
Nordhaus-Gaddum type inequalities for the kth

largest Laplacian eigenvalues

Wen-Jun Lia Ji-Ming Guoa

Submitted: Apr 17, 2023; Accepted: Jan 10, 2024; Published: Feb 9, 2024

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let G be a simple connected graph and µ1(G) 󰃍 µ2(G) 󰃍 · · · 󰃍 µn(G) be the
Laplacian eigenvalues of G. Let G be the complement of G. Einollahzadeh et al.[J.
Combin. Theory Ser. B, 151(2021), 235–249] proved that µn−1(G) + µn−1(G) 󰃍 1.
Grijó et al. [Discrete Appl. Math., 267(2019), 176–183] conjectured that µn−2(G)+
µn−2(G) 󰃍 2 for any graph and proved it to be true for some graphs. In this paper,
we prove µn−2(G) + µn−2(G) 󰃍 2 is true for some new graphs. Furthermore, we
propose a more general conjecture that µk(G) + µk(G) 󰃍 n− k holds for any graph
G, with equality if and only if G or G is isomorphic to Kn−k ∨ H, where H is a
disconnected graph on k vertices and has at least n− k+ 1 connected components.
And we prove that it is true for k 󰃑 n+1

2 , for unicyclic graphs, bicyclic graphs,
threshold graphs, bipartite graphs, regular graphs, complete multipartite graphs
and c-cyclic graphs when n 󰃍 2c+ 8.

Mathematics Subject Classifications: 05C50

1 Introduction

Let G be a simple graph of order n(G) and size m(G). If there’s no ambiguity, we use
n and m instead of n(G) and m(G). Let G be the complement of G. Let A(G) be the
adjacency matrix of G and D(G) be the diagonal matrix of vertex degrees of G. The
matrix L(G) = D(G)−A(G) and Q(G) = D(G) +A(G) are called the Laplacian matrix
and the signless Laplacian matrix of G, respectively. The eigenvalues of A(G), L(G) and
Q(G) are called the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues
of G, and denoted by λ1(G) 󰃍 λ2(G) 󰃍 · · · 󰃍 λn(G), µ1(G) 󰃍 µ2(G) 󰃍 · · · 󰃍 µn(G) and
q1(G) 󰃍 q2(G) 󰃍 · · · 󰃍 qn(G), respectively. For two graphs G1 and G2, the union of G1

and G2, denoted by G1 ∪ G2, is the graph with vertex set V (G1) ∪ V (G2) and edge set
E(G1)∪E(G2). The join of G1 and G2, denoted by G1 ∨G2, is the graph with the vertex
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set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {st : s ∈ V (G1), t ∈ V (G2)}. We
say a graph is H-free if it does not contain H as an induced subgraph.

A Nordhaus-Gaddum type inequality, or NG-inequality for simplicity, is defined as
the bound of p(G) + p(G), where p(G) is a graph parameter. Such problems have been
studied for a huge variety of graph parameters since it’s first introduced by Nordhaus and
Gaddum in [21] for the chromatic number of a graph G. See [3] for the comprehensive
survey. Nikiforov [19] proposed the study of NG-inequality for all eigenvalues of a graph
defining a function given by max{|λk(G) + λk(G)| : |V (G)| = n} for k = 1, . . . , n. There
are many results about it, for more details see [1, 6, 19, 20, 22, 23]. For the signless
Laplacian eigenvalues, Ashraf and Tayfeh-Rezaie [4] showed that q1(G)+ q1(G) 󰃑 3n− 4.
Huang and Lin [17] proved that n − 2 󰃑 q2(G) + q2(G) 󰃑 2n − 4. As for the Laplacian
eigenvalues, Zhai et al.[27] (see also You and Liu [26]) posed the conjecture that for any
graph

µn−1(G) + µn−1(G) 󰃍 1.

In 2014, Ashraf et al.[4] confirmed it for bipartite graphs and characterized the case
when equality holds. Finally in 2021, Einollahzadeh and Karkhaneei [9] completely con-
firmed it.

Furthermore, Grijó et al.[12] studied NG-inequality for µn−2(G). They showed that
µn−2(G) + µn−2(G) 󰃍 2 when G or G is disconnected, G is a bipartite graph, a regular
graph, or when G and G have diameter not equal to 2. They also proposed a conjecture
that for any graph

µn−2(G) + µn−2(G) 󰃍 2,

and the equality holds if and only if G or G is isomorphic to K2 ∨ H, where H is a
disconnected graph on n− 2 vertices and has at least 3 connected components.

In this paper, we prove that µn−2(G)+µn−2(G) 󰃍 2 is true forK3-free graphs, the graph
which has diameter 2 and whose complement has diameter not equal to 3. Furthermore,
we propose the following more general conjecture.

Conjecture 1. Let G be a graph on n vertices and G be the complement of G. Then

µk(G) + µk(G) 󰃍 n− k,

for k = 1, 2, . . . , n−1, with equality if and only if G or G is isomorphic to Kn−k∨H, where
H is a disconnected graph on k vertices and has at least n−k+1 connected components.

We have checked that Conjecture 1 is true for all graphs with n 󰃑 9 vertices. We will
prove that Conjecture 1 is true for unicyclic graphs, bicyclic graphs, threshold graphs,
bipartite graphs, regular graphs, complete multipartite graphs and c-cyclic graphs when
n 󰃍 2c+8. And it is always true for k 󰃑 n

2
. In particular, if Brouwer’s conjecture is true,

then Conjecture 1 is true for k = n+1
2
.

2 Preliminaries

In this section, we present some lemmas and terminologies which will be used in after
sections. As usual, we denote the complete graph, path and cycle with n vertices byKn, Pn
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and Cn, respectively. The complete t-partite graph with the part sizes n1, n2, . . . , nt(n =
n󰁓

i=1

ni) (t 󰃍 2) is denoted by Kn1,n2,...,nt . Let µ
(s) denote the Laplacian eigenvalue µ having

the multiplicity s. The number of Laplacian eigenvalues of G in an interval I is denoted
by mGI. A vertex v is called an isolated vertex if d(v) = 0, and is called a pendant vertex
if d(v) = 1. A quasipendant vertex of G is a vertex adjacent to at least one pendant
vertex.

The following lemma illustrates the relationship of Laplacian eigenvalues between the
graph and its complement graph.

Lemma 2 ([5],p.4). For any graph G with n vertices, µn(G) = 0 and µi(G) = n−µn−i(G)
(i = 1, 2, . . . , n− 1).

Note thatKn = nK1 andKn1,n2,...,nt =
t󰁖

i=1

Kni
. By Lemma 2, the Laplacian eigenvalues

of complete graphs and complete multipartite graphs are as follows.

Lemma 3. Let n be a natural number.
(1) The Laplacian eigenvalues of Kn are {n(n−1), 0(1)}.
(2) The Laplacian eigenvalues of Kn1,n2,...,nt (t 󰃍 2) are {n(t−1), (n− ni)

(ni−1), 0(1)}.

By Lemma 2, studying the bound of µn−1(G)+µn−1(G) can be translated into consid-
ering the bound of µ1(G)− µn−1(G), which is known as the Laplacian spread of graphs.

Lemma 4 ([9], Theorem 1). Let G be a graph on n vertices and G be the complement of
G. Then µn−1(G)+µn−1(G) 󰃍 1, with equality if and only if G or G is isomorphic to the
join of an isolated vertex and a disconnected graph of order n− 1.

The following lemma is known as the interlacing theorem on Laplacian eigenvalues.

Lemma 5 ([11], Theorem 13.6.2). Let G be a graph with n vertices and let G′ be a graph
obtained from G by inserting a new edge into G. Then the Laplacian eigenvalues of G
and G′ interlace, that is,

µ1(G
′) 󰃍 µ1(G) 󰃍 · · · 󰃍 µn(G

′) = µn(G) = 0.

Let N(v) denote the set of vertices adjacent to the vertex v. The following upper
bound for µ1(G) is always less than or equal to n.

Lemma 6 ([8], Theorem 2.1). If G = (V,E) is a graph, then µ1(G) 󰃑 max{d(u)+d(v)−
|N(u) ∩N(v)| : uv ∈ E}.

Let λi(M)(1 󰃑 i 󰃑 n) denote the ith largest eigenvalue of a matrix M with order n.
The following lemma is well-known as Weyl’s inequality.

Lemma 7 ([16], Theorem 4.3.1). Let B and C be Hermitian matrices of order n and let
1 󰃑 i, j 󰃑 n. Then
(1) λi(B) + λj(C) 󰃑 λi+j−n(B + C), if i+ j 󰃍 n+ 1
(2) λi(B) + λj(C) 󰃍 λi+j−1(B + C), if i+ j 󰃑 n+ 1.
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Figure 1: Γi, i = 1, 2.

Denote by Φ(B) = Φ(B; x) = det(xI −B) the characteristic polynomial of the matrix
B. If v ∈ G, let Lv(G) be the principal submatrix of L(G) formed by deleting the row
and column corresponding to the vertex v.

Lemma 8 ([13], Lemma 8). Let G = G1u : vG2 be the graph obtained by joining the
vertex u of the graph G1 to the vertex v of the graph G2 by an edge. Then

Φ(L(G)) = Φ(L(G1))Φ(L(G2))− Φ(L(G1))Φ(Lv(G2))− Φ(L(G2))Φ(Lu(G1)).

Let G1, u and G2, v be two disjoint rooted graphs with roots u and v, respectively.
The coalescence of two rooted graphs G1, u and G2, v, denoted by G1 · G2, is the graph
formed by identifying the two roots u and v.

Lemma 9 ([15], Corollary 2.3). If G1 and G2 are two rooted graphs with roots u and v,
respectively, then the Laplacian characteristic polynomial of the coalescence G1 ·G2 is

Φ(L(G1 ·G2)) = Φ(L(G1))Φ(Lv(G2)) + Φ(L(G2))Φ(Lu(G1))− xΦ(Lu(G1))Φ(Lv(G2)).

3 NG-inequality for µn−2(G)

We first introduce some graphs. Let Tuv(s, t)(s, t 󰃍 1) denote the tree of diameter 3 having
exactly two quasipendant vertices u and v, where u is adjacent to s pendant vertices and
v is adjacent to t pendant vertices. Let Γ1 be a graph obtained from a Tuv(s, t) and a
vertex w by joining w to all vertices in Tuv(s, t) except {u, v}(See Figure 1). In Tuv(s, t),
let x be some vertex in N(v) \ {u}. Let Γ2 be a graph obtained from a Tuv(s, t) and a
vertex w by joining w to all vertices in Tuv(s, t) except {u, v, x} and joining each vertex
in N(u) \ {v} to all vertices in N(v) \ {u}(See Figure 1).

Lemma 10. Let G = Γi(i = 1, 2) be the graph as defined above. Then mG(n− 2, n] 󰃑 1,
with the only exception that G = C5, in which case mC5(n− 2, n] = 2.
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Proof. First suppose G = Γ1. It is easy to check that mC5(3, 5] = 2. Next suppose
G ∕= C5. Without loss of generality, suppose s 󰃍 t. Then s 󰃍 2. Let Rn be the
graph obtained by merging an edge between Kn−1 and K3. By Lemma 2, it follows that
µn−1(Rn) = n − µ1(Rn) = n − µ1(2K1 ∪K1,n−3) = 2. It is easy to see that G has Ks+t

as a subgraph. Note that in G, v is adjacent to all vertices in Ks and w is adjacent
to u. Then G has K2 ∪ Rn−2 as a spanning subgraph. Hence by Lemma 5, we have
µn−2(G) 󰃍 µn−2(K2 ∪ Rn−2) = 2. And then by Lemma 2, we have µ2(G) 󰃑 n − 2.
Therefore, mG(n− 2, n] 󰃑 1 holds.

Next suppose G = Γ2. It is easy to see that G has Ks+1 ∪Kt+1 as a subgraph. Note
that in G, w is adjacent to both u and x. Then G has Ks+1∪Rt+2 as a spanning subgraph.
By Lemma 5, it follows that µn−2(G) 󰃍 µn−2(Ks+1 ∪ Rt+2) = 2. And then by Lemma 2,
we have µ2(G) 󰃑 n− 2. Therefore, mG(n− 2, n] 󰃑 1 holds. This completes the proof.

Ahanjideh et al. [2](Theorem 5.4) showed that if G is K3-free, then mG(n− 1, n] 󰃑 1.
We improve this result as follows.

Theorem 11. If G is a K3-free graph of order n, then mG(n − 2, n] 󰃑 1, with the only
exception that G = C5, in which case mC5(n− 2, n] = 2.

Proof. If µ1(G) 󰃑 n − 2, then mG(n − 2, n] = 0 < 2. Next suppose that µ1(G) > n − 2.
Then by Lemma 6, there are two adjacent vertices, say u and v, such that d(u)+d(v) = n or
d(u)+d(v) = n−1. Note that bothN(u) andN(v) are independent sets. If d(u)+d(v) = n,
then G is bipartite with two parts N(u) and N(v). By Lemmas 3 and 5, one can see that
mG(n− 2, n] 󰃑 mKd(u),d(v)

(n− 2, n] 󰃑 1. If d(u)+ d(v) = n− 1, suppose w /∈ N(u)∪N(v).
First suppose that w is adjacent to all vertices in N(u) ∪N(v) \ {u, v}. Note that N(w)
is an independent sets. Then G is isomorphic to Γ1. And by Lemma 10, it follows that
mG(n− 2, n] 󰃑 1, with the only exception that G = C5, in which case mC5(n− 2, n] = 2.
Otherwise, without loss of generality, suppose there exists a vertex x ∈ N(v) and x ∕= u
such that x is not adjacent to w. Then G is a subgraph of Γ2. Hence by Lemmas 5 and
10, mG(n− 2, n] 󰃑 mΓ2(n− 2, n] 󰃑 1. This completes the proof.

Remark: Note that for G = K2,n−2, we have mG[n − 2, n] = 2 > 1. It follows that
mG[n− 2, n] 󰃑 1 is not true for all K3-free graphs.

Note that C5 = C5 and µn−2(C5) ≈ 1.3 > 1. Then µn−2(C5) + µn−2(C5) > 2. By
Theorem 11, if G is K3-free and G ∕= C5, then µ2(G) 󰃑 n − 2. By Lemma 6, we have
µ2(G) 󰃑 µ1(G) 󰃑 n for any graph G. Since µn−2(G) + µn−2(G) 󰃍 2 is equivalent to
µ2(G) + µ2(G) 󰃑 2n− 2 by Lemma 2, we obtain the following corollary immediately.

Corollary 12. If G is K3-free, then µn−2(G) + µn−2(G) 󰃍 2.

We denote the diameter of a graph G by D(G). Einollahzadeh and Karkhaneei [9]
proved that the algebraic connectivity of the graph with diameter less than 3 is no less
than 1.

Lemma 13 ([9], Lemma 5). If D(G) 󰃑 2, then µn−1(G) 󰃍 1.
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The class of graphs GD(n1, n2, . . . , nD, nD+1) is composed by D + 1 cliques Kni
of

sizes ni(ni 󰃍 1, 1 󰃑 i 󰃑 D + 1) in such a way that each clique Kni
is connected to

its neighboring cliques Kni−1
and Kni+1

by a join operation for each 2 󰃑 i 󰃑 D. For
examples, G3(2, 1, 3, 2) and G3(1, 2, 4, 1) are shown in Figure 2. Obviously, the class of
graphs GD(n1, n2, . . . , nD, nD+1) has diameter D. Let µimax(n,D) be the maximum of the
ith largest Laplacian eigenvalue among all graphs G(n,D) with order n and diameter D
for each i = 1, . . . , n.

n1 = 2 n2 = 1 n3 = 2 n4 = 2

G3(2, 1, 3, 2)

n1 = 1 n2 = 2 n3 = 4 n4 = 1

G3(1, 2, 4, 1)

Figure 2: The graphs G3(2, 1, 3, 2) and G3(1, 2, 4, 1).

The following two lemmas indicate the relationship between the diameter and ith
largest Laplacian eigenvalue.

Lemma 14 ([25], Theorem 4). Any graph G(n,D) is a subgraph of at least one graph in

the class GD(n1 = 1, n2, . . . , nD, nD+1 = 1) with n =
D+1󰁓
i=1

ni.

Lemma 15 ([25], Theorem 16). Given the order n, the maximum of µimax(n,D), i =
1, . . . , n is non-increasing as the diameter D increases, i.e. µimax(n,D+1) 󰃑 µimax(n,D).

Let H(s, t) be the graph obtained from K2,s and K2,t by identifying u and v, where u
(resp. v) is a vertex of degree s (resp. t) in K2,s (resp. K2,t). Let K

e
2,n−2 be the graph of

order n obtained by inserting an edge to the partite set of order 2 in K2,n−2. Note that
Ke

2,n−2 = Kn−2 ∪ 2K1. By Lemmas 2 and 3, we have µn−2(K
e
2,n−2) 󰃍 2.

Theorem 16. Let G be a graph of order n. If D(G) = 2 and D(G) ∕= 3, then µn−2(G) +
µn−2(G) 󰃍 2.

Proof. Suppose first that D(G) = D(G) = 2. Then by Lemma 13, we have µn−2(G) 󰃍
µn−1(G) 󰃍 1 and µn−2(G) 󰃍 µn−1(G) 󰃍 1. Hence the result holds.

We claim that µ2(G) 󰃑 n− 2 for any G with D(G) 󰃍 4. For D(G) = 4, by Lemmas 5
and 14, we only need to prove that µ2(G) 󰃑 n−2 for any G of the class G4(1, n2, n3, n4, 1).
Without loss of generality, we may assume n4 󰃍 n2 󰃍 1. If n4 = n2 = 1, then G has
Ke

2,n3
∪K2 as a spanning subgraph. By Lemma 5, we have µn−2(G) 󰃍 µn−2(K

e
2,n3

∪K2) = 2.

If n2 = 1 and n4 󰃍 2, then G has H(n3, n4) as a spanning subgraph. By Lemma 9, we
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have the characteristic polynomial of L(H(n3, n4)) is

Φ(L(H(n3, n4))) =Φ(L(K2,n3))Φ(Lv(K2,n4)) + Φ(L(K2,n4))Φ(Lu(K2,n3))

− xΦ(Lu(K2,n3))Φ(Lv(K2,n4))

=x(x− (n3 + 2))(x− n3)(x− 2)n3−1((x− 2)(x− n4)− n4)(x− 2)n4−1

+ x(x− (n4 + 2))(x− n4)(x− 2)n4−1((x− 2)(x− n3)− n3)(x− 2)n3−1

− x((x− 2)(x− n4)− n4)(x− 2)n4−1((x− 2)(x− n3)− n3)(x− 2)n3−1

=x(x− 2)n3+n4−2(x4 − (2n3 + 2n4 + 4)x3 − ((n4 + 2)n3 + 2n4)(n3 + n4 + 2)x

+ (n2
3 + (3n4 + 6)n3 + (n4 + 2)2 + 2n4)x

2 + n3n4(n3 + n4 + 3))

≜x(x− 2)n3+n4−2f(x).

Note that n3 + n4 󰃍 3, then we have

f(0) = n3n4(n3 + n4 + 3) > 0, f(1) = −n2
3 − n2

4 + 1 < 0,

f(2) = −n3n4(n3 + n4 − 3) 󰃑 0, f(
n3 + n4

2
+ 1) =

((n3 + n4)
2 − 8)(n3 − n4)

2 + 16

16
> 0,

f(n3 + n4 + 1) = −n2
3 − n2

4 + 1 < 0, f(n3 + n4 + 2) = n3n4(n3 + n4 + 3) > 0.

Therefore, we have µn−2(H(n3, n4)) = 2. Then by Lemma 5, we have µn−2(G) 󰃍 2. If
n4 󰃍 n2 󰃍 2, then G has Kn2,n4 ∪Ke

2,n3
as a spanning subgraph. Then by Lemmas 3 and

5, we have µn−2(G) 󰃍 µn−2(Kn2,n4 ∪Ke
2,n3

) 󰃍 2. Thus, we have µn−2(G) 󰃍 2 for any G
of the class G4(1, n2, n3, n4, 1). By Lemma 2, we have µ2(G) 󰃑 n − 2 for any G of the
class G4(1, n2, n3, n4, 1). For D(G) 󰃍 5, by Lemma 15, we have µ2(G) 󰃑 µ2max(n,D) 󰃑
µ2max(n, 4) 󰃑 n− 2.

Assume now thatD(G) = 2 andD(G) 󰃍 4. by Lemma 2, we have µn−2(G)+µn−2(G) 󰃍
2. This completes the proof.

In [12](see Theorem 7), the authors proved that µn−2(G)+µn−2(G) 󰃍 2 is true for the
graph G whenD(G) ∕= 2 andD(G) ∕= 2. Combining with this result, µn−2(G)+µn−2(G) 󰃍
2 is proved to be true for all graphs except the graph G which satisfys D(G) = 2,
D(G) = 3, and both G and G have a K3 as a subgraph.

4 NG-inequality for µk(G)

In this section, we consider the kth largest Laplacian eigenvalue. Firstly, we consider the
equality case.

Lemma 17. Let G = Kn−k ∨H be the graph of order n for some integer k ∈ [n+1
2
, n− 1],

where H is a disconnected graph on k vertices and has at least n − k + 1 connected
components. Then µk(G) + µk(G) = n− k.

Proof. We denote the Laplacian spectrum of H as µ1 󰃍 µ2 󰃍 · · · 󰃍 µ2k−n−1 and 0(n−k+1).
Then by Lemma 2, the Laplacian spectrum of H are k(n−k) and k−µ2k−n−1 󰃍 · · · 󰃍 k−µ1
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and 0. Since G = Kn−k ∪ H, it follows that the Laplacian spectrum of G are k(n−k),
k − µ2k−n−1 󰃍 · · · 󰃍 k − µ1 and 0(n−k+1). By Lemma 2, the Laplacian spectrum of G are
n(n−k), n − k + µ1 󰃍 · · · 󰃍 n − k + µ2k−n−1, (n − k)(n−k) and 0. It is easy to see that
µk(G) + µk(G) = n− k + 0 = n− k for k ∈ [n+1

2
, n− 1]. This completes the proof.

Let G be a graph with n vertices and Sk(G) =
k󰁓

i=1

µi(G) be the sum of the first k

largest Laplacian eigenvalues of G. Brouwer [5] conjectured that for any graph G with n
vertices and for any k ∈ {1, 2, . . . , n}, Sk(G) 󰃑 m +

󰀃
k+1
2

󰀄
. Recently, Vladimir et al.[24]

claimed that if Brouwer conjecture is true for n 󰃑 1027, then Brouwer conjecture is true.
Now we have the following result if Sk(G) 󰃑 m+

󰀃
k+1
2

󰀄
for k ∈ {1, 2, . . . , n}.

Theorem 18. Let G be a graph on n vertices and G be the complement of G. Then
µk(G)+µk(G) 󰃍 n for k 󰃑 n

2
. In particular, if Brouwer’s conjecture holds, then µn+1

2
(G)+

µn+1
2
(G) 󰃍 n− n+1

2
.

Proof. For k 󰃑 n
2
, by Lemma 7, we have µk(G) + µk(G) 󰃍 µ2k−1(Kn) = n. Next we

consider the case k = n+1
2
, which implies that n is odd. By Lemma 2, we have

µn−1
2
(G) + µn+1

2
(G) = n. (1)

Now we show that

µn−1
2
(G) 󰃑 µn+1

2
(G) +

n+ 1

2
. (2)

We prove (2) by contradiction. We may assume that µn−1
2
(G) > µn+1

2
(G) + n+1

2
for G.

Let Tn−1
2
(G) =

n−1󰁓

i=n+1
2

µi(G). Then Sn−1
2
(G)− Tn−1

2
(G) > n+1

2
· n−1

2
= n2−1

4
. By Lemma 2,

Sn−1
2
(G)− Tn−1

2
(G) = Sn−1

2
(G)−

󰀃
n · n− 1

2
− Sn−1

2
(G)

󰀄

= Sn−1
2
(G) + Sn−1

2
(G)− n(n− 1)

2
.

Now we can deduce that

Sn−1
2
(G) + Sn−1

2
(G) >

n(n− 1)

2
+

n2 − 1

4
.

On the other hand, if Brouwer’s conjecture holds, we have

Sn−1
2
(G) + Sn−1

2
(G) 󰃑 m+m+ 2 ·

󰀕
n+1
2

2

󰀖
=

n(n− 1)

2
+

n2 − 1

4
,

a contradiction. In consequence, by (1) and (2), if Brouwer’s conjecture holds, then
µn+1

2
(G) + µn+1

2
(G) 󰃍 n− n+1

2
. This completes the proof.
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The graphs having no induced subgraphs 2K2, P4, C4 are called threshold graphs.
Threshold graphs have many known characterizations(see [10] for example), one of which
is that the vertices can be partitioned into a clique K and an independent set I so that
the sets of neighbors of the vertices of I (and therefore also of K) are nested, i.e., totally
ordered by inclusion. Using this property, we give a vertex partition to the connected
threshold graph.

For a connected threshold graph G, suppose Kt+1 is a maximal clique of G. Let
V (Kt+1) = {v1, v2, . . . , vt, vt+1} such that d(v1) 󰃍 d(v2) 󰃍 · · · 󰃍 d(vt+1). Let Vi = {vi}

and Uj = {v : N(v) = {v1, v2, . . . , vj}} for i, j = 1, 2, . . . , t. Then V (G) =
t󰁖

i=1

Vi ∪
t󰁖

i=1

Ui.

Clearly, if u′ ∈ Ui and u′′ ∈ Ui+1, then N(u′) ⊂ N(u′′), and this explains the nested
property. Let sj = |Uj|. Then st 󰃍 1 and sj 󰃍 0 for j = 1, 2, . . . , t − 1. For example, if
G = Kn, let V (Kn) = {v1, v2, . . . , vn−1, vn}, then Vi = {vi} for i = 1, 2, . . . , n− 1, Ui = ∅
for i = 1, 2, . . . , n− 2 and Un−1 = {vn}.

We remark that
t󰁓

i=s

ai = 0 if s > t.

Theorem 19. Let G be a threshold graph of order n. Then

µk(G) + µk(G) 󰃍 n− k,

for k = 1, 2, . . . , n−1, with equality if and only if G or G is isomorphic to Kn−k∨H, where
H is a disconnected graph on k vertices and has at least n− k+1 connected components.

Proof. Since the complement of a threshold graph is also a threshold graph, we now
consider the connected threshold graph G. Let Kt+1 be the maximal clique in G and
V (Kt+1) = {v1, v2, . . . , vt, vt+1}. Using the above vertex partition and notations, we have

n = t+
t󰁓

i=1

si, d(u) = j for u ∈ Uj and d(vj) = t− 1+
t󰁓

i=j

si, where j = 1, 2, . . . , t. For the

better understanding, the degree sequence of G are as follows in non-decreasing order,

{1, . . . , 1󰁿 󰁾󰁽 󰂀
s1

, 2, . . . , 2󰁿 󰁾󰁽 󰂀
s2

, . . . , t, . . . , t󰁿 󰁾󰁽 󰂀
st

, t− 1 + st, t− 1 + st + st−1, . . . , t− 1 +
t󰁛

i=1

si}.

By Theorem 2 in [18], for a threshold graph G, µi(G) = d∗i (G), where d∗i (G) = |{v ∈
V (G) : d(v) 󰃍 i}| for i = 1, 2, . . . , n. Then from the degree sequence of G, it is easy to
obtain that the Laplacian eigenvalues of G are as follows in non-increasing order,

{n(1), (n−s1)
(1), (n−s1−s2)

(1), . . . ,

󰀣
n−

t−1󰁛

i=1

si

󰀤(1)

, t(st−1), (t−1)(st−1), (t−2)(st−2), . . . , 1(s1), 0(1)}.

By Lemma 2, the Laplacian eigenvalues of G are as follows in non-increasing order,

{(n−1)(s1), (n−2)(s2), . . . , (n− t+1)(st−1), (n− t)(st−1),

󰀣
t−1󰁛

i=1

si

󰀤(1)

,

󰀣
t−2󰁛

i=1

si

󰀤(1)

, . . . , s
(1)
1 , 0(2)}.
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First suppose
j0−1󰁓
i=1

si+1 󰃑 k 󰃑
j0󰁓
i=1

si, for j0 ∈ {1, 2, . . . , t−1}. Then µk(G) = n−j0. If

µk(G) = n−
k−1󰁓
i=1

si, then we have µk(G)+µk(G) 󰃍 n−j0 > n−k when k > j0. When k 󰃑 j0,

we have
k−1󰁓
i=1

si 󰃑
j0−1󰁓
i=1

si 󰃑 k−1. Then we have µk(G)+µk(G) 󰃍 n−k+1+n−j0 > n−k.

If µk(G) = t, then µk(G) + µk(G) = n− j0 + t > n > n− k since j0 < t. If µk(G) = t− j′

for j′ ∈ {1, 2, . . . , t − 1}, then k 󰃍 t. Since j′ < t and j < t, we have µk(G) + µk(G) =
t− j′ + n− j0 > n− t 󰃍 n− k.

Next suppose
t−1󰁓
i=1

si + 1 󰃑 k 󰃑 n− t− 1. Then µk(G) = n− t. If µk(G) = n−
k−1󰁓
i=1

si,

then 1 󰃑 k 󰃑 t. Hence,
k−1󰁓
i=1

si 󰃑
t−1󰁓
i=1

si 󰃑 k− 1. Then µk(G)+µk(G) 󰃍 n− t+n−
k−1󰁓
i=1

si 󰃍

n− t+n−k+1 > n−k. If µk(G) = t, then µk(G)+µk(G) = n > n−k. If µk(G) = t− j0
for j0 ∈ {1, 2, . . . , t − 1}, then k 󰃍 t. Since j0 < t, we have µk(G) + µk(G) = n − j0 >
n− t 󰃍 n− k.

Finally, suppose n − t 󰃑 k 󰃑 n − 1. Then µk(G) =
n−1−k󰁓
i=1

si. If µk(G) = n −
k−1󰁓
i=1

si,

then 1 󰃑 k 󰃑 t. Recall that n = t +
t󰁓

i=1

si and st 󰃍 1. Then
k−1󰁓
i=1

si 󰃑
t−1󰁓
i=1

si < n − t. So

µk(G) + µk(G) 󰃍 µk(G) > t 󰃍 n − k. If µk(G) = t, then t + 1 󰃑 k 󰃑 t + st − 1. We

have µk(G) + µk(G) = t +
n−k−1󰁓
i=1

si 󰃍 t 󰃍 n − k. Equality holds if and only if t = n − k,

n−k−1󰁓
i=1

si = 0, and n − t 󰃍 t + 1. It follows that k = n − t and s1 = s2 = · · · = st−1 = 0.

Then G = Kt ∨ (n− t)K1, the result holds. If µk(G) = t− j0 for j0 ∈ {1, . . . , t− 1}, then

k 󰃍 n−
t−j0󰁓
i=1

si. When t− j0 󰃍 n− k, we have µk(G) + µk(G) =
n−k−1󰁓
i=1

si + t− j0 󰃍 n− k.

Equality holds if and only if t− j0 = n− k and
n−k−1󰁓
i=1

si = 0. It follows that k = n− t+ j0

and s1 = s2 = · · · = st−j0−1 = 0. Then G = Kt−j0 ∨H, where V (Kt−j0) = {v1, . . . , vt−j0}

and H = G[Ut−j0 ∪ Ut−j0+1 ∪ · · · ∪ Ut ∪ {vt−j0+1, . . . , vt}]. Recall that
t−j0󰁓
i=1

si 󰃍 n − k,

we have st−j0 󰃍 n − k. Then H is a disconnected graph on n − t + j0 vertices and
has at least t − j0 + 1 connected components. When 1 󰃑 t − j0 󰃑 n − k − 1, we have
n−k−1󰁓
i=1

si 󰃍
t−j0󰁓
i=1

si 󰃍 n−k. Then µk(G)+µk(G) =
n−k−1󰁓
i=1

si+ t− j0 > n−k. This completes

the proof.

The barbell graphBe
s,t(s 󰃍 t) is constructed by connecting two complete graphsKs(s 󰃍

1) and Kt(t 󰃍 1) by a bridge e.
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Lemma 20. Let G be the barbell graph Be
s,t with s > t > 1. Then µs(G) > t.

Proof. Let e = uv, u ∈ Ks and v ∈ Kt. By Lemma 8, the characteristic polynomial of
L(G) is as follows:

Φ(L(G)) =Φ(L(Ks))Φ(L(Kt))− Φ(L(Ks))Φ(Lv(Kt))− Φ(L(Kt))Φ(Lu(Ks))

=x(x− s)s−1x(x− t)t−1 − x(x− s)s−1(x− 1)(x− t)t−2

− x(x− t)t−1(x− 1)(x− s)s−2

=x(x− s)s−2(x− t)t−2(x3 − (s+ t+ 2)x2 + (st+ s+ t+ 2)x− (s+ t))

≜x(x− s)s−2(x− t)t−2g(x)

Let x1 󰃍 x2 󰃍 x3 be the roots of the equation g(x) = 0. Then the Laplacian spectrum of

G are {x(1)
1 , s(s−2), x

(1)
2 , t(t−2), x

(1)
3 , 0(1)}. Since

g(0) = −s− t < 0, g(1) = st− (s+ t) + 1 > 0,

g(t) = (t− 1)(s− t) > 0, g(t+ 1) = −s+ 1 < 0,

g(s) = (s− 1)(t− s) < 0, g(s+ 2) = s2 + (3− t)s− 3t+ 4 > 0,

we have 0 < x3 < 1, t < x2 < t + 1, and s < x1 < s + 2. Consequently, µs(G) = x2 > t,
as required.

Let ⌈x⌉ denote the least integer not less than x. In [4], Ashraf et al. proved µn−1(G)+
µn−1(G) 󰃍 1 for bipartite graphs. We improve this result as follows.

Theorem 21. Let G = be a bipartite graph of order n(n = r + s) with partition (V1, V2)
and |V1| = r 󰃍 |V2| = s. Then µk(G)+µk(G) 󰃍 n−k for k = 1, 2, . . . , n−1, with equality
if and only if k = n− 1 and G or G is a star with at most 1 isolated vertex.

Proof. If s = 1, then G is a star with some isolated vertices. Suppose G = K1,t−1 ∪
(n − t)K1(2 󰃑 t 󰃑 n). Then the Laplacian spectrum of G are t(1), 1(t−2) and 0(n−t+1).
By Lemma 2, the Laplacian spectrum of G are n(n−t), (n − 1)(t−2), (n − t)(1) and 0(1).
If 1 󰃑 k 󰃑 n − t, then µk(G) + µk(G) 󰃍 n > n − k. If n − t + 1 󰃑 k 󰃑 n − 2, then
µk(G) + µk(G) 󰃍 n − 1 󰃍 n − k. Equality is possible if k = 1 and t = n. And then
µ1(G)+µ1(G) = n+n−1 > n−1. Next suppose k = n−1. If t = n, thenG = K1,n−1. Then
µn−1(G)+µn−1(G) = 1. If t 󰃑 n− 1, then µn−1(G)+µn−1(G) 󰃍 n− t 󰃍 1. With equality
if and only if t = n − 1. Then G = K1,n−2 ∪K1. It follows that G = K1 ∨ (K1 ∪Kn−2).
The result holds.

Next suppose s 󰃍 2. Since r 󰃍 s, we have r 󰃍 ⌈n
2
⌉ 󰃍 n

2
and then n − r 󰃑 n

2
. Note

that G has H = Kr ∪ Ks as a spanning subgraph. Then by Lemma 5, it follows that
µk(G) 󰃍 µk(H). By Lemma 2, the Laplacian spectrum of H are as follows.

µk(H) =

󰀻
󰀿

󰀽

r, 1 󰃑 k 󰃑 r − 1
s, r 󰃑 k 󰃑 n− 2
0, k = n− 1, n
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For 1 󰃑 k 󰃑 n− r, by Theorem 18, we have µk(G) + µk(G) > n− k. For n− r + 1 󰃑
k 󰃑 r− 1, we have µk(G) + µk(G) 󰃍 µk(H) = r 󰃍 n− k + 1 > n− k. For r 󰃑 k 󰃑 n− 2,
we have µk(G)+µk(G) 󰃍 µk(H) = s = n− r 󰃍 n−k. Equality holds if and only if k = r,
µk(G) = 0 and µk(G) = s. Now we prove that no such bipartite graph exists. Suppose
first that r > s. By Lemma 20, we have µr(B

e
r,s) > s. Then µr(G) = s implies that

G = H. It follows that µr(G) = n−µs(G) = n− r = s, which is contradict to µr(G) = 0.
Next suppose that r = s. Since µr(G) = 0, G has at least r + 1 connected components.
It follows that G has at least 1 isolated vertex. Therefore, G has K1 ∨ (Kr ∪Kr−1) as a
spanning subgraph. By Lemmas 2 and 3, we have µr(K1 ∨ (Kr ∪Kr−1)) = s + 1. Then
by Lemma 5, µk(G) 󰃍 s + 1, a contradiction. It is true for k = n − 1 due to Lemma 4.
This completes the proof.

Theorem 22. Let G be a complete t-partite graph Kn1,n2,...,nt with t 󰃍 3 and
t󰁓

i=1

ni = n.

Then µk(G)+µk(G) 󰃍 n−k for k = 1, 2, . . . , n−1, with equality if and only if k = n−t+1
and G = Kn−t+1,1,...,1.

Proof. Without loss of generality, we assume that n1 󰃍 n2 󰃍 · · · 󰃍 nt. By Lemmas 2 and
3, the Laplacian eigenvalues of G are {n(t−1), (n−nt)

(nt−1), . . . , (n−n1)
(n1−1), 0(1)} and the

Laplacian eigenvalues of G are {n(n1−1)
1 , n

(n2−1)
2 , . . . , n

(nt−1)
t , 0(t)}. Sort the eigenvalues by

non-increasing order. Then in G, for every 1 󰃑 r 󰃑 t, the first n−nr is
t󰁓

i=r+1

ni+r largest

eigenvalues. In G, for every 1 󰃑 s 󰃑 t, the first ns is
s−1󰁓
i=1

ni− s+2 largest eigenvalues. For

1 󰃑 k 󰃑 t − 1, we have µk(G) + µk(G) 󰃍 n > n − k. For t 󰃑 k 󰃑 n − t, µk(G) + µk(G)
has the form n− nr + ns for some r, s(1 󰃑 r, s 󰃑 t). If r 󰃍 s, which implies that nr 󰃑 ns,
then n− nr + ns 󰃍 n > n− k. Next we suppose r 󰃑 s− 1. Since ni 󰃍 1 for i = 1, . . . , t,
it follows that

s−1󰁛

i=1

ni − s+ 2 󰃍 nr > nr − ns.

Hence k 󰃍 max{
s−1󰁓
i=1

ni − s + 2,
t󰁓

i=r+1

ni + r} > nr − ns. Therefore n − nr + ns > n − k.

Consequently, µk(G) + µk(G) > n − k for t 󰃑 k 󰃑 n − t. For n − t + 1 󰃑 k 󰃑 n − 1,

µk(G)+µk(G) = µk(G) = n−nr for some r(1 󰃑 r 󰃑 t). Since k 󰃍 n−t+1 =
t󰁓

i=1

ni−t+1 󰃍

nr + t− 1− t+ 1 = nr for some r(1 󰃑 r 󰃑 t), we have µk(G) + µk(G) 󰃍 n− k. Equality
holds if and only if n1 = n − t + 1, n2 = · · · = nt = 1 and k = n − t + 1. Then
G = Kn−t+1,1,...,1 = Kt−1 ∨ (n− t+ 1)K1.

Lemma 23 ([28], Theorem 3.4). Let G be a d-regular graph of order n. Then for k =

1, 2, . . . , n− 1, µk(G) 󰃑 1
n−1

(nd+
󰁴

n−k−1
k

nd(n− d− 1)).

Theorem 24. Let G be a d-regular graph of order n. Then µk(G) + µk(G) > n − k for
k = 1, 2, . . . , n− 1.
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Proof. By Lemma 2, we have µk(G) = n−µn−k(G) for k = 1, 2, . . . , n− 1. Then µk(G)+
µk(G) > n− k is equivalent to µn−k(G)+µn−k(G) < n+ k for k = 1, 2, . . . , n− 1. That is
µk(G) + µk(G) < 2n− k for k = 1, 2, . . . , n− 1. It is clear that G is a (n− 1− d)-regular
graph. Then by Lemma 23,

µk(G) + µk(G) 󰃑 1

n− 1
(nd+

󰁵
n− k − 1

k
nd(n− d− 1))

+
1

n− 1
(n(n− 1− d) +

󰁵
n− k − 1

k
n(n− d− 1)d)

=
1

n− 1
(n(n− 1) + 2

󰁵
n− k − 1

k
nd(n− d− 1))

= n+
2

n− 1

󰁵
n− k − 1

k
nd(n− d− 1).

We next to show that 2
n−1

󰁴
n−k−1

k
nd(n− d− 1) < n− k. That is to show 4n−k−1

k
nd(n−

1− d) < (n− k)2(n− 1)2. Since k 󰃑 n, we have nn−k−1
k

= (n−k)2+(n−k)(k−1)−k
k

< k(n−k)2

k
=

(n − k)2. By AM-GM inequality, we have d(n − d − 1) 󰃑 (d+n−d−1
2

)2 = (n−1)2

4
. Hence

4n−k−1
k

nd(n− 1− d) < (n− k)2(n− 1)2 holds. This completes the proof.

Lemma 25 ([14], Theorem 4). Let T be a tree with n vertices. Then µk(T ) 󰃑 ⌈n
k
⌉ for

1 󰃑 k 󰃑 n.

We say that a connected graph G is c-cyclic, or it has c cycles, if it has n−1+ c edges.

Theorem 26. Let G be a c-cyclic graph of order n. If n 󰃍 2c+8, then µk(G)+µk(G) >
n− k for k = 2, 3, . . . , n− 1.

Proof. By Lemma 2, it’s equivalent to proving that µk(G) + µk(G) < 2n − k for k =
1, 2, . . . , n. Let T be a spanning tree of G. Let F1, F2, . . . , Ft be the connected components
of G−T . Suppose µ1(F1) 󰃍 µ1(Fi), i = 2, . . . , t. Note thatm(F1) 󰃍 n(F1)−1. By Lemma
6, we have µ1(F1) 󰃑 n(F1) 󰃑 m(F1) + 1. By Lemmas 7 and 25,

µk(G) 󰃑 µk(T ) + µ1(G− T ) 󰃑 µk(T ) + µ1(F1)

󰃑 µk(T ) +m(F1) + 1 󰃑 ⌈n
k
⌉+ c+ 1

<
n

k
+ c+ 2.

For 2 󰃑 k 󰃑 n−c−4, we next to show that n
k
+c+2 󰃑 n−k when n 󰃍 2c+8. That is

to show k2+(c−n+2)k+n
k

󰃑 0. Since k > 0, we only need to show that k2+(c−n+2)k+n 󰃑 0
for 2 󰃑 k 󰃑 n − c − 4. Let g(k) = k2 + (c − n + 2)k + n. It’s not difficult to know that

the roots of g(k) = 0 are k1, k2 = n−c−2
2

∓
√
c2−2cn+n2+4c−8n+4

2
. Since n 󰃍 2c + 8, we

have c2 − 2cn + n2 + 4c − 8n + 4 󰃍 (n − (c + 6))2. Hence k1 󰃑 n−c−2
2

− n−(c+6)
2

= 2,

k2 󰃍 n−c−2
2

+ n−(c+6)
2

= n − c − 4. Then g(k) 󰃑 0 for 2 󰃑 k 󰃑 n − c − 4. Therefore,
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we have µk(G) < n − k for 2 󰃑 k 󰃑 n − c − 4. Since µk(G) 󰃑 n by Lemma 6, we have
µk(G) + µk(G) < 2n− k for 2 󰃑 k 󰃑 n− c− 4.

For n − c − 3 󰃑 k 󰃑 n − 1, we have k 󰃍 n − c − 3 󰃍 n
2
+ 1 > n+1

2
since n 󰃍 2c + 8.

By Lemma 7, we have µk(G) + µk(G) 󰃑 µ2k−n(Kn) = n < 2n − k. This completes the
proof.

Using a computer, we check that Conjecture 1 is true for all graphs with at most 9
vertices and for bicyclic graphs with at most 11 vertices. Then by Lemma 4 and Theorem
26, we immediately obtain the following corollaries.

Corollary 27. Let G be a unicyclic graph of order n. Then µk(G) + µk(G) 󰃍 n− k for
k = 1, 2, . . . , n− 1.

Corollary 28. Let G be a bicyclic graph of order n. Then µk(G) + µk(G) 󰃍 n − k for
k = 1, 2, . . . , n− 1.
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