
Spectral Extremal Problem

on Disjoint Color-Critical Graphs

Xingyu Leia Shuchao Lib

Submitted: Jul 23, 2023; Accepted: Jan 7, 2024; Published: Jan 26, 2024

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For a given graph F , we say that a graph G is F -free if it does not contain
F as a subgraph. A graph is color-critical if it contains an edge whose deletion
reduces its chromatic number. Let K+

r (a1, a2, . . . , ar) be the graph obtained from
complete r-partite graph with parts of sizes a1 > 2, a2, . . . , ar, by adding an edge
to the first part. In this paper, we focus on the spectral extrema of disjoint color-
critical graphs. For fixed t, a1, . . . , ar (r > 2) and large enough n, we characterize
the unique n-vertex tK+

r (a1, . . . , ar)-free graph having the largest spectral radius.
Moreover, let F1, . . . , Ft be t disjoint color-critical graphs with the same chromatic
number. We identify the unique n-vertex

⋃t
i=1 Fi-free graph having the largest

spectral radius for sufficiently large n. Consequently, we generalize the main results
obtained by Ni, Wang and Kang [Electron. J. Combin. 30 (1) (2023), No. 1.20]
and by Fang, Zhai and Lin [arXiv:2302.03229v2].

Mathematics Subject Classifications: 05C50

1 Introduction

In this paper, all the graphs that we consider are simple and undirected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The number n(G) :=
|V (G)| and e(G) := |E(G)| are called the order and size of G, respectively. Unless
otherwise stated, we follow the traditional notation and terminology (see for example
[2, 5]).

For two vertex disjoint graphs G and H, the union of G and H is the graph G ∪ H
with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). In particular, we write tG the
vertex-disjoint union of t copies of G. The join of G and H, denoted by G∨H, is the graph
obtained from G∪H by adding edges joining every vertex of G to every vertex of H. Let
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Kr (a1, a2, . . . , ar) be the complete r-partite graph with parts of size a1, a2, . . . , ar. An r-

partite Turán graph Tn,r is a complete r-partite graph Kr(n1, n2, . . . , nr) where
r∑
i=1

ni = n

and bn
r
c 6 ni 6 dnr e for all 1 6 i 6 r.

For a given graph F , we say that a graph G is F -free if it does not contain F as a
subgraph. The maximum size of an F -free graph of order n is known as the Turán number
of F , and it is usually denoted by ex(n, F ). An F -free graph is said to be extremal with
respect to ex(n, F ), if it has n vertices and ex(n, F ) edges. Let Ex(n, F ) denote the set
of all extremal graphs with respect to ex(n, F ). The problem of determining ex(n, F ) is
usually called the Turán-type extremal problem. The well-known Turán Theorem shows
that Tn,r is the extremal graph corresponding to ex(n,Kr+1). Later, Moon [22] and
Simonovits [31] showed that Kt−1 ∨ Tn−t+1,r is the unique extremal graph corresponding
to ex(n, tKr+1) for sufficiently large n. Recently, Fang et al. [15] determined the unique
extremal graph with respect to ex(n, tC2r+1). For more advances on this topic, we refer
the readers to [4, 13, 16, 18, 33].

A graph is said to be properly coloured if each vertex is coloured so that adjacent
vertices have different colours. If G can be properly coloured by k colours, then we say
G is k-colourable. The chromatic number χ(G) is k if G is k-colourable and not (k − 1)-
colourable. We say that e ∈ E(G) is a color-critical edge of G if χ(G − e) < χ(G). A
graph G is color-critical if G contains a color-critical edge. It is easy to see that both the
complete graph Kr+1 and odd cycle C2r+1 are color-critical graphs. The following result
was obtained by Simonovits [32].

Theorem 1 ([32]). Let F1, . . . , Ft be t disjoint color-critical graphs with χ(Fi) = r+1 (r >

2). Then Kt−1 ∨ Tn−t+1,r is the unique extremal graph with respect to ex(n,
t⋃
i=1

Fi) for

sufficiently large n.

Analog to the Turán type problem, Nikiforov [28] proposed the spectral Turán type
problem: Given a graph H, what’s the maximal spectral radius of an F -free graph with
order n? We denote the maximal spectral radius of an n-vertex F -free graph by exsp(n, F ).
An F -free graph on n vertices with maximum spectral radius is called an extremal graph
with respect to exsp(n, F ). Let Exsp(n, F ) denote the set of all extremal graphs with
respect to exsp(n, F ). This problem was also studied extensively: see complete graph
[3, 34], odd cycle [24], 4-cycle [15, 23, 36], book graph [35], odd wheel graph [10], theta
graph [35], complete bipartite graph [1, 27], path [28], friendship graph [11] and some nice
surveys [8, 17, 19, 20, 21, 29]. Clearly, book graph, theta graph, complete graph and odd
cycle are all color-critical graphs. The following spectral version of Turán type problem
involving color-critical graphs was obtained by Nikiforov (see [25, Theorem 2]).

Theorem 2 ([25]). If F is a color-critical graph with χ(F ) = r + 1 (r > 2), then Tn,r is
the unique extremal graph with respect to exsp(n, F ).

In this article, we focus on studying exsp(n,
⋃t
i=1 Fi) for some given graphs F1, . . . , Ft.

This topic was studied for some special cases: matching [14], complete graph [30], star [7],
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path [6], odd cycle [15], even cycle [15]. Let K+
r (a1, a2, . . . , ar) be the graph obtained from

complete r-partite graph with parts of sizes a1 > 2, a2, . . . , ar, by adding an edge to the
first part. We determine the extremal graph with respect to exsp(n, tK

+
r (a1, a2, . . . , ar)).

Theorem 3. Given some positive integers t, a1, . . . , ar with a1, r > 2. Then Kt−1∨Tn−t+1,r

is the unique extremal graph with respect to exsp(n, tK
+
r (a1, a2, . . . , ar)) for sufficiently

large n.

Given two positive integers t > 1, r > 2. Let K+
r (a11, a12, . . . , a1r), . . . , K

+
r (at1, at2, . . . ,

atr) be t disjoint graphs. Then for all 1 6 i 6 t, there exist some integers a1, . . . , ar such

thatK+
r (ai1, ai2, . . . , air) is a subgraph ofK+

r (a1, a2, . . . , ar). Hence, exsp(n,
t⋃
i=1

K+
r (ai1, ai2,

. . . , air)) 6 exsp(n, tK
+
r (a1, a2, . . . , ar)). Note that K+

r (a1, a2, . . . , ar) is a color-critical

graph with chromatic number r+ 1. By Theorem 1, Kt−1 ∨Tn−t+1,r is
t⋃
i=1

K+
r (ai1, ai2, . . . ,

air)-free. Consequently, the next result follows immediately from Theorem 3.

Corollary 4. Let K+
r (a11, a12, . . . , a1r), . . . , K

+
r (at1, at2, . . . , atr) be t disjoint graphs, where

t > 1, r > 2 are two positive integers. For sufficiently large n, Kt−1∨Tn−t+1,r is the unique

extremal graph with respect to exsp(n,
t⋃
i=1

K+
r (ai1, ai2, . . . , air)).

Clearly, for all color-critical graphs F with χ(F ) = r + 1, there exist some integers
a′1, . . . , a

′
r such that F is a subgraph of K+

r (a′1, a
′
2, . . . , a

′
r). By a similar discussion as that

of Corollary 4, we obtain the following result, which is the spectral version of Theorem 1.

Theorem 5. Let F1, . . . , Ft be t disjoint color-critical graphs satisfying χ(Fi) = r + 1,
where i = 1, . . . , t, and r > 2 are positive integers. Then Kt−1 ∨ Tn−t+1,r is the unique

extremal graph with respect to exsp(n,
t⋃
i=1

Fi) for sufficiently large n.

The remainder of this paper is organized as follows: In the next section, we give some
notations, definitions and some important known results. In Section 3, we give the proofs
of Theorems 3 and 5. In the last section, some concluding remarks are given.

2 Preliminaries

Let G = (V (G), E(G)) be a simple graph with vertex set {v1, . . . , vn} and edge set
E(G). The adjacency matrix of G is an n × n 0-1 matrix A(G) = [aij] with aij = 1 if
and only if vi and vj are adjacent. The spectral radius, ρ(G), of G has the maximum
absolute value among all eigenvalues of A(G). A subset M of E(G) is called a matching
if any two members of M are not adjacent in G. The matching number µ(G) is the
maximal size of a matching in G. In a graph G, for a vertex subset S ⊆ V (G), we denote
the set of neighbours (resp. non-neighbors) of a vertex u in S by NS(u) (resp. NS(u))
and let dS(u) = |NS(u)|. If S = V (G), for convenience, we denote NG(u) = NV (G)(u)

the electronic journal of combinatorics 31(1) (2024), #P1.25 3



and dG(u) = dV (G)(u). In particular, ∆(G) = max{dG(u)|u ∈ V (G)}. The subgraph
induced by S is denoted by G[S]. Define EG(A,B) = {uv ∈ E(G) : u ∈ A, v ∈ B},
and let eG(A,B) = |EG(A,B)|. Let G− v,G− uv denote the graph obtained from G by
deleting a vertex v ∈ V (G), or an edge uv ∈ E(G), respectively (this notation is naturally
extended if more than one vertex or edge is deleted). Similarly, G+ uv is obtained from
G by adding an edge uv 6∈ E(G).

In 2009, Nikiforov [26] obtained the following stability theorem.

Lemma 6 ([26]). Let G be an n-vertex graph. For r > 2, 1
lnn

< c < r−8(r+21)(r+1) and
0 < ε < 2−36r−24, if ρ(G) >

(
1− 1

r
− ε
)
n, then one of the following holds:

(i) G contains a complete r + 1 partite graph: Kr+1(bc lnnc, . . . , bc lnnc, dn1−
√
ce);

(ii) G differs from Tn,r in fewer than (ε
1
4 + c

1
8r+8 )n2 edges.

From Lemma 6, Desai et al. [12] obtained the following stability result.

Lemma 7 ([12]). Let F be a graph with chromatic number χ(F ) = r + 1. For every
ε > 0, there exist δ > 0 and n0 such that if G is an F -free graph on n > n0 vertices with
ρ(G) >

(
1− 1

r
− δ
)
n, then G can be obtained from Tn,r by adding and deleting at most

εn2 edges.

Given two integers µ and ∆, let f(µ,∆) = max{e(G) | µ(G) 6 µ,∆(G) 6 ∆}. In
1976, Chvátal and Hanson [9] obtained the following result.

Lemma 8 ([9]). For every two integers µ > 1 and ∆ > 1, we have

f(µ,∆) = ∆µ+

⌊
∆

2

⌋⌊
µ⌈
∆
2

⌉⌋ 6 µ(∆ + 1).

The next lemma was given in [11].

Lemma 9 ([11]). Let V1, . . . , Vn be n finite sets. Then |V1 ∩ · · · ∩ Vn| >
∑n

i=1 |Vi| − (n−

1)|
n⋃
i=1

Vi|.

The following lemma gives us upper and lower bounds on e(Tn,r).

Lemma 10. (r−1)n2

2r
− r

8
6 e(Tn,r) 6

(r−1)n2

2r
.

Proof. Let n ≡ b (mod r), where 0 6 b 6 r − 1. Then we have

e(Tn,r) =

(
n− b
r

)2(
r

2

)
+ b

(
n− 1− n− b

r

)
−
(
b

2

)
=
b2 − rb+ n2r − n2

2r
.

Let g(x) = x2−rx+n2r−n2

2r
. By a direct calculation, we have g′(x) = 2x−r

2r
. Thus, g(x) is

a monotonically decreasing function for x ∈ [0, r
2
] and it is a monotonically increasing

function in x for x ∈ [ r
2
, r − 1]. Note that g(0) = r−1

2r
n2 > r−1

2r
(n2 − 1) = g(r − 1). Then

we have g
(
r
2

)
6 g(x) 6 g(0) for x ∈ [0, r − 1]. Thus, r−1

2r
n2 − r

8
6 e(Tn,r) 6 r−1

2r
n2, as

desired.
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3 The proofs of Theorems 3 and 5

In this section, we give the proof of Theorems 3 and 5. From Theorem 2, we know
that Theorem 3 holds for t = 1. In the following, we assume that t > 2.

Let G be in Exsp(n, tK
+
r (a1, . . . , ar)) with

∑r
i=1 ai = h. The next lemma establishes a

lower bound on ρ(G).

Lemma 11. ρ(G) >
(
1− 1

r

)
n+ 2t−2

r
− (2t+r−2)2

4nr
.

Proof. Recall K+
r (a1, a2, . . . , ar) is a color-critical graph with chromatic number r+1. By

Theorem 1, Kt−1∨Tn−t+1,r is tK+
r (a1, . . . , ar)-free. Note thatG ∈ Exsp(n, tK

+
r (a1, . . . , ar)).

Let 1 be the all-one vector. Then

ρ(G) > ρ (Kt−1 ∨ Tn−t+1,r)

>
1TA (Kt−1 ∨ Tn−t+1,r)1

1T1

=
2e (Kt−1 ∨ Tn−t+1,r)

n

>
2

n

((
t− 1

2

)
+ (t− 1)(n− t+ 1) +

r − 1

2r
(n− t+ 1)2 − r

8

)
=
r − 1

r
n+

2t− 2

r
− (2t+ r − 2)2

4nr
,

as desired.

Lemma 12. For a given positive constant ξ < 1
8r3h

and sufficiently large n, we have
e(G) > e (Tn,r) − ξ2n2. Moreover. G has a partition V (G) = V1 ∪ · · · ∪ Vr such that∑
16i<j6r

e(Vi, Vj) attains the maximum,
∑r

i=1 e(Vi) 6 ξ2n2 and
∣∣|Vi| − n

r

∣∣ 6 2ξn for 1 6

i 6 r.

Proof. Recall that χ(K+
r (a1, . . . , ar)) = r+1 and G is tK+

r (a1, . . . , ar)-free. By Lemma 11,

we have ρ(G) >
(
1− 1

r

)
n + 2t−2

r
− (2t+r−2)2

4nr
. Then by Lemma 7, there exists a positive

constant ξ such that e(G) > e (Tn,r)− ξ2n2. Furthermore, there exists a vertex partition
V (G) = U1 ∪ · · · ∪ Ur with

⌊
n
r

⌋
6 |Ui| 6

⌈
n
r

]
such that

∑r
i=1 e (Ui) 6 ξ2n2. Choose a

partition V (G) = V1 ∪ · · · ∪ Vr such that
∑

16i<j6r
e (Vi, Vj) attains the maximum. Then∑r

i=1 e (Vi) 6
∑r

i=1 e (Ui) 6 ξ2n2.
Let max

16i6r
||Vi| − n

r
| = a. Without loss of generality assume that ||V1| − n

r
| = a. Then

we have

e(G) =
∑

16i<j6r

e (Vi, Vj) +
r∑
i=1

e (Vi)

6
∑

16i<j6r

|Vi||Vj|+ ξ2n2
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= |V1|(n− |V1|) +
∑

26i<j6r

|Vi||Vj|+ ξ2n2

= |V1|(n− |V1|) +
1

2

( r∑
i=2

|Vi|

)2

−
r∑
i=2

|Vi|2
+ ξ2n2.

By Hölder’s inequality, we have

(
r∑
i=2

|Vi|
)2

6 (r−1)
r∑
i=2

|Vi|2. Together with ||V1|− n
r
| = a,

we get

e(G) 6 |V1|(n− |V1|) +
1

2
(n− |V1|)2 − 1

2(r − 1)
(n− |V1|)2 + ξ2n2

6
r − 1

2r
n2 − r

2r − 2
a2 + ξ2n2. (3.1)

Recall that

e(G) > e (Tn,r)− ξ2n2 >
r − 1

2r
n2 − r

8
− ξ2n2.

Together with (3.1), we have

a 6

√
4(r − 1)

r
ξ2n2 +

r − 1

4
6
√

4ξ2n2 = 2ξn,

as desired.

Lemma 13. Let L =
{
v ∈ V (G)|dG(v) 6

(
1− 1

r
− 6ξ

)
n
}

. Then |L| 6 ξn.

Proof. Suppose to the contrary that |L| > ξn. Then there exists a subset S of L such
that |S| = bξnc. We have

e(G− S) > e(G)−
∑
v∈S

dG(v)

> e (Tn,r)− ξ2n2 − ξn
(

1− 1

r
− 6ξn

)
>

(
r − 1

2r
+ 5ξ2

)
n2 −

(
1− 1

r

)
ξn− r

8

>

(
r − 1

2r
+
r − 1

2r
ξ2 − r − 1

r
ξ

)
n2 +

(1− ξ)(t+ r − 2)

r
n− (t− 2)(t+ r − 2)

2r

=
r − 1

2r
(n− ξn+ 1− t+ 1)2 + (t− 1)(n− ξn+ 1− t+ 1) +

(
t− 1

2

)
> e(Kt−1 ∨ Tn−bξnc−t+1,r).

Recall K+
r (a1, a2, . . . , ar) is a color-critical graph with chromatic number r + 1. By The-

orem 1, we have ex(n − bξnc, tK+
r (a1, . . . , ar)) = e(Kt−1 ∨ Tn−bξnc−t+1,r). Note that

|V (G− S)| = n− bξnc. Then G− S contains a copy of tK+
r (a1, . . . , ar). So, G contains

a copy of tK+
r (a1, . . . , ar), a contradiction.
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Lemma 14. Let W =
r⋃
i=1

Wi, where Wi =
{
v ∈ Vi | dVi(v) > 2r

r−1
ξn
}

. Then |W | 6 r−1
r
ξn.

Proof. By Lemma 12 and the definition of W , we have

ξ2n2 >
r∑
i=1

e (Vi)

=
r∑
i=1

(
1

2

∑
v∈Vi

dVi(v)

)

>
1

2

r∑
i=1

∑
v∈Wi

dVi(v)

>
1

2
|W | 2r

r − 1
ξn

=
r

r − 1
|W |ξn.

Thus, |W | 6 r−1
r
ξn.

For any S ⊆ V (G) with |S| 6 th, we define V ′i = Vi\(L ∪W ∪ S) and let V ′ =
r⋃
i=1

V ′i .

Choose a vertex v ∈ V ′i . By the definition of L and W , we have dG(v) >
(
1− 1

r
− 6ξ

)
n

and dVi(v) < 2r
r−1

ξn. Then for j ∈ [r] and j 6= i, we get

dV ′j (v) > dVj(v)− |L| − |W | − |S|

> dG(v)− dVi(v)− (r − 2)(
n

r
+ 2ξn)− |L| − |W | − |S|

> (1− 1

r
− 6ξ)n− 2r

r − 1
ξn− (n+ 2rξn− 2n

r
− 4ξn)− ξn− ξn− th

> (
1

r
− 2r2 + 4r − 4

r − 1
− 1)ξn

> (
1

r
− 9ξ − 2rξ)n.

Recall V ′ =
⋃r
i=1 V

′
i , we have

dV ′(v) > dV ′j (v) > (
1

r
− 9ξ − 2rξ)n. (3.2)

Lemma 15. For any S ⊆ V (G) with |S| 6 th, if there exists an edge within G [V ′i ] for
some i ∈ [r], then G− (L ∪W ∪ S) contains a K+

r (a1, . . . , ar).

Proof. Without loss of generality, assume that v0u0 is an edge within G[V ′1 ]. By (3.2) and
|V2| 6 n

r
+ 2ξn, we have

|NV ′2
(u0) ∩NV ′2

(v0)| > dV ′2 (u0) + dV ′2 (v0)− |V ′2 | > (
1

r
− 20ξ − 4rξ)n > a2.
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Thus, there exist a2 vertices, say u2,1, . . . , u2,a2 , in V ′2 such that the subgraph induced
by {v0, u0} and {u2,1, . . . , u2,a2} contains a copy of K+

2 (2, a2). For any integer l with
2 6 l 6 r − 1, assume that there are al vertices in V ′l , say ul,1, . . . , ul,al , such that
the subgraph induced by {v0, u0} , {u2,1, . . . , u2,a2} , . . . , {ul,1, . . . , ul,al} contains a copy of

K+
l (2, a2, . . . , al). We next consider the common neighbors of above 2 +

∑l
i=2 ai vertices

in V ′l+1. By (3.2), ξ < 1
8r3h

, |Vl+1| 6 n
r

+ 2ξn and
∑l

i=2 ai 6 h− 2, we have∣∣∣∣∣∣NV ′l+1
(v0)

⋂
NV ′l+1

(u0)
⋂

(
⋂

i∈[l]\{1},j∈[ai]

NV ′l+1
(ui,j))

∣∣∣∣∣∣
>
(
2 +

l∑
i=2

ai
)(1

r
− 9ξ − 2rξ

)
n−

(
1 +

l∑
i=2

ai
) ∣∣V ′l+1

∣∣
>
(
2 +

l∑
i=2

ai
)(1

r
− 9ξ − 2rξ

)
n−

(
1 +

l∑
i=2

ai
)(1

r
+ 2ξ

)
n

>
(1

r
− 13rhξ

)
n

>al+1.

Then we can obtain al+1 vertices ul+1,1, . . . , ul+1,al+1
∈ V ′l+1. Moreover, the subgraph in-

duced by {v0, u0}, {u2,1, . . . , u2,a2}, . . . , {ul+1,1, . . . , ul+1,al+1
} contains a copy of K+

l+1(2, a2,
. . . , al+1) in G. Then for every 2 6 i 6 r, there exist ai vertices in V ′i such that {v0, u0},
{u2,1, . . . , u2,a2} , . . . , {ur,1, . . . , ur,ar} induced a K+

r (2, a2, . . . , ar) in G. Similarly, we get
the number of common neighbors of {u2,1, . . . , u2,a2} , . . . , {ur,1, . . . ur,ar} in V ′1\ {v0, u0}.∣∣∣∣∣∣(

⋂
i∈[r]\{1},j∈[ai]

NV ′1
(ui,j))\ {v0, u0}

∣∣∣∣∣∣ >
(

r∑
i=2

ai

)(
1

r
− 9ξ − 2rξ

)
n−

(
r∑
i=2

ai − 1

)
|V ′1 | − 2

>

(
r∑
i=2

ai

)(
1

r
− 9ξ − 2rξ

)
n

−

(
r∑
i=2

ai − 1

)(
1

r
+ 2ξ

)
n− 2

>

(
1

r
− 13rhξ

)
n− 2

>a1 − 2.

Let u1,3, . . . , u1,a1 ∈ V ′1\ {v0, u0} be the common neighbors of {u2,1, . . . , u2,a2}, . . . , {ur,1,
. . . , ur,ar}. Then the subgraph induced by {u0, v0, u1,3, . . . , u1,a1} ∪ {ui,1, . . . , ui,ai |2 6 i 6
r} contains a copy of K+

r (a1, . . . , ar), i.e., G− (L∪W ∪S) contains a K+
r (a1, . . . , ar).

Lemma 16. For i ∈ [r], we have ∆ (G [Vi\(L ∪W )]) < th.
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Proof. Suppose that ∆ (G [Vi\(L ∪W )]) > th. Then there exists a vertex v0 ∈ Vi\(L∪W )
such that dVi\(L∪W )(v0) > th. Without loss of generality assume that v0 ∈ V1. Since
v0 /∈ L ∪W , we have dG(v0) > (1− 1

r
− 6ξ)n and dV1(v0) < 2r

r−1
ξn. Recall |V1| > n

r
− 2ξn

and ξ < 1
8r3h

. Then

|V1\(L∪W )| > |V1|−|L|−|W | >
n

r
−2ξn−ξn− r − 1

r
ξn >

n

r
−4ξn >

2r

r − 1
ξn > dV1(v0).

So, NV1\(L∪W )(v0) 6= ∅. Let

G′ = G+
∑

v∈NV1\(L∪W )(v0)

vv0.

Then we have ρ(G′) > ρ(G). By the maximality of ρ(G), G′ contains t disjoint K+
r (a1, . . . ,

ar), say F , as a subgraph. By the construction of G′, there exists a K+
r (a1, . . . , ar) in F ,

say H, such that v0 ∈ V (H). Let F ′ = F − H ⊆ G. Note that dV1\(L∪W )(v0) > th >
(t− 1)h = |V (F ′)|. Then there exists a vertex u0 ∈ NV1\(L∪W )(v0) such that u0 /∈ V (F ′).
Thus, v0u0 is an edge within G [V1\(L ∪W ∪ V (F ′))]. By Lemma 15, G−(L∪W ∪V (F ′))
contains a K+

r (a1, . . . , ar), say H ′, such that V (H ′)
⋂
V (F ′) = ∅. Then H ′ ∪ F ′ is a copy

of tK+
r (a1, . . . , ar) in G, a contradiction.

Lemma 17. Let µ =
r∑
i=1

µi, where µi = µ (G [Vi\(L ∪W )]). Then µ 6 t−1 and G− (L∪

W ) contains at least µ disjoint K+
r (a1, . . . , ar).

Proof. If µ = 0, then we are done. If µ > 1, let v1v2, . . . , v2µ−1v2µ be µ independent edges

in
r⋃
i=1

G[Vi\(L ∪W )]. Define S0 = {vj | j = 1, . . . , 2l} where l = min{µ, t} and let S1 =

S0\ {v1, v2}. Then |S1| = 2l− 2 6 (t− 1)h and v1v2 is an edge within G[Vi\(L∪W ∪S1)]
for some i ∈ [r]. By Lemma 15, G − (L ∪ W ∪ S1) contains a K+

r (a1, . . . , ar) and we
denote it by H1. Let S2 = (S1\{v3, v4})∪V (H1). Then |S2| = 2(l− 2) +h 6 (t− 1)h and
v3v4 is an edge within Vi\(L∪W ∪S2) for some i ∈ [r]. By Lemma 15, G− (L∪W ∪S2)
contains a K+

r (a1, . . . , ar) and we denote it by H2. Repeating the above steps, we obtain
a sequence of subsets S1, . . . Sl. For 1 6 j 6 l, Sj = (Sj−1\{v2j−1, v2j}) ∪ V (Hj−1) and
G−(L∪W ∪Sj) contains a K+

r (a1, . . . , ar) denoted by Hj. Thus, H1, . . . , Hl are l disjoint
K+
r (a1, . . . , ar). Recall G is tK+

r (a1, . . . , ar)-free. Then l 6 t − 1. By l = min{µ, t}, we
have l = µ. So, G− (L ∪W ) contains at least µ disjoint K+

r (a1, . . . , ar).

Lemma 18. For i ∈ [r], G[Vi\(L ∪ W )] contains an independent set Ii with |Ii| >
|Vi\(L ∪W )| − 2(t− 1)th.

Proof. Recall that µi = µ (G [Vi\(L ∪W )]). If µi = 0, then Vi\(L∪W ) is an independent
set. If µi > 1, let v1v2, . . . , v2µi−1v2µi be µi independent edges in G[Vi\(L ∪W )]. Define

Ii = (Vi\(L ∪W ))\

(
2µi⋃
j=1

NVi\(L
⋃
W )(vj)

)
.
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We claim that Ii is an independent set. Otherwise, we have E(G[Ii]) 6= ∅. Then
µ(G[Vi\(L ∪W )]) > µi + 1 > µi, a contradiction. By Lemmas 16 and 17, we have

|Ii| = |Vi\(L ∪W )| − |
2µi⋃
j=1

NVi\(L∪W )(vj)|

> |Vi\(L ∪W )| − 2µi∆(Vi\(L ∪W ))

> |Vi\(L ∪W )| − 2(t− 1)th,

as desired.

In Lemmas 19-23, we assume that G is connected. By Perron-Frobenius theorem,
there exists a positive eigenvector x corresponding to ρ(G). For convenience, let xv
denote the coordinate of x such that xv corresponds to the vertex v ∈ V (G). Define
xv∗ = maxv∈V (G) xv and xu∗ = maxv∈V (G)\W xv. Then we have

ρ(G)xv∗ 6 |W |xv∗ + (n− |W |)xu∗ , ρ(G)xu∗ 6 |W |xv∗ + dG(u∗)xu∗ .

By ρ(G) > r−1
r
n and |W | 6 r−1

r
ξn, we obtain

xu∗ >
ρ(G)− |W |
n− |W |

xv∗ >
ρ(G)− |W |

n
xv∗ >

(r − 1)(1− ξ)
r

xv∗ , (3.3)

and so

dG(u∗) > ρ(G)− |W |xv
∗

xu∗

>
r − 1

r
n− r − 1

r
ξn

r

(r − 1)(1− ξ)

=

(
r − 1

r
− ξ

1− ξ

)
n

>

(
r − 1

r
− 6ξ

)
n.

Therefore, u∗ /∈ L. Recall u∗ ∈ V (G)\W . Then u∗ ∈ V (G)\(L ∪W ). Without loss of
generality, assume that u∗ ∈ V1. We have

ρ(G)xu∗ =
∑

v∈NL
⋃

W (u∗)

xv +
∑

v∈NV1
(u∗)\(L∪W )

xv +
∑

v∈
⋃r

i=2NVi
(u∗)

v/∈L∪W

xv

6
∑

v∈NL\W (u∗)

xv +
∑

v∈NW (u∗)

xv + dV1\(L∪W )(u
∗)xu∗ +

∑
v∈

⋃r
i=2 Vi\Ii

v/∈L∪W

xv +
∑

v∈
⋃r

i=2 Ii

xv

< |L|xu∗ + |W |xv∗ + thxu∗ + 2(r − 1)thxu∗ +
∑

v∈I2∪···∪Ir

xv,
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where Ii (2 6 i 6 r) is an independent set of G[Vi\(L ∪W )] such that |Ii| > |Vi\(L ∪
W )| − 2(t− 1)th. Thus,∑

v∈I2∪···∪Ir

xv > (ρ(G)− |L| − (2r − 1)th)xu∗ − |W |xv∗ . (3.4)

Lemma 19. L = ∅.

Proof. Suppose to the contrary that L 6= ∅. Then there exists a vertex v0 ∈ L. Without
loss of generality, assume that v0 ∈ V1. Let

G′ = G−
∑

v∈NG(v0)

vv0 +
∑

v∈I2∪···∪Ir

vv0.

By Lemma 14 and (3.3), (3.4), we have

ρ(G′)− ρ(G) > xT (A(G′)− A(G))x

= 2xv0

 ∑
v∈

⋃r
i=2 Ii

xv −
∑

v∈NG(v0)

xv


= 2xv0

 ∑
v∈

⋃r
i=2 Ii

xv −
∑

v∈NW (v0)

xv −
∑

v∈NV (G)\W (v0)

xv


> 2xv0 ((ρ(G)− |L| − (2r − 1)th− dG(v0))xu∗ − 2|W |xv∗)

> 2xv0xv∗

(((
1− 1

r

)
n− ξn− ξn−

(
1− 1

r
− 6ξ

)
n

)
× (r − 1)(1− ξ)

r
− 2 · r − 1

r
ξn

)
=

4

r
(r − 1)ξ(1− 2ξ)nxv0xv∗

> 0.

To get a contradiction, we just need to show that G′ is tK+
r (a1, . . . , ar)-free. Otherwise,

G′ contains a copy of tK+
r (a1, . . . , ar) and we denote it by F . By the construction of

G′, there exists a K+
r (a1, . . . , ar), say H, in F such that v0 ∈ V (H). Let NH(v0) ={

v1, . . . , vdH(v0)

}
. Note that NH(v0) ⊆

⋃r
i=2 Ii ⊆

⋃r
i=2 Vi\(L ∪W ). Then for any vertex

v ∈ NH(v0)
⋂
Ii (2 6 i 6 r), we have dG(v) >

(
1− 1

r
− 6ξ

)
n and dVi(v) < 2r

r−1
ξn 6 2rξn.

Moreover, for j ∈ [r] and j 6= i, we get

dVj(v) > dG(v)− dVi(v)− (r − 2)

(
1

r
+ 2ξ

)
n

>

(
1− 1

r
− 6ξ

)
n− 2rξn− (r − 2)

(
1

r
+ 2ξ

)
n

=
n

r
− 2(2r + 1)ξn.
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By ξ < 1
8r3h

and dH(v0) < h, we have∣∣∣∣∣∣
dH(v0)⋂
k=1

NV1(vk)

∣∣∣∣∣∣ >
dH(v0)∑
k=1

dV1(vk)− (dH(v0)− 1)|V1|

> dH(v0)
(n
r
− 2(2r + 1)ξn

)
− (dH(v0)− 1)

(n
r

+ 2ξn
)

=

(
1

r
+ 2ξ

)
n− 4dH(v0)(r + 1)ξ

>
n

r
− 8rhξn

> h = |V (H)|.

Thus, there exists one vertex u0 ∈
⋂dH(v0)
k=1 NV1(vk)\V (H). Assume that F ′ = F − V (H).

By replacing {v0v1, . . . , v0vdH(v0)} with {u0v1, . . . , u0vdH(v0)}, we obtain a K+
r (a1, . . . , ar),

say H ′, in G− V (F ′). So, F ′ ∪H ′ is a copy of tK+
r (a1, . . . , ar) in G, a contradiction.

Lemma 20. For any vertex set S ⊆ V (G) with |S| 6 th, if there exists a vertex v0 ∈ W ,
then G− (W ∪ S\{v0}) contains a K+

r (a1, . . . , ar).

Proof. By Lemma 19 and the definition of L, we have dG(v) >
(
1− 1

r
− 6ξ

)
n for all

vertex v ∈ V (G). Assume that v0 ∈ V1. Recall V (G) = V1∪· · ·∪Vr is the vertex partition
such that

∑
16i<j6r

e(Vi, Vj) attains the maximum. So, dV1(v0) 6 1
r
dG(v0). Then we have

dV2(v0) > dG(v0)− dV1(v0)− (r − 2)
(n
r

+ 2ξn
)

>

(
1− 1

r

)(
1− 1

r
− 6ξ

)
n− (r − 2)

(n
r

+ 2ξn
)

=
n

r2
− 2

(
1 + r − 3

r

)
ξn

>
n

r2
− 2(r + 1)ξn.

Recall v0 ∈ W . Then dV1(v0) > 2r
r−1

ξn and

dV1\(W∪S)(v0) > dV1(v0)− |W | − |S| >
(

2r

r − 1
− r − 1

r

)
ξn− th > 0.

Therefore, there exists a vertex u0 ∈ NV1\(W∪S)(v0).
Note that |V1\(W ∪ S)| > |V1| − |W | − |S| > n

r
− 2ξn − ξn − th > a1. Choose

v1,1, . . . , v1,a1−1 ∈ V1\(W ∪ S ∪ {u0}) and let u0 = v1,a1 . Then for i ∈ [a1], we have
dV1(v1,i) <

2r
r−1

ξn and

dV2(v1,i) > dG(v1,i)− dV1(v1,i)− (r − 2)
(n
r

+ 2ξn
)

the electronic journal of combinatorics 31(1) (2024), #P1.25 12



>

(
1− 1

r
− 6ξ

)
n− 2r

r − 1
ξn− r − 2

r
n− (r − 2)2ξn

=
n

r
− 2(r2 + r − 1)

r − 1
ξn

>
n

r
− 2(1 + 2r)ξn.

Then∣∣∣∣∣
(
NV2(v0)

⋂
(

a1⋂
i=1

NV2(v1,i))

)
\(W ∪ S)

∣∣∣∣∣ >dV2(v0) +

a1∑
i=1

dV2(u1,i)− a1|V2| − |W | − |S|

>
n

r2
− 2(r + 1)ξn+ a1(

n

r
− 2(1 + 2r)ξn

− n

r
− 2ξn)− ξn− th

>
n

r2
− 2(2a1 + 1)(r + 2)ξn

>a2.

Let v2,1, . . . , v2,a2 be the common neighbor of v0, v1,1, . . . , v1,a1 in V2\(W ∪ S). For
any integer 2 6 l 6 r − 1, assume that vl,1, . . . , vl,al are the common neighbors of
{v0}

⋃
{vi,1, . . . , vi,ai |1 6 i 6 l − 1} in Vl\(W ∪ S). By a similar discussion as those of

dV2(v0) and dV2(v1,k) (1 6 k 6 a1), we have dVl+1
(v0) > n

r2
− 2 (r + 1) ξn and dVl+1

(ui,j) >

n
r
− 2(2r + 1)ξn for i ∈ [l] and j ∈ [ai]. Note that

l∑
i=1

ai <
r∑
i=1

ai = h. Then

∣∣∣∣∣∣NVl+1
(v0)

⋂( ⋂
i∈[l], j∈[ai]

NVl+1
(vi,j)

)
\(W ∪ S)

∣∣∣∣∣∣
>dvl+1

(v0) +
l∑

i=1

ai∑
j=1

dVl+1
(vi,j)−

l∑
i=1

ai|Vl+1| − |W | − |S|

>
( n
r2
− 2(r + 1)ξn

)
+

l∑
i=1

ai

(n
r
− 2(2r + 1)ξn− n

r
− 2ξn

)
− ξn− th

>
n

r2
− 8rhξn

>al+1.

Let vl+1,1 . . . , vl+1,al+1
be the common neighbors of {u0} ∪ {vi1, . . . , vi,ai |1 6 i 6 l} in

Vl+1\(W ∪ S). Then the subgraph induced by {v0} ∪ {vi1, . . . , vi,ai |1 6 i 6 r} contains a
copy of K+

r (a1, . . . , ar), i.e., G− (W ∪ S\{v0}) contains a K+
r (a1, . . . , ar).

Lemma 21. For any vertex v ∈ V (G), we have xv >
r−1
r
ξxv∗.
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Proof. Suppose there exists one vertex v0 ∈ V (G) such that xv0 6
r−1
r
ξxv∗ . Let

G′ = G−
∑

v∈NG(v0)

vv0 +
∑

v∈
⋃r

i=2 Ii

vv0.

By a similar discussion as the proof of Lemma 19, we have G′ is tK+
r (a1, . . . , ar)-free.

Recall ρ(G) >
(
1− 1

r

)
n and |W | 6

(
1− 1

r

)
ξn. Then we have |W | < ξρ(G). Together

with ξ < 1
8r3h

, we have

ρ(G′)− ρ(G) >
∑

v∈
⋃r

i=2 Ii

2xvxv0 −
∑

v∈NG(v0)

2xvxv0

=2xv0

 ∑
v∈

⋃r
i=2 Ii

xv −
∑

v∈NG(v0)

xv


>2xv0

(
(ρ(G)− (2t− 1)th)

(r − 1)(1− ξ)
r

xv∗

− |W |xv∗ − ρ(G)

(
r − 1

r

)
ξxv∗

)
>2ρ(G)xv0xv∗

(
(r − 1)(1− ξ)

r
− 3r + 2

r
ξ − ξ −

(
r − 1

r

)
ξ

)
=2ρ(G)xv0xv∗

(
1− 1

r
− 6ξ

)
>0,

a contradiction.

Lemma 22. |W | = t− 1 and µ = 0.

Proof. By Lemma 17, we have µ = µ (
⋃r
i=1 G[Vi\W ]) 6 t − 1 and there exist µ disjoint

K+
r (a1, . . . , ar), say H1, . . . , Hµ, in G−W .

We claim that |W | 6 t−1−µ. Otherwise, we have |W | > t−µ. Let S0 = {v1, . . . , vt−µ}
be a subset of W . Define S1 = S0\{v1}

⋃
(
⋃µ
i=1 V (Hi)). Then |S1| = (t−µ−1)+µh 6 th.

Note that v1 ∈ W . By Lemma 20, G−(W ∪S1\{v1}) contains a K+
r (a1, . . . , ar), say Hµ+1,

such that V (Hµ+1)
⋂
S0 ⊆ {v1}. If t−µ > 2, let S2 = (S1\{v2})∪ V (Hµ+1). Then |S2| =

(t−µ−2)+(µ+1)h 6 th. By Lemma 20, G−(W∪S2\{v2}) contains a K+
r (a1, . . . , ar), say

Hµ+2, such that V (Hµ+2)
⋂
S0 ⊆ {v2}. Repeating the above steps, we obtain a sequence

of subsets S1, . . . , St−µ. For 1 6 j 6 t − µ, we have Sj = (Sj−1\{vj})
⋃
V (Hµ+j−1) and

G− (W ∪ Sj\{vj}) contains a K+
r (a1, . . . , ar), say Hµ+j, such that V (Hµ+j)

⋂
S0 ⊆ {vj}.

Thus, H1, . . . , Hµ, Hµ+1, . . . , Ht are t disjoint K+
r (a1, . . . , ar) in G, a contradiction.

Clearly, if |W | = t − 1, then µ = 0. Hence, we just need to show that |W | = t − 1.
Suppose to the contrary that |W | 6 t − 2. Recall |V1| > n

r
− 2ξn. Let S be a subset

of V1\W such that |S| = t − 1 − |W |. Define F =
⋃r
i=1G[Vi\W ]. By Lemmas 16 and
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17, we have µ(F ) = µ 6 t − 1 and ∆(F ) < th. Furthermore, by Lemma 8, e(F ) 6
f(µ(F ),∆(F )) 6 (t− 1)(th+ 1). Let

G′ = G−
∑

uv∈E(F )

uv +
∑
u∈S

v∈V1\(W∪S)

uv.

Then G′ is a spanning subgraph of K|W∪S|∨K|V1\(W∪S)|,|V2\W |,...,|Vr\W |. Note that |W ∪S| =
t− 1. Then G′ is tK+

r (a1, . . . , ar)-free. Moreover, by Lemma 21, we have

ρ(G′)− ρ(G) >
∑
u∈S

v∈V1\(W∪S)

2xuxv −
∑

uv∈E(F )

2xuxv

> |S|(|V1| − |W ∪ S|)
(
r − 1

r

)2

ξ2x2
v∗ − 2e(F )x2

v∗

> |S|
(n
r
− 2ξn− (t− 1)

)(r − 1

r

)2

ξ2x2
v∗ − 2(t− 1)(th+ 1)x2

v∗

> 0,

which contradicts the maximality of ρ(G). Thus, |W | = t− 1 and we get µ = 0.

Lemma 23. For any vertex u ∈ W , we have dG(u) = n− 1.

Proof. Suppose to the contrary that there exists a vertex v0 ∈ W such that dG(v0) < n−1.
Then there exists a vertex u0 ∈ V (G) such that v0u0 /∈ E(G). Let G′ = G+v0u0. Clearly,
ρ(G′) > ρ(G). By the maximality of ρ(G), G′ contains a copy of tK+

r (a1, . . . , ar) and
we denote it by F . Furthermore, there exists a K+

r (a1, . . . , ar) in F , say H, such that
u0v0 ∈ E(H). Let F ′ = F−V (H). We have |F ′| = (t−1)h. Recall v0 ∈ W . By Lemma 20,
G− ((W ∪V (F ′))\{v0}) contains a K+

r (a1, . . . , ar), say H ′, such that V (H ′)∩V (F ′) = ∅.
Thus, H ′ ∪ F ′ is a copy of tK+

r (a1, . . . , ar) in G, a contradiction.

Now we are ready to prove Theorem 3.

The proof of Theorem 3. We prove Theorem 3 according to the following two cases.
Case 1. G is connected. Let ni = |Vi\W | for i ∈ [r]. By Lemmas 22 and 23, we

have G ⊆ Kt−1 ∨ Kr(n1, . . . , nr). Note that ρ(G) attains the maximum. Then G ∼=
Kt−1 ∨Kr(n1, . . . , nt). Without loss of generality, assume that n1 > n2 > · · · > nr. By
symmetry, let xu = xi for each vertex u ∈ Vi\W (1 6 i 6 r) and let xv = x0 for each
vertex v ∈ W . Then we have

ρ(G)x0 = (t− 2)x0 +
r∑
j=1

njxj

and

ρ(G)xi = (t− 1)x0 +
r∑
j=1

njxj − nixi
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for 1 6 i 6 r. By some calculations, we get xi = ρ(G)+1
ρ(G)+ni

x0, i = 1, . . . , r. To get
G ∼= Kt−1 ∨Tn−t+1,r, it suffices to show that ni−nj 6 1 for every 1 6 i < j 6 r. Suppose
to the contrary that there exist i0, j0 with 1 6 i0 < j0 6 r such that ni0−nj0 > 2. Choose
vi0 ∈ Vi0\W and let

G′ = G−
∑

v∈Vj0\W

vvi0 +
∑

v∈Vi0\(W∪{vi0})

vvi0 .

Then G′ ∼= Kt−1∨Kr(n1, . . . , ni0−1, . . . , nj0 +1, . . . , nr) and so G′ is tK+
r (a1, . . . , ar)-free.

Furthermore, by ni0 − nj0 > 2, we have

ρ(G′)− ρ(G) > 2x0((ni0 − 1)xi0 − nj0xj0)

= 2x2
0

(ρ(G) + 1)((ni0 − nj0 − 1)ρ(G)− nj0)
(ρ(G) + ni0)(ρ(G) + nj0)

> 2x2
0

(ρ(G) + 1)(ρ(G)− nj0)
(ρ(G) + ni0)(ρ(G) + nj0)

.

If r = 2, by n1 > n2 + 2, we have ρ(G) > n
2
> n2 = nj0 . If r > 3, by nj0 = |Vj0\W | 6

n
r

+ 2ξn− (t− 1), we have ρ(G) >
(
1− 1

r

)
n+ 2t−2

r
− (2t+r−2)2

4nr
> nj0 . So, ρ(G)− nj0 > 0

and we get ρ(G′)− ρ(G) > 0, a contradiction.
Case 2. G is not connected. Let G1, G2, . . . , Gm be connected components of G.

Then ρ(G) = max16i6m ρ(Gi). Without loss of generality, assume that ρ(G) = ρ(G1).
Then G1 is a connected n1-vertex t′K+

r (a1, a2, . . . , ar)-free graph where n1 < n and t′ 6 t.

We claim that n1 is large enough. Otherwise, ρ(G1) 6 ρ(Kn1) = n1 − 1 < (r−1)n
r

<
ρ(Kt−1∨Kn−t+1,r). By Case 1, we have G1

∼= Kt′−1∨Kn1−t′+1,r. By n1 < n and t′ 6 t, we
have G1 is a proper subgraph of Kt−1 ∨ Tn−t+1,r. So, ρ(G) = ρ(G1) < ρ(Kt−1 ∨ Tn−t+1,r).
Note that Kt−1 ∨ Tn−t+1,r is tK+

r (a1, a2, . . . , ar)-free. We get a contradiction.
This completes the proof.

At last we give the proof of Theorem 5 (based on Theorems 1 and 3).

The proof of Theorem 5. Note that Fi is a color-critical graph with χ(Fi) = r + 1,
1 6 i 6 t. Hence, for 1 6 i 6 r, there exists a graph K+

r (ai1, ai2, . . . , air) containing a
copy of Fi as a subgraph. Let aj = max16j6r aij for 1 6 j 6 r. Then one sees that

⋃t
i=1 Fi

is a subgraph of tK+
r (a1, a2, . . . , ar). So, exsp(n,

⋃t
i=1 Fi) 6 exsp(n,tK

+
r (a1, a2, . . . , ar)).

By Theorem 3, exsp(n, tK
+
r (a1, a2, . . . , ar)) = ρ(Kt−1 ∨ Tn−t+1,r) and Kt−1 ∨ Tn−t+1,r

is the unique extremal graph with respect to exsp(n, tK
+
r (a1, a2, . . . , ar)). Together with

Theorem 1, Kt−1 ∨ Tn−t+1,r is a
⋃t
i=1 Fi-free graph with order n. Hence, Kt−1 ∨ Tn−t+1,r

is the unique extremal graph with respect to exsp(n,
⋃t
i=1 Fi) for sufficiently large n.

4 Concluding remark

In this paper, we characterize the extremal graph of sufficiently large order n with
respect to exsp(n, tK

+
r (a1, a2, . . . , ar)) (see Theorem 3), where t > 1, r > 2 are two pos-

itive integers. Let K+
r (a11, a12, . . . , a1r), . . . , K

+
r (at1, at2, . . . , atr) be t disjoint graphs.
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We also obtain the unique extremal graph of sufficiently large order n with respect to
exsp(n,

⋃t
i=1K

+
r (ai1, ai2, . . . , air)) (see Corollary 4). Note that for any color-critical graph

F with χ(F ) = r + 1, there exist some integers a1, . . . , ar such that F is a subgraph of
K+
r (a1, a2, . . . , ar). For t disjoint color-critical graphs F1, . . . , Ft with χ(Fi) = r + 1 (1 6

i 6 t), we determine the unique extremal graph of sufficiently large order n with respect
to exsp(n,

⋃t
i=1 Fi) (see Theorem 5).

Note that complete graph Kr+1 and odd cycle C2k+1 are both color-critical graphs.
Then the following two results are direct consequences of our main result (Theorem 5).

Corollary 24 ([30]). For positive integers t > 2, r > 2 and sufficiently large n, Kt−1 ∨
Tn−t+1,r is the unique extremal graph with respect to exsp(n, tKr+1).

Corollary 25. Given some positive integers t, r1, . . . , rt and let C2r1+1, . . . , C2rt+1 be t
disjoint odd cycles. Then Kt−1 ∨ Tn−t+1,2 is the unique extremal graph with respect to
exsp(n,

⋃t
i=1C2ri+1) for sufficiently large n.

Especially, if r1 = r2 = · · · = rt = r, we get the next result.

Corollary 26 ([15]). For positive integers t, r and sufficiently large n,Kt−1 ∨ Tn−t+1,2 is
the unique extremal graph with respect to exsp(n, tC2r+1).
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