̃n(π̃) for singleton-free
noncrossing set partitions π of {2, . . . , n} is linearly independent. To see this, note that
any linear relation among the f̃n(π̃) would also be a linear relation among fn−1(π) where
π is the set partition of [n − 1] obtained by decrementing the indices in π̃. But fn−1 is
an embedding and singleton-free noncrossing set partitions are linearly independent in
C[NCP (n−1)0]. Thus, the dimension of the kernel of multiplication by hn([n]) is at least
the number of singleton-free noncrossing set partitions of {2, . . . , n}.

The dimension of Hn is therefore bounded by

dim(Hn) ⩽ #{noncrossing matchings of {2, . . . , n}}
−#{singleton-free noncrossing set partitions of {2, . . . , n}}. (17)

Noncrossing matchings of {2, . . . , n} are in bijection with noncrossing set partitions of [n]
in which only the block containing 1 may be a singleton (though it may be larger). Given a
noncrossing set partition, take the matching that matches the largest and smallest element
of each block not containing 1. Singleton-free noncrossing set partitions of {2, . . . , n} are
in bijection with set partitions of [n] in which {1} is the unique singleton block. We
therefore have

#{singleton-free noncrossing set partitions of [n]} =

#{noncrossing matchings of {2, . . . , n}}
−#{singleton-free noncrossing set partitions of {2, . . . , n}} (18)

and
dim(Hn) ⩽ #{singleton-free noncrossing set partitions of [n]}

as desired.

5 Future directions

One of the goals motivating this paper is to find new combinatorially nice bases for Sn-
irreducibles which arise from existing bases in an analogous way to the skein action. More
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specifically, suppose we have a basis for Sλ which is indexed by certain structures on the
set [k], where k = |λ| (e.g. noncrossing perfect matchings, in the case of this paper).
We can create a basis for the induction product of Sλ with a sign representation of Sn−k

indexed by all ways to put a certain structure on a k-element subset of [n]. The Pieri rule
tells us which Sn irreducibles this decomposes into. In particular, there will be one copy
of (λ, 1n−k). How do we isolate that irreducible?

It is perhaps optimistic to think that there will be a method that works in any sort
of generality, but analogs may be found in some cases. For example, an analog might
exist for the SL(3)-web basis for S(k,k,k) introduced by Kuperberg [4]. The web basis
consists of planar bipartite graphs embedded in a disk with n boundary vertices all of
degree 1, interior vertices are degree 3, all boundary vertices are in the same part of the
bipartition, and no cycles of length less than 6 exist. One potential candidate for a basis
for S(k,k,k,1n−3k) is as follows.

Conjecture 21. Let A be the set of all planar bipartite graphs embedded in a disk for
which the following conditions hold

• There are n vertices on the boundary of the disk, and there exists a bipartition in
which all of these vertices are in the same part.

• Every interior vertex in the same part of the bipartition as the boundary vertices is
degree 3. These are called negative interior vertices.

• Every interior vertex not in the same part of the bipartition as the boundary vertices
is degree at least 3. These are called positive interior vertices.

• The number of positive interior vertices minus the number of negative interior ver-
tices is exactly k.

• No cycles of length less than 6 exist.

Then |A| is equal to the dimension of S(k,k,k,1n−3k).

The set A can be thought of as consisting of webs for which the condition of interior
vertices being degree 3 has been partially relaxed. The conjecture can be shown to hold
for k = 2 and any n, as well as n = 10, k = 3 via direct enumeration. If the above
conjecture is true, it suggests the following question.

Question 22. Does there exist a combinatorially nice action of Sn on C[A] which creates
a Sn module isomorphic to S(k,k,k,1n−3k)? If so, what does the unique embedding into
S(k,k,k) induced with a sign representation of Sn−3k look like?

A positive answer to this question might help elucidate how to apply similar methods
more generally.
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