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Abstract

For a given shape S in the plane, one can ask what is the lowest possible density
of a point set P that pierces (“intersects”, “hits”) all translates of S. This is
equivalent to determining the covering density of S and as such is well studied.
Here we study the analogous question for families of shapes where the connection
to covering is altered. That is, we require that a single point set P simultaneously
pierces each translate of each shape from some family F . We denote the lowest
possible density of such an F-piercing point set by πT (F). Specifically, we focus
on families F consisting of axis-parallel rectangles. When |F| = 2 we exactly solve
the case when one rectangle is more squarish than 2 × 1, and give bounds (within
10% of each other) for the remaining case when one rectangle is wide and the other
one is tall. When |F|  2 we present a linear-time constant-factor approximation
algorithm for computing πT (F) (with ratio 1.895).

Keywords: axis-parallel rectangle, piercing density, approximation algorithm,
continued fraction.

Mathematics Subject Classifications: 52C05, 68W25

1 Introduction

In a game of Battleship, the opponent secretly places ships of a fixed shape on an n× n
board and your goal is to sink them by identifying all the cells the ships occupy (the ships
are stationary). Consider now the following puzzle: If the opponent placed a single 2× 3
ship, how many attempts do you need to surely hit the ship at least once? The answer
depends on an extra assumption. If you know that the ship is placed, e.g., vertically, it
is fairly easy to see that the answer is roughly n2/6: When n is a multiple of 6, then
one hit is needed per each of the n2/6 interior-disjoint translates of the 2 × 3 rectangle
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that tile the board and, on the other hand, a lattice with basis {(2, 0), (0, 3)} achieves
the objective. The starting point of this paper was to answer the question when it is not
known whether the ship is placed vertically or horizontally. It turns out that the answer
is n2/5 + O(n) hits: here the main term comes from Theorem 4 (ii) whereas the O(n)
correction term is due to the boundary effect.

Motivated by the above puzzle, we study the following problem that makes abstraction
of the finiteness of the board: Given a family F of compact shapes in the plane, what is
its translative piercing density πT (F), that is, the lowest density of a point set that pierces
(“intersects”, “hits”) every translate of each member of the family? Here the density of
an infinite point set P over the plane is defined in the standard fashion as a limit of its
density over a disk Dr of radius r, as r tends to infinity. The piercing density πT (F) of
the family is then defined as the infimum over all point sets that pierce every translate
of each member of the family [5, Ch. 1], [14]. See Subsection 1.2 for precise definitions.
Note that unlike in the puzzle, we allow translations of each shape in the family by any,
not necessarily integer, vector.

First, we cover the case when the family F = {S} consists of a single shape. The
problem is then equivalent to the classical problem of determining the translative covering
density ϑT (S) of the shape S: Indeed, determining the translative covering density ϑT (S)
amounts to finding a (sparsest possible) point set P such that the translates {p+S | p ∈ P}
cover the plane, that is,

(∀x ∈ R2)(∃p ∈ P ) such that x ∈ p+ S.

(Here “+” is the Minkowski sum.) This is the same as requiring that

(∀x ∈ R2)(∃p ∈ P ) such that p ∈ x+ (−S),

that is, the point set P pierces all translates of the shape −S. Hence ϑT (S) = πT ({−S}) =
πT ({S}). Specifically, when S tiles the plane, the answer is simply πT ({S}) = 1/Area(S),
where Area(S) is the area of S. We note that apart from the cases when S tiles the plane,
the translative covering density ϑT (S) is known only for a few special shapes S such as a
disk or a regular n-gon [5, Ch. 1].

For the rest of this work (apart from the Conclusions) we limit ourselves to the case
when F consists of n  2 axis-parallel rectangles. First we consider the special case n = 2
(Theorem 4 in Section 2), then we consider the case of arbitrary n  2 (Theorem 6 in
Section 3).

1.1 Related Work

There is a rich literature on related but fundamentally different fronts dealing with piercing
finite collections. One broad direction is devoted to establishing combinatorial bounds on
the piercing number as a function of other parameters of the collection, most notably the
matching number [2, 9, 10, 12, 16, 20, 26, 27, 28, 29] or in relation to Helly’s theorem [11,
21, 23]; see also the survey articles [13, 24]. Another broad direction deals with the
problem of piercing a given set of shapes in the plane, for instance axis-parallel rectangles,
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by the minimum number of points and concentrates on devising algorithmic solutions,
ideally exact but frequently approximate; see for instance [7, 8]. Indeed, the problem of
computing the piercing number corresponds to the hitting set problem in a combinatorial
setting [18] and is known to be NP-hard even for the special case of axis-aligned unit
squares [17]. The theory of ε-nets for planar point sets and axis-parallel rectangular
ranges is yet another domain at the interface between algorithms and combinatorics in
this area [3, 32].

A third direction that appears to be most closely related to this paper is around the
problem of estimating the area of the largest empty axis-parallel rectangle amidst n points
in the unit square, namely, the quantity A(n) defined below. Given a set S of n points in
the unit square U = [0, 1]2, a rectangle R ⊆ U is empty if it contains no points of S in its
interior. Let A(S) be the maximum volume of an empty box contained in U (also known
as the dispersion of S), and let A(n) be the minimum value of A(S) over all sets S of
n points in U . It is known that 1.504  limn→∞ nA(n)  1.895; see also [1, 30, 34, 37].
The lower bound is a recent result of Bukh and Chao [6] and the upper bound is another
recent result of Kritzinger and Wiart [31]. The upper bound ϕ4/(ϕ2+1) = 1.8945 . . . can
be expressed in terms of the golden ratio ϕ = 1

2
(1 +

√
5); the connection will be evident

in Section 3.

1.2 Preliminaries

Throughout this paper, a shape is a Lebesgue-measurable compact subset of the plane.
Given a shape S, let Area(S) denote its area. We identify points in the plane with
the corresponding vectors from the origin. Given two shapes A,B ⊆ R2, we denote by
A+B = {a+ b | a ∈ A, b ∈ B} their Minkowski sum. A translate of a shape S by a point
(vector) p is the shape p+ S = {p+ s | s ∈ S}.

Next we introduce the (translative) piercing density πT (F) of a family F of shapes in
the plane. Then we define a shorthand notation for the special case when F consists of
two axis-parallel rectangles.

Definition 1 (F -piercing sets). Given a family F of shapes in the plane, we say that a
point set P is F-piercing if it intersects all translates of all the shapes in F , that is, if

(∀S ∈ F)(∀x ∈ R2)(∃p ∈ P ) such that p ∈ x+ S.

Definition 2 (Density of a point set). Given a point set P and a bounded domain D

with area Area(D), we define the density of P over D by δ(P,D) = |P∩D|
Area(D)

. Note that if
P ∩D is infinite, the density is ∞.

Given a (possibly infinite and unbounded) point set P , we define its asymptotic upper
and lower densities by

δ(P ) = lim sup
r→∞

δ(P,Dr) and δ(P ) = lim inf
r→∞

δ(P,Dr),

where Dr is the disk of radius r centered at the origin.
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Lattices. Given two linearly independent vectors u, v ∈ R2, the lattice Λ(u, v) ⊂ R2

generated by them is the set of lattice points i ·u+ j · v, i, j ∈ Z. For a lattice Λ, a funda-
mental parallelogram PΛ of Λ is any parallelogram whose vertices are lattice points and
that is empty of other points in Λ in interior and on its boundary. Any such parallelogram
is determined by pairs of adjacent lattice points on two adjacent lattice lines, and any two
such parallelograms have the same area. If Λ is a lattice, its density is 1/Area(PΛ). A
short introduction to lattices that suffices for our purposes can be found in [33, Chap. 1].

Definition 3 (Translative piercing density πT (F)). Fix a family F of shapes in the
plane. Then we define the (translative) piercing density by

πT (F) = inf
P is F-piercing

δ(P )

and the (translative) lattice piercing density πL(F) by

πL(F) = inf
P is an F-piercing lattice

δ(P ).

Pairs of Axis-Parallel Rectangles. Given real numbers w, h > 0, denote by Rw×h

the axis-parallel rectangle with width w and height h, i.e., Rw×h = [0, w] × [0, h]. Here
we introduce a shorthand notation for the case when F = {Ra×b, Rc×d} consists of two
axis-parallel rectangles. If a  c and b  d then clearly πT (F) = πL(F) = 1/(ab) as the
lattice with basis {(a, 0), (0, b)} that pierces all translates of the smaller rectangle also
pierces all translates of the larger rectangle. Otherwise we can assume that a  c and
b  d. Stretching horizontally by a factor of c and then vertically by a factor of b, we
have

πT (F) = c · πT ({Ra
c
×b, R1×d}) = bc · πT ({Ra

c
×1, R1× d

b
}),

and likewise for πL(F). Thus it suffices to determine

πT (w, h) := πT ({Rw×1, R1×h}) and πL(w, h) := πL({Rw×1, R1×h})

for w, h  1. We say that a point set (resp. a lattice) P is (w, h)-piercing if it is
{Rw×1, R1×h}-piercing. It is sometimes convenient to work with the reciprocals
AT (w, h) = 1/πT (w, h) (resp. AL(w, h) = 1/πL(w, h)) which correspond to the largest
possible per-point area of a (w, h)-piercing point set (resp. lattice). Note that AL(w, h) 
AT (w, h), since the sparsest (w, h)-piercing point set perhaps does not have to be a lattice.
Also, AT (w, h)  min{w, h}, as translates of the smaller rectangle tile the plane and each
translate needs to be pierced.

1.3 Our Results

The following theorem and its corollary summarize our results for piercing all translates
of two axis-parallel rectangles in R2.

Theorem 4. Let w, h  1.
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(i) When ⌊w⌋ ∕= ⌊h⌋ then AL(w, h) = AT (w, h) = min{w, h}.

(ii) When ⌊w⌋ = ⌊h⌋ = k  1, set w = k + x, h = k + y for x, y ∈ [0, 1). Then

max


k, k + xy − k − 1

k
(1− x)(1− y)


 AL(w, h)  AT (w, h)  k + xy.

The upper bound in part (ii) is strictly smaller than the easy bound min{w, h}, when-
ever x · y ∕= 0. The inequalities in (ii) become equalities in two different cases: When
k = 1 then AL(w, h) = AT (w, h) = k + xy and when min{x, y} = 0 (that is, when w or
h is an integer) then AL(w, h) = AT (w, h) = min{w, h} = k. The case of two congruent
rectangles (one placed vertically and one horizontally) corresponds to the case x = y and
yields a tight example for the approximation ratio in Corollary 5 below, as will be evident
from its proof.

Corollary 5. Given a set F = {R1, R2} of two axis-parallel rectangles, a
1.086-approximation of πT (F) can be computed in O(1) time. The algorithm computes
the basis of a lattice whose density is at most (5

2
−

√
2) · πT (F).

We then address the general case of piercing all translates of a finite collection of
axis-parallel rectangles.

Theorem 6. Given a family F = {R1, . . . , Rn} consisting of n axis-parallel rectangles,
a 1.895-approximation of πT (F) can be computed in O(n) time. The algorithm computes
the basis of a lattice whose density is at most (1 + 2

5

√
5) · πT (F).

As an application of Theorem 6, in Section 4 (Item 7) we improve an old result of
Fiat and Shamir [15] for a discrete version where each shape in the family F is a finite set
of cells of the infinite square grid. Further extensions and variants are discussed in that
section. Closing the approximation gaps in Theorems 4 and 6 remains as a challenging
problem.

2 Piercing Two Rectangles

In this section we prove Theorem 4 and deduce Corollary 5. The most involved part of the
proof is the upper bound AT (w, h)  k+ xy. The proof is an integral calculus argument,
which originates from a probabilistic argument.

Proof of Theorem 4. (i) Note that AT (w, h)  min{w, h}: Indeed, any (w, h)-piercing
point set has to pierce all the translates of the rectangle with smaller area and certain
copies of that smaller rectangle tile the plane. To complete the proof, it suffices to ex-
hibit a suitable (w, h)-piercing lattice that certifies the inequality AL(w, h)  min{w, h}.
Without loss of generality suppose that ⌊h⌋ < ⌊w⌋. We will show that the lattice Λ1 with
basis u1 = (1, h− 1), v1 = (1,−1) (see Fig. 1(a)) is (w, h)-piercing. Note that the area of
the fundamental parallelogram of the lattice is (h− 1) + 1 = h = min{w, h}, as required.
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We first show that Λ1 pierces all 1× h rectangles. Observe that the 1× h rectangles
centered at points in Λ1 tile the plane. Denote this tiling by T . Let now R be any 1× h
rectangle. Its center is contained in one of the rectangles in T , say σ. Then the center of
σ pierces R, as required.

We next show that Λ1 pierces all w × 1 rectangles. It suffices to show that Λ1 pierces
all w0 × 1 rectangles, where w0 = ⌊h⌋ + 1. Let R be any w0 × 1 rectangle. Assume that
R is not pierced by Λ1. Translate R downwards until it hits a point in Λ1, say q, and
then leftwards until it hits another point in Λ1, say p. Since R has height 1, we have
p = q − v1. Let R′ denote the resulting rectangle. Then p is the top left corner of R′.
Observe that since R was not pierced by Λ1, the top and the right side of R′ are not
incident to any other point in Λ1. Consider the lattice point s := p + u1 + (w0 − 1)v1;
note that x(s)− x(p) = w0 and y(s)− y(p) = h− 1− ⌊h⌋ ∈ [−1, 0), where x(·) and y(·)
denote the x- and y- coordinates, respectively. As such, s is contained in the right side of
R′, a contradiction. It follows that R is pierced by Λ1, as required.

1 w � 1

h
�

1

1

1 w � 1

h
�

1

1

1 w � 1

h
�

1

1

(a) (b) (c)

v1

u1

r

p p
v2

u2

v3

u3

p

q

s

q q

r

ss

Figure 1: (a) The lattice Λ1 for the case ⌊w⌋ ∕= ⌊h⌋. Here w = 3+ 1
4 , h = 2+ 1

2 . (b) The lattice
Λ2 with basis u2 = (1, k− 1), v2 = (1,−1) attesting that AL(k+ x, k+ y)  k. Here w = 3+ 1

2 ,
h = 3 + 1

4 . (c) The lattice Λ3 with basis u3 = (1, h − 1), v3 = ((w − 1)/k,−1) attesting that

AL(k + x, k + y)  k + xy − k−1
k (1− x)(1− y). Here w = 2 + 3

4 , h = 2 + 1
2 .

(ii) In order to prove the lower bound it suffices to exhibit suitable piercing lattices.
We show that the following lattices do the job: The lattice Λ2 with basis u2 = (1, k − 1),
v2 = (1,−1) (see Fig. 1(b)) attests that AL(k + x, k + y)  k. Note that the area of the
fundamental parallelogram of Λ2 is (k − 1) + 1 = k, as required. The lattice Λ3 with
basis u3 = (1, h− 1), v3 = ((w− 1)/k,−1) (see Fig. 1(c)) attests that AL(k + x, k + y) 
k+ xy− k−1

k
(1− x)(1− y). Note that the area of the fundamental parallelogram of Λ3 is

(w − 1)(h− 1)/k + 1 = (k + xy)− k−1
k
(1− x)(1− y), as required.

For both lattices, the proof proceeds by contradiction as in part (i). Assume that
there exists an unpierced rectangle of dimensions either w × 1 or 1 × h. Translate the
rectangle downwards until it hits a point in the lattice, say q, and then leftwards until it
hits another point in the lattice, say p. For Λ2, note that r := p + u2 lies on the right
edge of the 1 × h rectangle and that s := p + u2 + (k − 1)v2 lies on the top edge of the
w× 1 rectangle. Similarly, for Λ3 note that r := p+u3 is the top right corner of the 1×h
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rectangle and that s := p+ u3 + kv3 lies on the right edge of the w × 1 rectangle. Either
way, we get a contradiction.

Finally, we prove the upper bound, that is, AT (w, h)  k+xy. Recall that AT (w, h) 
min{w, h} = k + min{x, y}; we obtain the improved bound AT (w, h)  k + xy by an
integral calculus argument. Let P be a (w, h)-piercing point set, where w = k + x,
h = k + y with k ∈ N and x, y ∈ [0, 1). The desired upper bound on AT (w, h) will follow

from a lower bound on the density δ(P,Dr) =
|P∩Dr|
Area(Dr)

, where Dr is the disk of radius r
centered at the origin. Fix a radius r and write Pr = P ∩Dr.

Given a point a = (ax, ay) ∈ R2, we denote by Ra = [ax−w, ax]× [ay−h, ay] the w×h
rectangle whose top right corner is a. For brevity, we denote R = R(w,h) = [0, w]× [0, h].
We consider two sets of w × h rectangles: Those that intersect Dr and those that are
contained within Dr. We denote the sets of their top right corners by X = {a ∈ R2 |
Ra ∩Dr ∕= ∅} and W = {a ∈ R2 | Ra ⊆ Dr}, respectively. See Fig. 2(a).

Dr

Ra0

Ra

y

y

y

1� y

1� y

R

x x x1� x1� x

Z

W X

(a) (b)

a

a0

h

w

R

Figure 2: (a) The top right corners of rectangles intersecting Dr form the region X = Dr + R.
The top right corners of rectangles contained within Dr form the region W = Dr∩([w, 0]+Dr)∩
([0, h] + Dr) ∩ ([w, h] + Dr). Both regions are convex and their boundaries consist of circular
arcs and line segments. (b) A w × h rectangle R = R(w,h) (here k = 2, x = 1/3, and y = 2/3,
hence w = k + x = 7/3 and h = k + y = 8/3). Its zone Z = Z(w,h) is shaded.

Given a rectangle Ra, we define its zone Za to be a union of k2 closed rectangles with
sizes (1−x)×(1−y) each, arranged as in Fig. 2(b). Note that Area(Za) = k2(1−x)(1−y),
regardless of a ∈ R2. For brevity, let Z be the zone of R = R(w,h). Further, let Ia :=
|Pr ∩ Za| and Ja := |Pr ∩ (Ra \ Za)| be the number of points of Pr contained in Ra inside
its zone and outside of it, respectively. We make two claims about Ia and Ja.

Claim 1. If a ∈ W then (k + 1)Ia + kJa  k(k + 1).

Proof. Fix a ∈ W . Since Ra ⊆ Dr, we have P ∩ Ra = Pr ∩ Ra. The key observation is
that for any point p ∈ Ra \ Za, the set Ra \ {p} contains k pairwise disjoint rectangles of
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dimensions either all w × 1 or all 1 × h. We thus must have |Pr ∩ Ra|  k + 1, except
when Pr ∩Ra ⊆ Za, in which case we must have |Pr ∩Ra|  k.

Denote I = Ia and J = Ja. There are two simple cases:

1. J  1: Then I + J  k + 1, thus (k + 1)I + kJ  kI + kJ  k(k + 1).

2. J = 0: Then I  k, thus (k + 1)I + kJ  k(k + 1).

Claim 2. We have


X

Ia
Area(Za)

da =



X

Ja
Area(Ra \ Za)

da = |Pr|.

Proof. Fix p ∈ Pr. Note that the set Xp = {a ∈ R2 | p ∈ Za} of top right corners
of w × h rectangles whose zone contains p is a subset of X congruent to Za. Thus
Area(Xp) = Area(Za). Summing over p ∈ Pr we obtain



X

Ia
Area(Za)

da =


p∈Pr

Area(Xp)

Area(Za)
= |Pr|.

For Ja we proceed completely analogously.

Now we put the two claims together to get a lower bound on |Pr|.

Claim 3. We have |Pr|  Area(W )
k+xy

.

Proof. First, applying Claim 1 to all w × h rectangles Ra with a ∈ W and then invoking
W ⊆ X, we obtain

Area(W ) · k(k + 1) =



W

k(k + 1) da  (k + 1)



W

Ia da+ k



W

Ja da

 (k + 1)



X

Ia da+ k



X

Ja da.

By Claim 2 and straightforward algebra we further rewrite this as

(k + 1)



X

Ia da+ k



X

Ja da = |Pr| ·

(k + 1)Area(Z) + kArea(R \ Z)



= |Pr| · (kArea(R) + Area(Z)) = |Pr| · k(k + 1)(k + xy),

where the last equality follows from

kArea(R) + Area(Z) = k(k + x)(k + y) + k2(1− x)(1− y) = k(k + 1)(k + xy).

The bound |Pr|  Area(W )
k+xy

follows by rearranging.
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Consequently, by Claim 3 we have

δ(P,Dr) =
|Pr|

Area(Dr)
 Area(W )

Area(Dr)
· 1

k + xy
→r→∞

1

k + xy
,

where we used that Area(W )/Area(Dr) → 1 as r → ∞ (recall that w and h are fixed).
This in turn gives

πT (w, h) = inf
P


lim inf
r→∞

δ(P,Dr)

 1

k + xy
and AT (w, h) =

1

πT (w, h)
 k + xy

and completes the proof of Theorem 4.

For a visual illustration of our results, see Fig. 3.

1 2 3 4
aspect ratio w = h � 1

ar
ea

A
(w

,h
)
p
er

p
oi
nt triv. upper bound

upper bound
lower bound

5

(a) (b)

Figure 3: (a) We plot AT (w, h) when ⌊w⌋ ∕= ⌊h⌋ and/or when ⌊w⌋ = ⌊h⌋ = 1 (orange). When
⌊w⌋ = ⌊h⌋  2 we plot the two lower bounds from Theorem 4, Item ii (blue). As k → ∞, the
two lower bounds coincide for x + y = 1. (b) A section corresponding to w = h. We plot the
lower bounds (blue) and the upper bound (red) on AT (w,w) from Theorem 4, Item ii and the
trivial upper bound AT (w,w)  w (red, dashed).

Proof of Corollary 5. The algorithm computes ⌊w⌋, ⌊h⌋, and possibly the bases of the
lattices Λ2 and Λ3; in the latter case it outputs the best of the two. This takes O(1) time.
It remains to verify that

sup
k2, k∈N
x,y∈[0,1)

k + xy

max

k, k + xy − k−1

k
(1− x)(1− y)

 =
5− 2

√
2

2
< 1.086.

A computer algebra system (such as Mathematica) shows that the supremum is attained
when k = 2 and when x, y are both equal to a value that makes the two expressions inside
the max{} operator equal. This happens for x = y =

√
2− 1 and the corresponding value

is (5− 2
√
2)/2 < 1.086 as claimed.
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3 Piercing n Rectangles

In this section we prove Theorem 6. Let ϕ = 1
2
(1 +

√
5) be the golden ratio. In Lemma 8

we show that a lattice Λϕ with basis u = (1,ϕ), v = (ϕ,−1) pierces all rectangles with
area ϕ4 or larger, irrespective of their aspect ratio. See Fig. 4 (a). Theorem 6 then follows
easily by rescaling Λϕ to match the smallest-area rectangle from the family.

'

1

'

'3
'2

1

'4

1/'
'5

u

v
R

p

q

r

s

�x

�y

(a) (b)

Figure 4: (a) Empty rectangles amidst Λϕ. The upper (resp., lower) branch of the funnel,
depicted in red dotted lines, is the convex hull boundary of the lattice points in the first (resp.,
fourth) quadrant. (b) A generic empty rectangle R.

Recall the well-known sequence of Fibonacci numbers defined by the following recur-
rence:

Fi = Fi−1 + Fi−2, for i  3 and F1 = F2 = 1. (1)

The first few terms in the sequence are listed in Table 1 for easy reference; here it is
convenient to extend this sequence by F−1 = 1 and F0 = 0. We first list several properties
of Fibonacci numbers.

Table 1: The first few Fibonacci numbers.

m −1 0 1 2 3 4 5 6 7 8 9 10
Fm 1 0 1 1 2 3 5 8 13 21 34 55

Lemma 7. The following identities hold for every integer m  1:

1. Fmϕ+ Fm−1 = ϕm,

2. Fmϕ− Fm+1 = (−1)m+1ϕ−m,

3. F2m+1F2m−1 − (F2m)
2 = 1.

Proof. This is straightforward to verify, for instance using the well-known formula

Fm =
1√
5


ϕm − ϕ−m


.
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Next we prove a lemma that establishes a key property of the lattice Λϕ. We say that
a rectangle is empty if its interior does not intersect Λϕ.

Lemma 8. The area of every empty rectangle amidst the points in Λϕ is at most ϕ4.

Proof. Let R be any maximal axis-parallel empty rectangle — with respect to inclusion.
Note that since ϕ is irrational, R is bounded. Denote by p, q, r, s the four lattice points
that bound R from the left, below, right and top, respectively. Refer to Fig. 4 (b). Since R
is empty, pqrs ⊆ R is an empty parallelogram with no other points on its boundary; i.e.,
ps and qr are contained in two adjacent parallel lattice lines. Then pqrs is a fundamental
parallelogram of the lattice; as such, its area is ϕ2+1. Clearly, we may assume p = (0, 0).
Further, we may assume q = cu+dv, s = au+bv, where a, b, c, d are nonnegative integers:
Indeed, since Λϕ is invariant under rotation by 90◦, we can assume that the width of R is
at least as large as its height. Points q, s thus lie on the boundary of the “funnel” within
the angle formed by the vectors u, v; see Fig. 4 (a). The coordinates of points s, q, r and
the area of the parallelogram pqrs are:

s = (a+ bϕ, aϕ− b),

q = (c+ dϕ, cϕ− d),

r = ((a+ c) + (b+ d)ϕ, (a+ c)ϕ,−(b+ d)),

Area(pqrs) = |(a+ bϕ)(cϕ− d)− (aϕ− b)(c+ dϕ)| = |(ad− bc)|(ϕ2 + 1).

Since s lies above the horizontal line through p and since q lies below it, we have
aϕ − b > 0 and cϕ − d < 0. This implies a, b, c, d > 0 and rewrites as b

a
< ϕ < d

c
, so

in particular ad > bc. Together with the expression for Area(pqrs) = ϕ2 + 1 this yields
|ad− bc| = ad− bc = 1. To summarize, we have

b

a
< ϕ <

d

c
and ad− bc = 1. (2)

The relation ad − bc = 1 implies that gcd(a, b) = gcd(c, d) = 1. By a result from the
theory of continued fractions [22, Ch. 10], relation (2) implies that the fractions b/a and
d/c are consecutive convergents of ϕ. Moreover, it is well known that the convergents of
ϕ are ratios of consecutive Fibonacci numbers:

F0

F−1

<
F2

F1

<
F4

F3

<
F6

F5

<
F8

F7

< · · · < ϕ < · · · < F7

F6

<
F5

F4

<
F3

F2

<
F1

F0

= ∞,

0

1
<

1

1
<

3

2
<

8

5
<

21

13
< · · · < ϕ < · · · < 13

8
<

5

3
<

2

1
<

1

0
= ∞.

Thus we can assume that b
a
= F2k

F2k−1
. There are two cases:

Case 1: d
c
= F2k−1

F2k−2
, and thus F2k

F2k−1
< ϕ < F2k−1

F2k−2
.

Case 2: d
c
= F2k+1

F2k
, and thus F2k

F2k−1
< ϕ < F2k+1

F2k
.

(Note that in both cases we indeed have ad−bc = 1 by Lemma 7, Item 3.) We compute
Area(R) using Items 1 and 2 of Lemma 7. Let ∆x and ∆y denote the side-lengths of R.
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Case 1: We have

∆x = (a+ c) + (b+ d)ϕ = (F2k−1 + F2k−2) + (F2k + F2k−1)ϕ

= F2k + F2k+1ϕ = ϕ2k+1,

∆y = (a− c)ϕ− (b− d) = (F2k−1 − F2k−2)ϕ− (F2k − F2k−1)

= F2k−3ϕ− F2k−2 = ϕ−(2k−3),

thus Area(R) = ∆x ·∆y = ϕ2k+1ϕ−(2k−3) = ϕ4, as required.

Case 2: Similarly, we have

∆x = (a+ c) + (b+ d)ϕ = (F2k−1 + F2k) + (F2k + F2k+1)ϕ

= F2k+1 + F2k+2ϕ = ϕ2k+2,

∆y = (a− c)ϕ− (b− d) = (F2k−1 − F2k)ϕ− (F2k − F2k+1)

= −F2k−2ϕ+ F2k−1 = ϕ−(2k−2),

thus Area(R) = ∆x ·∆y = ϕ2k+2ϕ−(2k−2) = ϕ4, as required.

With Lemma 8 at hand, the proof of Theorem 6 is straightforward.

Proof of Theorem 6. Let R ∈ F be the smallest-area rectangle among those in F . By
Lemma 8, the lattice Λϕ pierces all axis-parallel rectangles with area at least ϕ4. Thus

the rescaled lattice Λ′
ϕ =


Area(R)/ϕ4 · Λϕ pierces all axis-parallel rectangles with area

at least Area(R). In particular, it pierces all rectangles in F . Since the fundamental
parallelogram of Λϕ has area ϕ2 +1, the fundamental parallelogram of Λ′

ϕ has area (ϕ2 +

1)/ϕ4 · Area(R) and gives an approximation factor ϕ4/(ϕ2 + 1) = 1 + 2
5

√
5 < 1.895 as

claimed. Note that computing the smallest-area rectangle and the rescaling only take
O(n) time.

Remarks. We have learned from the recent article of Kritzinger and Wiart [31] that a
rescaled version of the lattice Λϕ was considered several years ago by Thomas Lachmann
(unpublished result) as a candidate for an upper bound on the minimum dispersion A(n)
of an n-point set in a unit square. Yet another lattice resembling Λϕ was studied in the
same context by Ismăilescu [25].

It is easy to check that the lattice Λϕ yields the upper bound

lim inf
n→∞

nA(n)  ϕ4/(ϕ2 + 1),

i.e., matching exactly the dispersion bound obtained by Kritzinger and Wiart using a
suitable modification of the so-called Fibonacci lattice [15]. It is worth noting that: (i) the
lattice Λϕ yields the above dispersion result with a cleaner and shorter proof; (ii) the
Fibonacci lattice as well as its modification lead to this bound only by a limiting process;
and perhaps more importantly, (iii) the upper bound in Lemma 8 on the maximum
rectangle area amidst points in this lattice holds universally across the entire plane and
not only inside a bounding box with n points (i.e., one does not need to worry about
rectangles supported by the bounding box boundary).
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4 Conclusion

We list several open questions.

1. (Computational complexity.) Given a family F of n axis-parallel rectangles, what
is the computational complexity of determining the optimal density πT (F) of a
piercing set for all translates of all members in F? (For the decision problem: given
a threshold τ , is there a piercing set whose density is at most τ?) Is the problem
algorithmically solvable? Is there a polynomial-time algorithm? And how about the
complexity of determining the optimal density πL(F) of a piercing lattice for F?

2. (Exact answer for two rectangles.) For two rectangles, what is the actual value
of πT (w, h) (or its reciprocal AT (w, h)) when ⌊w⌋ = ⌊h⌋  2? Is it the same as
πL(w, h)?

3. (Other shapes.) How about pairs of different shapes such as triangles?

4. (Congruent copies.) How about requiring that the point set pierces all congruent
copies of a set of shapes, not only translates? When F consists of a single square
(or rectangle), a suitable triangular grid has been shown to give an upper bound on
the density [4].

5. (Three dimensions.) Consider the analogous problem for |F| = 2 boxes in R3.
Stretching along the coordinate axis yields a non-trivial case {(a, b, 1), (1, 1, c)}
where a, b, c  1. In this case, what is the largest possible per-point area AT (a, b, c)?
We note that the trivial upper bound AT (a, b, c)  min{ab, c} can be matched in
two “easy” cases:

(i) When c  ⌈a⌉ ·⌈b⌉ then “piercing 1×1× c is free”: Briefly, in the plane z = 0 we
use a lattice with basis {(a, 0), (0, b)} and in the planes z ∈ Z we consider ⌈a⌉ · ⌈b⌉
“integer horizontal offsets” (u, v), u = 0, . . . , ⌈a⌉ − 1, v = 0, . . . , ⌈b⌉ − 1 and use
them periodically (in any order).

(ii) When c  ⌊a⌋ · ⌊b⌋ then “piercing a × b × 1 is free”: Briefly, along the line
x = y = 0 we put points at k · ⌊a⌋ · ⌊b⌋ for k ∈ Z. For other vertical lines through
integer points we use ⌊a⌋ · ⌊b⌋ “integer vertical offsets” such that every ⌊a⌋ · ⌊b⌋
horizontal grid-rectangle contains all offsets.

Together, the cases (i) and (ii) cover the case when a ∈ Z, b ∈ Z, c ∈ R and the
case when ab and c “differ by a lot”. Another easy case is a = 1, when the planar
bounds apply (for two rectangles with sizes 1 × b and c × 1). The general case
F = {(a, b, 1), (1, 1, c)} remains open.

6. (Higher dimensions.) Consider the problem in higher dimensions from the algo-
rithmic standpoint. Given a finite collection of axis-parallel boxes in Rd, what
approximation for the piercing density can be obtained? On a related note, there
exist lattices in Rd for which the maximum volume of an empty axis-parallel box is
bounded from above [36].
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7. (Discrete version.) Consider a discrete version where: (i) each shape in the family
F consists of cells of the infinite square grid; (ii) we consider translates by integer
vectors only; and (iii) instead of piercing with a point set we pierce with a set of
grid cells. What can be said about this (lowest possible) discrete hitting density
πdisc
T (F) or its reciprocal Adisc

T (F)?

As one example, we note that Theorems 4 and 6 can be adapted to the discrete set-
ting in a straightforward way: When F consists of two rectangles Ra×b, Rb×a, where
b = k · a+ r (with a, b, k, r ∈ N, k  1 and r < a), the adapted Theorem 4 yields an
upper bound Adisc

T ({Ra×b, Rb×a})  k · a2 + r2 that solves the puzzle mentioned in
the introduction. Furthermore, when F consists of all rectangles of area at least K,
then selecting the grid cells that contain a point of the rescaled lattice Λ′

ϕ gives a set

of cells with density (1 + 2
5

√
5)/K that is F -piercing over the whole plane. In par-

ticular, this implies that for any given rectangular box M there exists an F -piercing
set with density (1+ 2

5

√
5)/K. Thus, in the language of Fiat and Shamir [15], there

exists a probing strategy that locates a battleship of K squares in a rectangular sea
of M squares in at most 1.895M/K probes. This is a substantial improvement over
the 3.065M/K bound from [15].

As another example, when F consists of two L-trominoes (polyominoes of order 3,
see for instance [19]) that are centrally symmetric to each other, one can show that
Adisc

T (F) = 3. In contrast, when F consists of two or more L-trominoes, one of which
is obtained from another by a rotation of 90◦, one can show that Adisc

T (F) = 2.

8. (Disconnected shapes.) What can be said about disconnected shapes? In the easiest
variant each shape is a set of integer points on the line (or in Zd) and we consider
translates by integer vectors only. The piercing density and the lattice piercing
densities may differ in this case; for instance, when S = {0, 2} ⊆ Z, these densities
are 1/2 and 1, respectively. In view of the connection to covering mentioned in
Section 1, it is worth mentioning that the problem of tiling the infinite integer grid
with finite clusters is only partially solved [35]; however, covering is generally easier
than tiling.
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