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Abstract

The unraveled ball of radius r centered at a vertex v in a weighted graph G
is the ball of radius r centered at v in the universal cover of G. We present a
general bound on the maximum spectral radius of unraveled balls of fixed radius in
a weighted graph.

The weighted degree of a vertex in a weighted graph is the sum of weights of
edges incident to the vertex. A weighted graph is called regular if the weighted
degrees of its vertices are the same. Using the result on unraveled balls, we prove a
variation of the Alon–Boppana theorem for regular weighted graphs.

Mathematics Subject Classifications: 05C22

1 Introduction

In 1993, Freidmen [1] refined the celebrated Alon–Boppana theorem [5]. He proved that
for every d-regular graph G with diameter 2r, the second largest eigenvalue of adjacency
matrix of G, denoted by λ2(G), satisfies

λ2(G) 󰃍 2

󰀕
1− π2

r2
+O(r4)

󰀖√
d− 1.

In 2005, Hoory [2, Theorem 1] studied the spectral radius of the universal cover of a
non-regular graph. As a corollary he proved a variation of the Alon–Boppana theorem
for graphs with r-robust average degree at least d, which was later improved by Jiang [3].
For a graph G, the ball of radius r 󰃍 0 centered at v ∈ V (G), denoted by G(v, r), is
the induced subgraph of G on the vertices within distance r apart from v. We say that
a graph has r-robust average degree at least d if for the induced subgraph obtained by
deleting any ball or radius r, its average degree is at least d.
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Theorem 1. [3, Theorem 8] Let d 󰃍 1 be a real number and let r be a positive integer.
If a graph G has an r-robust average degree at least d, then

λ2(G)

λ1(Pr)
󰃍

√
d− 1.

Here λ1(Pr) = 2 cos π
r+1

stands for the spectral radius of the path Pr with r vertices.

To prove Theorem 1, Jiang studied the maximum spectral radius of unraveled balls of
a graph G, which are balls in the universal cover of G; see Definition 2. In 2022, Wang
and Zhang applied the machinery developed in [3] and proved an analog of Theorem 1
for the normalized Laplacian of a graph [7, Theorem 1.6], improving the bounds from [8];
see also [6]. To show this result, they studied the maximum spectral radius of unraveled
balls of a weighted graph.

Motivated by the works of Jiang and Wang–Zhang, we develop further their ideas and
prove a generalization of Wang and Zhang’s result on the spectral radius of unraveled balls
for a weighted graph; see Theorem 6. This implies an analog of Theorem 1 for regular
weighted graphs, as shown in Theorem 4.

A weighted graph is a graph without parallel edges and loops, in which every edge is
assigned to a positive number. Formally, a weighted graph G is a triple (V (G), E(G), wG),
where V (G) and E(G) are the vertex and edge sets of the graph G, respectively, and
wG : E(G) → R+ is the weight function, with R+ being the set of positive real numbers.
For sake of brevity, we write wab and wba for the weight wG(ab) of an edge ab ∈ E(G). The
weighted degree of a vertex v, denoted by wv, is the sum of the weights of the edges incident
to v, that is, wv =

󰁓
vu∈E(G) wvu. A weighted graph is called w-regular if the weighted

degree of every vertex equals w. Throughout the paper, we regularly write “a weighted
graph with minimal degree at least 2”, which means that each vertex is incident to at least
2 edges (rather than the weighted degree of each vertex is at least 2).

A non-backtracking walk of length n in a weighted graph is a sequence of vertices
(v0, . . . , vn) such that any two consecutive are adjacent and vi ∕= vi+2 for all i ∈ {0, . . . , n−
2}. Denote by Wi(G) the set of non-backtracking walks on a graph G of length i.

Definition 2. Given a weighted graph G, we define the weighted tree G̃(v, r) as follows.
Its vertex set is the set of all non-backtracking walks of length at most r that start at
v, where two vertices are adjacent if one is a simple extension of the other. Specifically,
vertices (v0, . . . , vn) and (u0, . . . , um) with n < m are adjacent if and only if m = n + 1
and vi = ui for all i ∈ {0, . . . , n}. We say this edge of G̃(v, r) is extended by the edge
um−1um in the graph G. Two vertices of the same length are never adjacent. We assign
a weight to each edge in G̃(v, r) equal to the weight of its extending edge in G.

In other words, the graph G̃(v, r), which we call an unraveled ball, is isomorphic to a
ball of radius r in the universal cover G̃ of G. Slightly abusing notation, in the current
paper, we say G̃(v, r) is an induced subgraph of G̃

It is worth mentioning that we may look at the setW1(G) as the set of directed edges of
a graph G, that is, for any edge xy ∈ E(G), there are two corresponding non-backtracking
edges (x, y) and (y, x) in W1(G). So, we write w(x,y) for wxy if xy ∈ E(G).
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The weighted adjacency matrix AG of a weighted graph G is a matrix whose rows and
columns correspond to vertices of the graph G. The elements of the matrix AG are defined
in the following way

AGx,y =

󰀫
wxy if xy ∈ E(G),

0 otherwise.

Clearly, the matrix AG is symmetric and has zeros on its main diagonal.
Let λi(G) be the i-th largest eigenvalue of G. The central result of the paper is

presented below.

Theorem 3. Let G be a w-regular weighted graph with minimum degree at least 2. Then
for any positive integer r, there is a vertex v such that

λ1(G̃(v, r))

λ1(Pr+1)
󰃍

󰁓
e∈W1(G) w

3/2
e (w − we)

1/2

w|V (G)| .

This theorem generalizes the main result from the paper of Jiang [3, Theorem 1]; see
also the proof of Lemma 19 in [4].

We define the average combinatorial degree of a weighted graph G as 2|E(G)|
|V (G)| . As a

corollary of Theorem 3, we obtain a variation of the Alon–Boppana theorem.

Theorem 4. Let G be a w-regular weighted graph with combinatorial degree d 󰃍 39 and
let r be any positive integer. Assume that for every vertex v there is an induced subgraph
of G \G(v, r + 1) with minimum weighted degree at least 2w

√
d− 1/d. Then we have

λ2(G)

λ1(Pr+1)
󰃍 w

√
d− 1

d
.

A slightly more involved argument allows to show that Theorem 4 holds for d 󰃍
7.1980 . . . ; see Remark 13.

The rest of the paper is organized as follows. Section 2 presents the proof of Theorem 6,
a generalization of Theorem 3 for weighted graphs that are not necessary w-regular. In
Section 3, we utilize Theorem 6 to derive Corollary 8, a general form of Theorem 3 for
w-regular graphs. Within the same section, we apply Corollary 8 to show Corollary 9, a
slightly weaker form of Theorem 3. The latter corollary serves as a key ingredient in the
proof of Theorem 4 presented in Section 4.

2 Bounding the maximum spectral radius of an unraveled ball

Definition 5. Given a weighted graph G with minimum degree at least 2, a stationary
Markov chain (Ei)

∞
i=1 on W1(G) is assigned to G if its transition matrix

P = (pe1,e2)e1,e2∈W1(G) satisfies

pe1,e2 = Pr
󰀃
Ei = e2|Ei−1 = e1

󰀄
= 0 if e2 does not prolong e1.

We say that e2 ∈ W1(G) prolongs e1 ∈ W1(G) if there are three distinct vertices x, y, z ∈
V (G) such that e1 = (z, y) and e2 = (y, x). For the sake of brevity, we write e1 → e2 if e2
prolongs e1.
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If the minimum degree of a weighted (connected) graph G is at least 2, then a station-
ary Markov chain assigned to G has no absorbing states and its stationary distribution
π = (πe)e∈W1(G) is well defined. Since the Markov chain is stationary, we have

Pr
󰀃
Ei = e

󰀄
= πe for any positive integer i.

Since the ending vertex of Ei and the starting vertex of Ei+1 are the same, we can
concatenate E1, . . . , Ei to form a random non-backtracking walk of length i, denoted by
the random variables Yi = (X0, . . . , Xi).

With these definitions, we can state and prove the following general theorem.

Theorem 6. Let G be a weighted graph with minimum degree at least 2, let (Ei)
+∞
i=1 be a

stationary Markov chain assigned to G with transition matrix P = (pe1,e2)e1,e2∈W1(G) and
stationary distribution π = (πe)e∈W1(G). For any function g : W1(G) → R and a positive
integer r, there is a vertex v of G such that

λ1(G̃(v, r))

λ1(Pr+1)
󰃍

󰀓 󰁛

e1,e2∈W1(G)
e1→e2

we2g(e1)g(e2)πe1

√
pe1,e2

󰀔󰀓 󰁛

e∈W1(G)

g2(e)πe

󰀔−1

.

Proof. Let us begin by defining the weighted forest FG as the disjoint union of all graphs
G̃(v, r), where v ∈ V (G), that is,

FG =
󰁞

v∈V (G)

G̃(v, r).

Thus, the vertex set of FG is
󰁖r+1

i=0 Wi(G). Since FG is a union of disjoint trees, we have

λ1(FG) = max
󰀋
λ1(G̃(v, r)) : v ∈ V (G)

󰀌
.

Therefore, it is sufficient to show that

λ1(FG)

λ1(Pr+1)
󰃍

󰀓 󰁛

e1,e2∈W1(G)
e1→e2

we2g(e1)g(e2)πe1

√
pe1,e2

󰀔󰀓 󰁛

e∈W1(G)

g2(e)πe

󰀔−1

.

Denote by (x1, . . . , xr+1) ∈ Rr+1 the eigenvector of the spectral radius λ1(Pr+1) of the
path Pr+1 of length r. Then the Rayleigh principle yields

r+1󰁛

i=2

2xi−1xi = λ1(Pr+1)
r+1󰁛

i=1

x2
i . (1)

Define a vector f ∈ RV (F ) by setting, for ω = (v0, v1, . . . , vi) ∈ Wi(G) and ω′ =
(vi−1, vi) ∈ W1(G),

f(ω) :=

󰀫
0, if i = 0,

xig
󰀃
ω′󰀄󰁳Pr(Yi = ω), otherwise.
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Therefore, we have

〈f, f〉 =
r+1󰁛

i=1

󰁛

ω∈Wi(G)

f(ω)2

=
r+1󰁛

i=1

x2
i

󰁛

ω∈Wi(G)

g2(ω′) Pr(Yi = ω)

=
r+1󰁛

i=1

x2
i

󰁛

ω′∈W1(G)

g2(ω′) Pr(Ei = ω′)

=
r+1󰁛

i=1

x2
i

󰁛

e∈W1(G)

g2(e)πe. (2)

Denoting ω− = (v0, . . . , vi−1) and ω′′ = (vi−2, vi−1), we obtain

〈f, AFG
f〉 =

r+1󰁛

i=2

󰁛

ω∈Wi(G)

2xi−1xiwω−f(ω)f(ω−)

=
r+1󰁛

i=2

2xi−1xi

󰁛

ω∈Wi(G)

wω′g(ω′′)g(ω′)
󰁳

Pr(Yi−1 = ω−) Pr(Yi = ω).

For the Markov chain, we have

Pr(Yi = ω)

Pr(Yi−1 = ω−)
= Pr(Ei = ω′|Ei−1 = ω′′) = pω′′,ω′ .

Substituting this in the equation for 〈f, AFG
f〉, we get

〈f, AFG
f〉 =

r+1󰁛

i=2

2xi−1xi

󰁛

ω∈Wi(G)

wω′g(ω′′)g(ω′)
√
pω′′,ω′

Pr(Yi = ω)

=
r+1󰁛

i=2

2xi−1xi

󰁛

e1,e2∈W1(G)
e1→e2

we2g(e1)g(e2)√
pe1,e2

Pr
󰀃
Ei = e2, Ei−1 = e1

󰀄
.

Since Pr
󰀃
Ei = e2, Ei−1 = e1

󰀄
= Pr

󰀃
Ei = e2|Ei−1 = e1

󰀄
Pr

󰀃
Ei−1 = e1

󰀄
= pe1,e2πe1 , we

easily conclude that

〈f, AFG
f〉 =

r+1󰁛

i=2

2xi−1xi

󰁛

e1,e2∈W1(G)
e1→e2

we2g(e1)g(e2)πe1

√
pe1,e2 .

Combining this equality with (1), (2), and the Rayleigh principle
λ1(FG) 󰃍 〈f, AFG

f〉/〈f, f〉, we finish the proof.
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Remark 7. Recall that G̃(v, r) is a ball of radius r centered at v in the universal cover G̃
of G. So by the monotonicity of spectral radius, λ1(G̃) 󰃍 λ1(G̃(v, r)). Since λ1(Pr+1) → 2
as r → +∞, under the assumptions of Theorem 6, we obtain

λ1(G̃) 󰃍 2
󰀓 󰁛

e1,e2∈W1(G)
e1→e2

we2g(e1)g(e2)πe1

√
pe1,e2

󰀔󰀓 󰁛

e∈W1(G)

g2(e)πe

󰀔−1

.

3 Proofs of corollaries on regular weighted graphs

To prove special cases of Theorem 6, the authors of [3, Theorem 1] and [7, Theorem 1.5]
consider the following stationary Markov chain on W1(G) such that its stationary distri-
bution can be easily found. Namely, they assumed that given the stage Ei = (vi−1, vi),
the stage Ei+1 is chosen among {(vi, u) ∈ W1(G) : u ∕= vi+2} uniformly at random. Hence
the transition matrix P = (pe1,e2)e1,e2∈W1(G) of this Markov chain is defined by

p(x,y),(z,t) =

󰀻
󰀿

󰀽

1

deg y − 1
if y = z and t ∕= x;

0 otherwise.

One can easily verify that the distribution π = (πe)e∈W1(G) with πe =
1

|W1(G)| is stationary.
In the next general corollary of Theorem 6, we use another stationary Markov chain

assigned to a regular weighted graph such that its stationary distribution be explicitly
found.

Corollary 8. Let G be a w-regular weighted graph with minimum degree at least 2. For
any function g : W1(G) → R and any positive integer r, there is a vertex v of G such that

λ1(G̃(v, r))

λ1(Pr+1)
󰃍

󰀓 󰁛

e1,e2∈W1(G)
e1→e2

g(e1)g(e2)we1w
3/2
e2

(w − we1)
1/2

󰀔󰀓 󰁛

e∈W1(G)

g2(e)we(w − we)
󰀔−1

.

Particularly, choosing g(e) = (w − we)
−1/2, we have

λ1(G̃(v, r))

λ1(Pr+1)
󰃍

󰁓
e∈W1(G) w

3/2
e (w − we)

1/2

w|V (G)| .

Proof. Consider a stationary Markov chain assigned to G defined by its transition matrix
P = (pe1,e2)e1,e2∈W1(G) as follows

pe1,e2 =

󰀻
󰀿

󰀽

we2

w − we1

if e1 → e2;

0 otherwise.

Using π = πP for the stationary distribution π = (πe)e∈W1(G), one can easily verify that

πe =
we(w − we)

S
, where S =

󰁛

e∈W1(G)

we(w − we).
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Applying Theorem 6 to this Markov chain, we easily obtain the first desired inequality.
Assuming that g(e) = (w − we)

−1/2, we have

λ1(G̃(v, r))

λ1(Pr+1)
󰃍

󰀓 󰁛

e1,e2∈W1(G)
e1→e2

we1w
3/2
e2

(w − we2)
−1/2

󰀔󰀓 󰁛

e∈W1(G)

we

󰀔−1

. (3)

The multipliers of the right-hand side of (3) can be easily found

󰁛

e∈W1(G)

we =w|V (G)|.

󰁛

e1,e2∈W1(G)
e1→e2

we1w
3/2
e2

(w − we2)
−1/2 =

󰁛

e2∈W1(G)

w3/2
e2

(w − we2)
−1/2

󰁛

e1:e1→e2

we1

=
󰁛

e∈W1(G)

w3/2
e (w − we)

1/2.

Substituting these equalities in (3), we obtain the second desired inequality.

Corollary 9. Let G be a w-regular weighted graph with minimum degree at least 2. As-
sume that its average combinatorial degree d satisfies 2

√
d− 1/d 󰃑 µ, where µ = 3−

√
3

4

(that is, d 󰃍 38.7620 . . . ). Then, for any positive integer r, there exists a vertex v of G
such that

λ1(G̃(v, r))

λ1(Pr+1)
󰃍 w

√
d− 1

d
.

Proof. There are two possible cases.
Case 1. There is e = (v, u) ∈ W1(G) such that we 󰃍 µw. Define a vector f ′ ∈ RV (G̃(v,r))

by setting

f ′(x) =

󰀫
1 if x ∈ {(v), (v, u)};
0 otherwise.

Using the Rayleigh principle, we have

λ1(G̃(v, r)) 󰃍
〈f ′, AG̃(v,r)f

′〉
〈f ′, f ′〉 = we 󰃍 µw,

which finishes the proof in this case as 2
√
d− 1/d 󰃑 µ and λ1(Pr+1) < 2.

Case 2. For any vertex e ∈ W1(G), we have we 󰃑 µw. By a straightforward compu-
tation, we obtain that the function x 󰀁→ x3/2(w − x)1/2 is convex on the interval [0, µw]

and concave on [µw,w], where µ = 3−
√
3

4
. By Jensen’s inequality, we obtain

󰁛

e∈W1(G)

w3/2
e (w − we)

1/2 󰃍 |W1(G)|
󰀓w
d

󰀔3/2󰀓
w − w

d

󰀔1/2

= |V (G)|w
2
√
d− 1

d
.

Substituting this inequality in the second inequality of Corollary 8, we finish the proof.
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x

y

t0w x0wµw

Figure 1: Graphs of g and ℓt (dashed).

Remark 10. Slightly modifying the argument, we can prove Corollary 9 for d 󰃍 1/t0 =
7.1980 . . . , where t0 is defined below.

Let g : [0, w] → R be a function given by g(y) = y3/2(w − y)1/2. For any t ∈ (0, 1), let
ℓt : R → R be an affine function defining the tangent line of g at the point tw ∈ (0, w);
see Figure 1. Consider the following system of equations and inequalities

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

ℓt(xw) = g(xw);

x =
2
√

1/t−1

1/t
;

0 < t < µ = 3−
√
3

4
< x,

which has only one solution: x = x0 = 0.6917 . . . , t = t0 = 0.1389 . . . ; see Figure 1.
First, we may assume that

we 󰃑 wx0 =
2w

󰁳
1/t0 − 1

1/t0

for all e ∈ W1(G); otherwise, we use the proof of the first case in Corollary 9.
Next, consider the function h : [0, x0w] → R defined by

h(x) =

󰀫
g(x) if 0 󰃑 x 󰃑 t0w;

ℓt0(x) if t0w < x 󰃑 x0w.

Recall that the function g is convex of [0, µw]. Since 0 < t0 < µ = 3−
√
3

4
and ℓt0 defines

the tangent line for the graph of g at the point t0w, we conclude that the function h
is convex on [0, x0w] and g(y) 󰃍 h(y) for any 0 󰃑 y 󰃑 x0w. Therefore, we can apply
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Jensen’s inequality for h and obtain the desired inequality

󰁛

e∈W1(G)

w3/2
e (w − we)

1/2 =
󰁛

e∈W1(G)

g(we)

󰃍
󰁛

e∈W1(G)

h(we)

󰃍|W1(G)|h
󰀃w
d

󰀄

=|W1(G)|g
󰀃w
d

󰀄
= |V (G)|w

2
√
d− 1

d
.

(Here we use that d 󰃍 1/t0, and thus h(w
d
) = g(w

d
) by the definition of h.) Substituting

this inequality in the second inequality of Corollary 8, we finish the proof.

Remark 11. Using Corollaries 8 and 9, we can prove lower bounds for the spectral radius
for the universal cover G̃ of a w-regular weighted graph G as it is shown in Remark 7.

4 Proof of Theorem 4

The following lemma connects the spectral radii of balls G(v, r) and G̃(v, r).

Lemma 12. [7, Lemma 4.2] For any vertex v of a graph H and any positive integer r,
we have

λ1(H(v, r)) 󰃍 λ1(H̃(v, r)).

Suppose that G has a vertex of degree 1, that is, incident to one edge. Then there is
a connected component of G that is a path of length 1 with weight of its only edge equal
to w. Clearly, this component has eigenvalue w, which is large enough to finish the proof
in this case. Therefore, we can assume that there are no vertices of degree 1 in G.

Lemma 12 and Corollary 9 yield that there exists a vertex v ∈ G such that

λ1(G(v, r)) 󰃍 λ1(G̃(v, r)) 󰃍 λ1(Pr+1)
w
√
d− 1

d
.

Denote by f1 ∈ RV (G) the vector that coincides on V (G(v, r)) with the eigenvector of the
spectral radius of G(v, r) and is zero on V (G) \V (G(v, r)). By the Rayleigh principle, we
have

λ1(G(v, r)) =
〈f1, AGf1〉
〈f1, f1〉

.

Let G′ be an induced subgraph of G \ G(v, r + 1) with minimum weighted degree at
least 2w

√
d− 1/d. Define a vector f2 ∈ RV (G) by setting

f2(x) =

󰀫
1 if x ∈ V (G′);

0 otherwise.
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Hence by the Rayleigh principle, we obtain

λ1(G
′) 󰃍 〈f2, AGf2〉

〈f2, f2〉
󰃍 2w

√
d− 1

d
.

One can choose scalars c1 and c2 such that the vector f = c1f1 + c2f2 ∕= 0 is perpen-
dicular to the eigenvector (1, . . . , 1) of the spectral radius λ1(G) = w. Therefore, by the
Rayleigh principle, we obtain

λ2(G) 󰃍 〈f, AGf〉
〈f, f〉 =

c21〈f1, AGf1〉+ c22〈f2, AGf2〉
c21〈f1, f1〉+ c22〈f2, f2〉

󰃍 λ1(Pr+1)
w
√
d− 1

d
,

which finishes the proof. □
Remark 13. As shown in Remark 10, Corollary 9 holds for d 󰃍 7.1980 . . . . So using the
same argument we can prove Theorem 4 for d 󰃍 7.1980 . . . .
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