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Abstract

We say that k graphs G1, G2, . . . , Gk on a common vertex set of size n contain
a rainbow copy of a graph H if their union contains a copy of H with each edge
belonging to a distinct Gi. We provide a counterexample to a conjecture of Frankl
on the maximum product of the sizes of the edge sets of three graphs avoiding a
rainbow triangle. We propose an alternative conjecture, which we prove under the
additional assumption that the union of the three graphs is complete. Furthermore,
we determine the maximum product of the sizes of the edge sets of three graphs or
four graphs avoiding a rainbow path of length three.

Mathematics Subject Classifications: 05C35

1 Introduction

The classical theorem of Mantel [8] asserts that the maximum number of edges in an
n-vertex graph containing no triangle is bn2/4c. This result was generalized by Turán [9],
who showed that the maximum number of edges in an n-vertex graph with no complete
graph Kr as a subgraph is obtained by taking a complete (r− 1)-partite graph with parts
of size bn/(r − 1)c or dn/(r − 1)e.

Many natural generalizations of these theorems have been considered. For a graph G,
let E(G) denote the edge set of G and let e(G) = |E(G)|. Of particular importance to the
present work is an extremal problem due to Keevash, Saks, Sudakov, and Verstraëte [7].
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bAlfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences.
cDepartment of Mathematical Sciences, Tsinghua University.
dKing Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
eDepartment of Computer Science and Information Theory, Budapest University of Technology and
Economics.

f ELKH-ELTE Egerváry Research Group.
gSchool of mathematics, Nanjing University of Aeronautics and Astronautics.

the electronic journal of combinatorics 31(1) (2024), #P1.28 https://doi.org/10.37236/11676

https://doi.org/10.37236/11676


They considered (among other problems) the maximum of e(G1) + e(G2) + · · · + e(Gk)
across k graphs on a common vertex set of size n with the property that there is no
Kr with each of its edges coming from a distinct E(Gi). Such a Kr is referred to as a
rainbow Kr. For this problem, there are two natural constructions. On the one hand, if
k > r2−1

2
, then we take k identical copies of the Turán graph. On the other hand, when(

r
2

)
6 k < r2−1

2
, it is better to take

(
r
2

)
− 1 copies of the complete graph and let the

remaining graphs have empty edge sets, and of course for k <
(
r
2

)
, it is optimal to take

all k graphs to be complete. Keevash, Saks, Sudakov, and Verstraëte [7] also proved that
for 3-chromatic color-critical graphs and sufficiently large n, an analogous result holds
in which either a construction consisting of k copies of a Turán graph, or a construction
consisting of complete graphs and graphs with no edges is optimal. Recently Chakraborti,
Kim, Lee, Liu, and Seo [3] showed that the same holds for 4-chromatic color-critical graphs
and almost all color-critical graphs of chromatic number at least 5, partially verifying a
conjecture from [7]. In the context of extremal set theory, rainbow extremal problems
have also been considered earlier, for example by Hilton [6].

After one has bounds on e(G1) + e(G2) + · · · + e(Gk), it is natural to consider max-
imizing other objective functions over e(G1), e(G2),. . . , e(Gk). The problem of max-
imizing min

(
e(G1), e(G2), e(G3)

)
while avoiding a rainbow triangle was considered by

Aharoni, DeVos, de la Maza, Montejano, and Šámalin [1], answering a question of Diwan
and Mubayi [4]. Let Pr denote the path with r vertices. The problem of maximizing
min

(
e(G1), e(G2), . . . e(Gk)

)
while avoiding a rainbow P4 was considered by Babiński and

Grzesik [2]. For the problem of maximizing the product e(G1)e(G2)e(G3) while avoiding
a rainbow triangle, Frankl [5] gave the following conjecture.

Conjecture 1 (Frankl). Let G1, G2, G3 be graphs on a common vertex set of size n with
no rainbow triangle. Then

e(G1)e(G2)e(G3) 6

⌊
n2

4

⌋3
.

Taking G1, G2, G3 to be 3 copies of the complete bipartite graph with almost equal
parts attains this bound. Frankl proved that under the additional assumption E(G1) ⊆
E(G2) and E(G1) ⊆ E(G3), Conjecture 1 holds. We show that Frankl’s conjecture does
not hold in the general case.

Let γ be the maximum of

x2

2

(
x2

2
+

(1− x)2

2

)(
x(1− x) +

(1− x)2

2

)
(1)

on [0, 1], and assume γ is attained at x = x0. Note that 1
52
< γ < 1

51
(and x0 ≈ 0.793).

We have the following.

Theorem 2. There exist graphs G1, G2, G3 on a common vertex set of size n and with
no rainbow triangle such that

e(G1)e(G2)e(G3) > γn6
(
1− o(1)

)
.
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Proof. Let [n] = X ∪ Y be a partition of [n] with X having size approximately x0n and
Y having size approximately (1 − x0)n. Let G1 consist of a complete graph on X, and
G2 consist of the union of a complete graph on X and a complete graph on Y and let G3

consist of a complete graph on Y as well as all edges between X and Y . Observe that the
product e(G1)e(G2)e(G3) is asymptotically γn6.

Moreover, we believe that the expression in Theorem 2 is asymptotically best possible.

Conjecture 3. For three graphs G1, G2, G3 on a common vertex set of size n with no
rainbow triangle, we have

e(G1)e(G2)e(G3) 6 γn6
(
1 + o(1)

)
.

We prove Conjecture 3 under the additional assumption that every pair of vertices
forms an edge in at least one of the graphs Gi. This result is presented in Section 2.

In Section 3 we consider graphs which avoid a rainbow path of length 3. For three or
four graphs on a common vertex set of size n avoiding a rainbow P4, we asymptotically
determine the maximum value of the product of the sizes of their edge sets.

Finally, in Section 4 we present several natural questions concerning graphs avoiding
certain rainbow subgraphs.

2 Proof of Conjecture 3 with an additional assumption

For convenience, we say that a pair of vertices (or an edge) in the n-vertex ground set is
colored if it belongs to at least one of the sets E(G1), E(G2), E(G3). An edge is t-colored
if it belongs to exactly t of the sets E(G1), E(G2), E(G3).

Theorem 4. Let G1, G2, G3 be graphs on a common vertex set of size n with no rainbow
triangle. If n is sufficiently large and every pair of vertices on the ground set is colored,
then the construction described in Theorem 2 maximizes e(G1)e(G2)e(G3).

Proof. Let n be sufficiently large, and let G1, G2, G3 be graphs on a common vertex set of
size n with no rainbow triangle and assume that every edge is colored and e(G1)e(G2)e(G3)
is maximal. For a vertex v and i ∈ [3], let Ni(v) be the set of neighbors of v in Gi which
are not neighbors of v in Gl for all l 6= i. For any {i, j, l} = {1, 2, 3}, we denote the set of
neighbors of the vertex v in Gi and Gj but not in Gl by Nij(v).

Assume e(G1)e(G2)e(G3) > γn6
(
1− o(1)

)
. Then we have

e(G1) + e(G2) + e(G3) > 3 3
√
e(G1)e(G2)e(G3) > 0.8n2 +

n

2

for any sufficiently large n. Since three-colored edges cannot be adjacent to any edge with
at least two colors, the number of three-colored edges is at most n/2. Hence the number
of two-colored edges is at least 0.3n2.

Claim 5. The graph containing all edges with at least two colors is the union of vertex
disjoint cliques such that every edge of each clique has the same coloring.
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Proof. Let e = uv be a two-colored edge, and assume that e has colors 1 and 2. If
w ∈ N3(v), then uw is one-colored with color 3. That is N3(v) = N3(u) and

N13(u) = N23(u) = ∅. (2)

Let w ∈ N12(v). Then uw is not colored with color 3. Suppose by the way of contra-
diction that uw is a one-colored edge. Without loss of generality, we may assume that
uw is of color 1. Then by the maximality of the coloring, there is a vertex w′ such that
w′ /∈ {v, u, w} and edges uw′ and ww′ are colored with colors 1 and 3 in any order. This
is a contradiction since for any coloring of the edge w′v, the triangle w′vu or the triangle
w′vw is a rainbow triangle. Hence w ∈ N12(u), thus

N12(u) = N12(v). (3)

Then the claim follows from (2) and (3).

Let A be a clique of maximum size in the graph consisting of edges of at least two
colors. Let a be the size of A. Then (a−1)n

2
> 0.3n2 since the maximum degree in the

graph of the two-colored edges is a−1 and we observed earlier that there are at least 0.3n2

two-colored edges. Hence we have a > 0.6n. Since a > n/2 and there are at least 0.3n2

two-colored edges, it follows
(
a
2

)
+
(
n−a
2

)
> 0.3n2. Thus we have a > 0.723n.

Without loss of generality, we may assume that the edges of A are colored with colors
1 and 2. Then we have e(A) > 0.26n2 and it follows e(G3) 6 0.24n2. From the maximality
of the product e(G1)e(G2)e(G3) and Claim 5, we have that all one-colored edges are of
color 3. Indeed, otherwise we could change the color of all the one-colored edges to color
3 and since e(G3) < e(A), this would increase the product. Moreover, for any maximal
clique B in the graph different from A and consisting of edges of at least two colors, one
of those colors must be color 3 (for otherwise, changing one of the colors in B to color 3
would increase the product).

By maximality, it is easy to observe that there is at most one clique colored with colors
i and j for all 1 6 i < j 6 3. Let a be the size of clique colored with colors 1 and 2, let
b be the size of clique colored with colors 1 and 3, and let c be the size of clique colored
with colors 2 and 3. Let d be the number of three-colored edges. Then G1 consists of a
complete graph of size a, a complete graph of size b and a matching of size d, the graph
G2 consists of complete graphs of size a and c and a matching of size d, and G3 consists
of all edges not in A. Without loss of generality we may assume c > b. We may also
assume that we do not have b = c = 0, for otherwise the product is only O(n5). Then the
following holds:((

a

2

)
+

(
b

2

)
+ d

)((
a

2

)
+

(
c

2

)
+ d

)
6

((
a

2

)
+

(
b

2

))((
a

2

)
+

(
c+ 2d

2

))
.

Therefore d = 0, otherwise by changing the coloring, we could increase the product. Thus
a+ b+ c = n and since a > 0.72n, we have((

a

2

)
+

(
b

2

))((
a

2

)
+

(
c

2

))
6

((
a

2

)
+

(
b+ c

2

))(
a

2

)
.
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Therefore without loss of generality, we may assume b = 0, otherwise by changing the
coloring, we could increase the product. Thus, we have obtained that G1, G2 and G3 have
the form of the construction in the proof of Theorem 2. That is, we have a partition of
the ground set into two parts X and Y , and each edge inside X is colored with colors
1 and 2, each edge inside Y is colored with colors 2 and 3, and all edges between X
and Y are colored with 3. The maximum product of the number of edges among such
constructions is obtained by a construction of the form described in the proof of Theorem 2
since it maximizes the expression (1) (and thus as a consequence e(G1)e(G2)e(G3) =
γn6
(
1 + o(1)

)
).

3 Results about 4-vertex paths

Next we obtain some results about graphs avoiding a rainbow P4 (where, recall, P4 denotes
the path with 4 vertices).

Theorem 6. There exist graphs G1, G2, G3 on a common vertex set of size n and with
no rainbow P4 such that

e(G1)e(G2)e(G3) > n6

(
1

256
− o(1)

)
.

Proof. Let [n] = X ∪ Y be a partition of [n] with X and Y of sizes approximately 0.5n.
Let G1 consist of a complete graph on X, let G2 consist of a complete graph on Y , and
let G3 consist of a complete graph on X and a complete graph on Y . Observe that
e(G1)e(G2)e(G3) = n6

(
1

256
− o(1)

)
.

Theorem 7. For three graphs G1, G2, G3 on a common vertex set of size n with no rainbow
P4, we have

e(G1)e(G2)e(G3) 6 n6

(
1

256
+ o(1)

)
.

Proof. Let V be the vertex set of size n. Let G1, G2, G3 be graphs on V with no rainbow
P4 and let G =

(
V,E(G1) ∪ E(G2) ∪ E(G3)

)
. Let H be the graph induced by all edges

with three colors. Then H is P4-free, so e(H) 6 ex(n, P4) 6 n. Hence we can assume
that there is no edge with three colors.

For any vertex v ∈ V and for any i ∈ [3], let di(v) denote the degree of v in Gi. For
any v ∈ V , if di(v) = o(n) for some i ∈ [3], then we assume di(v) = 0, since the edges
of Gi incident to v would not affect the asymptotic value of e(G1)e(G2)e(G3). Let c(v)
be the subset of {1, 2, 3} such that di(v) > 1 for every i ∈ c(v) and di(v) = 0 for every
i /∈ c(v). Let

V =

(
3⋃

i=1

Ai

)
∪

( ⋃
16i<j63

Aij

)
∪ A123

be a partition of V , where Ai is the set of vertices v with c(v) = {i}, Aij is the set of
vertices v with c(v) = {i, j} and A123 is the set of vertices v with c(v) = {1, 2, 3}. We
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call the sets Ai, Aij and A123 the parts of G. Let ai = |Ai| for any i ∈ [3], aij = |Aij| for
any 1 6 i < j 6 3 and a123 = |A123|. If one part of this partition has size o(n), then we
assume that the size of this part is 0, since the edges incident to this partition class would
not contribute to the asymptotic value of e(G1)e(G2)e(G3). Note that there are no edges
in G[A123], there are no edges between any two sets from {A12, A13, A23, A123}, and there
are no edges between Ai1 and Ai2 ∪ Ai3 ∪ Ai2i3 for any {i1, i2, i3} = {1, 2, 3}.

Assume G satisfies the properties above and maximizes e(G1)e(G2)e(G3). Then we
may assume that G[Ai] is complete in Gi for any i ∈ {1, 2, 3} and G[Aij] is complete
in Gi and Gj for any 1 6 i < j 6 3. We may also assume that every vertex in Ai is
connected to every vertex in A123 with an edge of color i for any i ∈ [3] and every vertex
in Aij is connected to every vertex in Ai and in Aj with an edge of color i and of color j,
respectively, for any 1 6 i < j 6 3.

Let ei = e(Gi) for any i ∈ [3] and let

k(v) :=
d1(v)

e1
+
d2(v)

e2
+
d3(v)

e3

for each v ∈ V . Then

∑
v∈V

k(v) =
∑
v∈V

3∑
i=1

di(v)

ei
=

3∑
i=1

∑
v∈V

di(v)

ei
= 6.

Lemma 8. For any v ∈ V , we have

k(v) =
6

n
+ o

(
1

n

)
.

Proof. Let u, v be two vertices in V . By the maximality of e1e2e3, putting u from its part
to the part of v, we obtain

e1e2e3 >
(
e1 − d1(u) + d1(v)− 1

)(
e2 − d2(u) + d2(v)− 1

)(
e3 − d3(u) + d3(v)− 1

)
.

Hence k(u) + o
(
1
n

)
> k(v). Similarly, by putting v from its part to the part of u, we

obtain k(v) + o
(
1
n

)
> k(u). Hence k(v) + o

(
1
n

)
= k(u). Thus k(v) = 6

n
+ o
(
1
n

)
holds for

any v ∈ V .

By Theorem 6, we may assume that e1e2e3 > n6/256. Then e1+e2+e3 > 3 3
√
n6/256 >

0.47n2. Observe that A123 cannot contain any edges. Moreover, if any of the sets A1, A2

or A3 is empty, then the set A123 is empty as well.
Case 1: Ai is not empty for any i ∈ [3].
Let vi be a vertex in Ai for any i ∈ [3], and let {i, j, k} = {1, 2, 3}. Applying Lemma 8

to vi for any i ∈ [3], we obtain

k(vi) =
ai + aij + aik + aijk

ei
=

6

n
+ o

(
1

n

)
.
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Hence

e1 + e2 + e3 =
n

6

(
3∑

i=1

ai + 2
∑

16i<j63

aij + 3a123

)
+ o(n2) > 0.47n2.

Then a123 > 0.8n. Since there are no edges in G[A123], and so each edge is colored at
most twice, it follows that e1 + e2 + e3 6 2

((
n
2

)
−
(
0.8n
2

))
< 0.47n2, a contradiction.

Case 2: One of the parts Ai, say A1, is empty and the other two are not.
In this case A123 is empty. Applying Lemma 8 to some vertex in A2 and in A3, we

obtain
a2 + a12 + a23

e2
+ o

(
1

n

)
=
a3 + a13 + a23

e3
+ o

(
1

n

)
=

6

n
+ o

(
1

n

)
.

Hence e2 + e3 = n
6
(n + a23) + o(n2). Then e2e3 6

(
n
12

)2
(n + a23)

2 + o(n4). By e1 6
(n− a23)2/2, we know

e1e2e3 6
( n

12

)2 (n+ a23)
2(n− a23)2

2
+ o(n6) 6 n6

(
1

288
+ o(1)

)
< n6

(
1

256
+ o(1)

)
.

Case 3: Two of the parts Ai, say A1 and A2, are empty and the third one is not.
In this case A123 is empty. If A13 is empty, then moving all vertices in A3 to A23 would

increase the product. Hence we may assume that A13 and A23 are not empty. Applying
Lemma 8 to some vertex in A13, in A3 and in A23, we obtain

a3 + a13
e3

+
a13
e1

+ o

(
1

n

)
=
a3 + a13 + a23

e3
+ o

(
1

n

)
=
a3 + a23
e3

+
a23
e2

+ o

(
1

n

)
=

6

n
+ o

(
1

n

)
.

Hence a13
e1

= a23
e3

+o
(
1
n

)
and a13

e3
= a23

e2
+o
(
1
n

)
. So e23 = e1e2+o(n4) and a13e2

a23
= a23e1

a13
+o(n2).

By e1 = (a212 + a213)/2 + o(n2) and e2 = (a212 + a223)/2 + o(n2), we have

a213
(
a212 + a223

)
= a223

(
a212 + a213

)
+ o(n4).

Hence a12 = 0 or a13 = a23 + o(n). If a12 = 0, then e3 − a23
2
> max{e1, e2}. Then since

|A3| = Ω(n), we know e23 = e1e2 + Ω(n4), a contradiction with e23 = e1e2 + o(n4). So we
have a13 = a23 + o(n). Thus by

a13
e1

=
a23
e3

+ o

(
1

n

)
,

we obtain e1 = e3 + o(n2). Hence,

(a212 + a213)

2
=

(n− a12)2

2
− a13a23 + o(n2) =

(n− a12)2

2
− a213 + o(n2).
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Then (n2 − 2na12)/2 = 3a213/2 + o(n2) 6 n2
(
3/8 + o(1)

)
, so n

(
1/2 + o(1)

)
> a12 >

n
(
1/8− o(1)

)
. It follows that

e1 + e2 + e3 =
a212 + a213

2
+
a212 + a223

2
+

(
(n− a12)2

2
− a13a23

)
+ o(n2)

= a212 +
(n− a12)2

2
+

(a13 − a23)2

2
+ o(n2)

= a212 +
(n− a12)2

2
+ o(n2)

=
3

2

(
a12 −

n

3

)2
+
n2

3
+ o(n2)

6
51n2

128
+ o(n2) < 0.47n2.

Case 4: Ai is empty for all i ∈ [3].
First, observe that A123 is empty. Without loss of generality, we can assume a12 6

a13 6 a23. Then the following holds:(
a212 + a213

)(
a213 + a223

)(
a212 + a223

)
6

((
a13 +

a12
2

)2
+
(
a23 +

a12
2

)2)(
a13 +

a12
2

)2 (
a23 +

a12
2

)2
.

The preceding inequality is easy to verify by taking the difference of the right- and left-
hand sides, multiplying out and pairing off the negative terms with the positive ones and
by using that a12 6 a13 6 a23. It follows that a12 = 0, since otherwise we could increase
the product e1e2e3 by moving half of the vertices from A12 to A13 and the other half to
A23. Then

e1e2e3 =

(
a213 + a223

)
a213a

2
23

8
+ o(n6) =

(
n2 − 2a13a23

)
(a13a23)

2

8
+ o(n6)

6 n6

(
1

256
+ o(1)

)
.

Theorem 9. There exist graphs G1, G2, G3, G4 on a common vertex set of size n and with
no rainbow P4 such that

e(G1)e(G2)e(G3)e(G4) > n8

(
1

4096
− o(1)

)
.

Proof. Let [n] = X ∪ Y be a partition of [n] with X and Y of sizes approximately 0.5n.
Let G1, G2 consist of a complete graph on X and G3, G4 consist of a complete graph on
Y . It is easy to see that e(G1)e(G2)e(G3)e(G4) = n8

(
1
84
− o(1)

)
.

Theorem 10. For four graphs G1, G2, G3, G4 on a common vertex set of size n and with
no rainbow P4, we have

e(G1)e(G2)e(G3)e(G4) 6 n8

(
1

84
+ o(1)

)
.
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Proof. Let V be the vertex set of size n. Let G1, G2, G3, G4 be graphs on V , and let
G =

(
V,E(G1)∪E(G2)∪E(G3)∪E(G4)

)
. Let H be the graph induced by all edges with

at least three colors. Then H is P4-free. Hence e(H) 6 ex(n, P4) 6 n. So we can assume
that there is no edge with at least three colors.

For any vertex v ∈ V and for any i ∈ [4], let di(v) denote the degree of v in Gi. For
any v ∈ V , if di(v) = o(n) for some i ∈ [4], then we assume di(v) = 0, since edges from Gi

incident to v would not contribute asymptotically to the product e(G1)e(G2)e(G3)e(G4).
Let c(v) be the subset of {1, 2, 3, 4} such that di(v) > 1 for every i ∈ c(v) and di(v) = 0
for every i /∈ c(v). Let

V =

(
4⋃

i=1

Ai

)
∪

( ⋃
16i<j64

Aij

)
∪ A

be a partition of V , where Ai is the set of vertices v with c(v) = {i}, and Aij is the set of
vertices v with c(v) = {i, j} and A is the set of vertices v with |c(v)| > 3. Let ai = |Ai| for
any i ∈ [4], aij = |Aij| for any 1 6 i < j 6 4 and a = |A|. If one part of this partition has
size o(n), then we assume the size of this part is 0, since edges incident to this partition
class would not contribute to the asymptotic value of the product e(G1)e(G2)e(G3)e(G4).
Note that there are no edges in G[A], there are no edges between A and

⋃
16i<j64Aij,

no edges between any two sets in {Aij : 1 6 i < j 6 4} and no edges between Ai and(⋃
j∈[4]\{i}Aj

)
∪
(⋃

k,l∈[4]\{i}: k<lAkl).
Assume G satisfies the properties above and maximizes the product of the size of the

edge sets. By Theorem 9, we may assume e(G1)e(G2)e(G3)e(G4) > n8
(
1/4096 + o(1)

)
.

Therefore e(G1) + e(G2) + e(G3) + e(G4) > n2/2 + o(n2). Since there are at most n2/2
edges in G and no edges with at least three colors, we know that the number of edges
with two colors is at least as great as the number of missing edges in G. Then∑

16i<j64

a2ij
2
>

∑
16i<j64

aij
2

(n− ai − aj − aij).

Hence there are i, j ∈ [4], say 1 and 2, such that
a212
2

> a12
2

(n − a1 − a2 − a12), so
2a12 + a1 + a2 > n. Let B = A1 ∪ A2 ∪ A12 and C = A3 ∪ A4 ∪ A34, let b = |B| and let
c = |C|. Then b > n/2 and b+ c 6 n. Clearly, there are no edges of color 3 or 4 adjacent
to any vertex in B and all edges of colors both 3 and 4 are in G[A34]. It follows that

e(G3) + e(G4) 6
(n− a12 − a1 − a2)2

2
+
a234
2

6
(n− b)2 + c2

2
.

Clearly, there are no edges of color 1 or 2 adjacent to any vertex in C, all edges of
colors both 1 and 2 are in G[A12], and there are no edges between A12 and V \ (B ∪ C).
Thus,

e(G1) + e(G2) 6
(n− a34 − a3 − a4)2

2
+
a212
2
− a12(n− b− c).

By 2a12 + a1 + a2 > n, we have

e(G1) + e(G2) 6
(n− c)2

2
+
b2

2
− b(n− b− c) =

(n− b− c)2 + 2b2

2
.
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Then

e(G1)e(G2)e(G3)e(G4) 6

(
(n− b− c)2 + 2b2

4

)2(
(n− b)2 + c2

4

)2

.

Since (n−b)2+c2+(n−b−c)2+2b2 6 2(n−b)2+2b2 and (n−b−c)2+2b2 > 2b2 > (n−b)2+b2,
we obtain

((n− b)2 + c2)((n− b− c)2 + 2b2) 6 4(n− b)2b2 6 n4

4
.

Thus e(G1)e(G2)e(G3)e(G4) 6 n8

84
.

4 Concluding Remarks

We conclude by mentioning some open problems. First, it seems plausible that for 6
graphs G1, G2, . . . , G6 avoiding a rainbow K4, the asymptotically optimal configuration
for maximizing the product of the edge-densities is simply 6 copies of the Turán graph
with 3 parts.

Second, for 2k graphs avoiding a rainbow P4 and maximizing the product of the edge-
densities, one can take an independent set of size n(2k− 1)/(4k− 1) and 2k cliques, each
of size n/(4k− 1), each containing edges of one of the colors, as well as the edges between
each of the cliques and the independent set in their respective colors. It appears this
construction may be asymptotically optimal.

Finally, for k graphs avoiding a rainbow path Pk+1 and maximizing the product of the
edge-densities, one could take two disjoint cliques of size n/2, each consisting of k-colored
edges from two different sets of k colors.
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