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Abstract

The recent interest in type B q-Stirling numbers of the second kind prompted us
to give a type B analogue of a classical identity connecting the q-Stirling numbers
of the second kind and Carlitz’s major q-Eulerian numbers, which turns out to
be a q-analogue of an identity due to Bagno, Biagioli and Garber. We provide
a combinatorial proof of this identity and an algebraic proof of a more general
identity for colored permutations. In addition, we prove some q-identities about the
q-Stirling numbers of the second kind in types A, B and D.

Mathematics Subject Classifications: 05A05, 05A18, 05A19

1 Introduction

The Stirling number of the second kind, denoted S(n, k), is the number of ways to par-
tition n distinct objects into k nonempty subsets. It satisfies the well-known triangular
recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

with the initial conditions S(0, k) = δ0k, where δij is the Kronecker delta. Carlitz [7]
introduced the type A q-Stirling numbers of the second kind S[n, k] by

S[n, k] := S[n− 1, k − 1] + [k]q S[n− 1, k], (1.1)

where [k]q := 1 + q + q2 + · · ·+ qk−1 for k 󰃍 1 and [0]q := 0, and S[0, k] = δ0k.
Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n}. An element π ∈ Sn is

written as π = π1π2 · · · πn. The descent set of π ∈ Sn is defined by

Des(π) := {i ∈ [n− 1] | πi > πi+1}
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Jean Monnet, 69622, Villeurbanne Cedex, France (zeng@math.univ-lyon1.fr).

the electronic journal of combinatorics 31(1) (2024), #P1.36 https://doi.org/10.37236/12147

https://doi.org/10.37236/12147


and the cardinality of Des(π) is called the number of descents of π, denoted des(π). The
Eulerian number An,k is the number of π ∈ Sn with k descents. There exists a well-
known identity connecting the Stirling numbers of the second kind and Eulerian numbers
as follows:

k!S(n, k) =
k󰁛

ℓ=1

An,ℓ−1

󰀕
n− ℓ

k − ℓ

󰀖
(1.2)

for all nonnegative integers 0 󰃑 k 󰃑 n. A combinatorial proof of identity (1.2) in terms of
the ordered set partitions and permutations is quite easy and well known, see [5, Theorem
1.17], for example.

The q-binomial coefficients are defined for n, k ∈ N by

󰀗
n

k

󰀘

q

:=
[n]q!

[k]q![n− k]q!
for 0 󰃑 k 󰃑 n,

where [n]q! := [1]q[2]q · · · [n]q is the q-factorial of n. To give a q-analogue of identity (1.2)
we need to find a suitable Mahonian statistic over permutations, that is, a statistic whose
generating function over Sn is [n]q!. It turns out that MacMahon’s major index [17] is a
good fit for our q-analogue. Recall that the major index (maj) of π ∈ Sn is defined by

maj(π) :=
󰁛

i∈Des(π)

i.

We define the corresponding q-analogue of Eulerian polynomial (of type A) by

An(t, q) :=
󰁛

π∈Sn

tdes(π)qmaj(π) =
n󰁛

k=0

An,k(q)t
k. (1.3)

The reader is referred to [11, 18] and references therein for further q-Eulerian polynomials.
Using analytic method, Zeng and Zhang [27, Proposition 4.5] proved the following

q-analogue of identity (1.2) 1

q(
k
2)[k]q!S[n, k] =

k󰁛

ℓ=1

qk(k−ℓ)An,ℓ−1(q)

󰀗
n− ℓ

k − ℓ

󰀘

q

(1.4)

for nonnegative integers 0 󰃑 k 󰃑 n. In 1997, in order to give a combinatorial proof of (1.4),
Steingŕımsson [23] proposed several statistics on ordered set partitions and conjectured
that their generating functions were given by either side of (1.4). In the following years,
Zeng et al. [16, 13, 14] confirmed all his conjectures, and finally Remmel and Wilson [20,
Section 5.1] found a combinatorial proof of (1.4) using the major index on the starred
permutations.

1Proposition 4.5 in [27] is actually a fractional version of (1.4) and valid for n ∈ C.
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This paper arose from the desire to give a type B analogue of (1.4). In analogy with
the usual (type A) Stirling numbers of the second kind (see [26, 10, 3, 21]), the type B
Stirling numbers of the second kind SB(n, k) can be defined by

SB(n, k) := SB(n− 1, k − 1) + (2k + 1)SB(n− 1, k)

with the initial conditions SB(0, k) = δ0k.
For integer i ∈ Z we denote its opposite integer −i by i. Let Bn be the group of signed

permutations of [n], i.e., the set of all permutations on the set [±n] := {n, . . . , 1, 1, . . . , n}
such that π(i) = π(i). In what follows, we write π(i) as πi for i ∈ [±n] and use the natural
order on 〈n〉 := {n, . . . , 1, 0, 1, . . . , n}, namely,

n < · · · < 1 < 0 < 1 < · · · < n.

The type B descent set of π ∈ Bn [18, Section 11.5.2] is defined by

DesB(π) = {i ∈ {0} ∪ [n− 1] | πi > πi+1},

with π0 = 0, and the cardinality of DesB(π) is called the number of type B descents of π,
denoted desB(π).

Let Bn,k be the number of permutations in Bn with k descents. By a bijection between
the set of ordered type B set partitions and the set of signed permutations with separators,
Bagno, Biagioli and Garber [3] combinatorially proved the following type B analogue
of (1.2):

2kk!SB(n, k) =
k󰁛

ℓ=0

Bn,ℓ

󰀕
n− ℓ

k − ℓ

󰀖
(1.5)

for all nonnegative integers 0 󰃑 k 󰃑 n.
Recently Sagan and Swanson [21] studied the type B q-Stirling numbers of the second

kind SB[n, k], which are defined by the recurrence relation

SB[n, k] := SB[n− 1, k − 1] + [2k + 1]q SB[n− 1, k] (1.6)

with the initial conditions SB[0, k] = δ0k, see [25, Section 1.10] and [4] for related works.

Remark 1.1. Chow-Gessel [8, Eq. (18) and Proposition 4.2] defined a kind of type B
q-Stirling numbers of the second kind Sn,k(q) by the following recurrence relation

Sn,k(q) := q2k−1(1 + q)Sn−1,k−1(q) + [2k + 1]qSn−1,k(q)

with the initial conditions Sn,0(q) = 1 for n 󰃍 0. It is routine to verify that the above two
types B q-Stirling numbers of the second kind are related as follows

Sn,k(q) = (1 + q)kqk
2

SB[n, k]. (1.7)
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Adin and Roichman [1] defined the flag-major index of π ∈ Bn as follows

fmaj(π) :=
󰁛

i∈DesB(π)

2i+ neg(π), (1.8)

where neg(π) is the number of negative elements in π, i.e., |{i ∈ [n] : πi < 0}|. Then, as a
q-analogue of Eulerian polynomial of type B, Chow and Gessel [8] studied the enumerative
polynomials of statistic (desB, fmaj) over Bn,

Bn(t, q) :=
󰁛

π∈Bn

tdesB(π)qfmaj(π) =
n󰁛

k=0

Bn,k(q)t
k. (1.9)

In this paper, using Sagan and Swanson’s q-Stirling numbers of the second kind in
type B [21] and Chow and Gessel’s q-Eulerian numbers of type B, we prove a q-analogue
of Bagno et al.’s identity (1.5). The following is our first main result.

Theorem 1.2. For 0 󰃑 k 󰃑 n we have

[2]k[k]q2 !SB[n, k] =
k󰁛

ℓ=0

qk(k−2ℓ)Bn,ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

q2
. (1.10)

We shall provide a combinatorial proof for Theorem 1.2 in Section 2. In Section 3,
we define a q-Stirling numbers of the second kind in type D and give q-analogues of some
known identities connecting the Stirling numbers of the second kind in types A, B and D.
Next, we prove algebraically a general identity (see Theorem 4.2) between the r-colored
q-Stirling numbers of the second kind and q-Eulerian numbers of colored permutations in
Section 4. Note that the proof of Theorem 4.2 yields another proof of Theorem 1.2.

2 Combinatorial proof of Theorem 1.2

In this section, we give a combinatorial proof of (1.10) by generalizing Remmel and
Wilson’s proof of identity (1.4) in [20]. Our strategy is to study the polynomial

󰁛

π∈Bn

qfmaj(π)

desB(π)󰁜

i=1

󰀕
1 +

z

q2i−1

󰀖
(2.1)

in R[q][z] and interpret the coefficient of zk combinatorially in two different ways.

2.1 Permutations of type B

For any π = π1π2 · · · πn ∈ Bn, we say that an index i ∈ [n− 1] has π-sign type ++ (resp.,
−−, +−, −+) if the sign of πi is positive (resp., negative, positive, negative) and that of
πi+1 is positive (resp., negative, negative, positive).
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In the rest of this section, we denote by Π1 (resp., Π2, Π3) the set of descents of π
with π-sign type ++ (resp., −−, +−) and by Π′

1 (resp., Π′
2, Π

′
3) the set of ascents of π

with π-sign type ++ (resp., −−, −+).
For any π ∈ Bn, define the mapping ψ : π → 󰁨π on Bn by

󰁨πi :=

󰀝
πn+1−i − n− 1, if πn+1−i > 0;
πn+1−i + n+ 1, if πn+1−i < 0.

For example, if π = 1 5 3 4 6 2, then 󰁨π = 5 1 3 4 2 6.

Remark 2.1. Let r : π 󰀁→ πr be the reversing operator on Bn defined by πr
i = πn+1−i

and c : π 󰀁→ πc the type B completion operator on Bn defined by πc
i = εi · (n + 1 − |πi|),

where εi = 1 if πi < 0 and −1 if πi > 0 for i ∈ [n]. It is easy to verify that 󰁨π = (πr)c.

Clearly, if i is a descent (resp., an ascent) position in π ∈ Bn and the product of πi

and πi+1 is positive, then n− i is an ascent (resp., a descent) position in 󰁨π; if i is a descent
(resp., an ascent) position in π ∈ Bn and the product of πi and πi+1 is negative, then n− i
is a descent (resp., an ascent) position in 󰁨π.

In fact, the mapping ψ is a bijection between all permutations in Bn with k descents
and all permutations in Bn with n− k descents by the following result.

Lemma 2.2. The mapping ψ is a bijection on Bn such that for any π ∈ Bn, we have
desB(󰁨π) = n− desB(π).

Proof. It is convenient to associate a permutation in Bn with a character string in {+,−}n
by replacing each positive (resp., negative) element with + (resp., −). For example, the
string for permutation 1 5 3 4 6 2 is + + − + +−. Let π ∈ Bn with desB(π) = k. We
consider the following four cases in terms of the signs of π1 and πn.

(i) If π1 > 0 and πn > 0, then

|Π1|+ |Π2|+ |Π3| = k and |Π′
1|+ |Π′

2|+ |Π′
3| = n− k − 1.

In addition, |Π3| (resp., |Π′
3|) is the number of +− (resp., −+) occurring in the

character string of π. Obviously, we have |Π3| = |Π′
3| since π1 > 0 and πn > 0. For

the permutation 󰁨π = ψ(π), it is easy to see that (n−Π′
1)∪ (n−Π′

2)∪ (n−Π3) is a
subset of descent positions in 󰁨π, where n− Π denotes the set {n− i | i ∈ Π}. Note
that 0 is also a descent position in 󰁨π since 󰁨π1 = πn − n− 1 < 0, hence

desB(󰁨π) = 1 + |n− Π′
1|+ |n− Π′

2|+ |n− Π3| = 1 + |Π′
1|+ |Π′

2|+ |Π′
3| = n− k.

(ii) If π1 > 0 and πn < 0, then

|Π1|+ |Π2|+ |Π3| = k, |Π′
1|+ |Π′

2|+ |Π′
3| = n− k − 1 and |Π3| = |Π′

3|+ 1.

Hence, we have

desB(󰁨π) = |n− Π′
1|+ |n− Π′

2|+ |n− Π3| = |Π′
1|+ |Π′

2|+ |Π′
3|+ 1 = n− k.
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(iii) If π1 < 0 and πn > 0, then

|Π1|+ |Π2|+ |Π3| = k − 1, |Π′
1|+ |Π′

2|+ |Π′
3| = n− k and |Π3| = |Π′

3|− 1.

Note that 0 is a descent position since 󰁨π1 = πn − n− 1 < 0, hence

desB(󰁨π) = 1 + |n− Π′
1|+ |n− Π′

2|+ |n− Π3| = |Π′
1|+ |Π′

2|+ |Π′
3| = n− k.

(iv) If π1 < 0 and πn < 0, then

|Π1|+ |Π2|+ |Π3| = k − 1, |Π′
1|+ |Π′

2|+ |Π′
3| = n− k and |Π3| = |Π′

3|,

which implies that

desB(󰁨π) = |n− Π′
1|+ |n− Π′

2|+ |n− Π3| = |Π′
1|+ |Π′

2|+ |Π′
3| = n− k.

Summarising the above four cases we are done.

Lemma 2.3. Let π ∈ Bn and neg(π) = m.

(a) If πn < 0, then
󰁓

i∈Π3
i+m =

󰁓
i∈Π′

3
i+ n;

(b) If πn > 0, then
󰁓

i∈Π3
i+m =

󰁓
i∈Π′

3
i.

Proof. Let π ∈ Bn with Π3 = {i1, i2, . . . , iℓ} and Π′
3 = {j1, j2, . . . , jr} for some integers

ℓ, r 󰃍 1. As the proof of (b) is similar, we only prove (a) by considering two cases.

(i) π1 > 0 and πn < 0, we have ℓ = r+1. It is easy to see that ik+1−jk is the number of
positive elements between the kth ascent position and the (k+1)th descent position
from left to right. Note that |Π3| = |Π′

3| + 1 in this case. Therefore, we have
i1 +

󰁓r
k=1(ik+1 − jk) = n−m.

(ii) π1 < 0 and πn < 0, we have ℓ = r. Similarly, ik − jk is the number of positive
elements between the kth ascent position and the kth descent position from left to
right. Then we have

󰁓r
k=1(ik − jk) = n−m.

Combining the above two cases completes the proof of (a).

The following q-symmetry of Bn,k(q) is crucial for our combinatorial proof of iden-
tity (1.10).

Proposition 2.4. For each fixed nonnegative integer n and the polynomialBn,k(q) defined
in (1.9), we have

Bn,k(q) = q2nk−n2

Bn,n−k(q) (2.2)

for 0 󰃑 k 󰃑 n.
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Proof. For any π ∈ Bn with k descents and m negative elements, then desB(ψ(π)) = n−k
by Lemma 2.2. Hence, it suffices to show that

fmaj(π) = 2nk − n2 + fmaj(ψ(π)).

Let 󰁨π = ψ(π), we consider the proof in terms of the signs of π1 and πn. We only give the
proof for this case π1 > 0 and πn > 0 and omit similar discussions for other three cases
for the brevity.

If π1 > 0 and πn > 0, by the definition of the mapping ψ, then the set of descents in
󰁨π is the disjoint union

{0} ∪ (n− Π′
1) ∪ (n− Π′

2) ∪ (n− Π3)

and 󰁨π has n−m negative elements. Then,

fmaj(󰁨π) = 2

󰀳

󰁃
󰁛

i∈n−Π′
1

i+
󰁛

i∈n−Π′
2

i+
󰁛

i∈n−Π3

i

󰀴

󰁄+ n−m. (2.3)

By Case (i) in the proof of Proposition 2.2, we have |Π′
1|+ |Π′

2|+ |Π3| = n− k− 1. Hence
identity (2.3) is equivalent to

fmaj(󰁨π) = 2n(n− k − 1)− 2

󰀳

󰁃
󰁛

i∈Π′
1

i+
󰁛

i∈Π′
2

i+
󰁛

i∈Π3

i

󰀴

󰁄+ n−m

= 2n(n− k − 1)− 2

󰀳

󰁃
󰀕
n

2

󰀖
−

󰁛

i∈Π1

i−
󰁛

i∈Π2

i−
󰁛

i∈Π′
3

i

󰀴

󰁄+ n−m

= n2 − 2nk + 2
󰁛

i∈Π1

i+ 2
󰁛

i∈Π2

i+ 2
󰁛

i∈Π′
3

i−m,

where the second equality uses the fact that the sum of all descent and ascent indexes is󰀃
n
2

󰀄
. By statement (b) of Proposition 2.3, the above identity equals

fmaj(󰁨π) = n2 − 2nk + 2
󰁛

i∈Π1

i+ 2
󰁛

i∈Π2

i+ 2
󰁛

i∈Π3

i+m

= n2 − 2nk + fmaj(π).

This is the desired result.

2.2 Ordered set partitions of type B

Recall that 〈n〉 = {n, . . . , 1, 0, 1, . . . , n}. There are at least two equivalent definitions of
type B set partition. We say that a set partition of 〈n〉 is a type B partition if it satisfies
the following properties
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(1) there exactly is one zero block T such that 0 ∈ T and −T = T ;

(2) if T appears as a block then −T is also a block.

It is known [3, 21] that SB(n, k) is the number of type B partitions of 〈n〉 with 2k+1
blocks. An ordered signed partition of 〈n〉 is a sequence (T0, T1, T2, . . . , T2k) of disjoint
subsets (blocks) Ti of 〈n〉 satisfying

(1) 0 ∈ T0 and T0 = T 0, and

(2) T2i = T 2i−1 for i ∈ [k],

where T = {t : t ∈ T}. The blocks T2i and T2i−1 are called paired. Clearly the number of
all ordered signed partitions of 〈n〉 with 2k + 1 blocks is 2kk!SB(n, k).

For our purpose, it is convenient to use the following equivalent definition of ordered
signed partition. An ordered set partition with sign of S = {0, 1, . . . , n} is a sequence
(S0, S1, . . . , Sk) such that

(1) S0 = {t ∈ T0 : t 󰃑 0}, and

(2) Si = T2i−1 for i ∈ [k].

For example, the sequence({0, 3, 1, 4}, {2, 7}, {6}, {8, 5}) is an ordered set partition with
sign of {0, 1, . . . , 8}.

On the other hand, as in [20], we can consider an ordered set partition with sign as
a descent-starred signed permutation, i.e, for any π ∈ Bn, the space following element
πi, satisfying πi > πi+1 for some 0 󰃑 i 󰃑 n − 1, is starred or unstarred. That is to
say, instead of using brackets to signify separations between blocks, the spaces between
elements sharing a block can be marked with stars and all blocks are written in decreasing
order. Note that we require that the block including element 0 always stands first on the
list.

For example, the ordered set partition with sign ({0, 3, 1, 4}, {2, 7}, {6}, {8, 5}) can be
written as 0∗1∗3∗4 7∗2 6 8∗5. The above discussion shows that there is a bijection between
all ordered set partitions with sign of the set {0, 1, . . . , n} and all descent-starred signed
permutations in Bn. For 0 󰃑 k 󰃑 n define the set

B>
n,k := {(π, S) : π ∈ Bn, S ⊆ DesB(π), |S| = k}, (2.4)

where S is the set of the starred descent positions.
For (π, S) ∈ B>

n,k define the statistic

fmaj((π, S)) := fmaj(π)−
󰁛

j∈S

(2|DesB(π) ∩ {j, . . . , n− 1}|− 1)

and the polynomial

Bfmaj
n,k (q) :=

󰁛

(π,S)∈B>
n,k

qfmaj((π,S)). (2.5)
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By the definition of the statistic fmaj((π, S)), we attach the ith descent position of π
(from right to left) with the weight 1 if this descent position is unstarred and the weight
z/q2i−1 if this descent position is starred. Therefore, the following identity holds

n󰁛

k=0

Bfmaj
n,k (q)zk =

󰁛

π∈Bn

qfmaj(π)

desB(π)󰁜

i=1

󰀕
1 +

z

q2i−1

󰀖
. (2.6)

For convenience, we recall two known q-identities (see [2, Theorem 3.3])

N󰁜

i=1

(1− zqi−1) =
N󰁛

j=0

󰀗
N

j

󰀘

q

(−1)jzjqj(j−1)/2; (2.7)

1
󰁔N

i=1(1− zqi−1)
=

∞󰁛

j=0

󰀗
N + j − 1

j

󰀘

q

zj. (2.8)

We first establish the following result for polynomials Bn,n−ℓ(q) and Bfmaj
n,n−k(q) defined

by (1.9) and (2.5).

Proposition 2.5. For 0 󰃑 k 󰃑 n we have

Bfmaj
n,n−k(q) =

k󰁛

ℓ=0

q(n−k)(2ℓ−n−k)Bn,n−ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

q2
.

Proof. Let (π, S) ∈ B>
n,n−k, then there are n − k starred descents in (π, S), this means

that the number of ascents is in {0} ∪ [k]. Suppose that the signed permutation π has ℓ
ascents, where ℓ ∈ {0} ∪ [k], then the signed permutation π can be any permutation in
Bn with n − ℓ descents. Therefore, the sum of q-counting about the flag-major statistic
for all possible signed permutations with n− ℓ descents is the polynomial Bn,n−ℓ(q).

In addition, for a signed permutation π with n − ℓ descents, we can choose n − k
descents from n − ℓ descents in π and mark them with stars. By the definition of the
statistic fmaj((π, S)) and identities (2.6) and (2.7), we have

[zn−k]
n−ℓ󰁜

i=1

󰀕
1 +

zq

q2i

󰀖
= q(n−k)(2ℓ−n−k)

󰀗
n− ℓ

n− k

󰀘

q2
,

where [zk]f(z) denotes the coefficient of zk in the polynomial f(z). Using the symmetry
of q-binomial coefficients 󰀗

n− ℓ

n− k

󰀘

q2
=

󰀗
n− ℓ

k − ℓ

󰀘

q2
,

we complete the proof.

To derive a recurrence relation for the polynomials Bfmaj
n,n−k(q), we introduce some nota-

tions. For other unstarred positions, we label the rightmost position in our descent-starred
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signed permutation with 0, and then label its unlabelled descent positions from right to
left with 1,2,. . . . Next, all other unlabelled positions from left to right are labelled with
increasing labels starting from the next number. We call the above labelling as fmaj-
labelling. For example, if (π, S) = 4∗3∗1 7∗2 6 8∗5, then the fmaj-labelling for (π, S) is

24∗3∗137∗21648∗50.

For α = n or n, we define the mapping

φ
|
α,k : {0, 1, . . . , n− k − 1}× B>

n−1,k → B>
n,k (2.9)

by sending (i, (π, S)) to the descent-starred signed permutation obtained from (π, S) by

(1) inserting α at the fmaj-labelling i, and then

(2) moving each star on the right of α one descent to its left.

Clearly, the rightmost descent will be unstarred when the letter n is not inserted after
πn−1. Thus, we have the following relation between these labels and insertion mappings.

Lemma 2.6. For 0 󰃑 k 󰃑 n− 1 we have

(a) if (π, S) ∈ B>
n−1,k, then fmaj(φ

|
n,k(i, (π, S))) = fmaj((π, S))+2i for i ∈ {0}∪[n−k−1];

(b) if (π, S) ∈ B>
n−1,k, then fmaj(φ

|
n,k(i, (π, S))) = fmaj((π, S))+2i−1 for i ∈ [n−k−1];

(c) if (π, S) ∈ B>
n−1,k, then fmaj(φ

|
n,k(0, (π, S))) = fmaj((π, S)) + 2n− 2k − 1.

Proof. We will discuss the change of the statistic fmaj((π, S)) in terms of the insertion
position of n or n. Suppose that the space labelled i under the fmaj-labelling of (π, S)
is the space immediately following πp. Moreover, we suppose that there are a starred
descents and b unstarred descents to the left of πp and c unstarred descents and d starred
descents to the right of πp+1 in (π, S).

For (a), inserting n into the space labelled i. Let (τ, T ) = φ
|
n,k(i, (π, S)). If i = 0, that

is to say we insert n at the end, then the insertion of n does not affect fmaj((π, S)), thus
fmaj((τ, T )) = fmaj((π, S)). For i ∕= 0, there will exist two cases in terms of the values of
πp and πp+1.

Case (i): If πp > πp+1, then i = c + 1. By inserting n after πp, which preserves each
descent position before πp and increases each descent position after πp by one. Thus, the
statistic fmaj(τ) = fmaj(π) + 2c + 2d + 2. In addition, the insertion of n does not affect
the starred descents before πp to the corresponding sum

󰁓
j∈S(2|DesB(π) ∩ {j, . . . , n −

2}| − 1). Moving each star after πp+1 one descent to its left that increases the sum󰁓
j∈S(2|DesB(π) ∩ {j, . . . , n− 2}|− 1) by two. Therefore, we have

󰁛

j∈T

(2|DesB(τ) ∩ {j, . . . , n− 1}|− 1) =
󰁛

j∈S

(2|DesB(π) ∩ {j, . . . , n− 2}|− 1) + 2d
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since there are d stars after πp+1. Hence,

fmaj((τ, T )) = fmaj(τ)−
󰁛

j∈T

(2|DesB(τ) ∩ {j, . . . , n− 1}|− 1)

= fmaj(π) + 2c+ 2d+ 2−
󰁛

j∈S

(2|DesB(π) ∩ {j, . . . , n− 2}|− 1)− 2d

= fmaj((π, S)) + 2c+ 2

= fmaj((π, S)) + 2i

for i ∈ [n− k − 1].
Case (ii): If πp < πp+1, then i = p + 1 − a + c. By inserting n after πp, which

preserves each descent position before πp and increases each descent position after πp

by one. Besides, note that there is a new descent, p + 1 ∈ DesB(τ) while inserting
n after πp. Thus, the statistic fmaj(τ) = fmaj(π) + 2p + 2 + 2c + 2d. In addition,
the insertion of n increases each starred descent before πp to the corresponding sum󰁓

j∈S(2|DesB(π)∩{j, . . . , n−2}|−1) by two. Moving each star after πp+1 one descent to
its left that increases the sum

󰁓
j∈S(2|DesB(π) ∩ {j, . . . , n− 2}|− 1) by two. Therefore,

󰁛

j∈T

(2|DesB(τ) ∩ {j, . . . , n− 1}|− 1) =
󰁛

j∈S

(2|DesB(π) ∩ {j, . . . , n− 2}|− 1) + 2a+ 2d

since there are a stars before πp and d stars after πp+1. Hence,

fmaj((τ, T )) = fmaj(τ)−
󰁛

j∈T

(2|DesB(τ) ∩ {j, . . . , n− 1}|− 1)

= fmaj(π) + 2p+ 2 + 2c+ 2d

−
󰁛

j∈S

(2|DesB(π) ∩ {j, . . . , n− 2}|− 1)− 2a− 2d

= fmaj((π, S)) + 2p+ 2− 2a+ 2c

= fmaj((π, S)) + 2i

for i ∈ [n− k − 1].

For (b), inserting n into the space labelled i. Let (µ,R) = φ
|
n,k(i, (π, S)). For i ∕= 0,

all changes for fmaj((µ,R)) are the same to (a) except that for the statistic fmaj(π) when
the new descent position generated by n. In this case, there always exists one descent
between πp and n. The descent generated by n increases the statistic fmaj(π) by 1 when
πp > πp+1 and 2p+1 when πp < πp+1, respectively. For the insertion of n at same position,
the changes separately are 2 and 2p + 2 for those two cases. Following the discussion of
(a), it is easy to know that

fmaj((µ,R)) = fmaj((π, S)) + 2i− 1

for i ∈ [n− k − 1].
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For (c), if i = 0, inserting n after πn−1, then the only change is the new descent
πn−1 > n. That is to say, the insertion of n increases fmaj(π) and

󰁓
j∈S(2|DesB(π) ∩

{j, . . . , n− 2}|− 1) by 2n− 1 and 2k, respectively. Thus,

fmaj((µ,R)) = fmaj((π, S)) + 2n− 2k − 1.

Summarising the above cases we have completed the proof.

As mentioned before, the mapping φ
|
α,k preserves the number of stars in the mapping

process. Similarly, we need to define some mappings that increase the number of stars by
one as follows:

φ∗
n,k : {1, 2, . . . , n− k}× B>

n−1,k−1 → B>
n,k (2.10)

and
φ∗
n,k : {0, 1, . . . , n− k}× B>

n−1,k−1 → B>
n,k, (2.11)

which send (i, (π, S)) to the descent-starred signed permutation obtained from (π, S) by

(1) inserting n (resp., n) at the fmaj-labelling i, then

(2) moving each star on the right of n (resp., n) one descent to its left, and then

(3) placing a star at the rightmost descent of the resulting descent-starred signed per-
mutation.

In analogy with the discussion in the proof of Lemma 2.6, let α = n or n and (τ, T ) =
φ∗
α,k(i, (π, S)). The first step and second one from the mapping φ∗

α,k have same effect with

φ
|
α,k to the statistics fmaj(π) and

󰁓
j∈S(2|DesB(π) ∩ {j, . . . , n − 2}| − 1). The last step

from the mapping φ∗
α,k, placing a star at the rightmost of resulting descent-starred signed

permutation, which increases the sum
󰁓

j∈S(2|DesB(π) ∩ {j, . . . , n − 2}| − 1) by one.
Therefore, we have the following results, of which the proof is omitted for the brevity.

Lemma 2.7. For 1 󰃑 k 󰃑 n we have

(a) if (π, S) ∈ B>
n−1,k−1, then fmaj(φ∗

n,k(i, (π, S))) = fmaj((π, S))+2i− 1 for i ∈ [n− k];

(b) if (π, S) ∈ B>
n−1,k−1, then fmaj(φ∗

n,k(i, (π, S))) = fmaj((π, S))+2i− 2 for i ∈ [n− k];

(c) if (π, S) ∈ B>
n−1,k−1, then fmaj(φ∗

n,k(0, (π, S))) = fmaj((π, S)) + 2n− 2k.

By definitions (2.9) and (2.10), the mappings φ
|
α,k and φ∗

α,k (α = n or n) have their
images I0 ∪ I1 and I2, respectively, where

I0 = {(π, S) ∈ B>
n,k : πn = n};

I1 = {(π, S) ∈ B>
n,k : rightmost descent is unstarred in (π, S) and πn ∕= n};

I2 = {(π, S) ∈ B>
n,k : rightmost descent is starred in (π, S) and πn ∕= n}.

Obviously, the disjoint union of those three sets is B>
n,k. Now, we are ready to prove the

following recurrence relation for the polynomial Bfmaj
n,k (q) defined in (2.5).
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Proposition 2.8. For n 󰃍 1 we have the recurrence relation

Bfmaj
n,k (q) = [2n− 2k]q B

fmaj
n−1,k(q) + [2n− 2k + 1]q B

fmaj
n−1,k−1(q),

where Bfmaj
n,k (q) is 1 when k = n and is 0 when k < 0 or k > n.

Proof. Since B>
n,k is the disjoint union of the images of mappings φ

|
α,k and φ∗

α,k, we have

Bfmaj
n,k (q) =

󰁛

(π,S)∈I0

qfmaj((π,S)) +
󰁛

(π,S)∈I1

qfmaj((π,S)) +
󰁛

(π,S)∈I2

qfmaj((π,S)). (2.12)

By the definition of mapping φ
|
α,k and Lemma 2.6, the first two summations of iden-

tity (2.12) is
󰁛

(π,S)∈I0

qfmaj((π,S)) +
󰁛

(π,S)∈I1

qfmaj((π,S))

=
n−k−1󰁛

i=0

󰁛

(π,S)∈B>
n−1,k

qfmaj(φ
|
n,k(i,(π,S))) +

n−k−1󰁛

i=0

󰁛

(π,S)∈B>
n−1,k

qfmaj(φ
|
n,k(i,(π,S)))

=
󰁛

(π,S)∈B>
n−1,k

qfmaj((π,S))

󰀣
n−k−1󰁛

i=0

q2i +
n−k−1󰁛

i=1

q2i−1 + q2n−2k−1

󰀤

= [2n− 2k]q B
fmaj
n−1,k(q). (2.13)

Similarly, by the definition of mapping φ∗
α,k and Lemma 2.7, the last summation of

identity (2.12) is

󰁛

(π,S)∈I2

qfmaj((π,S)) =
n−k󰁛

i=1

󰁛

(π,S)∈B>
n−1,k−1

qfmaj(φ∗
n,k(i,(π,S))) +

n−k󰁛

i=0

󰁛

(π,S)∈B>
n−1,k−1

qfmaj(φ∗
n,k(i,(π,S)))

=
󰁛

(π,S)∈B>
n−1,k−1

qfmaj((π,S))

󰀣
n−k󰁛

i=1

q2i−1 +
n−k󰁛

i=1

q2i−2 + q2n−2k

󰀤

= [2n− 2k + 1]q B
fmaj
n−1,k−1(q). (2.14)

Combining (2.12)-(2.14) completes the proof.

Proof of Theorem 1.2. By Proposition 2.4 we can rewrite identity (1.10) as

[2]kq [k]q2 !SB[n, k] =
k󰁛

ℓ=0

q(n−k)(2ℓ−n−k)Bn,n−ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

q2
. (2.15)

Let So
B[n, k] be the left-hand side of (2.15). It follows from Eq. (1.6) that the sequence

(So
B[n, k])0󰃑k󰃑n is determined by the recurrence relation

So
B[n, k] := [2k]q S

o
B[n− 1, k − 1] + [2k + 1]q S

o
B[n− 1, k] (2.16)
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with So
B[0, k] = δ0k. Invoking Proposition 2.8 we see that the polynomials Bfmaj

n,n−k(q)
satisfy recurrence relation (2.16), namely

Bfmaj
n,n−k(q) = So

B[n, k].

Combining with Proposition 2.5, we have a combinatorial proof of (2.15).

3 q-Stirling numbers of the second kind in type D

Recently, Bagno et al. [3] studied some identities about the type D Stirling numbers of
the second kind SD(n, k). As far as we know, there is no q-Stirling numbers of the second
kind in type D in the literature. In this section, we first define a q-Stirling numbers of
the second kind in type D and prove q-analogues of two known results about the Stirling
numbers of the second kind in types A, B and D, see Proposition 3.6. Then, we establish
a q-identity connecting the q-falling factorials of type D and the q-Stirling numbers of the
second kind in type D, see Proposition 3.8.

3.1 Two q-identities about the q-Stirling numbers of the second kind

Using the definitions and notations of ordered signed partition in Subsection 2.2, we say
that the set {T0, T1, T2, . . . , T2k} is a signed partition of 〈n〉 if (T0, T1, T2, . . . , T2k) is an
ordered signed partition. A signed partition π = {T0, T1, T2, . . . , T2k} of 〈n〉 is called type
D if #T0 ∕= 3, where #T denotes the cardinality of a finite set T , in other words, the block
T0 contains at least two positive elements or only contains 0. Let SD(n, k) be the number
of all type D signed partitions of 〈n〉 with 2k + 1 blocks, see an equivalent definition of
SD(n, k) in [3]. The numbers SD(n, k) are called the Stirling numbers of the second kind
in type D.

For 0 󰃑 k 󰃑 n, the following two identities about the Stirling numbers of the second
kind in types A, B and D were implicitly given in [26, Corollary 12], [8, Eq. (19)] and [24,
Proposition 3]:

SB(n, k) =
n󰁛

j=k

2j−k

󰀕
n

j

󰀖
S(j, k); (3.1)

SB(n, k) = SD(n, k) + n · 2n−k−1S(n− 1, k). (3.2)

In this subsection, we define a kind of type D q-Stirling numbers of the second kind
SD[n, k], and give q-analogues of identities (3.1) and (3.2).

Definition 3.1. For any S ⊂ Z\{0} let S = {i : i ∈ S}. A standard signed partition
(SSP for short) of S is a sequence π = (S1, S2, . . . , Sk) of disjoint nonempty subsets of
S ∪ S such that

(1) {S1, . . . , Sk, S1, . . . , Sk} is a partition of S ∪ S;

(2) min |S1| 󰃑 min |S2| 󰃑 · · · 󰃑 min |Sk|, where |Si| = {|j| : j ∈ Si} for i ∈ [k].
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The sets S1, S2, . . . , Sk are the blocks of π (so π has k blocks). A partial standard signed
partition (PSSP for short) of S is a standard signed partition of a subset of S.

Let B(S, k) (resp., B⊆(S, k)) be the set of all SSP (resp., PSSP) of S with k blocks.
Let D⊆([n], k) denote the set of all PSSP of [n] that excludes all SSP of [n]\{i} with k
blocks for i ∈ [n], namely,

D⊆([n], k) = B⊆([n], k)\
n󰁞

i=1

B([n]\{i}, k).

Lemma 3.2. For 0 󰃑 k 󰃑 n we have

2kSD(n, k) = #D⊆([n], k).

Proof. For any PSSP π = (T1, T2, . . . , Tk) ∈ D⊆([n], k), it is clear that the sequence
(〈n〉\{T ∪ T}, T1, T 1, . . . , Tk, T k) is an ordered signed partition of the set 〈n〉, where T =
∪k

i=1Ti. Thus, the set

Π =
󰀋
〈n〉\{T ∪ T}, T1, T 1, . . . , Tk, T k

󰀌

is a type D signed partition of 〈n〉. Due to the choice of Ti and Ti, both PSSP π =
(T1, . . . , Ti, . . . , Tk) and π′ = (T1, . . . , Ti, . . . , Tk) correspond to the type D signed partition
Π, which implies the desired result.

Definition 3.3. For π = (S1, S2, . . . , Sk) ∈ B⊆(S, k), define the statistics

pos(π) := #

󰀫
x ∈

k󰁞

i=1

Si : x > 0

󰀬

and

m(π) := 2
k󰁛

i=1

i ·#Si − pos(π). (3.3)

The following result was incorrectly stated in [8, Proposition 4.2] with
m(π) = 2

󰁓k
i=1(i − 1)#Si + n + 1 − pos(π). For completeness, we reproduce their proof

with correction.

Proposition 3.4. Let m(π) be defined by (3.3). Then we have

qk
2

[2]kqSB[n, k] =
󰁛

π∈B⊆([n],k)

qm(π) (3.4)

for 0 󰃑 k 󰃑 n.
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Proof. Let

SB(n, k, q) =
󰁛

π∈B⊆([n],k)

qm(π).

By recurrence (1.6) of SB[n, k], it suffices to show that SB(n, k, q) satisfies

SB(n, k, q) = q2k−1(1 + q)SB(n− 1, k − 1, q) + [2k + 1]qSB(n− 1, k, q)

with the initial conditions SB(0, k, q) = δ0k for q ∕= 0. The case n = 0 is trivial. Suppose
that n > 0 and π = (T1, . . . , Tk) ∈ B⊆([n], k). If {n} (resp., {−n}) is a block of π, then
{n} = Tk (resp., {−n} = Tk) and removing it from π yields a PSSP τ of [n−1] into k−1
blocks, such that pos(τ) = pos(π)− 1 (resp., pos(τ) = pos(π)) and m(π) = m(τ)+2k− 1
(resp., m(π) = m(τ) + 2k) 2.

If n is an element of Ti for some i ∈ [k], then removing it from Ti yields a PSSP τ ′ of
[n− 1] into k blocks such that pos(τ ′) = pos(π)− 1 and m(π) = m(τ ′)+2i− 1. Similarly,
if −n is an element of Ti for some i ∈ [k], then removing it from Ti yields a PSSP τ ′ of
[n− 1] into k blocks such that pos(τ ′) = pos(π) and m(π) = m(τ ′) + 2i. If neither n nor
−n is in any block of π, then π ∈ B⊆([n− 1], k).

Thus

SB(n, k, q) = q2k−1(1 + q)
󰁛

π∈B⊆([n−1],k−1)

qm(π) + (1 + q)
k󰁛

i=1

q2i−1
󰁛

τ ′∈B⊆([n−1],k)

qm(τ ′)

+
󰁛

π∈B⊆([n−1],k)

qm(π)

= [2k + 1]qSB(n− 1, k, q) + q2k−1(1 + q)SB(n− 1, k − 1, q).

This finishes the proof.

Definition 3.5. We define the q-Stirling numbers of the second kind in type D by

SD[n, k] :=
1

qk2 [2]kq

󰁛

π∈D⊆([n],k)

qm(π). (3.5)

The following results are q-analogues of identities (3.1) and (3.2), which also show that
SD[n, k] is a polynomial in q. Let S[n, k]q2 denote S[n, k] with q replaced by q2, i.e.,

S[n, k]q2 := S[n, k]
󰀏󰀏
q←q2

.

Proposition 3.6. Let SD[n, k] be defined by (3.5). Then the identities

SB[n, k] =
n󰁛

j=k

󰀕
n

j

󰀖
[2]j−k

q qj−kS[j, k]q2 , (3.6)

SB[n, k] = SD[n, k] + n · [2]n−k−1
q qn−k−1S[n− 1, k]q2 (3.7)

hold for 0 󰃑 k 󰃑 n.

2In the proof of [8, Proposition 4.2] with m(π) = 2
󰁓k

i=1(i − 1)#Si + n + 1 − pos(π) the equation
m(π) = m(τ) + 2k − 1 (resp., m(π) = m(τ) + 2k) does not hold.
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Proof. We first prove identity (3.6). Define the polynomial 󰁨Bn,k(q) by

󰁨Bn,k(q) :=
󰁛

π∈B([n],k)

qm(π).

Let π and π′ be SSPs with k blocks in two different nonempty subsets {i1, i2, . . . , iℓ} and
{j1, j2, . . . , jℓ} of [n], respectively. Obviously, the set of all SSPs π of {i1, i2, . . . , iℓ} and
that of SSPs π′ of {j1, j2, . . . , jℓ} are equivalent regardless of the letters. Then we can
rewrite identity (3.4) as

qk
2

[2]kqSB[n, k] =
n󰁛

j=k

󰀕
n

j

󰀖
󰁨Bj,k(q).

Thus, to prove identity (3.6), it is sufficient to show that

[2]nq q
k(k−1)+nS[n, k]q2 = 󰁨Bn,k(q).

Next, we will prove that both sides of the above identity have the same recurrence
relation and initial condition. By the definition of SSP, there exist two ways to get a
SSP of [n] by inserting n or n in one of [n− 1].

(i) The letter n or n inserts a SSP in B([n − 1], k − 1) and forms a new block listing
the last position, which increases the statistic m(π) by 2k − 1 and 2k, respectively.

(ii) The letter n or n inserts the ith block of a SSP in B([n− 1], k), which increases the
statistic m(π) by 2i− 1 and 2i, respectively.

From those, we have the recurrence relation

󰁨Bn,k(q) = [2]q q
2k−1 󰁨Bn−1,k−1(q) + q · [2]q [k]q2 󰁨Bn−1,k(q),

with the initial condition 󰁨B0,0(q) = 1. Due to the recurrence relation (1.1) of q-Stirling
numbers of the second kind in type A, the desired result is obtained.

For identity (3.7), by identity (3.4) and the definition of SD[n, k], it suffices to show that

n · [2]n−1
q qk(k−1)+n−1S[n− 1, k]q2 =

n󰁛

i=1

󰁛

π∈B([n]\{i},k)

qm(π),

which is immediate by the above discussion.

Remark 3.7. For nonnegative integers n 󰃍 k with n ∕= 1, Bagno et al. [3] proved the
following identity:

SD(n, k) =
1

2kk!

󰀥
k󰁛

ℓ=0

D(n, ℓ)

󰀕
n− ℓ

k − ℓ

󰀖
+ n · 2n−1(k − 1)!S(n− 1, k − 1)

󰀦
, (3.8)

where D(n, ℓ) is the number of permutations in Dn, which is the set of all signed permu-
tations with even signs in Bn, with ℓ descents, see [18, Section 11.5.4] for more details. As
for the type D q-Stirling numbers of the second kind SD[n, k] defined by (3.5), we leave
it as an open problem to find a q-analogue of identity (3.8) in the spirit of identities (1.4)
and (1.10) for types A and B.
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3.2 Falling factorials and q-Stirling numbers of the second kind in type D

For the Stirling numbers of the second kind S(n, k), a well-known identity involving the
connection between the standard basis of the polynomial ring Rn[t] and the basis consisting
of falling factorials is that, for n ∈ N and t ∈ C, we have

tn =
n󰁛

k=0

S(n, k)(t)k, (3.9)

where (t)k = t(t− 1) · · · (t− (k − 1)) and (t)0 := 1.
A classical combinatorial interpretation for (3.9) pointed out that tn is the number

of all mappings from the set [n] to the set [t] (t ∈ N+) and S(n, k)(t)k is the number of
surjections that map the set [n] to all k-subsets of [t], see [22, Eq. (1.96)] for more details.
Similarly, for the Stirling numbers of the second kind in types B and D, Bagno et al. [3,
Theorems 5.1 and 5.4] used a geometric method to obtain the following identities:

tn =
n󰁛

k=0

SB(n, k)(t)
B
k , (3.10)

where (t)Bk = (t− 1)(t− 3) · · · (t− (2k − 1)) and (t)B0 := 1, and

tn =
n󰁛

k=0

SD(n, k)(t)
D
k + n

󰀃
(t− 1)n−1 − (t)Dn−1

󰀄
, (3.11)

where (t)Dk is defined as

(t)Dk :=

󰀻
󰀿

󰀽

1, k = 0;
(t− 1)(t− 3) · · · (t− (2k − 1)), 1 󰃑 k < n;
(t− 1)(t− 3) · · · (t− (2n− 3))(t− (n− 1)), k = n.

Naturally, those q-analogues for identities (3.9) and (3.10) were also given as

tn =
n󰁛

k=0

S[n, k](t)k,q, (3.12)

where (t)k,q = t(t− [1]q) · · · (t− [k − 1]q) and (t)0,q := 1 (see Carlitz [7, Eq. (3.1)]), and

tn =
n󰁛

k=0

SB[n, k](t)
B
k,q, (3.13)

where (t)Bk,q = (t − [1]q)(t − [3]q) · · · (t− [2k − 1]q) and (t)B0,q := 1 (see Sagan and Swan-
son [21, Corallary 2.4] and Komatsu et al. [15, Theorem 2.2]).

Define a q-falling factorial of type D by

(t)Dk,q :=

󰀻
󰀿

󰀽

1, k = 0;
(t− [1]q)(t− [3]q) · · · (t− [2k − 1]q), 1 󰃑 k < n;
(t− [1]q)(t− [3]q) · · · (t− [2n− 3]q)(t− [n− 1]q), k = n.

We have a q-analogue of identity (3.11) as follows.
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Proposition 3.8. Let SD[n, k] be defined by (3.5). Then

tn =
n󰁛

k=0

SD[n, k](t)
D
k,q + n(t− 1)n−1 − [n]q q

n−1(t)Dn−1,q

for n ∈ N and t ∈ C.

Proof. From equation (3.7) we derive the identity

SB[n, k] = SD[n, k] + n · [2]n−k−1
q qn−k−1S[n− 1, k]q2 . (3.14)

Thus, multiplying both sides of (3.14) by (t)Dk,q and summing over 0 󰃑 k 󰃑 n, we have

n󰁛

k=0

SB[n, k](t)
D
k,q =

n󰁛

k=0

SD[n, k](t)
D
k,q +

n−1󰁛

k=0

n · [2]n−k−1
q qn−k−1S[n− 1, k]q2(t)

D
k,q. (3.15)

First, for the left-hand side of (3.15), we have

n󰁛

k=0

SB[n, k](t)
D
k,q =

n−1󰁛

k=0

SB[n, k](t)
D
k,q + SB[n, n](t)

D
n,q − [n]q q

n−1(t)Dn−1,q + [n]q q
n−1(t)Dn−1,q

=
n󰁛

k=0

SB[n, k](t)
B
k,q + [n]q q

n−1(t)Dn−1,q

= tn + [n]q q
n−1(t)Dn−1,q, (3.16)

where the second equality and last one use the facts SB[n, n] = 1 and

(t)Bn,q = (t)Dn,q − [n]q q
n−1(t)Dn−1,q,

and identity (3.13), respectively. In addition, for the second summation in the right-hand
side of (3.15), we have

n−1󰁛

k=0

n · [2]n−k−1
q qn−k−1S[n− 1, k]q2(t)

D
k,q

= n · [2]n−1
q qn−1

n−1󰁛

k=0

S[n− 1, k]q2

󰀕
t− 1

[2]qq

󰀖󰀕
t− 1

[2]qq
− [1]q2

󰀖
· · ·

󰀕
t− 1

[2]qq
− [k − 1]q2

󰀖

= n · [2]n−1
q qn−1

󰀕
t− 1

[2]qq

󰀖n−1

= n(t− 1)n, (3.17)

where the second equality uses identity (3.12). Combining (3.15), (3.16) and (3.17), we
complete the proof.
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4 Generalization to colored permutations

In this section, instead of proving Theorem 1.2 by an algebraic proof, we shall prove a
more general identity. Define the r-colored q-Stirling numbers of the second kind Sr[n, k]
by the recurrence relation

Sr[n, k] := Sr[n− 1, k − 1] + [rk + 1]q Sr[n− 1, k] (4.1)

with the initial conditions Sr[0, k] = δ0k.
It is not difficult to verify (see [19, Theorem 1] for a more general result) that

tn =
n󰁛

k=0

Sr[n, k](t)
r
k,q, (4.2)

where (t)rk,q = (t − [1]q)(t − [r + 1]q) · · · (t− [r(k − 1) + 1]q) and (t)r0,q := 1. Using Rook
theory, Remmel and Wachs gave a combinatorial interpretation of identity (4.2) in [19,
Theorem 7].

Substituting t by [rm+ 1]q in (4.2) yields

[rm+ 1]nq =
n󰁛

k=0

qr(
k+1
2 )+(1−r)k[r]kq [k]qr !Sr[n, k]

󰀗
m

k

󰀘

qr
,

which, by (2.8), is equivalent to the generating function identity,

n󰁛

k=0

qr(
k+1
2 )+(1−r)k[r]kq [k]qr !Sr[n, k] t

k

󰁔k
i=0(1− tqri)

=
∞󰁛

m=0

[rm+ 1]nq t
m. (4.3)

The colored permutations group of n letters with r colors can be looked as the wreath
product group

Zr ≀Sn = Zr ×Sn,

which consists of all permutations π ∈ [0, r − 1]× [n]. Namely, the element in Zr ≀Sn is
thought of as π = πz1

1 πz2
2 · · · πzn

n , where zi ∈ [0, r − 1] and π1π2 · · · πn ∈ Sn. Define the
following total order relation on the elements of Zr ≀Sn:

nr−1 < · · · < n1 < · · · < 1r−1 < · · · < 11 < 0 < 1 < · · · < n,

where k0 is replaced with k for k ∈ [n].
An integer i ∈ {0} ∪ [n − 1] is called a descent of π ∈ Zr ≀ Sn if πzi

i > π
zi+1

i+1 , where
πz0
0 = 0. Let Desr(π) denote the descent set of π ∈ Zr ≀ Sn and desr(π) the number of

descents of π, i.e., |Desr(π)|. The r-colored Eulerian number Ar
n,k is the number of all

colored permutations in Zr ≀Sn with k descents. For each π ∈ Zr ≀Sn, as in [1], define
the r-flag-major index of π by

fmajr(π) := r
󰁛

i∈Desr(π)

i+
n󰁛

i=1

zi. (4.4)
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A q-analogue of the r-colored Eulerian polynomial Ar
n(t, q) is defined by

Ar
n(t, q) :=

󰁛

π∈Zr≀Sn

tdesr(π)qfmajr(π) =
n󰁛

k=0

Ar
n,k(q)t

k. (4.5)

When r takes 1 and 2, (4.5) reduces to (1.3) and (1.9), respectively. The following Carlitz’s
identity for Zr ≀Sn was proved in [6, Proposition 8.1] and [9, Theorem 9]

Ar
n(t, q)󰁔n

i=0(1− tqri)
=

∞󰁛

m=0

[rm+ 1]nq t
m. (4.6)

Combining (4.3) and (4.6) we obtain the following identity.

Proposition 4.1. For the polynomials Sr[n, k] in (4.1) and Ar
n(t, q) in (4.5), the q-

Frobenius formula holds

Ar
n(t, q)󰁔n

i=0(1− tqri)
=

n󰁛

k=0

qr(
k+1
2 )+(1−r)k[r]kq [k]qr !Sr[n, k]t

k

󰁔k
i=0(1− tqri)

.

The following result is a q-analogue of Theorem 6.6 in [3] about an identity between
the r-colored Stirling numbers of the second kind Sr(n, k) (the sequence defined by (4.1)
when q = 1, see also[3, Section 6.1]) and r-colored Eulerian numbers Ar

n,k.

Theorem 4.2. For the r-colored q-Stirling numbers of the second kind Sr[n, k] in (4.1)
and q-Eulerian numbers Ar

n,k(q) in (4.5), we have the identity

qr(
k+1
2 )+(1−r)k[r]kq [k]qr !Sr[n, k] =

k󰁛

ℓ=0

qrk(k−ℓ)Ar
n,ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

qr
(4.7)

for 0 󰃑 k 󰃑 n.

Proof. Summing for both sides of (4.7) multiplying by tk/
󰁔k

i=0(1− tqri) over all k, it is
clear that (4.7) is equivalent to

n󰁛

k=0

qr(
k+1
2 )+(1−r)k[r]kq [k]qr !Sr[n, k]t

k

󰁔k
i=0(1− tqri)

=
n󰁛

k=0

k󰁛

ℓ=0

qrk(k−ℓ)Ar
n,ℓ(q)t

k

󰁔k
i=0(1− tqri)

󰀗
n− ℓ

k − ℓ

󰀘

qr
.

By Proposition 4.1, it is sufficient to show that

Ar
n(t, q)󰁔n

i=0(1− tqri)
=

n󰁛

k=0

k󰁛

ℓ=0

qrk(k−ℓ)Ar
n,ℓ(q)t

k

󰁔k
i=0(1− tqri)

󰀗
n− ℓ

k − ℓ

󰀘

qr
,

or equivalently,

Ar
n(t, q)󰁔n

i=0(1− tqri)
=

n󰁛

ℓ=0

Ar
n,ℓ(q)t

ℓ

n󰁛

k=ℓ

(tqr·k)k−ℓ

󰁔k
i=0(1− tqri)

󰀗
n− ℓ

k − ℓ

󰀘

qr
,
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which will follow from the following identity

1󰁔n
i=0(1− tqri)

=
n󰁛

k=ℓ

(tqr·k)k−ℓ

󰁔k
i=0(1− tqri)

󰀗
n− ℓ

k − ℓ

󰀘

qr
(4.8)

for 0 󰃑 ℓ 󰃑 n. That is to say, the index ℓ does not affect the summation in the right-hand
side of (4.8). Substituting qr → q and applying (2.8) to extract the coefficients of tm on
both sides of (4.8) we obtain

󰀗
n+m

m

󰀘

q

=
n󰁛

k=ℓ

󰀗
n− ℓ

k − ℓ

󰀘

q

󰀗
k +m− (k − ℓ)

m− (k − ℓ)

󰀘

q

qk(k−ℓ)

=
n−ℓ󰁛

k=0

󰀗
n− ℓ

k

󰀘

q

󰀗
m+ ℓ

m− k

󰀘

q

qk(k+ℓ),

which is a q-analogue of Chu-Vandermonde summation [2, Eq. (3.3.10)].

Following the recurrence (4.1), we have S1[n, k] = S[n + 1, k + 1] and S2[n, k] =
SB[n, k]. When r = 1 and r = 2, identity (4.7) (Theorem 4.2) reduces to (1.4) and (1.10),
respectively. Indeed, the case r = 2 is obvious, i.e., Theorem 1.2 is a special case of
Theorem 4.2. For r = 1, Theorem 4.2 reduces to

q(
k+1
2 )[k]q!S[n+ 1, k + 1] =

k󰁛

ℓ=0

qk(k−ℓ)An,ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

q

, (4.9)

which is equivalent to identity (1.4). By (1.4), the right-hand side of (4.9) equals

k󰁛

ℓ=0

qk(k−ℓ)An,ℓ(q)

󰀗
n− ℓ

k − ℓ

󰀘

q

=
k󰁛

ℓ=1

qk(k−(ℓ−1))An,ℓ−1(q)

󰀗
n− (ℓ− 1)

k − (ℓ− 1)

󰀘

q

+ An,k(q)

=
k󰁛

ℓ=1

qk(k+1−ℓ)An,ℓ−1(q)

󰀣
qk+1−ℓ

󰀗
n− ℓ

k + 1− ℓ

󰀘

q

+

󰀗
n− ℓ

k − ℓ

󰀘

q

󰀤
+ An,k(q)

=
k+1󰁛

ℓ=1

q(k+1)(k+1−ℓ)An,ℓ−1(q)

󰀗
n− ℓ

k + 1− ℓ

󰀘

q

+ qk
k󰁛

ℓ=1

qk(k−ℓ)An,ℓ−1(q)

󰀗
n− ℓ

k − ℓ

󰀘

q

= q(
k+1
2 )[k + 1]q!S[n, k + 1] + qkq(

k
2)[k]q!S[n, k],

which yields (4.9) by recurrence relation (1.1) of S[n, k]. Inversely, starting from (4.9),
the above last equality shows that (1.4) follows from (4.9) by induction on k for fixed n.
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In addition, by (1.4) and (4.8), we have the following q-Frobenius formula [12, Eq.
(4.1)] related to q-Stirling numbers of the second kind and q-Eulerian polynomials of
type A:

tAn(t, q)󰁔n
i=0(1− tqi)

=
n󰁛

k=0

q(
k
2)[k]q!S[n, k]t

k

󰁔k
i=0(1− tqi)

. (4.10)

Following the above discussion, it is clear that identity (4.10) is a special case of Propo-
sition 4.1 for r = 1.

Remark 4.3. Similar to the combinatorial proofs of (1.4) and (1.10), it is natural to
ask for a combinatorial proof of identity (4.7). One difficulty for such a proof is that
a counterpart of the q-symmetry (2.2) is missing for Ar

n,k(q). Note that the r-colored
Eulerian polynomials Ar

n(t, 1) are not symmetric for r 󰃍 3. We leave it as an open
problem to give a combinatorial proof of identity (4.7).
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[5] M. Bóna, Combinatorics of Permutations, Chapman & Hall\CRC, 2004.
[6] R. Biagioli, J. Zeng, Enumerating wreath products via Garsia-Gessel bijections, Eu-

ropean J. Combin. 32 (4) (2011) 538–553.

[7] L. Carlitz, q-Bernouli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000.

[8] C.-O. Chow, I.M. Gessel, On the descent numbers and major indices for the hyper-
octahedral group, Adv. in Appl. Math. 38 (2007) 275–301.

[9] C.-O. Chow, T. Mansour, A Carlitz identity for the wreath product Zr ≀Sn, Adv. in
Appl. Math. 47 (2011) 199–215.

[10] I. Dolgachev, V. Lunts, A character formula for the representation of the Weyl group
in the cohomology of the associated toric variety, J. Algebra 168 (3) (1994) 741–772.

the electronic journal of combinatorics 31(1) (2024), #P1.36 23



[11] D. Foata, Eulerian polynomials: from Euler’s time to the present. The legacy of
Alladi Ramakrishnan in the mathematical sciences, 253–273, Springer, New York,
2010.

[12] A.M. Garsia, On the “maj” and “inv” q-analogue of Eulerian numbers, Linear Mul-
tilinear Algebra 8 (1979) 21–34.

[13] M. Ishikawa, A. Kasraoui, J. Zeng, Euler-Mahonian statistics on ordered set parti-
tions, SIAM J. Discrete Math. 22 (3) (2008) 1105–1137.

[14] A. Kasraoui, J. Zeng, Euler-Mahonian statistics on ordered set partitions. II, J.
Combin. Theory Ser. A 116 (3) (2009) 539–563.

[15] T. Komatsu, E. Bagno, D. Garber, Analytic aspects of q, r-analogue of poly-Stirling
numbers of both kinds, arXiv:2209.06674v2.

[16] G. Ksavrelof, J. Zeng, Nouvelles statistiques de partitions pour les q-nombres de
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Birkhäuser/Springer, New York, 2015.

[19] J. B. Remmel, M. Wachs, Rook Theory, Generalized Stirling numbers and (p, q)-
analogues, Electron. J. Combin. 11(1):#R84 (2004).

[20] J. B. Remmel, A.T. Wilson, An extension of MacMahon’s equidistribution theorem
to ordered set parptitions, J. Combin. Theory Ser. A 134 (2015) 242–277.

[21] B. E. Sagan, J. P. Swanson, q-Stirling numbers in type B, European J. Combin. 118
(2024), Paper No. 103899.

[22] R. Stanley, Enumerative Combinatorics, vol. I, Cambridge Studies in Advanced
Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997.
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