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Abstract

Adinkras are graphical gadgets introduced by physicists to study supersymme-
try, which can be thought of as the Cayley graphs for supersymmetry algebras.
Improving the result of Iga et al., we determine the critical group of an Adinkra
given the 2-rank of the Laplacian of the underlying Cayley graph. As a corollary,
we show that the critical group is independent of the signature of the Adinkra. The
proof uses the monodromy pairing on these critical groups.

Mathematics Subject Classifications: 05C50, 05C22, 05E30

1 Introduction

Computing the cokernel, or equivalently, the Smith Normal Form (SNF), of an integer
matrix is a recurrent topic in algebraic combinatorics [20]. While the definition is ele-
mentary, elaborate machinery has been used to approach the task, and the answer to
many seemingly simple matrices remain unknown. A prominent notion within the topic
is the critical group KC(G) of a graph G, which is (the torsion part of) the cokernel of the
graph Laplacian L(G) [7, 18]. A more specific direction is to compute the critical groups
of graphs coming from algebra, where ideas from representation theory, Grobner theory,
and p-adic number theory have been applied [4, 6, 12, 14].

In this paper, we study the critical groups of Adinkras, which are decorated (colored,
dashed) graphs introduced by physicists to encode special supersymmetry algebras (or
more precisely, their representations) [13]. Roughly speaking, the vertices are particles,
and the edges of different colors correspond to the actions of different basis elements of the
algebra acting on these particles, in which an edge is dashed if the action flips the sign of
the particle. Therefore, Adinkras can be thought of as a signed analogue of Cayley graphs
for supersymmetry algebras. In [17], the authors initiated the problem, and proved the
following using a “deform to Z[x]-modules” argument:
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Theorem 1. [17, Theorem 20] Let A be an N-colored Adinkra on v vertices. Then the
odd component of K(A) is isomorphic to that of (Z/(N? — N)Z)/2.

However, the 2-Sylow subgroup of I(A) remains open, which seems tricky for its
connection with another problem. The underlying graph of an Adinkra is a Cayley graph
G of F%, and the number of even invariant factors of (A) equals the corank of L(G) over
Fy, but this quantity is poorly-understood itself: even the simplest case of the hypercube
was a conjecture of Reiner before being solved by Bai [1, Theorem 1.1], and no good
general description is known. Nevertheless, we are able to bypass the apparent first
hurdle and prove:

Theorem 2. Let A be an N-colored Adinkra on v vertices. Let the 2-rank of the Laplacian
of the underlying Cayley graph be v/2 — m; we have m > 0 by [14, Theorem 1.1 € 1.2].
Then K(A) = (Z/22)™ & (Z)X=N7)m & (Z./(N* — N)Z)/2~™.

2

Our proof differs from the main strategy in [17], and uses monodromy pairing [19].
While the pairing is defined for any critical group, the regularity of Adinkras yields a
simple description of it. We find a large “orthonormal” subset of K(.A), which implies
that KC(A) contains a large subgroup whose structure is simple. Then we argue that the
remaining part only depends on the 2-rank. To the best of our knowledge, this is the
first time the monodromy pairing is being used to study the structure of specific critical
groups.

As a corollary, we answer [17, Conjecture 1] in the affirmative:

Corollary 3. K(A) is independent of the signature of the Adinkra.

It is worth noting that while only the signed (dashed) graph structure of A is used to
define KC(.A), the existence of a compatible edge coloring is essential. It is another curious
instance in mathematics that admitting extra structure imposes constraints on seemingly
irrelevant invariants of the object.

2 Preliminaries
Unless otherwise specified, all (signed) graphs are finite, simple, and connected.

2.1 Adinkras

Definition 4. A signed graph G, is a graph G together with an assignment o : E(G) —
{£} (a signature of G). Switching a vertex flips the signs of the edges incident to it.

Definition 5. For N > 2, an N-colored Adinkra A is a signed graph with each edge
colored by one of N colors!, satisfying the following conditions:

! Technically, the data here only defines a Cliffordinkra, as we need to further choose an acyclic orientation
of the underlying graph to define an Adinkra. However, there are no compatibility conditions between
the choice and the rest of the data, so we omit the orientation here.
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Figure 1: Two examples of Adinkras.

1. the graph is bipartite;
2. every vertex is incident to exactly one edge of each color;

3. for every pair of distinct colors, the graph restricted to edges of these colors is a
disjoint union of 4-cycles;

4. each bi-colored 4-cycle contains an odd number of negative edges.

Example 6. In Figure 1, on the left is a 3-colored Adinkra supported on ()3, and on the
right is a 4-colored Adinkra supported on Ky 4. Negative edges are represented by dashed
edges.

We have the following theorem concerning the underlying graph of an Adinkra.

Theorem 7. [8, Section 1.2] A graph admits an Adinkra structure if and only if it is the
quotient of a hypercube Q; by a doubly even code (a subspace C of Fh where the size of
the support of each element is divisible by 4), which is necessarily a Cayley graph of F%,
where n =t — dimC.

2.2 Critical Groups and Their Monodromy Pairings

Definition 8. The Laplacian of G, is L(G,) = D — A,, where D is the diagonal matrix
whose entries are the vertex degrees, and A, is the signed adjacency matrix in which a
positive (respectively, negative) edge zy is represented by A,, = A,, = 1 (respectively,
—1). The Laplacian of an ordinary graph G can be viewed/defined as L(G,) with o = +.

The critical group K(G,) is the torsion part of the cokernel of L(G,) over Z. In
the case of Adinkras (indeed, any unbalanced signed graphs), the cokernel itself is finite,
whereas it is always of rank 1 for ordinary graphs.

As two simple observations: (1) switching vertices perserves K(G,), and whether the
signed graph is an Adinkra; and (2) the rank of L(G,) over Fy (2-rank) is independent of
o, in particular, it is equal to that of L(G), and the number of even invariant factors of
K(G,) equals v minus (2-rank of L + rank of coker L(G,)).
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The critical group of an Adinkra (or more generally, the torsion of the cokernel of
any symmetric integer matrix) is equipped with a canonical pairing (-, -) taking values in
Q/Z, known as the monodromy pairing. It is related to several other pairings in arithmetic
geometry and discrete potential theory [3, 5].

Definition 9. Let x,y € Z" be two vectors representing two elements of K(.A). Choose a
positive integer m such that L(A)f = mx for some f € Z". Then the monodromy pairing

between [x], [y] is ([x],[y]) := £¥ € Q/Z.
Proposition 10. [5, Lemma 1.1] The pairing is well-defined, bilinear, and symmetric.

In view of the above proposition, we often write (x,y) instead of ([x], [y]) for the sake
of notational brevity.

3 Proof of the Main Theorem

Index the rows and columns of L(A) by V(A) = F%, and denote by {e, : u € V(A)} the
standard basis of Z" A,

We first collect some results on the Laplacians and critical groups of Adinkras from
[17] that can be obtained in a more elementary manner.

Theorem 11. [17, Theorem 9 & 15] Let A be an N-colored Adinkra on v vertices.
Then L(A) has exactly two distinct eigenvalues N + /N of equal multiplicities v/2, and
KC(A)| = det(L(A) = (N2 — N)¥/2,

The invariant factors fi | fo | ... | fo of L(A) satisfy the relation f;f,_ i1 = N?*—N,Vi.
Moreover, fori>v/2, (N —1)| fi.

The key observation is that the signed boundaries of a family of monochromatic edges
are “orthonormal” with respect to (-, ).

Proposition 12. Let A be an Adinkra of N > 3 colors and let uv be an edge of A of sign
. Then (e, — ce,, e, —ee,) = & # 0 € Q/Z. Let xy be another edge of the same color
and of sign €. Then (e, — ee,,e, — €'e,) = 0.

Proof. Without loss of generality, we may assume ¢ = ¢ = + by switching. By the first
half of Theorem 11, L(.A) has two distinct eigenvalues, so it satisfies the condition in [15,
Equation (3.3)] , and we can solve m(e, — e,) = L4f by

(N*~N)(eu—e,) = La[(N=1)e,—(N=D)e,+ Y o(uw)e,— »  olvw)e,], (1)

weN (u)\v weN (v)\u

here N(z) is the neighborhood of the vertex x and o(e) is the sign of the edge e. Indeed,
for reader comparing (1) with the original [15, Equation (3.3)], we have k = N, and A =0
by the bipartiteness of Adinkras (so adjacent vertices have no common neighbors).

By Definition 9 and (1), (e, —e,, e, —e,) = %(V];]__]b) = %,

N > 3.

which is non-zero in Q/Z as

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.38 4



For the second statement, {z,y} and {u,v} are necessarily disjoint by (2) of Defini-
tion 5. If z is adjacent to u along a positive edge of color ¢, (1) of Definition 5 guarantees
that x is not adjacent to v, and (3) and (4) of Definition 5 ensure y is adjacent to v along a
negative edge of the same color but not to u. Now (1) implies (e, —e,, e,—€,) = 75— = 0;
the cases when x is adjacent to v and/or the edge is negative are essentially the same.
The case when z is not adjacent to u nor v is easier as y is not adjacent to u,v either,
and the pairing is simply = 0. U

N2

Next, we state the result from [15] that explains how an orthonormal subset implies a
“rectangular” subgroup.

Theorem 13 ([15, Theorem 4.5)). Let G be a finite abelian group equipped with a map
(-,-) : G x G — Q/Z satisfying the conditions in Proposition 10, e.g., the monodromy
pairing on K(A). Suppose there exist gi,...,q9, € G whose pairwise pairings are zero,
and for every i, (g;,g;) = % for relatively prime p,n € Z~o. Then G contains a subgroup

isomorphic to (Z/nZ)'.

We note two technical differences between the original [15, Theorem 4.5] and the
statement of Theorem 13:

e The original statement was proven for the monodromy pairing on critical groups of
strongly regular (ordinary) graphs, but in the proof there, the only properties of G
required are that it is finite and abelian, while the only step involving the particular
pairing is to show that if Y a,9; = 0 € G, then % = (>_a;gi,9;) =0 € Q/Z. Hence,
only the properties in Proposition 10 of (-,-) are necessary, and the statement can
be extended to the setting here.

e [15, Theorem 4.5] also uses an earlier result there to show the existence of an even
larger subgroup, but the existence of (Z/nZ)" is the intermediate result in the proof
and remains valid in the end.

Proof of Theorem 2. The only Adinkra with parameter N = 2 is the 4-cycle with 1 (or
3) negative edges, in which the theorem can be easily verified.

For N > 3, fix a color of the Adinkra. By switching if necessary, we may assume the
v/2 edges of that color are all positive. Applying the calculation in Proposition 12 to
Theorem 13 with n = N/ ged(2, N), we know that IC(.A) contains a subgroup isomorphic
to (Z/gcd]\QIN Z>U /2

Hence, by an elementary fact on invariant factors and subgroups (for reference, see

[15, Lemma 4.4]), for every i > v/2, P TEN ) 2N | fi. Combining that (N —1) | f;,Vi > v/2,

we have % | fi, which in turn forces each f; with i < v/2 to be either 1 or 2 by
the second half of Theorem 11. The number of even invariant factors (necessarily 2) in
the first half is m, so the number of invariant factors in the second half that are equal
to &=~ is also m, and the remaining non-trivial invariant factors must be N> — N, the

claimed structure of IC(A) follows. O
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4 Non-generic Adinkras

Corollary 3 is straightforward from the main theorem.

Proof of Corollary 3. From the aforementioned observation, the signature does not affect
the 2-rank of the Laplacian, which determines the critical group. O

We recall some background of the corollary: while Theorem 7 classifies which graphs
admit an Adinkra structure, for a given such graph, there can be multiple (even up
to natural notions of isomorphism) Adinkra structures. In particular, while K(A) is
invariant under vertex switchings and color-preserving graph automorphisms, there can
exist different Adinkra signatures on a graph G = @;/C that are not equivalent by these
two operations, hence the original conjecture is not a vacuous question.

Indeed, G admits inequivalent signatures if and only if C contains the all one codeword
1 € F, [11, Example 6.8], and in the language of Cayley graphs, if and only if the sum of
generators is zero. These Cayley graphs are non-generic in the sense of [14, Definition 2.1],
and they are precisely the Cayley graphs on F} whose 2-rank drops below 2", i.e., m > 0
in the main theorem. Therefore, the classes of Adinkras (or the underlying graphs thereof)
that behave non-trivially in terms of signatures and critical groups turn out to be the same.

We use this opportunity to mention one more possible instance that the very class
of Adinkras is special. As referred to in the introduction, Theorem 1 was proven by
deforming the critical group into a Z[z]-module. This could be done by considering the
following matrix L(.A) over Z[z]: fix an arbitrary color ¢, replace the diagonal entries
of L(A) by z + (N — 1), and replace the off-diagonal entries +1 corresponding to edges
of color ¢ by £x. Since Z[z] is not a PID, it is not obvious that the SNF of L(A)
exists, and it was conjectured in [17, Conjecture 3] that the SNF exists if and only if
K(A) = (Z/(N? — N)Z)"/?, which we now know the latter is true if and only if A is
generic. It was only stated in [17] as a fact without proof that the forward direction is
true, so we fill in the argument below:

Proposition 14. When A is non-generic, the SNF of L(A) does not exist.

Proof. By [17, Corollary 29], the determinant of L(A) is equal to
(2(N = 1)z + (N — 1)(N —2))"/2

Since A is non-generic, N must be an even number: in fact, as the all one codeword 1 is
in the doubly even code, N is a multiple of 4.

Suppose the SNF of L(A) exists, and the invariant factors are f; | ... | f,. Then
whenever 2 or x + % divides fz for some i < v/2, the same can be said for fj with 7 > 1,

a contradiction to the fact that [[;_, fi = £2°2(N — 1)/2(z + A=2)v/2 and that Z[z] is
a UFD with 2, z + ¥>2 not dividing N — 1. Hence, fi| (N =1) fori<v/2.
The SNF of L(A) can be obtained from the SNF of L(A) by setting 2 = 1 (see, for

example, [17, Lemma 27]), so the first half of the invariant factors of L(.A) must be all
odd, a contradiction. O
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5 Concluding Remarks

In some sense, Theorem 2 is the best possible result concerning K(.A) unless one is able
to make progress on the 2-rank of Cayley graphs, which is a non-trivial problem probably
orthogonal to the combinatorics of Adinkras. However, as Adinkras are related to multiple
mathematical topics [16, 21], putting our result in the context of those topics would be
potentially fruitful.

When studying the critical groups of Cayley graphs or many other graphs from algebra,
the results and/or their proofs are often directly related to the algebraic origin of those
graphs. On the contrary, the works on critical groups of Adinkras so far mostly use
the combinatorial axioms to develop alternative algebraic setups for the problem. [11,
Example 6.8] pointed out that the non-uniqueness of signatures of non-generic Adinkras
is related to the fact that the Clifford algebra C1(0, N + 1) has more than one irreducible
real representations if and only if N is a multiple of 4, so some combinatorial properties
of Adinkras can have an algebraic interpretation. A question is then to relate K(.A) and
their properties directly with the theory of supersymmetry/Clifford algebras as well.

On the geometric side, every Adinkra can be canonically embedded to a Riemann
surface in the sense of Grothendieck’s dessins d’enfants, and some properties of those
Riemann surfaces are related to the properties of Adinkras in a deep manner [9, 10].
Meanwhile, the theory of critical groups is a discrete/tropical analogue of the theory
of divisors and Jacobians of algebraic curves [2]. Comparing the two worlds via the
embedding is another direction worth looking into. For example, elements e, — e,’s
considered in the proof of Proposition 12 are now divisors on the Riemann surface, does
the monodromy pairing on K(.A) relate to any operation there?

Finally, one can also ask if there are other families of (signed) graphs whose critical
groups can be approached in a similar fashion. More generally, can the structure of every
critical group be certified by demonstrating an “orthogonal basis” with respect to (-, -)?
If not, how much information can the method provide?
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