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Abstract

Among subgraphs with a fixed number of vertices of the regular square lattice,
we prove inequalities that essentially say that those with smaller boundaries have
larger numbers of spanning trees and vice-versa. As an application, we relate two
commonly used measurements of the compactness of district maps.

Mathematics Subject Classifications: 05C05, 05C81, 05C90, 05C70, 91F10,
60J20, 60C05

1 Introduction

For a finite connected graph G, let τ(G) denote its number of spanning trees. The study
of this measurement goes back to Kirchoff’s Matrix-Tree Theorem, which equates it with
the product of the non-zero eigenvalues of the Laplacian of G [11].

Let L(Z2) denote the regular square lattice, which has vertex set Z2 and edges between
pairs of vertices of Euclidean distance 1. We are interested here in grid graphs, by which
we mean finite connected subgraphs of L(Z2). The bulk limit of L(Z2) is known to equal
4C
π

, where C is Catalan’s constant. This means that

lim
k→∞

ln(τ(G(k)))

|V (G(k))|
=

4C

π
≈ 1.166243, (1)

where G(1) ⊂ G(2) ⊂ · · · is any nested sequence of grid graphs (satisfying certain weak
hypotheses) whose union equals L(Z2). In this paper, V (G) and E(G) will denote the
vertex set and edge set of a graph G. For this theorem and analogous results for other
lattices, see [3], [17], [18], [19], [21] and references therein.

There is a good intuition that, among grid graphs with a fixed number of vertices
(or even among more general classes of graphs), the ones with higher numbers of span-
ning trees should have smaller boundaries and vice-versa. Asymptotic evidence for this
intuition is found in [10].

Further evidence comes from recent work on the mathematics of redistricting. For
the reversible version of the spanning-tree-based MCMC algorithm by which ensembles of
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maps are commonly generated, the stationary distribution is known to assign a probability
to each map that is proportional to the map’s spanning tree score (which means the
product of the numbers of spanning trees of its districts); see [5], [2], [6]. Thus, the
algorithm prefers maps whose districts have larger numbers of spanning trees. Data from
large ensembles of maps indicate a strong negative correlation between a map’s spanning
tree score and its number of cut edges (which is a discrete measurement of the total size
of the district boundaries) [5]. Thus, the algorithm seems to prefer maps whose districts
have small boundaries, and one purpose of this paper is to more rigorously understand
this behavior.

The following important result, due to Russell Lyons, says that the bulk limit is an
upper bound:

Theorem 1 (Lyons). If G is a grid graph, then

ln(τ(G)) <
4C

π
· |V (G)|.

For completeness, we’ll include Lyons’ unpublished proof of this theorem in the next
section. In terms of the base

b = exp(4C/π) ≈ 3.2099,

Lyons’ theorem can be re-phrased as:

τ(G) < b|V (G)|. (2)

Our main result is related to this, and is easiest to state for the following natural class
of grid graphs.

Definition 2. A grid graph G is called simple if it is comprised of all of the vertices and
edges that are on and interior to a cycle α in L(Z2). In this case, the set of vertices of
α is called the boundary of G, denoted ∂G. The area of G, denoted Area(G), means the
area of the interior of α, or equivalently the number of faces of G.

Figure 1: A simple grid graph. The white vertices lie in its top-left boundary.

Figure 1 illustrates a simple grid graph G. Its bounding cycle α, colored red, can be
considered as a piecewise-linear path in R2 whose length equals |∂G|. The white vertices
comprise the top-left boundary of G, defined as:
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Definition 3. The top-left boundary of a simple grid graph G, denoted ∂̂G, is the set of
all v ∈ ∂G such that the face of L(Z2) whose bottom-right corner is v is not a face of G.

Our main result is the following theorem, which forces graphs with larger boundaries
to have smaller numbers of spanning trees and vice-versa:

Theorem 4. If G is a simple grid graph, then

bm 6 τ(G) 6 4m,

where m = Area(G) = |V (G)| − 1
2
|∂G| − 1 = |V (G)| − |∂̂G|.

The fact that Area(G) = |V (G)| − 1
2
|∂G| − 1 follows from Pick’s Theorem [15], while

the fact that Area(G) = |V (G)| − |∂̂G| will be proven in Section 4.
We’ll show that the lower bound of Theorem 4 more generally makes sense and is true

for all grid graphs, but that the upper bound is only true of simple grid graphs.
The example of a square with side length 1 (which contains four vertices) demonstrates

that the upper bound of Theorem 4 is sharp. However when |∂G|
|V (G)| becomes small, this

upper bound becomes worse than Theorem 1. To improve this situation, we give a much
stronger upper bound in Section 6.

This paper is organized as follows. Section 2 contains Lyons’ unpublished proof of
Theorem 1. Section 3 explains the main idea of this paper with an illuminating example.
Section 4 derives basic properties of the top-left boundary of a grid graph. Sections 5 and
6 respectively prove the lower and upper bound of Theorem 4 plus generalizations and
improvements.

Finally in Section 7 we apply our main theorem to relate two different measurements
of compactness that are commonly used in the mathematical redistricting literature: a
map’s cut edge count and its spanning tree score. Empirical evidence suggests a very
strong negative correlation between these two measurements, and our results partially
account for this correlation. Independent work by Procaccia and Tucker-Folz related
these two measurements for general planar graphs [16]; in the case of grid graphs, our
results are complimentary to theirs.

2 The bulk limit is an upper bound

We thank Russell Lyons for sharing with us the following proof. For brevity, in this section
we assume knowlege of the vocabulary and results of [13] and [14].

Proof of Theorem 1. Choose a leftmost vertex x of G and a rightmost vertex y of G. For
every integer k ∈ Z, let Gk be a copy of G with corresponding vertices named xk and yk.
For every integer n > 0, let Hn denote the connected graph formed from all of the copies
Gk with −n 6 k 6 n, with the copies connected together by adding an edge between yk
and xk+1 for each −n 6 k < n. Notice that each Hn is isomorphic to a grid graph; that
is, the construction can be embedded in L(Z2) as exemplified in Figure 2.
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We have τ(Hn) = τ(G)2n+1 and |V (Hn)| = (2n+ 1)|V (G)|. Therefore,

ln(τ(G))

|V (G)|
=

ln(τ(Hn))

|V (Hn)|
.

By [13, Theorem 3.2], the limit of the latter quantity is the tree entropy of the random
rooted infinite graph H∞ formed similarly from all copies Gk and rooted at a uniformly
random vertex of G0. Clearly H∞ is stochastically dominated by the entire square lattice
L(Z2), whence the tree entropy of H∞ is strictly less than that of L(Z2) by [14, Theorem
3.2]. The latter is 4C/π, which proves the claimed upper bound.

Notice that this proof generalizes to yield the analogous result for any lattice (in any
dimension) with a transitive group of translation symmetries.

Figure 2: Hn is a grid graph.

3 Setup and example

In this section, let G be a grid graph. Our main technique involves building G by adding
one vertex at a time in the words-on-a-page order (starting with the top row ordered
left-to-right and ending with the bottom row ordered left-to-right), and studying the
multiplicative factor by which the spanning tree count grows with each added vertex.

More precisely, let v ∈ V (G). Let H ′v (respectively Hv) denote the subgraph of G
induced by all vertices prior to v (respectively prior to and including v) with respect to
the words-on-a-page ordering of V (G). We will study the multiplicative growth factor:

mv =
τ(Hv)

τ(H ′v)
.

Note that Hv and H ′v are not necessarily connected, even for the simple grid graph in
Figure 1. To allow for the possibility of disconnected graphs, the meaning of τ here must
be slightly generalized as follows. If H is a (possibly disconnected) graph, let T (H) denote
the set of ways to choose one spanning tree from each of its connected components, and
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let τ(H) = |T (H)|, which equals the product of the numbers of spanning trees on the
connected components. Our convention here is that a component containing just a single
vertex is counted as having one spanning tree. We additionally use the convention that
mv = 1 if v is the first vertex. With these definitions, we can recover τ(G) as:

τ(G) =
∏

v∈V (G)

mv. (3)

It is useful to regard v 7→ mv as a real-valued function on V (G), which we call the
multiplier function. In fact, the primary technical goal of this paper is to understand
its behavior on general grid graphs. For this, it is helpful to first gain intuition from
examples.

Example 5. Figure 3 illustrates heatmaps for the multiplier function on two simple grid
graphs. The left grid graph, which we call S, is the 12-by-12 square. The right grid
graph, which we call D, is the diamond inside the 15-by-15 square. These examples were
chosen to have similar numbers of vertices: |V (S)| = 144, while |V (D)| = 141. Each
small square represents a vertex. The graphs’ edges don’t need to be displayed because
adjacency is visually obvious, so the small squares are drawn large enough to bump into
their neighbors forming a grid. The color of each small square represents the value of the
multiplier function on the corresponding vertex.

For each vertex v of S or D, the underlying data shows that either mv = 1 or mv ∈
(b, 4]. The set of vertices with multiplier 1 (colored black with a white cross) is exactly
the top-left boundary. The square’s top-left boundary has 23 vertices, while the diamond’s
has 29. The square has more spanning trees: ln(τ(S)) ≈ 146.15, ln(τ(D)) ≈ 136.19.
The square and the diamond both have the property that the size of the top-left boundary
is one more than half the size of the boundary.

1.0

Figure 3: Heatmaps for the multiplier function on a square and a diamond.

The remainder of this paper will demonstrate that each key feature of the previous
examples carries over to all grid graphs or at least all simple grid graphs.

the electronic journal of combinatorics 31(1) (2024), #P1.26 5



4 The top-left boundary

In this section, we study the top-left boundary and prove that it behaves like the set of
vertices colored black with a white cross in the examples of the previous section. We
begin by generalizing Definition 3 to (not necessarily simple) grid graphs.

Definition 6. Let G be a grid graph. For each v ∈ V (G), let �v denote the subgraph of
L(Z2) comprised of the vertices and edges of the 1-by-1 square whose bottom-right corner
is v. The top-left boundary of G is:

∂̂G = {v ∈ V (G) | �v is not a subgraph of G}.

Lemma 7. If G is simple and v ∈ ∂̂G, then mv = 1.

Proof. Denote the coordinates of v as v = (x, y). Denote the relevant neighbors of v as
a = (x, y + 1), w = (x − 1, y + 1) and b = (x − 1, y). The following three cases are
straightforward:

• If va /∈ E(G) and vb /∈ E(G), then {v} is a connected component of Hv, so mv = 1.

• If va ∈ E(G) and vb /∈ E(G), then |T (H ′v)| = |T (Hv)| because “adding the edge
va” is a bijection between T (H ′v) and T (Hv), so mv = 1.

• If va /∈ E(G) and vb ∈ E(G), then mv = 1 by a similar argument.

Next assume that va ∈ E(G) and vb ∈ E(G), which is the only remaining case. We claim
that a and b must lie in different connected components of H ′v. Indeed, if there were a
path between a and b in H ′v, then adding va and vb to this path would yield a loop in
Hv that encloses or contains w. But since G is simple, it contains all edges inside of any
closed loop in it, so aw, bw ∈ E(G), contradicting the hypothesis that v ∈ ∂̂G.

In summary, a and b lie in different connected components of H ′v, but they are con-
nected through v in Hv. Therefore, “adding va and vb” is a bijection between T (H ′v) and
T (Hv), so mv = 1.

Figure 4 exhibits counterexamples to Lemma 7 when G is not simple. Each graph
has the property that all of its vertices lie in its top-left boundary, but yet its red-colored
vertices have multipliers larger than 1. In fact, the red vertex of the left graph has
multiplier 16; we’ll soon see that this is much larger than the multiplier of any vertex of
a simple graph.

The decision to consider the top-left boundary (rather than the top-right, bottom-
left, or bottom-right) is somewhat arbitrary, but the size of ∂̂G is unaffected by this
decision because the following proposition provides a canonical interpretation of |∂̂G|. The
proposition also establishes the equivalence of the three expressions for m in Theorem 4.

Proposition 8. If G is a simple grid graph, then ∂̂G ⊂ ∂G and

Area(G) = |V (G)| − 1

2
|∂G| − 1 = |V (G)| − |∂̂G|.

In particular, this implies that |∂G| is even and |∂̂G| = 1
2
|∂G|+ 1.
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Figure 4: Counterexamples to Lemma 7 when G is not simple.

Proof. The claim that ∂̂G ⊂ ∂G is straightforward. As mentioned in the introduction,
Pick’s Theorem says that Area(G) = |V (G)| − 1

2
|∂G| − 1. Moreover, Area(G) = |V (G)| −

|∂̂G| because the set of faces of G correspond one-to-one with V (G) − ∂̂G by matching
each face with its bottom-right corner.

Alternatively, the previous proposition can be proven without using Pick’s Theorem
by establishing that |∂̂G| = 1

2
|∂G|+ 1 via a straightforward inductive argument.

5 A lower bound on τ (G)

The goal of this section is to prove the lower bound in Theorem 4. In fact, we will prove
the following generalization to (not necessarily simple) grid graphs:

Theorem 9. If G is a grid graph, then

τ(G) > bm,

where m = |V (G)| − |∂̂G|.

Theorem 9 is an immediate consequence of the following:

Proposition 10. Let G be a grid graph and v ∈ V (G). If v /∈ ∂̂G, then mv > b.

For the remainder of this section, we assume that G is a grid graph, we fix a vertex
v ∈ V (G) and we assume that v /∈ ∂̂G, with the goal of proving that mv > b.

Denote the coordinates of v as v = (x, y) and denote the top and left neighbors of v
as a = (x, y + 1) and b = (x− 1, y). Since v /∈ ∂̂G, we know that va, vb ∈ E(Hv).

Lemma 11. Let Pv denote the probability that a uniformly random member of T (Hv)
contains both va and vb. Then 0 < Pv < 1 and

mv =
2

1− Pv
.

Proof. Partition the members of T (Hv) into three sets, T (Hv) = T1 ∪ T2 ∪ T3, according
to whether they:

(T1) Contain va but not vb.
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(T2) Contain vb but not va.

(T3) Contain va and vb.

Since �v is a subgraph of Hv, it is straightforward to see that all three sets in this
partition are nonempty. For example, T3 is nonempty because a member of T3 can be
obtained from any member of T (H ′v) by adding va and vb and removing any other edge
of the resulting cycle that this creates.

Furthermore, |T (H ′v)| = |T1| because “adding the edge va” is a bijection between these

sets. Similarly |T (H ′v)| = |T2|. Thus, mv = τ(Hv)
τ(H′

v)
= 2τ(H′

v)+|T3|
τ(H′

v)
. Solving Pv = |T3|

2τ(H′
v)+|T3|

for |T3| and substituting completes the proof.

Lemma 12. Let Ev denote the probability that a simple random walk on Hv starting at
v “escapes to b,” which means that it reaches b before returning to v. We have:

mv =
2Ev

2Ev − 1
.

Proof. Define Pv as in Lemma 11. We can better understand Pv via the Aldous-Broder
algorithm for generating a uniformly random spanning tree of a connected graph [1], [4]
(Wilson’s algorithm from [20] would also work here). Their algorithm works as follows.
Start at any vertex and do a simple random walk. Each time a vertex is first encountered,
mark the edge from which it was encountered. When all vertices have been encountered,
the set of marked edges is a uniformly random spanning tree.

We apply the Aldous-Broder algorithm as follows. Let W(a) denote a simple random
walk starting at a on the connected component of Hv that contains a. Denote this
connected component as H0

v , and note that it also contains v and b because v /∈ ∂̂G.
It is straightforward to see that Pv equals the probability that, in the walk W(a), the

vertex b is first encountered along the edge vb. In fact, this is the only way in which the
set of marked edges will end up containing both va and vb.

Next let W(v) denote a simple random walk starting at v on H0
v . Here is a review of

the definitions of Pv and Ev together with a new definition of Qv:

• Pv = the probability in W(a) that b is first encountered along vb.

• Qv = the probability in W(a) of reaching v before reaching b.

• Ev = the probability in W(v) of reaching b before returning to v.

Since Ev is the probability of escaping to b on the first step plus the probability of escaping
after more than one step, we have:

Ev =
1

2
+

1

2
(1−Qv) (4)

In particular Ev >
1
2

because Qv 6= 1, which follows from the fact that v is not in the
top-left boundary.
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It remains to relate Pv and Qv. For this, let P (k) denote the probability inW(a) that
b is first encountered along vb immediately following the walk’s kth visit to v. We have:

Pv =
∑
k>1

P (k) =
∑
k>1

(
Qv

2

)k
=

Qv

2−Qv

(5)

Combining Equations 4 and 5 with Lemma 11 yields the following expressions for the
multiplier:

mv =
2

1− Pv
=

2−Qv

1−Qv

=
2Ev

2Ev − 1
.

The problem is now reduced to understanding the escape probability Ev. A standard
trick in the literature is to bound escape probabilities using Rayleigh’s Monotonicity
Laws, whose intuition comes from the long studied connection between random walks and
electrical circuits. We recommend [7] for an elementary introduction to this connection
and to Rayleigh’s Laws. We’ll require the following special case:

Proposition 13 (Rayleigh’s Monotonicity Law). Let H̃ be a connected graph, let H be
a subgraph of H̃, and let v0, b0 ∈ V (H) be distinct vertices. Assume that H contains all
edges in H̃ incident to v0. Let Ẽ (respectively E) denote the probability that a simple
random walk on H̃ (respectively on H) starting at v0 “escapes to b0,” which means it
reaches b0 before returning to v0. Then E 6 Ẽ.

Thus, there is a greater probability of escape on the larger graph than on the smaller
subgraph. In our application of Rayleigh’s Law, the smaller graph will be Hv, while the
larger will be the infinite subgraph, U , of L(Z2) whose vertex set is:

V (U) = {(x, y) ∈ Z2 | y > 1 or (y = 0 and x 6 0)}. (6)

We can think of V (U) as the set of points of Z2 prior to (and including) the origin 0 = (0, 0)
in the words-on-a-page sense. After applying a translation for notational convenience, we
can assume that v is positioned at the origin; that is, we can assume that v = 0 = (0, 0),
a = (0, 1), and b = (−1, 0). With this understanding, Hv is a subgraph of U .

Lemma 14. Let E(∞) denote the probability that a simple random walk on U starting
at v = (0, 0) escapes to b = (−1, 0). Then E(∞) = b

2(b−1) .

We postpone the proof of Lemma 14 until the end of the next section. For now, we
will use the lemma to finish off Proposition 10 and hence also Theorem 9.

Proof of Proposition 10. Rayleigh’s Law together with Lemma 14 gives Ev 6 E(∞) =
b

2(b−1) . Recall from the previous proof that Ev > 1/2. On the domain Ev > 1/2, the

function mv = 2Ev

2Ev−1 is decreasing. Therefore mv >
2E(∞)

2E(∞)−1 = b.

Proof of Theorem 9.

τ(G) =
∏

v∈V (G)

mv >
∏

v∈V (G)−∂̂G

mv > bm,

where m = |V (G)| − |∂̂G|.
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6 An upper bound on τ (G)

The goal of this section is to prove the upper bound of Theorem 4. Figure 4 shows that
this upper bound is false in the non-simple case (with m re-expressed in terms of ∂̂G as
in Theorem 9). This upper bound will follow immediately from Lemma 7 together with
the following:

Proposition 15. If G is a simple grid graph and v ∈ V (G) with v /∈ ∂̂G, then mv 6 4

We will prove this proposition (and more general upper bounds on mv) via Rayleigh’s
Law by comparing Hv to a smaller subgraph constructed as follows.

For each integer k > 1, define Ũ(k) to be the subgraph of U (from Equation 6)
induced by all vertices within graph-distance k from 0, and then obtain U(k) from Ũ(k)
by removing all vertices of degree 1 and their adjacent edges. That is,

V (Ũ(k)) = {p ∈ V (U) | dist(0, p) 6 k},
V (U(k)) = {p ∈ V (Ũ(k)) | degree(p) 6= 1},

where “dist” is the edge distance of the graph. The first few are shown in Figure 5.

Figure 5: U(k) for k ∈ {1, 2, 3, 4}. The transparent vertices and edges belong to Ũ(k) but
not U(k).

Assume for the remainder of the section that G is a grid graph and v ∈ V (G). As
in the previous section, assume (after applying a translation) that v = 0 = (0, 0) so that
Hv ⊂ U . Define:

dv = max{k | U(k) ⊂ Hv}. (7)

Notice that v ∈ ∂̂G if and only if dv = 1.

Lemma 16. If v /∈ ∂̂G (or equivalently if dv > 2), then mv 6 F (dv), where F is a
function defined in the proof below, whose first few values are given in Table 1.

Proof. Set k = dv. Define Qv and Ev as in the proof of Lemma 12, in which are found
the relations:

mv =
2Ev

2Ev − 1
=

2−Qv

1−Qv

. (8)

Analogously define Q(k) and E(k) with respect to random walks in U(k); that is:
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Table 1: Some values of F rounded to 4 decimals

k F (k)

2 4
3 3.4833
4 3.3486
5 3.2936
...

...

12 3.2193
↓

b ≈ 3.2099

• Q(k) is the probability that a simple random walk in U(k) starting at a reaches v
before reaching b.

• E(k) is the probability that a simple random walk in U(k) starting at v escapes to
b.

Define

F (k) =
2E(k)

2E(k)− 1
=

2−Q(k)

1−Q(k)
. (9)

Rayleigh’s Monotonicity Law implies that Ev > E(k) and therefore that mv 6 F (k).
To compute F (k), it will suffice to compute Q(k) via the method of [7, Section 1.2.6],

which we briefly review here. Regard the random walk on U(k) starting at a as an
absorbing Markov chain with absorbing states {v, b}. Index the vertices of U(k) with
these absorbing states listed first, so the transition matrix of the Markov chain has the

block form

(
I 0
R Q

)
. The absorption probabilities are given by B = (I−Q)−1R. Thus

Q(k) equals the entry of B whose column corresponds to the absorbing state v and whose
row corresponds to the non-absorbing state a.

The function F : {2, 3, . . . } → R defined in the previous proof has the following
properties.

Lemma 17. F is non-increasing, and limk→∞ F (k) = b.

Proof. The function k 7→ E(k) is non-decreasing by Rayleigh’s Monotonicity Law because
U(k) ⊂ U(k + 1). Therefore Equation 9 implies that the function k 7→ F (k) is non-
increasing. It follows that limk→∞ F (k) exists.

To prove that this limit equals b, we first let S(n) denote a square with n2 vertices in
L(Z2). Equation 1 implies

lim
n→∞

ln(τ(S(n)))

|V (S(n))|
= ln b. (10)
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Let µn denote the geometric mean of {mv | v ∈ V (S(n))}. Using Equation 3, we can
rewrite Equation 10 as:

lim
n→∞

µn = b. (11)

For n ∈ N and v ∈ V (S(n)), define:

dv = max{k | U(k) ⊂ Hv},
Dv = min{k | Hv ⊂ U(k)}.

The first equation is just the previous definition of dv from Equation 7. Notice that
dv 6 Dv. All of this is illustrated in Figure 6 for a particular vertex v ∈ V (S(9)) for
which dv = 4 and Dv = 9.

Rayleigh’s Monotonicity Law applied to both the inclusion U(dv) ⊂ Hv and the inclu-
sion Hv ⊂ U(Dv) yields

E(dv) 6 Ev 6 E(Dv) (12)

Equations 8 and 9 convert this into bounds on the multiplier of v:

F (Dv) 6 mv 6 F (dv) (13)

The value dv is controlled by the distance from v to the top, left and right edges of
S(n). When n is large, the vast majority of the vertices of S(n) have large distance to
these edges and hence have large values of dv (and thus also of Dv). More precisely, it is
straightforward to show that for every K ∈ N and every ε > 0, there exists N ∈ N such
that if n > N , then the equation

dv > K

is true for at least a (1− ε) portion of the vertices v ∈ S(n).
Together with Equation 13, this implies that limn→∞ µn = limk→∞ F (k). Combining

this with Equation 11 completes the proof.

The value F (2) = 4 in Table 1 is exact (not rounded). Proposition 15 is an immediate
consequence of this value.

We now use Lemma 17 to fill in a missing proof from Section 5.

Proof of Lemma 14. Let E(k) denote the probability that a simple random walk starting
at v = (0, 0) on U(k) escapes to b = (−1, 0). Then

E(∞) = lim
k→∞

E(k) = lim
k→∞

F (k)

2(F (k)− 1)
=

b

2(b− 1)
.

Finally, we prove the upper bound of Theorem 4 as a quick consequence of Lemma 7
and Proposition 15.

Proof of upper bound of Theorem 4.

τ(G) =
∏

v∈V (G)

mv =
∏

v∈V (G)−∂̂G

mv 6 4m,

where m = |V (G)| − |∂̂G| = |V (G)| − 1
2
|∂G| − 1.
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Figure 6: U(4) ⊂ Hv ⊂ U(9) for this v ∈ V (S(9)).

An improvement on the upper bound of Theorem 4 can be obtained by considering
the level sets of d. That is, for each k > 1 define:

Gk = {v ∈ V (G) | dv = k}.

Notice that G1 = ∂̂G. Assuming that G is simple, Lemma 16 gives:

ln(τ(G)) 6
∑
k>2

ln(F (k)) · |Gk|. (14)

Equation 14 is stronger than the upper bound of Theorem 4, but is it is not clear
whether Equation 14 is necessarily stronger for all simple grid graphs than Theorem 1.

7 Application to redistricting

In this section, we apply our results to help account for an empirically observed correla-
tion between two different compactness measurements for district maps, which we now
describe.

The starting point of modern redistricting models is a graph G whose vertices represent
the precincts of a state. Two vertices are connected by an edge if the corresponding
precincts share a geographic boundary with non-zero length. A map M is a partition1 of
G into subgraphs {G1, . . . , Gk} called districts, which are required to satisfy certain legal
requirements.

1More precisely, this means a partition {V1, . . . , VK} of V (G), with {G1, . . . , GK} denoting the subgraphs
of G induced by these vertex sets.
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Many states require their congressional and legislative maps to be compact, which
roughly means that the districts should have plump shapes without the winding tentacles
commonly associates with gerrymandering. The term “compact” is defined only vaguely
in most states, but there are several ways to quantify it. For example, let C = C(M)
denote the set of cut edges, which means the edges between pairs of vertices of G that
belong to different districts. The value |C| is frequently used as a discrete measurement
of the map’s overall compactness; see [8] for advantages of this measurement compared
to other compactness measurements. A second common measurement of compactness is
the spanning tree score, defined as

S(M) = ln
(∏

τ(Gi)
)
.

Figure 7 exhibits a very strong negative correlation between |C| and S(M) for a
ensemble of 1000 random partitions of the square with 302 vertices into 9 districts2. Our
goal is to account for this negative correlation.

Figure 7: Spanning tree score vs. cut edge count for an ensemble of 1000 partitions of
the square with 302 vertices into 9 districts.

Procaccia and Tucker-Folz related these two measurements for general planar graphs
in [16] with bounds that depend on degree bounds in G and its dual. In the case of large
grid graphs, their result say for a pair of mapsM1 andM2 that if |C(M2)| > 7.23|C(M1)|
then S(M1) > S(M2).

We assume henceforth that G and each Gi is a simple grid graph. The main result of
this section is:

2This ensemble was created with the ReCom algorithm from [6] with 5% population deviation using the
pictured tic-tac-toe arrangement as the initial partition.
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Proposition 18.

|C| = Area(G) +K − 1︸ ︷︷ ︸
denote as C1

−
K∑
i=1

Area(Gi).

Notice that C1 is a constant that does not depend on the partition. Also notice that
Area(G) and Area(Gi) do not equal the areas of any geographic regions because G and
Gi are dual graphs.

Proposition 18 and Theorem 4 together imply:

C1 −
1

ln(b)
· ln
(∏

τ(Gi)
)
6 |C| 6 C1 −

1

ln(4)
· ln
(∏

τ(Gi)
)
. (15)

Figure 8 contains the same data as Figure 7 (zoomed out in order to show the axes)
with the upper and lower bounds of Equation 15 displayed as red lines. The slopes of these
red lines are − 1

ln(b)
and − 1

ln(4)
. Their common vertical intercept is C1 = 292 +9−1 = 849.

Notice that all of the data points lie between the two red lines, even though the maps in
this ensemble do not satisfy all of our hypotheses – their districts are not all simple.

Figure 8: The red lines represent the inequalities of Equation 15.

Proof of Proposition 18. Let F denote the set of faces of G that are not faces of any
of the districts and are not the unbounded external face. It will suffice to prove that
|C| = |F |+K − 1.

It is possible to select a subset S ⊂ C of size K − 1 such that S connects the districts
into a spanning tree. More precisely, S induces a spanning tree, TS, on the district quotient
graph of G, which is defined to contain one vertex for each district, and to have an edge
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between each pair of vertices if the corresponding pair of districts is connected by at least
one cut edge. Figure 9 provides an illustration in which the districts are dark grey, the
faces of F are light grey, the members of S are dashed red lines, and the members of C−S
are solid blue lines.

It will suffice to find a bijection from F to C − S. For this, we will consider F as a
graph in which a pair f1, f2 ∈ F are connected by an edge if they are adjacent across a
member of C − S. Considered in this way, F is acyclic because TS is connected. Thus, F
is a union of disjoint trees. We’ll call f ∈ F an end face if it is adjacent across an edge
of C − S with a face of L(Z2) that’s not a face of G. Since TS is acyclic, each connected
component of F contains at least one end face.

Imagine following a path in F and marking the faces and cut edges crossed along the
way. Since faces and cut edges alternate, we can insure we mark an equal number of each
by starting with a face and ending with a cut edge. Let’s call such a path a good path.
To build a bijection of F with C −S, it will suffice to find a finite collection of good paths
that together mark all of the faces in F and all of the cut edges in C − S. This can be
achieved by repeating the following two steps until all faces have been marked:

1. Select any face of f ∈ F that hasn’t yet been marked.

2. There exists a path in F from f to an end face. Traverse this path (marking the
faces and edges along the way) until either reaching this end face or reaching a
previously marked face.

In Figure 9, one possible collection of good paths is illustrated in green. When this
algorithm terminates, all edges of C − S must be marked because any unmarked edge
could be added to S without creating a cycle in TS.

Figure 9: The green paths provide a bijection between F (the light grey faces) and C −S
(the blue cut edges).
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