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Abstract

The binding number b(G) of a graph G is the minimum value of |NG(X)|/|X|
taken over all non-empty subsets X of V (G) such that NG(X) ∕= V (G). The
association between the binding number and toughness is intricately interconnected,
as both metrics function as pivotal indicators for quantifying the vulnerability of a
graph. Conjectured by Brouwer and proved by Gu, a theorem asserts that for any
d-regular connected graph G, the toughness t(G) is always at least d

λ − 1, where
λ denotes the second largest absolute eigenvalue of the adjacency matrix. Inspired
by the work of Brouwer and Gu, in this paper, we investigate b(G) from spectral
perspectives, and provide tight sufficient conditions in terms of the spectral radius
of a graph G to guarantee b(G) 󰃍 r. The study of the existence of k-factors in
graphs is a classic problem in graph theory. Katerinis and Woodall state that every
graph with order n 󰃍 4k − 6 satisfying b(G) 󰃍 2 contains a k-factor where k 󰃍 2.
This leaves the following question: which 1-binding graphs have a k-factor? In this
paper, we also provide the spectral radius conditions of 1-binding graphs to contain
a perfect matching and a 2-factor, respectively.

Mathematics Subject Classifications: 05C50

1 Introduction

In 1973, Woodall[30] introduced the concept of binding number. For any v ∈ V (G),
let NG(v) (N(v) for short) denote the neighborhood of v in G, and for X ⊆ V (G),
let NG(X) =

󰁖
x∈X N(x). The binding number b(G) of G is the minimum value of

|NG(X)|/|X| taken over all non-empty subsets X of V (G) such that NG(X) ∕= V (G). The
binding number of a graph has many important applications in various fields, including
graph theory, network science, quantum sensing and information processing.
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One issue concerning binding numbers involves characterizing its boundary by using
other structural parameters of the graph, such as, degree sequence[3], minimum degree[4]
and connectivity[30]. Similar to vertex-connectivity and edge-connectivity, toughness and
binding number are measures of the vulnerability of a graph. A graph G is t-tough if
|S| 󰃍 tc(G− S) for every subset S ⊆ V (G) with c(G− S) > 1, where c(G) is the number
of components of a graph G. The toughness τ(G) of G is the maximum t for which G
is t-tough. In 1973, Woodall[30] initially established the relationship between τ(G) and
b(G), and proved that τ(G) 󰃍 b(G)− 1. Later on, Goddard and Swart[16] observed that
b(G) 󰃍 τ(G) when b(G) 󰃑 1. In 2014, Bauer, Kahl, Schmeichel, Woodall and Yatauro[5]
discovered a slightly better bound τ(G) 󰃍 min{3(b(G)− 1)/2, b(G)} when b(G) > 1.

The study of toughness via eigenvalues was initiated by Alon [1] who showed that for
any connected d-regular graph G, τ(G) > 1

3
( d2

dλ+λ2 −1), where λ is the second largest abso-
lute eigenvalue of the adjacency matrix. Around the same time, Brouwer [8] independently
discovered a slightly better bound τ(G) > d

λ
− 2, and he [8, 9] further conjectured that

the lower bound can be improved to τ(G) 󰃍 d
λ
− 1. Subsequently, Gu [17] strengthened

the result of Brouwer and showed the lower bound can be improved to τ(G) > d
λ
−

√
2.

Later on, he [18] completely confirmed the conjecture of Brouwer.
Let G be a graph with adjacency matrix A(G). The largest eigenvalue of A(G),

denoted by ρ(G), is called the spectral radius of G. For two graphs G1 and G2, let G1∨G2

be the graph obtained from the disjoint union G1 ∪ G2 by adding all edges between G1

and G2. Very recently, Fan, Lin and Lu[15] provided a spectral radius condition for a
graph to be t-tough, i.e. if G is a connected graph with n 󰃍 4t2+6t+2 vertices satisfying
ρ(G) 󰃍 ρ(K2t−1 ∨ (Kn−2t ∪ K1)), then G is t-tough, unless G ∼= K2t−1 ∨ (Kn−2t ∪ K1).
Therefore, it is interesting to consider the spectral condition for a graph to be r-binding
where r is a positive integer. In this paper, we study an extremal result for b(G) 󰃍 r, as
the following theorem.

Theorem 1. Let r be a positive integer, and let G be a connected graph of order n. Then
the following statements hold.

(i) If n 󰃍 14 and ρ(G) 󰃍 ρ(K1 ∨ (Kn−3 ∪ 2K1)), then G is 1-binding, unless G ∼=
K1 ∨ (Kn−3 ∪ 2K1).

(ii) If n 󰃍 max{ r3+5r2+r
2

, 5r2 + 3}, r 󰃍 2 and ρ(G) 󰃍 ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪ K1)),

then G is r-binding, unless G ∼= Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1).

Another important issue related to binding numbers is providing conditions for the
existence of factors in a graph. An [a, b]-factor of a graph G is a spanning subgraph H
such that a 󰃑 dH(v) 󰃑 b for each v ∈ V (G). Particularly, a [k, k]-factor is called a k-
factor. In 1971, Anderson[2] established an important threshold for the existence of perfect
matchings in graphs by using binding number, and demonstrated that a graph G satisfying
b(G) 󰃍 4/3 contains a perfect matching. Another seminal result due to Woodall[30] is
that graphs with b(G) 󰃍 3/2 have a Hamiltonian cycle, and hence have a 2-factor. Later,
Bauer and Schmeichel[4] further showed that a 2-connected graph on n vertices satisfying

the electronic journal of combinatorics 31(1) (2024), #P1.30 2



b(G) 󰃍 3/2 and δ(G) > (2−b(G))n
3−b(G)

is pancyclic. Soon afterwards, Katerinis and Woodall[22]
extended them to a general factor, and discovered that a graph G on n 󰃍 4k − 6 vertices
satisfying b(G) > (2k−1)(n−1)

k(n−2)+3
contains a k-factor. Subsequently, Kano and Tokushige[23]

proved that a connected graph G on n vertices satisfying b(G) 󰃍 (a+b−1)(n−1)
an−(a+b)−3

and n 󰃍 bn−2
a+b

has an f -factor, where 1 󰃑 a 󰃑 b are integers and f : V (G) → {a, a+1, . . . , b} is a function
such that

󰁓
f(x) ≡ 0(mod 2) for x ∈ V (G).

There is a rich history of studying the existence of factors in graphs from the per-
spective of eigenvalues. The pioneering work of Brouwer and Haemers[7] established the
relation between eigenvalues and matching number. They presented several sufficient con-
ditions, in terms of the eigenvalues of the adjacency and Laplacian matrices, for a graph
to contain a perfect matching, which were subsequently improved in[11, 12, 13]. Gu and
Haemers[19] proved a Laplacian eigenvalue condition for a graph to contain an [a, b]-factor
(and a k-factor, accordingly), by using their result on toughness and Laplacian eigenvalues.
More recently, O [26] proved that if n 󰃍 8 or n = 4, and ρ(G) > ρ(K1 ∨ (Kn−3 ∪ 2K1)),
or if n = 6 and ρ(G) > ρ(K2 ∨ 4K1), then G has a perfect matching. Lately, Cho,
Hyun, O and Park[10] posed a conjecture that a graph G of order n 󰃍 a + 1 satisfy-
ing ρ(G) > ρ(Ka−1 ∨ (K1 ∪Kn−a)) contains an [a, b]-factor. Subsequently, Fan, Lin and
Lu[14] proved this conjecture holds for n 󰃍 3a+ b− 1. Very recently, Wei and Zhang[29]
confirmed this conjecture completely. Recall that the result in [22] showed that a graph
G with n 󰃍 4k − 6 vertices satisfying b(G) 󰃍 2 contains a k-factor. Denote by δ(G) the
minimum degree of G. Note that δ(G) 󰃍 k is a trivial necessary condition for a graph to
contain a k-factor. Then we consider the following problem.

Problem 2. Which 1-binding graphs with δ(G) 󰃍 k have a k-factor?

Concerning the Problem 2, in this paper, we provide preliminary work from the per-
spective of spectral radius, and determine spectral conditions to guarantee the existence
of a perfect matching and a 2-factor in 1-binding graphs, respectively. That is, we solved
Problem 2 for k = 1, 2. When k 󰃍 3, Problem 2 seems more complicated and this is left
for possible future work.

Theorem 3. Let G be a connected 1-binding graph of even order n 󰃍 12. If ρ(G) 󰃍 ρ(K1∨
(Kn−5∪K3∪K1)), then G contains a perfect matching, unless G ∼= K1∨(Kn−5∪K3∪K1).

Let Hn be the graph obtained from K2 ∨ (Kn−5 ∪ 3K1) by adding an edge between
Kn−5 and 3K1.

Theorem 4. Suppose that G is a connected 1-binding graph of order n 󰃍 21 with mini-
mum degree δ(G) 󰃍 2. If ρ(G) 󰃍 ρ(Hn), then G contains a 2-factor, unless G ∼= Hn.

2 Proof of Theorem 1

For X, Y ⊆ V (G), we denote by eG(X, Y ) the number of edges with one endpoint in
X and one endpoint in Y . For any vertex v ∈ V (G) and any subset S ⊆ V (G), let
dS(v) = |NG(v)∩S|. Recall that NG(X) =

󰁖
x∈X NG(x) for X ⊆ V (G). We first consider

an edge condition to guarantee a connected graph to be r-binding.
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Theorem 5. Let r be a positive integer, and let G be a connected graph of order n. Then
the following statements hold.

(i) If n 󰃍 14 and e(G) 󰃍
󰀃
n−2
2

󰀄
+2, then G is 1-binding, unless G ∼= K1∨ (Kn−3∪2K1).

(ii) If n 󰃍 3r + 5, r 󰃍 2 and e(G) 󰃍 n2−n
2

− ⌈n−r
r
⌉, then G is r-binding, unless G ∼=

Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1).

Proof. Suppose to the contrary that G is not r-binding where r is a positive integer,
there exists some nonempty subset S of V (G) with the maximum cardinality such that
|NG(S)|

|S| < r and NG(S) ∕= V (G). Take S1 = S\(S ∩ NG(S)) and S2 = S ∩ NG(S). It

is clear that S1 is an independent set and eG(S1, S2) = 0. Let N1 = NG(S)\S2 and
N2 = V (G)\(S ∪NG(S)). Then V (G) = S ∪N1∪N2, NG(S1) ⊆ N1 and NG(S)∩N2 = ∅.
Denote by |Ni| = ni and |Si| = si for i = 1, 2. Hence, |NG(S)| = s2+n1 and |S| = s1+s2.

Combining this with |NG(S)|
|S| < r, we have

n1 󰃑 rs1 + (r − 1)s2 − 1. (1)

We first assert that N2 = ∅. Otherwise, n2 󰃍 1. In the case of S1 = ∅, we obtain that
S = S2 ∕= ∅. For r = 1, by s1 = 0 and (1), we get n1 󰃑 −1, a contradiction. Thus,
we assume that r 󰃍 2. Putting (1) and s1 = 0 into n = s1 + s2 + n1 + n2, we have
s2 󰃍 ⌈n−n2+1

r
⌉ 󰃍 1. This implies that n > n2. Since NG(S2) ∩ N2 = ∅, it follows that

eG(S2, N2) = 0. Therefore,

e(G) 󰃑 n2 − n

2
− s2n2

=
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀓
s2n2 −

󰁯n− r

r

󰁰󰀔

<
n2−n

2
−
󰁯n−r

r

󰁰
−

󰀓(n−n2+1)n2

r
− n

r

󰀔
(since s2 󰃍 n−n2+1

r
and ⌈n−r

r
⌉ < n

r
)

=
n2 − n

2
−

󰁯n− r

r

󰁰
− (n2 − 1)(n− n2)

r

󰃑 n2 − n

2
−

󰁯n− r

r

󰁰
(since n2 󰃍 1 and n > n2),

a contradiction. In the case of S1 ∕= ∅, let S ′ = S ∪ N2. Observe that NG(S
′) ⊆

(NG(S) ∪ N2) = V (G)\S1. Thus, |S ′| = s1 + s2 + n2 and |NG(S
′)| 󰃑 s2 + n1 + n2, and

hence
|NG(S

′)|
|S ′| 󰃑 s2 + n1 + n2

s1 + s2 + n2

󰃑 r(s1 + s2) + n2 − 1

s1 + s2 + n2

< r

due to (1) and r 󰃍 1, which contradicts the maximality of S. This implies that N2 = ∅
and V (G) = S1 ∪ S2 ∪ N1. We next assert that S1 ∕= ∅. Otherwise, NG(S2) = NG(S) =
S2 ∪N1 = V (G), contrary to the assumption that NG(S) ∕= V (G). Hence, s1 󰃍 1. Next,
we will divide the proof into the following two cases basing on the value of r.
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Case 1. r = 1.
By (1), we have

n1 󰃑 s1 − 1. (2)

Recall that NG(S1) ⊆ N1 and S1 ∕= ∅. As G is a connected graph, we have n1 󰃍 1, and
hence s1 󰃍 2 by (2). For s1 = 2, we get n1 = 1. One can verify that G is a spanning
subgraph of K1 ∨ (Kn−3 ∪ 2K1). Therefore,

e(G) 󰃑 e(K1 ∨ (Kn−3 ∪ 2K1)) =

󰀕
n− 2

2

󰀖
+ 2,

with equality if and only if G ∼= K1 ∨ (Kn−3 ∪ 2K1), a contradiction. Thus, we consider
s1 󰃍 3 in the following. If S2 = ∅, then n = s1 + n1. Putting (2) into n = n1 + s1, we
have s1 󰃍 (n + 1)/2. Since NG(S1) ⊆ N1 and S1 is an independent set, G is a spanning
subgraph of Kn−s1∨s1K1. Combining this with n 󰃍 14 and s1 󰃍 (n+1)/2, we can deduce
that

e(G) 󰃑 e(Kn−s1 ∨ s1K1)

=
n2 − n− s21 + s1

2

=

󰀕
n− 2

2

󰀖
+ 2−

󰀓s21 − s1
2

− 2n+ 5
󰀔

󰃑
󰀕
n− 2

2

󰀖
+ 2− (n− 3)(n− 13)

8
(since s1 󰃍 n+1

2
)

<

󰀕
n− 2

2

󰀖
+ 2 (since n 󰃍 14),

a contradiction. If S2 ∕= ∅, since S2 = S ∩ NG(S), it follows that dS2(v) 󰃍 1 for each
v ∈ S2. This implies that s2 󰃍 2. Observe that G is a spanning subgraph of Kn1 ∨
(Kn−s1−n1 ∪ s1K1). Combining this with s1 󰃍 3, s2 󰃍 2 and (2), we get

e(G) 󰃑 e(Kn1 ∨ (Kn−s1−n1 ∪ s1K1))

= s1n1 +

󰀕
n− s1

2

󰀖

=
n2 − (2s1 + 1)n+ s21 + s1 + 2s1n1

2

=

󰀕
n− 2

2

󰀖
+ 2− 2(s1 − 2)n− s21 − (2n1 + 1)s1 + 10

2

=

󰀕
n− 2

2

󰀖
+ 2− s21 + 2s1s2 − 4n1 − 5s1 − 4s2 + 10

2
(since n = n1 + s1 + s2)

󰃑
󰀕
n− 2

2

󰀖
+ 2− (s1 − 2)(s1 + 2s2 − 7)

2
(since n1 󰃑 s1 − 1)

󰃑
󰀕
n− 2

2

󰀖
+ 2 (since s1 󰃍 3 and s2 󰃍 2),
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where all above equalities hold if and only if s1 = 3, s2 = 2, n1 = 2 and n = s1+s2+n1 = 7.
This is impossible because n 󰃍 14. It follows that e(G) <

󰀃
n−2
2

󰀄
+ 2, which also deduces

a contradiction.

Case 2. r 󰃍 2.
We first consider S2 = ∅. Then n1 󰃑 rs1−1 by (1). Combining this with n = n1+ s1,

we obtain that s1 󰃍 ⌈n+1
r+1

⌉. Notice that G is a spanning subgraph of Kn−s1 ∨ s1K1. Thus,

e(G) 󰃑 e(Kn−s1 ∨ s1K1)

= s1(n− s1) +

󰀕
n− s1

2

󰀖

=
n2 − n− s21 + s1

2

=
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀓s21 − s1
2

−
󰁯n− r

r

󰁰󰀔

<
n2 − n

2
−
󰁯n− r

r

󰁰
−

󰀣󰀃
n+1
r+1

󰀄2 − n+1
r+1

2
−n

r

󰀤
(since s1 󰃍 n+1

r+1
and

󰀉
n−r
r

󰀊
< n

r
)

=
n2 − n

2
−

󰁯n− r

r

󰁰
− rn2 − (3r2 + 3r + 2)n− r2

2r(r + 1)2

󰃑 n2 − n

2
−

󰁯n− r

r

󰁰
− 5r2 + 4r − 10

2r(r + 1)2
(since n 󰃍 3r + 5 and r 󰃍 2)

<
n2 − n

2
−

󰁯n− r

r

󰁰
(since r 󰃍 2),

a contradiction. Thus, we consider S2 ∕= ∅ in the following. By using the same analysis
as Case 1, we also deduce that s2 󰃍 2. Moreover, putting (1) into n = s1 + s2 + n1, we
have

s2 󰃍
󰁯n− (r + 1)s1 + 1

r

󰁰
.

Therefore,

s2 󰃍 max
󰁱
2,
󰁯n− (r + 1)s1 + 1

r

󰁰󰁲
. (3)

If ⌈n−(r+1)s1+1
r

⌉ < 2, then n 󰃑 (r + 1)s1 + r − 1, and hence s1 󰃍 ⌈n−r+1
r+1

⌉. According
to (3), we get s2 󰃍 2, and hence n1 = n− s1 − s2 󰃑 n− s1 − 2. One can verify that G is
a spanning subgraph of Kn−s1−2 ∨ (K2 ∪ s1K1). Combining this with s1 󰃍 ⌈n−r+1

r+1
⌉, r 󰃍 2

and n 󰃍 3r + 5, we get

e(G) 󰃑 e(Kn−s1−2 ∨ (K2 ∪ s1K1))

= s1(n− s1 − 2) +

󰀕
n− s1

2

󰀖

=
n2 − n− s21 − 3s1

2

=
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀓s21 + 3s1
2

−
󰁯n− r

r

󰁰󰀔
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<
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀣󰀃
n−r+1
r+1

󰀄2
+ 3(n−r+1)

r+1

2
− n

r

󰀤

(since s1 󰃍
󰀉
n−r+1
r+1

󰀊
󰃍 n−r+1

r+1
and

󰀉
n−r
r

󰀊
< n

r
)

=
n2 − n

2
−

󰁯n− r

r

󰁰
− (nr + r2 + r − 2)(n− 2r)

2r(r + 1)2

<
n2 − n

2
−

󰁯n− r

r

󰁰
(since r 󰃍 2 and n 󰃍 3r + 5),

a contradiction.
If ⌈n−(r+1)s1+1

r
⌉ 󰃍 2, then n 󰃍 (r + 1)s1 + r, and hence 1 󰃑 s1 󰃑 ⌊n−r

r+1
⌋ and s2 󰃍

⌈n−(r+1)s1+1
r

⌉ due to (3). We can find that G is a spanning subgraph ofK
n−s1−⌈n−(r+1)s1+1

r
⌉∨

(K⌈n−(r+1)s1+1
r

⌉ ∪ s1K1). For s1 = 1, we get

e(G) 󰃑 e(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)) =
n2 − n

2
−

󰁯n− r

r

󰁰
,

with equality if and only if G ∼= Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪ K1), a contradiction. For 2 󰃑
s1 󰃑 ⌊n−r

r+1
⌋, we have

e(G) 󰃑 e(K
n−s1−⌈n−(r+1)s1+1

r
⌉ ∨ (K⌈n−(r+1)s1+1

r
⌉ ∪ s1K1))

= s1

󰀕
n− s1 −

󰁯n− (r + 1)s1 + 1

r

󰁰󰀖
+

󰀕
n− s1

2

󰀖

=
n2 − n− s21 + s1

2
− s1 ·

󰁯n− (r + 1)s1 + 1

r

󰁰

=
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀕
s21 − s1

2
+ s1 ·

󰁯n− (r + 1)s1 + 1

r

󰁰
−

󰁯n− r

r

󰁰󰀖

<
n2 − n

2
−

󰁯n− r

r

󰁰
−

󰀕
s21 − s1

2
+

s1(n− (r + 1)s1 + 1)

r
− n

r

󰀖

=
n2 − n

2
−

󰁯n− r

r

󰁰
− (−r − 2)s21 + (−r + 2n+ 2)s1 − 2n

2r
,

where the penultimate inequality follows from the facts that ⌈n−(r+1)s1+1
r

⌉ 󰃍 n−(r+1)s1+1
r

and ⌈n−r
r
⌉ < n

r
. Let f(s1) = (−r− 2)s21 + (−r+ 2n+ 2)s1 − 2n. Then the symmetry axis

of parabola f(s1) is x = 2n−r+2
2r+4

> 2 due to n 󰃍 3r+5 and r 󰃍 2. By a simple calculation,

we have f(2) = 2n − 6r − 4 > 0. If ⌊n−r
r+1

⌋ > x, then f(s1) is decreasing with respect to

s1 󰃍 ⌊n−r
r+1

⌋, and hence

f
󰀓󰁭n− r

r + 1

󰁮󰀔
󰃍 f

󰀓n− r

r + 1

󰀔
=

r(n+ 1)(n− 3r − 2)

(r + 1)2
> 0

due to r 󰃍 2 and n 󰃍 3r + 5. Therefore, for 2 󰃑 s1 󰃑 ⌊n−r
r+1

⌋, we have

f(s1) 󰃍 min
󰁱
f
󰀓󰁭n− r

r + 1

󰁮󰀔
, f(2)

󰁲
> 0.
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This suggests that e(G) < n2−n
2

− ⌈n−r
r
⌉, a contradiction. Also, if x 󰃍 ⌊n−r

r+1
⌋, then f(s1)

is increasing with respect to 2 󰃑 s1 󰃑 ⌊n−r
r+1

⌋. Hence, f(s1) 󰃍 f(2) > 0, which also leads
to a contradiction.

This completes the proof.

Let M be a real n × n matrix, and let X = {1, 2, . . . , n}. Given a partition Π =
{X1, X2, . . . , Xk} with X = X1 ∪X2 ∪ · · · ∪Xk, the matrix M can be partitioned as

M =

󰀳

󰁅󰁅󰁅󰁃

M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k
...

...
. . .

...
Mk,1 Mk,2 · · · Mk,k

󰀴

󰁆󰁆󰁆󰁄
.

The quotient matrix of M with respect to Π is defined as the k×k matrix BΠ = (bi,j)
k
i,j=1

where bi,j is the average value of all row sums of Mi,j. The partition Π is called equitable
if each block Mi,j of M has constant row sum bi,j. Also, we say that the quotient matrix
BΠ is equitable if Π is an equitable partition of M .

Lemma 6 (See [6]). Let M be a real symmetric matrix, and let λ1(M) be the largest
eigenvalue of M . If BΠ is an equitable quotient matrix of M , then the eigenvalues of
BΠ are also eigenvalues of M . Furthermore, if M is nonnegative and irreducible, then
λ1(M) = λ1(BΠ).

Lemma 7 (See [20]). Let G be a graph with n vertices and m edges. Then

ρ(G) 󰃑
√
2m− n+ 1,

where the equality holds if and only if G is a star or a complete graph.

By Theorem 5, Lemmas 6 and 7, we give the proof of Theorem 1.

Proof of Theorem 1. Assume to the contrary that G is not r-binding where r is a
positive integer, there exists some nonempty subset S of V (G) with maximum cardinality

such that |NG(S)|
|S| < r and NG(S) ∕= V (G). Take S1 = S\(S∩NG(S)) and S2 = S∩NG(S).

It is clear that S1 is an independent set and eG(S1, S2) = 0. Let N1 = NG(S)\S2 and
N2 = V (G)\(S ∪NG(S)). Then V (G) = S ∪N1∪N2, NG(S1) ⊆ N1 and NG(S)∩N2 = ∅.
Denote by |Ni| = ni and |Si| = si for i = 1, 2. Therefore, |NG(S)| = s2 + n1 and

|S| = s1 + s2. Combining this with |NG(S)|
|S| < r, we have

n1 󰃑 rs1 + (r − 1)s2 − 1. (4)

We first assert that N2 = ∅. Otherwise, n2 󰃍 1. In the case of S1 = ∅, we obtain that
S = S2 ∕= ∅ and V (G) = S2 ∪ N1 ∪ N2. If r = 1, by s1 = 0 and (4), we get n1 󰃑 −1,
a contradiction. Thus, we assume that r 󰃍 2. For 1 󰃑 n2 󰃑 r + 1, let w ∈ N2 and
S∗ = S2 ∪ {w}. Since w /∈ NG(S2), it follows that NG(S

∗) ⊆ V (G)\{w}, and hence
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|NG(S
∗)| 󰃑 n− 1. Combining this with s1 = 0, n2 󰃑 r + 1, n = s2 + n1 + n2 and (4), we

deduce that

|NG(S
∗)|

|S∗| 󰃑 n− 1

s2 + 1
=

s2 + n1 + n2 − 1

s2 + 1
󰃑 n2 + rs2 − 2

s2 + 1
󰃑 r(s2 + 1)− 1

s2 + 1
< r,

which contradicts the maximality of S. Thus, we consider n2 󰃍 r + 2 in the following.
If s2 < n2/2, let v ∈ S2 and S ′ = N2 ∪ {v}. As NG(v) ∩ N2 = ∅, we deduce that
NG(S

′) ⊆ V (G)\{v}. Notice that |S ′| = n2 + 1 and |NG(S
′)| 󰃑 n − 1. Combining this

with s1 = 0, s2 < n2/2, n2 󰃍 r + 2, r 󰃍 2 and (4), we have

|NG(S
′)|

|S ′| 󰃑 n− 1

n2 + 1
=

s2+n1+n2−1

n2 + 1
󰃑 n2+rs2−2

n2 + 1
<

r(n2+1)− (r−2)n2

2
−r−2

n2 + 1
< r,

which also contradicts the maximality of S. Since NG(S2) ∩ N2 = ∅, it follows that

eG(S2, N2) = 0, and hence e(G) 󰃑 n(n−1)
2

− n2s2. If s2 󰃍 n2/2, by s1 = 0, (4) and Lemma
7, we get

ρ(G) 󰃑
󰁳

2e(G)− n+ 1

󰃑
󰁳

n2 − 2n+ 1− 2s2n2 (since e(G) 󰃑 n(n−1)
2

− n2s2)

=
󰁳

(n− 2)2 − (2s2n2 − 2n+ 3)

=
󰁳

(n− 2)2 − (2s2n2 − 2(n1 + n2 + s2) + 3) (since n = s2 + n1 + n2)

󰃑
󰁳

(n− 2)2 − (2s2n2 − 2rs2 − 2n2 + 5) (since n1 󰃑 (r − 1)s2 − 1)

󰃑
󰁳

(n− 2)2 − (2s2(n2 − r − 2) + 5) (since n2 󰃑 2s2)

< n− 2 (since n2 󰃍 r + 2).

Notice that Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1) contains Kn−1 as a proper subgraph. Thus,

ρ(G) < n− 2 < ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

a contradiction. In the case of S1 ∕= ∅, by using the same analysis as Theorem 5, we also
deduce a contradiction. This implies that N2 = ∅ and V (G) = S1 ∪ S2 ∪ N1. We next
assert that S1 ∕= ∅. Otherwise, NG(S2) = NG(S) = S2 ∪ N1 = V (G), contrary to the
assumption that NG(S) ∕= V (G). Hence, s1 󰃍 1. Next, we will divide the proof into the
following two cases basing on the value of r.

Case 1. r = 1.
Since Kn−2 is a proper subgraph of K1 ∨ (Kn−3 ∪ 2K1), it follows that ρ(G) 󰃍 ρ(K1 ∨

(Kn−3 ∪ 2K1)) > n − 3. Combining this with Lemma 7, we have e(G) 󰃍
󰀃
n−2
2

󰀄
+ 2. By

Theorem 5, we can deduce that G ∼= K1 ∨ (Kn−3 ∪ 2K1) for n 󰃍 14, a contradiction.

Case 2. r 󰃍 2.
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We first consider S2 = ∅. Thus, n1 󰃑 rs1−1 by (4). Combining this with n = s1+n1,
we have s1 󰃍 ⌈n+1

r+1
⌉. Let p = ⌈n+1

r+1
⌉. Then G is a spanning subgraph of Kn−p ∨ pK1, and

hence
ρ(G) 󰃑 ρ(Kn−p ∨ pK1), (5)

with equality if and only if G ∼= Kn−p ∨ pK1. Note that A(Kn−p ∨ pK1) has the equitable
quotient matrix

BΠ1 =

󰀗
0 n− p
p n− p− 1

󰀘
.

By a simple calculation, the characteristic polynomial of BΠ1 is

f(x) = x2 + (−n+ p+ 1)x− p(n− p).

Let t = ⌈n−r
r
⌉. Notice that A(Kn−t−1 ∨ (Kt ∪K1)) has the equitable quotient matrix

CΠ2 =

󰀵

󰀷
0 n− t− 1 0
1 n− t− 2 t
0 n− t− 1 t− 1

󰀶

󰀸 .

By a simple calculation, the characteristic polynomial of CΠ2 is

g(x) = x3 − (n− 3)x2 − (2n− t− 3)x+ tn− t2 − n+ 1. (6)

Since n 󰃍 5r2 + 3 and r 󰃍 2, it follows that p = ⌈n+1
r+1

⌉ > 5 and t = ⌈n−r
r
⌉ > 4. Let

τ(x) = xf(x)− g(x) = (p− 2)x2 + (−pn+ p2 + 2n− t− 3)x− tn+ t2 + n− 1.

Then the symmetry axis of parabola τ(x) is

(p− 2)n− p2 + t+ 3

2(p− 2)
=

n

2
+

−p2 + t+ 3

2(p− 2)
<

n

2
+

t

2(p− 2)
<

n

2
+

n

2(p− 2)r
< n− 2

due to p > 5, r 󰃍 2, t < n/r and n 󰃍 5r2 + 3. This implies that τ(x) is increasing with
respect to x 󰃍 n− 2. For x 󰃍 n− 2,

τ(x) 󰃍 τ(n− 2)

= (p2 − 2p− 2t+ 2)n− 2p2 + t2 + 4p+ 2t− 3

= (p2 − 2p− 2t+ 2)(n− 2) + (t− 1)2

> (p2 − 2p− 2t+ 2)(n− 2) (since t > 4)

>
󰀓󰀓n+ 1

r + 1

󰀔2

− 2n+ 2

r + 1
− 2n

r
+ 2

󰀔
(n− 2) (since p 󰃍 n+1

r+1
and t < n

r
)

=
(rn2 − (4r2 + 4r + 2)n+ 2r3 + 2r2 + r)(n− 2)

r(r + 1)2

󰃍 (25r5 − 20r4 + 12r3 − 20r2 − 2r − 6)(n− 2)

r(r + 1)2
(since n 󰃍 5r2 + 3)

> 0 (since r 󰃍 2 and n 󰃍 5r2 + 3),

the electronic journal of combinatorics 31(1) (2024), #P1.30 10



which leads to xf(x) > g(x) for x 󰃍 n− 2. Since Kn−1 is a proper subgraph of Kn−t−1 ∨
(Kt ∪K1), we have

ρ(Kn−t−1 ∨ (Kt ∪K1)) > n− 2. (7)

It follows that λ1(BΠ1) < λ1(CΠ2). According to Lemma 6, we get

ρ
󰀓
Kn−⌈n+1

r+1
⌉ ∨

󰁯n+ 1

r + 1

󰁰
K1

󰀔
< ρ(Kn−⌈n−r

r
⌉−1 ∨ (K⌈n−r

r
⌉ ∪K1)).

Combining this with (5), we obtain that

ρ(G) < ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

a contradiction. Thus, we consider S2 ∕= ∅. By using a similar analysis as the Case 2 of
Theorem 5, we can deduce that

s2 󰃍 max
󰁱
2,
󰁯n− (r + 1)s1 + 1

r

󰁰󰁲
. (8)

We have the following two subcases.

Subcase 2.1. 1 󰃑 s1 󰃑 r.
Since 1 󰃑 s1 󰃑 r, it follows that ⌈n−(r+1)s1+1

r
⌉ > 2 due to n 󰃍 5r2 +3. Thus, from (8),

we have s2 󰃍 ⌈n−(r+1)s1+1
r

⌉. Assume that a = s1 and b = ⌈n−(r+1)s1+1
r

⌉. One can verify
that G is a spanning subgraph of Kn−a−b ∨ (Kb ∪ aK1), and hence

ρ(G) 󰃑 ρ(Kn−a−b ∨ (Kb ∪ aK1)), (9)

with equality if and only if G ∼= Kn−a−b∨ (Kb∪aK1). If a = 1, then b = ⌈n−r
r
⌉, and hence

ρ(G) 󰃑 ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

with equality if and only if G ∼= Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1), a contradiction. Thus, we

consider 2 󰃑 a 󰃑 r. Note that A(Kn−a−b ∨ (Kb ∪ aK1)) has the equitable quotient matrix

DΠ3 =

󰀵

󰀷
0 n− a− b 0
a n− a− b− 1 b
0 n− a− b b− 1

󰀶

󰀸 .

By a simple calculation, the characteristic polynomial of DΠ3 is

h(x) = x3 − (n− a− 2)x2 − ((a+ 1)n− a2 − ab− a− 1)x− a(b− 1)(a+ b− n).

Combining this with (6), we have

h(x)−g(x)=(a−1)x2+((1−a)n+a2+ab+a−t−2)x−a(b−1)(a+b−n)−tn+t2+n−1.

Define

ω(x)=(a−1)x2+((1−a)n+a2+ab+a−t−2)x−a(b−1)(a+b−n)−tn+t2+n−1.
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The symmetry axis of parabola ω(x) is

(a− 1)n− a2 − ab− a+ t+ 2

2(a− 1)
<

n

2
+

t

2(a− 1)
<

n

2
+

n

2(a− 1)r
󰃑 3n

4
< n− 2

due to a 󰃍 2, b > 2, t < n/r, r 󰃍 2 and n 󰃍 5r2 + 3. This implies that ω(x) is increasing
with respect to x 󰃍 n− 2. Hence,

ω(x) 󰃍 ω(n− 2)

= (a2 + 2ab− 2a− 2t+ 1)n− ab(a+ b+ 1)− (a− 1)2 + (t+ 1)2 − 1

>
󰀓
s21+

2s1(n− (r+1)s1 + 1)

r
−2s1−

2n

r
+ 1

󰀔
n− s1 ·

󰀓n−(r+1)s1+1

r
+ 1

󰀔
·

󰀓
s1+

󰀓n−(r+1)s1+1

r
+1

󰀔
+1

󰀔
−(s1−1)2+

󰀓n−r

r
+1

󰀔2

− 1

=
1

r2
((2r−1)(s1−1)n2+((2−r2−r)s21−(2r2+r+2)s1+r2)n+(−r−1)s31+(r2+

4r + 2)s21 + (−3r − 1)s1 − 2r2),

where the penultimate inequality follows from the facts that (n − r)/r 󰃑 t < n/r and
(n−(r+1)s1+1)/r 󰃑 b < (n−(r+1)s1+1)/r + 1. Let

ϕ(n) =(2r−1)(s1−1)n2+((2−r2−r)s21−(2r2+r+2)s1 + r2)n+ (−r − 1)s31 + (r2+

4r + 2)s21 + (−3r − 1)s1 − 2r2.

We take the derivative of ϕ(n). Then

ϕ′(n) = 2(2r − 1)(s1 − 1)n+ (2− r2 − r)s21 − (2r2 + r + 2)s1 + r2

󰃍 (2s1−2)r4+(9s1−9)r3+(4−s21−5s1)r
2+(1−s21−2s1)r+2s21−2s1

(since n 󰃍 r3+5r2+r
2

, s1 󰃍 2 and r 󰃍 2)

󰃍 (2s1−2)r4+(9s1−9)r3+(4−r2−5r)r2+(1−r2−2r)r+2s21−2s1 (since s1 󰃑 r)

= (2s1−3)r4+(9s1−15)r3+2r2+r+2s21−2s1

> 0 (since s1 󰃍 2 and r 󰃍 2).

This implies that ϕ(n) is increasing with respect to n 󰃍 r3+5r2+r
2

. Therefore,

ϕ(n) 󰃍 ϕ
󰀓r3 + 5r2 + r

2

󰀔

= −(r+1)s31+
󰀓
2− r5

2
−3r4−2r3+

11r2

2
+5r

󰀔
s21+

󰀓
− 1+

r7

2
+
19r6

4
+10r5

− 29r4

4
− 13r3

2
− 23r2

4
−4r

󰀔
s1−

2r7+19r6+42r5−17r4−10r3+ 7r2

4
= ψ(s1).
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Also, we take derivative of ψ(s1). Then

ψ′(s1) =− 3(r+1)s21+2
󰀓
2− r5

2
−3r4−2r3+

11r2

2
+5r

󰀔
s1−1+

r7

2
+

19r6

4
+10r5−

29r4

4
− 13r3

2
− 23r2

4
−4r,

and the symmetry axis of parabola ψ′(s1) is
2− r5

2
−3r4−2r3+ 11r2

2
+5r

3(r+1)
< 0 due to r 󰃍 2. Since

ψ′(r) =
2r7 + 15r6 + 16r5 − 45r4 + 6r3 + 5r2 − 4

4
> 0

due to r 󰃍 2, it follows that ψ(s1) is increasing with respect to 2 󰃑 s1 󰃑 r. Therefore,

ψ(s1) 󰃍 ψ(2) =
2r7 + 19r6 + 30r5 − 89r4 − 74r3 + 35r2 + 16r − 8

4
> 0

due to r 󰃍 2, which leads to ϕ(n) > 0, and hence ω(x) > 0 for x 󰃍 n − 2. This implies
that h(x) > g(x) for x 󰃍 n − 2. According to (7), we obtain that λ1(DΠ3) < λ1(CΠ2).
Furthermore, by Lemma 6, we can deduce that

ρ(K
n−s1−⌈n−(r+1)s1+1

r
⌉ ∨ (K⌈n−(r+1)s1+1

r
⌉ ∪ s1K1)) < ρ(Kn−⌈n−r

r
⌉−1 ∨ (K⌈n−r

r
⌉ ∪K1))

for 2 󰃑 s1 󰃑 r. Combining this with (9), we have

ρ(G) < ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

a contradiction.

Subcase 2.2. s1 󰃍 r + 1.
If ⌈n−(r+1)s1+1

r
⌉ 󰃍 2, then n 󰃍 (r + 1)s1 + r, and hence r + 1 󰃑 s1 󰃑 ⌊n−r

r+1
⌋ and

s2 󰃍 ⌈n−(r+1)s1+1
r

⌉ due to (8). Therefore, G is a spanning subgraph of K
n−s1−⌈n−(r+1)s1+1

r
⌉∨

(K⌈n−(r+1)s1+1
r

⌉ ∪ s1K1). It follows that

e(G) 󰃑 e(K
n−s1−⌈n−(r+1)s1+1

r
⌉ ∨ (K⌈n−(r+1)s1+1

r
⌉ ∪ s1K1))

= s1

󰀓
n−

󰁯n− (r + 1)s1 + 1

r

󰁰
− s1

󰀔
+

󰀕
n− s1

2

󰀖

=
n2 − n− s21 + s1

2
− s1 ·

󰁯n− (r + 1)s1 + 1

r

󰁰

󰃑 rn2 − (r + 2s1)n+ (r + 2)s21 + (r − 2)s1
2r

,

where the last inequality follows from the fact that ⌈n−(r+1)s1+1
r

⌉ 󰃍 n−(r+1)s1+1
r

. Combining
this with Lemma 7, we have

ρ(G) 󰃑
󰁳

2e(G)− n+ 1 󰃑
󰁵

(r + 2)s21 + (r − 2n− 2)s1 + r(n− 1)2

r
.
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Let φ(s1) = (r + 2)s21 + (r − 2n− 2)s1 + r(n− 1)2. Then the symmetry axis of parabola

φ(s1) is y =
n+1− r

2

r+2
. If y < ⌊n−r

r+1
⌋, then φ(s1) is increasing with respect to s1 󰃍 ⌊n−r

r+1
⌋.

Notice that n 󰃍 5r2 + 3, ⌊n−r
r+1

⌋ 󰃑 n−r
r+1

and r 󰃍 2. Thus,

φ(r + 1)− φ
󰀓󰁭n− r

r + 1

󰁮󰀔

󰃍 (r+2)(r+1)2+(r−2n−2)(r+1)−(r+2)
󰀓n− r

r + 1

󰀔2

− (r − 2n−2)
󰀓n− r

r + 1

󰀔

=
r(n− r2 − 3r − 1)(n− r2 − 4r − 2)

(r + 1)2

> 0.

This implies that, for r + 1 󰃑 s1 󰃑 ⌊n−r
r+1

⌋, the maximum value of φ(s1) is attained at
s1 = r + 1, and hence

ρ(G) 󰃑
󰁵

φ(r + 1)

r
=

󰁵
(n− 2)2 − 2n− r3 − 5r2 − r

r
󰃑 n− 2

due to n 󰃍 r3+5r2+r
2

. Combining this with (7), we can deduce that

ρ(G) 󰃑 n− 2 < ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

a contradiction. If y 󰃍 ⌊n−r
r+1

⌋, then φ(s1) is decreasing with respect to r+1 󰃑 s1 󰃑 ⌊n−r
r+1

⌋.
By using a similar analysis as above, we also deduce a contradiction.

If ⌈n−(r+1)s1+1
r

⌉ < 2, then n 󰃑 (r + 1)s1 + r − 1, and hence s1 󰃍 ⌈n−r+1
r+1

⌉. By (8), we
get s2 󰃍 2. Thus, G is a spanning subgraph of Kn−s1−2 ∨ (K2 ∪ s1K1), and hence

e(G) 󰃑 s1(n− s1 − 2) +

󰀕
n− s1

2

󰀖
=

n2 − n− s21 − 3s1
2

.

Combining this with Lemma 7, we have

ρ(G) 󰃑
󰁳

2e(G)− n+ 1

󰃑
󰁴

n2 − 2n− s21 − 3s1 + 1

󰃑
󰁵

n2 − 2n−
󰀓n− r + 1

r + 1

󰀔2

− 3
󰀓n− r + 1

r + 1

󰀔
+ 1 (since s1 󰃍 n−r+1

r+1
)

=

󰁶

(n− 2)2 − n2 + (−2r2 − 3r + 3)n+ r2 + 4r + 7

(r + 1)2

󰃑
󰁶

(n− 2)2 − 15r4 − 15r3 + 40r2 − 5r + 25

(r + 1)2
(since n 󰃍 5r2 + 3)

< n− 2 (since r 󰃍 2).
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Again by (7), we get

ρ(G) < n− 2 < ρ(Kn−⌈n−r
r

⌉−1 ∨ (K⌈n−r
r

⌉ ∪K1)),

which also leads to a contradiction.
This completes the proof.

3 Proof of Theorem 3

Lemma 8 (See [27]). A graph G has a perfect matching if and only if for every subset
S ⊆ V (G),

o(G− S) 󰃑 |S|

where o(H) is the number of odd components in a graph H.

Lemma 9. Let n =
󰁓t

i=1 ni + s where s 󰃍 1. If n1 󰃍 n2 󰃍 · · · 󰃍 nt 󰃍 1, n2 󰃍 3 and
n1 < n− s− t− 1, then

ρ(Ks ∨ (Kn1 ∪Kn2 ∪ · · · ∪Knt)) < ρ(Ks ∨ (Kn−s−t−1 ∪K3 ∪ (t− 2)K1)).

Proof. Let G = Ks ∨ (Kn1 ∪ Kn2 ∪ · · · ∪ Knt), and let x denote the Perron vector of
A(G). By symmetry, we can suppose that x(v) = xi for all v ∈ V (Kni

), where 1 󰃑 i 󰃑 t,
and x(u) = y1 for all u ∈ V (Ks). Since G contains Kn1+s as a proper subgraph, it follows
that ρ(G) > ρ(Kn1+s) = n1 + s − 1 > n1 − 1. Note that n1 󰃍 ni for 2 󰃑 i 󰃑 t. Then by
A(G)x = ρ(G)x, we get

(ρ(G)− (ni − 1))(x1 − xi) = (n1 − ni)x1 󰃍 0,

where 2 󰃑 i 󰃑 t. This implies that x1 󰃍 xi for 2 󰃑 i 󰃑 t. Let G′ = Ks ∨ (Kn−s−t−1 ∪K3 ∪
(t− 2)K1). Then

ρ(G′)− ρ(G) 󰃍 xT (A(G′)− A(G))x

= 2(n2 − 3)x2

󰀓
n1x1 +

t󰁛

j=3

(nj−1)xj − 3x2

󰀔
+2

t󰁛

j=3

(nj − 1)xj(n1x1 − xj)

+ 2
t−1󰁛

i=3

t󰁛

j=i+1

(ni − 1)(nj − 1)xixj

> 0

due to 3 󰃑 n2 󰃑 n1 < n− s− t− 1, nj 󰃍 1 for 3 󰃑 j 󰃑 t and x1 󰃍 xi for 2 󰃑 i 󰃑 t. Thus,
the result follows.

Now, we shall give the proof of Theorem 3.
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Proof of Theorem 3. Suppose that G is a connected 1-binding graph of even order
n 󰃍 12 and contains no perfect matchings. By Lemma 8, there exists some subset S of
V (G) such that o(G − S) 󰃍 |S| + 2. Assume that |S| = s and o(G − S) = q. Thus,
q 󰃍 s + 2. We first assert that S ∕= ∅. Otherwise, S = ∅. Since G is a connected graph
of even order, it follows that 0 = o(G) = o(G−S) 󰃍 2, a contradiction. This implies that
s 󰃍 1. Let O1, O2, . . . , Oq be the odd components of G − S and |Oi| = ni for 1 󰃑 i 󰃑 q.
Without loss of generality, we assume that nq 󰃍 nq−1 󰃍 · · · 󰃍 n1. We next assert that
ns+1 󰃍 3. Otherwise, ni = 1 for 1 󰃑 i 󰃑 s + 1. Let S ′ = V (O1 ∪ O2 ∪ · · · ∪ Os+1). Then
NG(S

′) ⊆ S. Notice that |S ′| = s+ 1 and |NG(S
′)| 󰃑 |S| = s. Thus,

|NG(S
′)|

|S ′| 󰃑 s

s+ 1
< 1,

which is impossible because G is 1-binding. This implies that ni 󰃍 3 for i 󰃍 s + 1. One
can verify that G is a spanning subgraph of G1

s = Ks∨ (Kn1 ∪ · · ·∪Kns+1 ∪Kn−s−
󰁓s+1

i=1 ni
).

Hence
ρ(G) 󰃑 ρ(G1

s), (10)

where the equality holds if and only if G ∼= G1
s. Define G2

s = Ks ∨ (Kn−2s−3 ∪K3 ∪ sK1).
Note that n − s −

󰁓s+1
i=1 ni 󰃍

󰁓q
i=s+2 ni 󰃍 ns+1 󰃍 3, s 󰃍 1 and nj 󰃍 1 for 1 󰃑 j 󰃑 s.

Then by Lemma 9, we can deduce that

ρ(G1
s) 󰃑 ρ(G2

s), (11)

where the equality holds if and only if G1
s
∼= G2

s. If s = 1, then G2
s
∼= K1∨(Kn−5∪K3∪K1).

From (10) and (11), we have

ρ(G) 󰃑 ρ(K1 ∨ (Kn−5 ∪K3 ∪K1)),

where the equality holds if and only if G ∼= K1 ∨ (Kn−5 ∪ K3 ∪ K1). Next, we consider
s 󰃍 2 in the following. Observe that A(Ks ∨ (Kn−2s−3 ∪ K3 ∪ sK1)) has the equitable
quotient matrix

As
Π =

󰀵

󰀹󰀹󰀷

0 0 s 0
0 2 s 0
s 3 s− 1 n− 2s− 3
0 0 s n− 2s− 4

󰀶

󰀺󰀺󰀸 .

By a simple computation, the characteristic polynomial of As
Π is

ϕ(As
Π, x) =x4+(s−n+3)x3+(n−s2−4s−6)x2+(s+1)(ns−2s2+2n−6s−8)x−

2ns2+4s3+8s2.

Notice that A(K1 ∨ (Kn−5 ∪ K3 ∪ K1)) has the equitable quotient matrix A1
Π, which is

obtained by replacing s with 1 in As
Π. Thus,

ϕ(As
Π, x)−ϕ(A1

Π, x) =(s−1)(x3−(s+5)x2+((s+4)n−2s2−10s−24)x−2ns

+4s2−2n+12s+12).
(12)
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Let γ(x) = x3−(s+5)x2+((s+4)n−2s2−10s−24)x−2ns+4s2−2n+12s+12. We take the
derivative of γ(x). Note that n 󰃍 2s+ 6. For x 󰃍 n− 5, we obtain that

γ′(x) = 3x2 − 2(s+ 5)x+ (s+ 4)n− 2s2 − 10s− 24

󰃍 3n2 − (s+ 36)n− 2s2 + 101 (since x 󰃍 n− 5)

󰃍 8s2 − 6s− 7 (since n 󰃍 2s+ 6)

> 0 (since s 󰃍 2).

It follows that γ(x) is increasing with respect to x 󰃍 n− 5. Thus,

γ(x) 󰃍 γ(n− 5) = n3 − 16n2 + (−2s2 − 7s+ 79)n+ 14s2 + 37s− 118. (13)

Let p(n) = n3 − 16n2 + (−2s2 − 7s+79)n+14s2 +37s− 118. By using a similar analysis
as above, we also deduce that p(n) is increasing with respect to n 󰃍 2s + 6. For s 󰃍 3
and n 󰃍 2s+ 6, we have

p(n) 󰃍 p(2s+ 6) = 4s3 − 4s2 − 15s− 4 > 0.

For s = 2 and n 󰃍 12, we also obtain that p(n) 󰃍 p(12) = 120. Combining this with (12),
(13) and s 󰃍 2, we have

ϕ(As
Π, x) > ϕ(A1

Π, x)

for x 󰃍 n− 5. Since K1 ∨ (Kn−5 ∪K3 ∪K1) contains Kn−4 as a proper subgraph, we have
ρ(K1∨ (Kn−5∪K3∪K1)) > ρ(Kn−4) = n− 5, and hence λ1(A

s
Π, x) < λ1(A

1
Π, x) for s 󰃍 2.

Combining this with Lemma 6, (10) and (11), we obtain that

ρ(G) 󰃑 ρ(G1
s) 󰃑 ρ(Ks ∨ (Kn−2s−3 ∪K3 ∪ sK1)) < ρ(K1 ∨ (Kn−5 ∪K3 ∪K1))

where s 󰃍 2.
Concluding the above results, we have

ρ(G) 󰃑 ρ(K1 ∨ (Kn−5 ∪K3 ∪K1)),

where the equality holds if and only if G ∼= K1 ∨ (Kn−5 ∪ K3 ∪ K1). Note that K1 ∨
(Kn−5∪K3∪K1) is a 1-binding graph and contains no perfect matchings. Then the result
follows.

Remark 10. When n = 10, we can obtain that the extremal graph is not the same as this
in Theorem 3. Notice that n 󰃍 2s + 6. Thus, 1 󰃑 s 󰃑 (n − 6)/2. For n = 10, we get
1 󰃑 s 󰃑 2, and hence G2

s
∼= K1 ∨ (K5 ∪K3 ∪K1) or G

2
s
∼= K2 ∨ (2K3 ∪ 2K1). By a simple

computation, we get ρ(K1∨(K5∪K3∪K1)) = 5.22034 and ρ(K2∨(2K3∪2K1)) = 5.34085.
It follows that

ρ(K2 ∨ (2K3 ∪ 2K1)) > ρ(K1 ∨ (K5 ∪K3 ∪K1)).

Combining this with (10) and (11), we have

ρ(G) 󰃑 ρ(K2 ∨ (2K3 ∪ 2K1)),

where the equality holds if and only if G ∼= K2 ∨ (2K3 ∪ 2K1). It is easy to see that
K2 ∨ (2K3 ∪ 2K1) is a 1-binding graph and contains no perfect matchings. This suggests
that a graph G of order n = 10 satisfying ρ(G) 󰃍 ρ(K2 ∨ (2K3 ∪ 2K1)) either contains a
perfect matching or is isomorphic to K2 ∨ (2K3 ∪ 2K1).

the electronic journal of combinatorics 31(1) (2024), #P1.30 17



4 Proof of Theorem 4

Lemma 11 (See [28]). Let k be a positive integer, and let G be a graph. Then G contains
a k-factor if and only if

δG(S, T ) = k|S|+
󰁛

v∈T

dG(v)− k|T |− eG(S, T )− qG(S, T ) 󰃍 0

for all disjoint subsets S, T ⊆ V (G), where qG(S, T ) is the number of the components C
of G − (S ∪ T ) such that eG(V (C), T ) + k|V (C)| ≡ 1(mod 2). Moreover, δG(S, T ) ≡
k|V (G)|(mod 2).

Lemma 12 (See [21, 25]). Let G be a graph on n vertices and m edges with minimum
degree δ 󰃍 1. Then

ρ(G) 󰃑 δ − 1

2
+

󰁵
2m− nδ +

(δ + 1)2

4
,

with equality if and only if G is either a δ-regular graph or a bidegreed graph in which each
vertex is of degree either δ or n− 1.

Lemma 13 (See [25]). For nonnegative integers p and q with 2q 󰃑 p(p− 1) and 0 󰃑 x 󰃑
p − 1, the function f(x) = (x − 1)/2 +

󰁳
2q − px+ (1 + x)2/4 is decreasing with respect

to x.

Lemma 14 (See [24]). Let G be a connected graph, and let u, v be two vertices of G.
Suppose that v1, v2, . . . , vs ∈ NG(v)\NG(u) with s 󰃍 1, and G∗ is the graph obtained from
G by deleting the edges vvi and adding the edges uvi for 1 󰃑 i 󰃑 s. Let x be the Perron
vector of A(G). If x(u) 󰃍 x(v), then ρ(G) < ρ(G∗).

Denote by G − v and G − uv the graphs obtained from G by deleting the vertex
v ∈ V (G) and the edge uv ∈ E(G), respectively. Similarly, G+ uv is obtained from G by
adding the edge uv /∈ E(G). Recall that Hn is the graph obtained from K2∨(Kn−5∪3K1)
by adding an edge between Kn−5 and 3K1.

Lemma 15. Let G be a graph with n 󰃍 21 vertices obtained from K1 ∨ (K2 ∪K1 ∪Kn−4)
by adding an edge between the pendent vertex and Kn−4. Then ρ(G) < ρ(Hn).

Proof. Observe that Kn−3 is a proper subgraph of G. Then ρ(G) > n− 4. The labels of
the vertices in G are shown in Fig.1. Let x be the Perron vector of A(G). By symmetry,
we see that x(v1) = x(v2) and x(w1) = x(wi) where 3 󰃑 i 󰃑 n− 4. Then, from A(G)x =
ρ(G)x, we obtain 󰀫

ρ(G)x(v1) = x(v1) + x(u),

ρ(G)x(w1) = (n− 6)x(w1) + x(w2) + x(u),

which gives that

(ρ(G)− (n− 6))(x(w1)− x(v1)) = x(w2) + (n− 7)x(v1) > 0
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v1 v2 v3

u

w1 w2 wn−4
Kn−4

G

v1 v2 v3

w1 w2 wn−4

u

Kn−4

G′

Figure 1: Graphs G and G′

due to n 󰃍 21 and ρ(G) > n− 4. Hence x(w1) > x(v1). Let G
′ = G− v1v2 + v1w1 + v2w1.

Then ρ(G′) > ρ(G) by Lemma 14. Furthermore, G′ is a proper spanning subgraph of Hn.
Thus,

ρ(G) < ρ(G′) < ρ(Hn),

as required.

Lemma 16. Let a and b be two positive integers. If a 󰃍 b 󰃍 3, then

󰀕
a

2

󰀖
+

󰀕
b

2

󰀖
<

󰀕
a+ 1

2

󰀖
+

󰀕
b− 1

2

󰀖
.

Proof. Note that a 󰃍 b 󰃍 3. Then

󰀕
a+ 1

2

󰀖
+

󰀕
b− 1

2

󰀖
−

󰀕
a

2

󰀖
−

󰀕
b

2

󰀖
= a− b+ 1 > 0.

Thus the result follows.

For any S ⊆ V (G), let G[S] be the subgraph of G induced by S and e(S) be the
number of edges in G[S]. Now, we shall give the proof of Theorem 4.

Proof of Theorem 4. Suppose to the contrary that G contains no 2-factors. By Lemma
11, there exist two disjoint subsets S, T ⊆ V (G) satisfying |S ∪ T | as large as possible
such that

δG(S, T ) = 2|S|+
󰁛

t∈T

dG(t)− 2|T |− eG(S, T )− qG(S, T ) 󰃑 −2, (14)

where qG(S, T ) is the number of the components C of G−(S∪T ) such that eG(V (C), T ) ≡
1(mod 2). Assume that |S| = s, |T | = t and qG(S, T ) = q. Let C1, C2, . . . , Cq be the
components of G − (S ∪ T ) such that eG(V (Ci), T ) ≡ 1(mod 2) where 1 󰃑 i 󰃑 q. Now,
we divide the proof into the following five claims.

Claim 1. If q 󰃍 1, then |V (Ci)| 󰃍 2 for 1 󰃑 i 󰃑 q.
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Otherwise, there exists some Cj such that |V (Cj)| = 1 where 1 󰃑 j 󰃑 q. Let Cj = {v}.
Since eG(v, T ) ≡ 1(mod 2), it follows that eG(v, T ) 󰃍 2l − 1 where l is a positive integer.
If eG(v, T ) = 1, let T ′ = T ∪ {v}, we have

δG(S, T
′) = 2|S|+

󰁛

t∈T ′

dG(t)− 2|T ′|− eG(S, T
′)− qG(S, T

′)

= 2s+
󰀓󰁛

t∈T

dG(t) + dG(v)
󰀔
− 2(t+ 1)− (eG(S, T ) + dS(v))− (q − 1)

= 2s+
󰁛

t∈T

dG(t)− 2t− eG(S, T )− q + eG(v, T )− 1

= δG(S, T ) (since eG(v, T ) = 1)

󰃑 −2 (by (14)),

which contradicts the maximality of |S ∪ T |. If eG(v, T ) 󰃍 3, let S ′ = S ∪ {v}, we have

δG(S
′, T ) = 2|S ′|+

󰁛

t∈T

dG(t)− 2|T |− eG(S
′, T )− qG(S

′, T )

= 2(s+ 1) +
󰁛

t∈T

dG(t)− 2t− (eG(S, T ) + eG(v, T ))− (q − 1)

= 2s+
󰁛

t∈T

dG(t)− 2t− eG(S, T )− q − eG(v, T ) + 3

󰃑 δG(S, T ) (since eG(v, T ) 󰃍 3)

󰃑 −2 (by (14)),

which also leads to a contradiction.

Claim 2. t 󰃍 s+ 1.
Otherwise, s 󰃍 t. If q = 0, then δG(S, T ) = 2(s − t) +

󰁓
t∈T dG−S(t) 󰃍 0, which

contradicts (14). If q 󰃍 1, since eG(V (Ci), T ) 󰃍 1 for 1 󰃑 i 󰃑 q, we have

󰁛

t∈T

dG−S(t) 󰃍
q󰁛

i=1

eG(V (Ci), T ) 󰃍 q, (15)

and hence
δG(S, T ) = 2(s− t) +

󰁛

t∈T

dG−S(t)− q 󰃍 0,

which also contradicts (14). This implies that t 󰃍 s+ 1, as required.
By Lemmas 12, 13, and the fact δ(G) 󰃍 2, we obtain

ρ(G) 󰃑 1

2
+

󰁵
2e(G)− 2n+

9

4
. (16)

Note that ρ(G) 󰃍 ρ(Hn) > ρ(Kn−3) = n− 4. Combining this with (16), we have

e(G) 󰃍
󰀕
n− 3

2

󰀖
+ 4. (17)
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Without loss of generality, we assume that |V (Cq)| 󰃍 |V (Cq−1)| 󰃍 · · · 󰃍 |V (C1)| 󰃍 2.

Claim 3. q 󰃑 1.
Otherwise, q 󰃍 2. Claim 2 implies that t 󰃍 1. In the case of t = 1, by Claim 2, we

can deduce that s = 0. Let T = {z}. Then

q 󰃑
q󰁛

i=1

eG(z, V (Ci)) 󰃑 dG(z) 󰃑 q + 2t− 2s+ eG(S, z)− 2 = q

due to (14) and (15). It follows that dG(z) = q. Combining this with eG(z, V (Ci)) 󰃍 1,
we have eG(z, V (Ci)) = 1 where 1 󰃑 i 󰃑 q. We assert that |V (Ci)| 󰃍 3 for 1 󰃑 i 󰃑 q. If
not, there exists some Cj such that |V (Cj)| = 2 for 1 󰃑 j 󰃑 q. Since eG(z, V (Cj)) = 1
and S = ∅, there must exist some vertex in Cj with degree exactly one in G. This is
impossible because δ(G) 󰃍 2. Therefore, |V (Ci)| 󰃍 3 for 1 󰃑 i 󰃑 q, and hence n 󰃍 3q+1.
Combining this with Lemma 16, we get

e(G) 󰃑 dG(z) +

q−1󰁛

i=1

󰀕
|V (Ci)|

2

󰀖
+

󰀕
n− 1−

󰁓q−1
i=1 |V (Ci)|
2

󰀖

󰃑 q + (q − 1)

󰀕
3

2

󰀖
+

󰀕
n− 1− 3(q − 1)

2

󰀖
(since dG(z) = q and q 󰃍 2)

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(3q − 5)n+ 12− 9q2

2
+

q

2

󰀔

󰃑
󰀕
n− 3

2

󰀖
+ 4− (q − 1)(9q − 14)

2
(since n 󰃍 3q + 1 and q 󰃍 2)

<

󰀕
n− 3

2

󰀖
+ 4 (since q 󰃍 2),

which contradicts (17). For t = 2, by Claim 2, we have 0 󰃑 s 󰃑 1, and hence e(S) = 0.
Putting t = 2 into (14) yields that

󰁓
t∈T dG(t) 󰃑 q+2. Note that |V (Ci)| 󰃍 2 for 1 󰃑 i 󰃑 q

and t = 2. Then n 󰃍 2q + s + 2. Combining this with
󰁓

t∈T dG(t) 󰃑 q + 2, |V (Ci)| 󰃍 2
for 1 󰃑 i 󰃑 q and Lemma 16, we obtain that

e(G) 󰃑
󰁛

t∈T

dG(t) +

q−1󰁛

i=1

󰀕
|V (Ci)|

2

󰀖
+

󰀕
n−t−s−

󰁓q−1
i=1 |V (Ci)|

2

󰀖
+ s(n−s−t)+e(S)

󰃑 q+2+(q−1)

󰀕
2

2

󰀖
+

󰀕
n−s−2q

2

󰀖
+s(n−s−2) (since t=2, e(S)=0 and q 󰃍 2)

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(2q − 3)n+ 9− 3q − 2q2 − 2qs+

s2

2
+

3s

2

󰀔

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓
2q2 − 5q +

s2 − 3s

2
+ 3

󰀔
(since n 󰃍 2q + s+ 2 and q 󰃍 2)

󰃑
󰀕
n− 3

2

󰀖
+ 4− (s− 1)(s− 2)

2
(since q 󰃍 2)
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󰃑
󰀕
n− 3

2

󰀖
+ 4 (since s 󰃑 1),

where all equalities hold if and only if s = 1, q = 2 and n = 2q+s+2 = 7. This is impossi-
ble because n 󰃍 21. Furthermore, e(G) <

󰀃
n−3
2

󰀄
+ 4, which contradicts (17). We consider

t 󰃍 3 in the following. It is not hard to see that at least
󰁓q−1

i=1

󰁓q
j=i+1 |V (Ci)||V (Cj)|

edges here are not in G. Note that |V (Cq)| 󰃍 · · · 󰃍 |V (C1)| 󰃍 2. Then

q−1󰁛

i=1

q󰁛

j=i+1

|V (Ci)||V (Cj)|󰃍 |V (C1)|
󰀓 q󰁛

i=1

|V (Ci)|− |V (C1)|
󰀔
󰃍2

q󰁛

i=1

|V (Ci)|− 4󰃍4(q − 1).

Combining this with (14), n 󰃍 2q + s+ t and Claim 2, we have

e(G) 󰃑
󰁛

t∈T

dG(t) +

󰀕
n− t

2

󰀖
−

q−1󰁛

i=1

q󰁛

j=i+1

|V (Ci)||V (Cj)|

󰃑 2t− 2s+ st+ q − 2 +

󰀕
n− t

2

󰀖
− 4(q − 1)

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(t− 3)n+ 8− 5t+ t2

2
+ 2s− st+ 3q

󰀔

󰃑
󰀕
n− 3

2

󰀖
+4−

󰀓
(2t−3)q+

t2−11t

2
−s+8

󰀔
(since n 󰃍 2q+s+t and t 󰃍 3)

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓t2 − 3t

2
+ 2− s

󰀔
(since q 󰃍 2 and t 󰃍 3)

󰃑
󰀕
n− 3

2

󰀖
+ 4− (t− 2)(t− 3)

2
(since s 󰃑 t− 1)

󰃑
󰀕
n− 3

2

󰀖
+ 4 (since t 󰃍 3),

where all equalities hold if and only if t = 3, s = 2, q = 2 and n = 2q + s+ t = 9. This is
impossible because n 󰃍 21. Thus, e(G) <

󰀃
n−3
2

󰀄
+ 4, which also leads to a contradiction.

This implies that q 󰃑 1, as required.
By Claim 3, δ(G) 󰃍 2 and (14), we can deduce that

2t 󰃑
󰁛

t∈T

dG(t) 󰃑 2t− 2s+ eG(S, T ) + q − 2 󰃑 2t− 2s+ st− 1. (18)

Claim 4. n 󰃍 s+ t+ 3.
Otherwise, n = s+ t+ a where 0 󰃑 a 󰃑 2. From Claim 2 and n 󰃍 21, we obtain that

21 󰃑 n 󰃑 2t− 1 + a, and hence t 󰃍 11− a/2. Combining this with (18), we have

e(G) 󰃑
󰁛

t∈T

dG(t) +

󰀕
n− t

2

󰀖
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󰃑 2t− 2s+ st− 1 +
(n− t)(n− t− 1)

2

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(t− 3)n+ 11− 5t+ t2

2
+ 2s− ts

󰀔

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓t2

2
− (11− 2a)t

2
− s− 3a+ 11

󰀔
(since n = s+ t+ a)

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓t2

2
+

(2a− 13)t

2
− 3a+ 12

󰀔
(since s 󰃑 t− 1)

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓
1 +

23a

4
− 3a2

8

󰀔
(since 0 󰃑 a 󰃑 2 and t 󰃍 11− a/2)

<

󰀕
n− 3

2

󰀖
+ 4 (since 0 󰃑 a 󰃑 2),

which contradicts (17). This implies that n 󰃍 s+ t+ 3, as required.
For s = 0, we get 2t 󰃑

󰁓
t∈T dG(t) 󰃑 2t−1 by (18), a contradiction. Thus, we consider

s 󰃍 1. Again by (18), we have

2t 󰃑
󰁛

t∈T

dG(t) 󰃑 2t− 2s+ st− 1,

and hence t 󰃍 2 + 1/s, which implies that t 󰃍 3 because t is a positive integer.

Claim 5. t = 3.
Otherwise, t 󰃍 4. For 4 󰃑 t 󰃑 7, by (18), we get

e(G) 󰃑
󰁛

t∈T

dG(t) +

󰀕
n− t

2

󰀖

󰃑 2t− 2s+ st− 1 +
(n− t)(n− t− 1)

2

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(t− 3)n+ 11− 5t+ t2

2
+ (2− t)s

󰀔

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓
(t− 3)n+ 9 +

t− 3t2

2

󰀔
(since s 󰃑 t− 1)

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓43t− 3t2

2
− 54

󰀔
(since n 󰃍 21 and t 󰃍 4)

<

󰀕
n− 3

2

󰀖
+ 4 (since 4 󰃑 t 󰃑 7),

which contradicts (17). For t 󰃍 8, by Claims 2 and 4, we obtain that

e(G) 󰃑
󰁛

t∈T

dG(t) +

󰀕
n− t

2

󰀖
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󰃑 2t− 2s+ st− 1 +
(n− t)(n− t− 1)

2

=

󰀕
n− 3

2

󰀖
+ 4−

󰀓
(t− 3)n+ 11− 5t+ t2

2
+ (2− t)s

󰀔

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓t2 − 5t

2
− s+ 2

󰀔
(since n 󰃍 s+ t+ 3 and t 󰃍 8)

󰃑
󰀕
n− 3

2

󰀖
+ 4−

󰀓t2 − 7t

2
+ 3

󰀔
(since s 󰃑 t− 1)

<

󰀕
n− 3

2

󰀖
+ 4 (since t 󰃍 8),

which also contradicts (17). This implies that t = 3, as required.
By Claims 2 and 5, we obtain that 0 󰃑 s 󰃑 2. Note that t = 3. For s = 0, by (18), we

obtain that
6 󰃑

󰁛

t∈T

dG(t) 󰃑 2t− 2s+ st− 1 = 5,

a contradiction. For s = 1, let S = {u}. According to δ(G) 󰃍 2, t = 3 and (14), we have

6 󰃑
󰁛

t∈T

dG(t) 󰃑 2t− 2s+ eG(u, T ) + q − 2 = 2 + eG(u, T ) + q,

which gives that eG(u, T )+ q 󰃍 4. Observe that eG(u, T ) 󰃑 t = 3 and q 󰃑 1 due to Claim
3. It follows that q = 1 and eG(u, T ) = 3, and hence

󰁓
t∈T dG(t) = 6. Considering that

󰁛

t∈T

dG−u(t) =
󰁛

t∈T

dG(t)− eG(u, T ) = 3,

we can deduce that e(T ) 󰃑 1. Suppose that T = {v1, v2, v3}. If e(T ) = 1, without loss
of generality, we may assume that v1v2 ∈ G[T ]. Since δ(G) 󰃍 2, there must exist some
vertex, say w2, in V (G)\({u} ∪ T ) such that v3w2 ∈ E(G). One can verify that G is a
spanning subgraph of K1∨ (K2∪K1∪Kn−4)+ e, where e is an edge between the pendent
vertex and Kn−4. Combining this with Lemma 15, we get

ρ(G) 󰃑 ρ(K1 ∨ (K2 ∪K1 ∪Kn−4) + e) < ρ(Hn),

a contradiction. Thus, we assume that e(T ) = 0. Since
󰁓

t∈T dG−u(t) = 3, we have 1 󰃑
|NG−u(T )| 󰃑 3. We assert that |NG−u(T )| 󰃍 2. Otherwise, |NG−u(T )| = 1. Combining

this with u ∈ NG(T ), we have |NG(T )| = 2, and hence |NG(T )|
|T | = 2

3
< 1. This is impossible

because G is 1-binding. It follows that 2 󰃑 |NG−u(T )| 󰃑 3. Recall that δ(G) 󰃍 2 and
e(u, T ) = t = 3. If |NG−u(T )| = 3, let NG−u(T ) = {w1, w2, w3} and viwi ∈ E(G) for
1 󰃑 i 󰃑 3. Let x be the Perron vector of A(G). Without loss of generality, we may
assume that x(w1) 󰃍 x(w2). Suppose that G

∗ = G− v2w2 + v2w1. Clearly, G
∗ is a proper

spanning subgraph of Hn. Combining this with Lemma 14, we obtain that

ρ(G) < ρ(G∗) < ρ(Hn),
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a contradiction. If |NG−u(T )| = 2, then G is a proper spanning subgraph of Hn. By
using a similar analysis as above, we can also deduce a contradiction. For s = 2, we have󰁓

t∈T dG−S(t) 󰃑 2t − 2s + q − 2 = q 󰃑 1 due to (14), Claims 3 and 5. It follows that
e(T ) = 0. Note that G is a spanning subgraph of Hn. Then

ρ(G) 󰃑 ρ(Hn),

where the equality holds if and only if G ∼= Hn, which also leads to a contradiction.
This completes the proof.
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