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Abstract

A triple (A,B,C) of dice is called nontransitive if each of P (A < B), P (B < C),
and P (C < A) is greater than 1

2 and called balanced if P (A < B) = P (B < C) =
P (C < A). From the result of Trybu la, it is known that P (A < B) is less than
−1+

√
5

2 , the golden ratio, for every balanced nontransitive triple (A,B,C) of dice.
Schaefer asked whether this upper bound is tight, and Hur and Kim conjectured
that the upper bound can be reduced to 1

2 + 1
9 . In this paper, we characterize all

possible probabilities P (A < B) for balanced nontransitive triples (A,B,C) of dice.

Precisely, we prove that, for every rational 1
2 < q < −1+

√
5

2 , there exists a balanced
nontransitive triple (A,B,C) of dice with P (A < B) = q, which disproves Hur and
Kim’s conjecture and answers Schaefer’s question.

We also characterize all triples (m,n, `) of positive integers such that there exists
a balanced nontransitive triple (A,B,C) of dice, where A, B, and C are m-sided, n-
sided, and `-sided dice, respectively. This generalizes Schaefer and Schweig’s result
showing the existence of a balanced nontransitive triple of n-sided dice for every
n > 3.

Mathematics Subject Classifications: 05A99

1 Introduction

For two dice A and B, we write P (A < B) as the probability that B rolls higher than A.
For the three dice A, B, and C shown in Figure 1, we can verify that each of P (A < B),

P (B < C), and P (C < A) is greater than 1/2. This phenomenon of nontransitive dice
was introduced by Gardner [4] and was further studied in [1, 2, 3, 7, 9, 10].

Schaefer and Schweig [12] studied a nontransitive triple (A,B,C) of dice with an ad-
ditional condition: P (A < B) = P (B < C) = P (C < A). Such a triple is called balanced.
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Figure 1: A nontransitive triple (A,B,C) of dice.

Since the existence of a balanced nontransitive triple of n-sided dice was proved [12], a
balanced nontransitive triple of dice has been studied in various ways [5, 6, 8, 11, 13].
However all those studies have only considered dice with the same number of sides.

Our goal in this paper is to study a balanced nontransitive triple of dice, each of
which does not necessarily have the same number of sides. For our purposes, we define
a triple of dice as a triple (A,B,C) of pairwise disjoint sets A,B,C with A ∪ B ∪ C =
{1, 2, . . . , |A| + |B| + |C|}. For X = A,B,C, we regard die X as a fair die labeled with
the elements of the set X.

Definition 1. A triple (A,B,C) of dice is nontransitive if each of P (A < B), P (B < C),
and P (C < A) is greater than 1

2
.

Definition 2. A triple (A,B,C) of dice is balanced if P (A < B) = P (B < C) = P (C <
A).

An (m,n, `)-triple of dice is a triple (A,B,C) of dice with |A| = m, |B| = n, and
|C| = `. We simply write (n)-triple of dice for an (n, n, n)-triple of dice.

Example 3. In Figure 1, (A,B,C) is a nontransitive (6)-triple of dice.

Example 4. If A = {1, 2, 7, 8, 10}, B = {3, 4, 5, 9, 11}, and C = {6}, then (A,B,C) is a
nontransitive balanced (5, 5, 1)-triple of dice because P (A < B) = P (B < C) = P (C <
A) = 3

5
> 1

2
.

The following result implies that P (A < B) is less than −1+
√
5

2
, the golden ratio, for

every balanced nontransitive triple (A,B,C) of dice.

Corollary 5 (Trybu la [14]). Let X, Y, Z be independent random variables. If P (X <

Y ) = P (Y < Z) = P (Z < X), then P (X < Y ) < −1+
√
5

2
.

In [11], Schaefer asked whether this upper bound is sharp, and Hur and Kim [5]
conjectured that the upper bound can be reduced to 1

2
+ 1

9
. Our first result answers

Schaefer’s question and disproves Hur and Kim’s conjecture. Specifically, we classified all
possible probabilities as follows:

Theorem 6. For every rational 1
2
< q < −1+

√
5

2
, there exist a positive integer n and a

balanced nontransitive (n)-triple of dice (A,B,C) such that

P (A < B) = P (B < C) = P (C < A) = q.
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In [12], Schaefer and Schweig showed the existence of a balanced nontransitive (n)-
triple of dice for every n > 3. Our second theorem generalizes this theorem; that is, we
completely classify all triples (m,n, `) of positive integers such that there exists a balanced
nontransitive (m,n, `)-triple of dice. For triples (a, b, c) and (x, y, z) of positive integers, if
there exists a permutation (x′, y′, z′) of (x, y, z) such that a | x′, b | y′, and c | z′, then we
say (a, b, c) is a divisor of (x, y, z) or that (x, y, z) is a multiple of (a, b, c). For example,
(6, 3, 2) is a divisor of (4, 9, 6) because 6|6, 3|9, and 2|4.

Theorem 7. Let m, n, and ` be positive integers. Then, there exists a balanced non-
transitive (m,n, `)-triple of dice (A,B,C) if and only if (m,n, `) is divisible by one of the
following:

(i) (5, 5, 1), (7, 7, 1),

(ii) (k, k, 1) for k > 9,

(iii) (3, 3, 3), (4, 4, 4), (6, 6, 2), (8, 8, 2), (12, 4, 3).

The remainder of this paper is organized as follows. In Section 2, we introduce some
notations and preliminaries. In Section 3, we prove Theorem 6. Finally, in Section 4, we
prove Theorem 7.

2 Notations and Preliminaries

A word σ is a finite sequence each letter of which is either A, B, or C. We denote by
|σ| the length of σ, i.e., the number of letters in σ, and for X ∈ {A,B,C}, we denote by
|X|σ the number of the letters X in σ. Moreover, we let σ(i) be the i-th letter of σ.

We can associate a triple of dice with a word as follows:

Definition 8. For a triple D = (A,B,C) of dice, let σ = σ(D) be the word of length
|A|+ |B|+ |C| whose i-th letter is the die including i as a label.

Example 9. For a triple D = (A,B,C) of dice in Figure 1,

σ(D) = ABBBCCCCCAAAAABBBC.

Conversely, for a word σ, let D(σ) be the triple of dice corresponding to σ. From
Definition 8, we can clearly see that D(σ) is uniquely determined. Using this one-to-one
correspondence, we can consider a triple of dice as its associated word and vice versa.

For a word σ and distinct X, Y ∈ {A,B,C}, let Nσ(X < Y ) be the number of pairs

(i, j) of 1 6 i < j 6 |σ| such that σ(i) = X and σ(j) = Y and let Pσ(X < Y ) = Nσ(X<Y )
|X|σ |Y |σ .

Clearly, Pσ(X < Y ) = PD(σ)(X < Y ).

Example 10. For σ = σ(D) in Example 9, Nσ(A < B) = 21 and Pσ(A < B) = 21
36

= 7
12

.

We can naturally define a nontransitive word and a balanced word as follows:
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Definition 11. A word σ is nontransitive if each of Pσ(A < B), Pσ(B < C), and
Pσ(C < A) exceeds 1

2
.

Definition 12. A word σ is balanced if Pσ(A < B) = Pσ(B < C) = Pσ(C < A).

An (m,n, `)-triple of dice D is associated with a word σ with |A|σ = m, |B|σ = n and
|C|σ = `. Such a word is called an (m,n, `)-word.

Definition 13. An (m,n, `)-word is a word σ with |A|σ = m, |B|σ = n, and |C|σ = `.
We simply write an (m)-word for an (m,m,m)-word.

Using the above terminologies, we can rephrase Schaefer and Schweig’s theorem as
follows:

Theorem 14 (Schaefer and Schweig [12]). For every m > 3, there is a balanced nontran-
sitive (m)-word.

3 Possible Probability

For a balanced nontransitive word σ, let P (σ) = Pσ(A < B). In this section, we classify
all possible probabilities of P (σ), which implies Theorem 6.

Note that P (σ) is a positive rational. Furthermore, by the fact that σ is nontransitive

and by Corollary 5, we have 1
2
< P (σ) < −1+

√
5

2
. We prove that, for each rational

1
2
< q < −1+

√
5

2
, there exists a balanced nontransitive (m)-word σ with P (σ) = q.

A word σ is called central if the letters C are placed consecutively; that is, there are
positive integers i and j with 1 6 i < j 6 |σ| such that σ(k) = C if and only if i 6 k 6 j.
In this case, we define the type of σ as a pair (a, b) of nonnegative integers a and b, where
a (respectively b) is the number of the letters A (respectively B) appearing in the first
(i− 1) letters in σ.

Example 15. The word σ = AABACCBBA is central and its type is (3, 1).

Lemma 16. Let m, n, and ` be positive integers. If a and b are nonnegative integers with
a 6 m and b 6 n, then for every integer s with a(n− b) 6 s 6 an+ (m− a)(n− b), there
is a central (m,n, `)-word σ of type (a, b) such that Nσ(A < B) = s.

Proof. Let σ be a central (m,n, `)-word of type (a, b) with σ(i) = B for 1 6 i 6 b and
a+ b+ `+ 1 6 i 6 a+ `+ n, i.e.,

σ = BB . . . B︸ ︷︷ ︸
b

AA . . . A︸ ︷︷ ︸
a

CC . . . C︸ ︷︷ ︸
`

BB . . . B︸ ︷︷ ︸
n−b

AA . . . A︸ ︷︷ ︸
m−a

.

We consider a sequence σ0, σ1, . . . , σk of central (m,n, `)-words defined as follows.

• σ0 = σ,
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• for each i = 1, 2, . . . , k, σi is obtained from σi−1 by switching one BA in σi−1 to AB,
and

• there is no BA in σk.

For example, if σ = BBACBAA, then

σ0 = BBACBAA, σ1 = BABCBAA, σ2 = ABBCBAA,

σ3 = ABBCABA, σ4 = ABBCAAB.

From the definition of the sequence, k is indeed fixed as ab + (m − a)(n − b). Note
that, for each i = 1, 2, . . . , k,

Nσi(A < B) = Nσi−1
(A < B) + 1

and
Nσ0(A < B) = a(n− b), Nσk(A < B) = an+ (m− a)(n− b).

Thus, for each a(n− b) 6 s 6 an+ (m− a)(n− b), σs−a(n−b) is a central (m,n, `)-word of
type (a, b) with Nσs−a(n−b)(A < B) = s. This completes the proof.

Now, we are ready to prove Theorem 6.

Proof of Theorem 6. We prove that, for every rational 1
2
< q < −1+

√
5

2
, there exists a

central balanced nontransitive (m)-word σ with P (σ) = q.
We choose a sufficiently large positive integer m, such that qm is an integer. Because

1
2
< q < −1+

√
5

2
, it follows that

(1− q)2m2 6 qm2 6 (1− q)m2 + (1− q)qm2.

Thus, from Lemma 16 with a = (1 − q)m and b = qm, there exists a central (m)-word
σ of type ((1 − q)m, qm) such that Nσ(A < B) = qm2. Clearly, Nσ(B < C) = qm2 and
Nσ(C < A) = qm2. Hence, σ is a balanced nontransitive (m)-word with P (σ) = q. This
completes the proof.

Note that every (m,n, 1)-word is central. In the following, we classify all pairs of
positive integers (m,n) such that there exists a balanced nontransitive (m,n, 1)-word.

Lemma 17. Let m and n be positive integers. If gcd(m,n) 6= 1, 2, 3, 4, 6, 8, then there
exists a balanced nontransitive (m,n, 1)-word.

Proof. Let gcd(m,n) = d ( 6= 1, 2, 3, 4, 6, 8) and k = dd+1
2
e. Let m = dm′ and n = dn′. For

every (m,n, 1)-word σ of type ((d − k)m′, kn′), we have Pσ(B < C) = Pσ(C < A) = k
d
.

Therefore, it is enough to show that there exists such a word σ with Pσ(A < B) = k
d

or with Nσ(A < B) = mnk
d

= m′n′kd. From Lemma 16, we know that there exists an
(m,n, 1)-word σ of type ((d − k)m′, kn′) with Nσ(A < B) = s for every (d − k)2m′n′ 6
s 6 (d2 − k2)m′n′. Because d 6= 1, 2, 3, 4, 6, 8 and k = dd+1

2
e, it holds that (d− k)2m′n′ 6

m′n′kd 6 (d2 − k2)m′n′. Therefore, a balanced nontransitive (m,n, 1)-word exists.

Indeed, the converse of Lemma 17 is also true; that is, there exists a balanced non-
transitive (m,n, 1)-word if and only if gcd(m,n) 6= 1, 2, 3, 4, 6, 8. This is an easy corollary
of Lemma 22.
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4 Existence of Balanced Nontransitive (m,n, `)-words

Let σ be a balanced nontransitive (m,n, `)-word. By replacing each of the letters B and C
in σ with C and B, respectively, and then reversing σ, we obtain a balanced nontransitive
(m, `, n)-word. The same procedure using the letters A and C in σ produces an (`, n,m)-
word. This implies the following.

Observation 18. If there exists a balanced nontransitive (m,n, `)-word, then for every
permutation (x, y, z) of (m,n, `), there exists a balanced nontransitive (x, y, z)-word.

Now, we prove several lemmas to prove Theorem 7.

Lemma 19. Let k be a positive integer. If there exists a balanced nontransitive (m,n, `)-
word σ, then there exists a balanced nontransitive (m,n, `k)-word.

The following example will be useful to understand how we produce a balanced non-
transitive (m,n, `k)-word from a balanced nontransitive (m,n, `)-word.

Example 20. The (5, 5, 1)-word σ = AABBBCAABAB is balanced nontransitive and
has winning probability Pσ(A < B) = 3

5
. We replace the letter C in σ with k consecutive

C’s to obtain a (5, 5, k)-word

σ′ = AABBB CC . . . C︸ ︷︷ ︸
k

AABAB.

Then, Pσ′(A < B) = Pσ′(B < C) = Pσ′(C < A) = 3
5
. So, σ′ is balanced nontransitive

and has winning probability 3
5
.

Proof of Lemma 19. Let σ′ be the word obtained from σ by replacing each letter C in σ
with k consecutive C’s. For example, if σ = CBBAACACBACBABCCBA and k = 2,
then

σ′ = (CC)BBAA(CC)A(CC)BA(CC)BAB(CC)(CC)BA.

Clearly, σ′ is an (m,n, `k)-word. Furthermore, Pσ′(A < B) = Pσ(A < B), Pσ′(B < C) =
Pσ(B < C) and Pσ′(C < A) = Pσ(C < A). That is, σ′ is a balanced nontransitive
(m,n, `k)-word with P (σ′) = P (σ). This completes the proof.

Combining Observation 18 and Lemma 19, we obtain the following:

Corollary 21. Let m, n, and ` be positive integers. Suppose there exists a balanced
nontransitive (m,n, `)-word. Then, there exists a balanced nontransitive (x, y, z)-word for
every (x, y, z) divisible by (m,n, `).

Lemma 22. If mn`
lcm(m,n,`)

∈ {1, 2, 3, 4, 6, 8}, then there are no balanced nontransitive

(m,n, `)-words.

the electronic journal of combinatorics 31(1) (2024), #P1.21 6



Proof. Let L = mn`
lcm(m,n,`)

. Suppose there exists a balanced nontransitive (m,n, `)-word σ,

and let P (σ) = p. By Theorem 6, we know that 1
2
< p < −1+

√
5

2
.

Let Nσ(A < B) = x, Nσ(B < C) = y, and Nσ(C < A) = z. Then, p = x
mn

= y
n`

=
z
`m

= N
mn`

for some integer N divisible by lcm(m,n, `). Let N = k lcm(m,n, `). Because
1
2
< p < −1+

√
5

2
, it follows that 1

2
< k · lcm(m,n,`)

mn`
= k

L
< −1+

√
5

2
, and, therefore

L

2
< k <

−1 +
√

5

2
L.

However, for each L ∈ {1, 2, 3, 4, 6, 8}, there are no integers between L
2

and −1+
√
5

2
L

(see Table 1); therefore k does not exist, which yields a contradiction. This completes the
proof.

L L
2

−1+
√
5

2
L

1 0.5 0.618 . . .
2 1 1.236 . . .
3 1.5 1.854 . . .
4 2 2.471 . . .
5 2.5 3.090 . . .
6 3 3.708 . . .
7 3.5 4.326 . . .
8 4 4.944 . . .

Table 1: There are no integers between L
2

and −1+
√
5

2
L.

Now, we are ready to prove Theorem 7.

Proof of Theorem 7. We first prove the ‘if’ part.
By Lemma 17, there exists a balanced nontransitive (k, k, 1)-word if k = 5, 7 or k > 9.

By Theorem 14, we know that a balanced nontransitive (3, 3, 3)-word and (4, 4, 4)-word
exist. For other cases, i.e., (m,n, `) = (6, 6, 2), (8, 8, 2), (12, 4, 3), we construct a balanced
nontransitive (m,n, `)-word as follows:

• (m,n, `) = (6, 6, 2): BCAAAABBBBABCA is a balanced nontransitive (6, 6, 2)-
word with winning probability 7

12
.

• (m,n, `) = (8, 8, 2): BCAAAAABBBBBBABACA is a balanced nontransitive
(8, 8, 2)-word with winning probability 9

16
.

• (m,n, `) = (12, 4, 3): CAAAAAAABBBCBACAAAA is a balanced nontransitive
(12, 4, 3)-word with winning probability 7

12
.
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Hence, by Corollary 21, if (m,n, `) is a multiple of one in the list of Theorem 7, then
there is a balanced nontransitive (m,n, `)-word. This proves the ‘if’ part.

Next, we prove the ‘only if’ part. Suppose there exists a balanced nontransitive
(m,n, `)-word for some (m,n, `) that is not divisible by any in the list of Theorem 7.
We observe that each of gcd(m,n), gcd(n, `), and gcd(`,m) is either 1, 2, 3, 4, 6, or 8 by
Lemma 17 and Corollary 21. That is, it must be the case that

m = 2a13b1x, n = 2a23b2y, ` = 2a33b3z

for some nonnegative integers a1, a2, a3, b1, b2, b3 and pairwise coprime positive integers
x, y, z not divisible by 2 or 3. Since (m,n, `) is not divisible by (3, 3, 3), at least one of b1,
b2, and b3 is 0. Without loss of generality, let b3 = 0. Since gcd(m,n) is not divisible by
9, b1 6 1 or b2 6 1. Let b2 6 1 and b1 > b2.

Let M = max(a1, a2, a3). By Lemma 22, we have

mn`

lcm(m,n, `)
=

2a1+a2+a3 · 3b1+b2+b3 · xyz
2M · 3b1 · xyz

= 2a1+a2+a3−M · 3b2 6= 1, 2, 3, 4, 6, 8. (1)

Suppose b2 = 1. Then, b1 > b2 = 1. By (1), a1 + a2 + a3 − M is at least 2. If
a1, a2, a3 > 1, then because b1, b2 > 1, (m,n, `) is a multiple of (6, 6, 2), a contradiction.
Thus, either a1, a2 or a3 is 0. Since a1 + a2 + a3 −M > 2 and M = max(a1, a2, a3), two
of a1, a2 and a3 are at least 2. If a1, a2 > 2 and a3 = 0, then (m,n, `) is a multiple of
(12, 12, 1), a contradiction. If either a1 or a2 is 0, then a3 > 2, and (m,n, `) is a multiple
of (12, 4, 3), which yields a contradiction. Thus, b2 = 0. Then, a1 + a2 + a3 −M > 4 by
(1). If a1, a2, a3 > 2, then (m,n, `) is a multiple of (4, 4, 4). If either a1, a2 or a3 is 0, then
since a1 + a2 + a3 −M > 4 and M = max(a1, a2, a3), the other two must be at least 4.
Then,(m,n, `) is a multiple of (16, 16, 1). Hence, one of a1, a2 and a3 is 1, and the other
two are at least 3. In this case, (m,n, `) is a multiple of (8, 8, 2), a contradiction. This
completes the proof.

5 Future Research Directions

The nontransitive balanced dice is defined for a set of three dice in Definition 1 and 2. It
can be naturally extended to a set of n(> 3) dice as follows:

Definition 23. For positive integer n(> 3), a set {A1, A2, . . . , An} of dice is nontransitive
and balancecd if the following holds.

P (A1 < A2) = P (A2 < A3) = · · · = P (An < A1) >
1

2

This extension was introduced in [12, 13], and it was shown that for every n > 3 and
m > 3, nontransitive balanced m-sided n dice exist in [12, 13]. It would be interesting to
extend Theorem 6 and 7 to this general setting.
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Problem 24. For n > 3, find the least upper bound of the winning probability of non-
transitive balanced n dice.

Problem 25. Characterize all n-tuples (k1, k2, . . . , kn) of positive integers so that there
exist balanced nontransitive dice A1, A2, . . . , An where Ai has ki-sides.
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