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Abstract

Let Pn be the set of all binary paths (i.e., lattice paths with upsteps u = (1, 1)
and downsteps d = (1,−1)) of length n endowed with the pointwise partial ordering
(i.e., P 6 Q iff the lattice path P lies weakly below Q) and let Gn be its Hasse
graph. For each path P ∈ Pn, we denote by I(P ) the interval which contains the
elements of Pn less than or equal to P , excluding the first two elements of Pn, and by
G(P ) the subgraph of Gn induced by I(P ). In this paper, it is shown that G(P ) is
Hamiltonian iff P contains at least two peaks and I(P ) has equal number of elements
with even and odd rank. The last condition is always true for paths ending with
an upstep, whereas, for paths ending with a downstep, a simple characterization is
given, based on the structure of the path.

Mathematics Subject Classifications: 05C45, 06A07

1 Introduction

Let Pn, where n is a positive integer, be the set of all binary paths P of length |P | = n,
i.e., lattice paths P = p1p2 · · · pn where each step pi, i ∈ [n], is either an upstep u = (1, 1)
or a downstep d = (1,−1) and connects two consecutive points of the path P . The number
of u’s (reps. d’s) in P is denoted by |P |u (resp. |P |d). A maximal sequence of u’s (resp.
d’s) in P is called ascent (resp. descent) of P . The last point of an ascent (resp. descent)
is called peak (resp. valley) of the path. Clearly, every peak (resp. valley) corresponds
to either an occurrence of ud (resp. du), or an occurrence of u (resp. d) at the end of
the path. We note that this definition extends the usual definition of peaks and valleys
appearing in the literature. It is convenient to consider that the starting point of a path
is the origin of a pair of axes. The y-coordinate of a lattice point on P is called height of
this point. We set P =

⋃

n>0Pn, where P0 consists of only the empty path ε (the path
which has no steps). Obviously, the set Pn has cardinality 2n.

A natural partial ordering on Pn is defined by the geometric representation of paths
P,Q ∈ Pn where P 6 Q whenever P lies (weakly) below Q. We note that Q covers
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P whenever Q is obtained from P by turning exactly one of P ’s valleys into a peak.
It is well-known that the poset (Pn,6), or simply Pn, is a finite, self-dual, distributive,
graded lattice with minimum and maximum elements the paths 0n = dn = dd · · ·d

︸ ︷︷ ︸

n times

and

1n = un = uu · · ·u
︸ ︷︷ ︸

n times

respectively and its rank function is

ρ(P ) =

n∑

i=1

(n− i+ 1)[pi = u], (1)

where [S] is the Iverson notation, i.e., for every proposition S, [S] = 1 if S is true, and 0
if S is false. We can easily check that the rank function of the concatenation of two paths
P,Q ∈ P is given by the formula

ρ(PQ) = ρ(P ) + ρ(Q) + |Q||P |u. (2)

In particular, we have that

ρ(uP ) = ρ(P ) + |P |+ 1, ρ(dP ) = ρ(P ),

ρ(Pu) = ρ(P ) + |P |u + 1 and ρ(Pd) = ρ(P ) + |P |u.

A natural involution on P is defined by the operation of turning the last step of the
path (i.e., u becomes d and vice versa). We call this the switch involution and we will use
it several times in this work, because of its property of reversing the parity of the rank.

This lattice appears in the literature in various equivalent forms (e.g., sequences of
integers [13], binary words [4, p. 92], subsets of [n] [5], permutations of [n] [15, p. 402],
partitions of n into distinct parts [14], threshold graphs [7]). Ferrari and Pinzani [3]
and Sapounakis et al. [9] have studied its sublattice of Dyck paths, Manes et al. have
presented a bijection between comparable pairs of paths of this lattice and Dyck prefixes
of odd length [6] and Tasoulas et al. have studied the chains with small intervals in this
lattice [16].

In this paper we consider the Hasse graph Gn of Pn, the edges of which are defined
by the covering relation. For every n > 2, the graph Gn is decomposed into two copies of
Gn−1 consisting of the paths starting with u and d respectively. Two vertices not in the
same copy are adjacent in the graph Gn iff they are of the form udP and duP respectively
for some P ∈ Pn−2. For example, for n = 5, see Fig. 1, where the vertices are encoded as
integers and the edges with endpoints not in the same copy are colored red.

Using this recursive decomposition we can deduce some simple graph-theoretic prop-
erties and statistics of Gn. We can easily verify that the number e(Gn) of edges and the
number c(Gn)) of 4-cycles of Gn are equal to

e(Gn) = (n+ 1)2n−2, n > 1, c(Gn) = (n+ 1)(n− 2)2n−5, n > 2.

For further information on these sequences, see seq. A001792 and A001793 in [11]. Ferrari
and Munarini [2] have enumerated the edges in the Hasse graph of several related lattices
of paths, including the subgraph of Gn consisting of Dyck paths.
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num path num path
15 duuuu 31 uuuuu
14 duuud 30 uuuud
13 duudu 29 uuudu
12 duudd 28 uuudd
11 duduu 27 uuduu
10 dudud 26 uudud
9 duddu 25 uuddu
8 duddd 24 uuddd
7 dduuu 23 uduuu
6 dduud 22 uduud
5 ddudu 21 ududu
4 ddudd 20 ududd
3 ddduu 19 udduu
2 dddud 18 uddud
1 ddddu 17 udddu
0 ddddd 16 udddd

Figure 1: The graph G5. The graphs G4 and G3 are the subgraphs induced by the intervals
[0, 15] and [0, 7] respectively.

The lattice Pn (resp. the graph Gn) is isomorphic to the lattice M(n) (resp. the cover
graph An of M(n)), introduced by Stanley [13] (resp. considered by Savage et al. [10]).
Furthermore, in [10] (working on the isomorphic graph An) it is proved that for every
n > 3 the subgraph of Gn on the set P∗

n = Pn \ {dn, dn−1u, un, un−1d} is Hamiltonian.
Obviously, this is the largest Hamiltonian subgraph of Gn, since the excluded vertices do
not belong to any cycle (e.g., the vertices 0, 1, 30, 31 in Fig. 1, for n = 5). In a similar
direction, Eades and Hickey [1] gave a sufficient and necessary condition for the subgraph
of Gn on the interval [dn−kuk, ukdn−k] to have a Hamiltonian path (iff k 6 1 or k > n− 1
or n is even and k is odd). The Hamiltonian cycles and paths obtained in the above two
results correspond to combinatorial Gray codes for the poset elements serving as graph
vertices. For a recent survey on combinatorial Gray codes see the paper by Mütze [8].

Working in the same direction, we consider the intervals of Pn. For every P ∈ P∗
n

we denote the ideal of P in P∗
n by I(P ), i.e., I(P ) = [dn−2ud, P ]. Furthermore, for every

subset A of Pn we denote by G(A) the subgraph of Gn induced by A. In particular,
for every P ∈ P∗

n we write G(P ) instead of G(I(P )) for simplicity. We note that, by the
above, the graphG(un−2du) is Hamiltonian. In this work, we investigate the Hamiltonicity
of the graph G(P ), for an arbitrary path P . For n > 3 we set Hn = {P ∈ P∗

n :
G(P ) is Hamiltonian}. We can exhaustively check (see Fig. 1) that

H3 = {udu} and H4 = {dudu, ud2u, udu2, u2du, udud}.

It is easy to check that

• P ∈ Hn iff diP ∈ Hn+i, for i > 0.

the electronic journal of combinatorics 31(1) (2024), #P1.39 3



• If P ∈ Hn then P has at least two peaks.

• If P ∈ Hn then |E(P )| = |O(P )|, where E(P ) (resp. O(P )) is the set of paths
Q 6 P having even (resp. odd) rank. In particular, |I(P )| is even.

According to the first property, for the Hamiltonicity of G(P ), it is enough to consider
only paths P starting with u.

The main result of this work states that the latter two necessary conditions, when
combined, give a sufficient condition for the Hamiltonicity of G(P ):

Theorem 1. P ∈ Hn iff P has at least two peaks and |E(P )| = |O(P )|.

We note that if the path P ends with u, i.e., P = Qu, for some pathQ, then the interval
[dn, P ] is the disjoint union of the sets {Sd : S 6 Q} and {Su : S 6 Q}, consisting of the
paths ending with d and u respectively. Clearly, the switch involution defines a bijection
between these two sets, thus giving |E(P )| = |O(P )|. Therefore, for paths ending with u,
Theorem 1 reduces to: P ∈ Hn iff P has at least two peaks, which is proved in Section 2.
In Section 3, we introduce the notion of a critical valley of a path P and, using this, we
give a simple structural condition which is proved to be sufficient and necessary in order
to have |E(P )| = |O(P )|. This condition is used in Section 4 in order to prove Theorem 1
also for paths ending with d.

We close this section with some notation and preliminary material that will be used
in the next sections. For a path P , we denote by f(P ) (resp. s(P )) the path obtained
by turning the first (resp. second) peak of P into a valley. More generally, we define
inductively

f i(P ) = f(f i−1(P )) and si(P ) = s(si−1(P )),

where i > 1 and f 0(P ) = s0(P ) = P .
Furthermore, we denote by e(P ) the edge {P, f(P )}. For two paths P1 and P2, we

denote by P1P2 their concatenation and by f({P1, P2}) the edge {f(P1), f(P2)}. If A is a
set of paths and Q is a path, we set QA = {QP : P ∈ A} and AQ = {PQ : P ∈ A}. In
particular, for an edge e = {P1, P2}, we have Qe = {QP1, QP2}. Furthermore, if Q is a
path and F is a subgraph of Gn, we define QF as the graph with vertices and edges of the
form QP and Qe respectively, where P is any vertex and e is any edge of F . Two edges
e = {P1, P2} and g = {Q1, Q2} with no common vertices are said to be parallel (e ‖ g) iff
P1, Q1 and P2, Q2 are adjacent. For example, e ‖ f(e), for every edge e 6= e(P ), P ∈ P.
More generally, two paths of vertices (P1, P2, . . . , Pr) and (Q1, Q2, . . . , Qr) are said to be
parallel iff {Pi, Pi+1} ‖ {Qi, Qi+1}, for every i ∈ [r − 1]. Using parallel edges, we give a
method for the construction of cycles.

Basic constructions

1. Let (P1, P2, . . . , Pr) and (Q1, Q2, . . . , Qr) be two parallel paths of vertices of odd
length and let C be a cycle containing the path (Q1, Q2, . . . , Qr). Then, by re-
placing the edge {Qi, Qi+1}, for each odd i ∈ [r − 1], by the path of vertices
(Qi, Pi, Pi+1, Qi+1), we expand C into a new cycle which also contains the vertices
P1, P2, . . . , Pr. (see Fig. 2).
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Figure 2: The join of a path of vertices (left) or an edge (right) and a cycle.

f1 · · ·e2 f2 e3 f3 er−1fr−1 er

Figure 3: The join of the cycles Ci, i ∈ [r].

2. Let (Ci)i∈[r], r > 2, be a finite sequence of disjoint cycles and let (ei)i∈[2,r] and
(fi)i∈[r−1] be two finite sequences of edges such that ei and fi belong to Ci and
fi ‖ ei+1 for every i ∈ [r − 1]. Then, by deleting the edges of the two sequences
and then connecting each vertex of fi with the corresponding vertex of ei+1 for each
i ∈ [r − 1], we can join the cycles Ci into a single cycle (see Fig. 3).

The above two constructions will be used repeatedly in the following sections, in most
cases for r = 2.

Finally, throughout this paper, we denote by ein, i ∈ [3], the edges

e1n = {dn, dn−1u}, e2n = {dn−2ud, dn−3ud2}, e3n = {dn−2ud, dn−2u2}.

For example, in Fig. 1, the edges e1n, e
2
n and e3n correspond to the edges {0, 1}, {2, 4} and

{2, 3} respectively. It is evident that e1n does not belong to any cycle of Gn, whereas e2n
and e3n belong to every cycle of Gn which contains the vertex dn−2ud. The edges Qeik,
where k ∈ [n], i ∈ [3] and Q ∈ Pn−k, will be used repeatedly in the following sections.

2 The Hamiltonicity for paths ending with u

In this section, we investigate the Hamiltonicity of the graph G(P ), for every path P
ending with u.

Proposition 2. If the path P ∈ Pn ends with u and has at least two peaks, then P ∈ Hn.
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udn−4udu

udn−3u2

udn−1

udn−2u
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f(ue1n−1)

e2

f(e2)
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Figure 4: The construction of a Hamiltonian cycle of G(P ) when P 6= ukdun−1−k,
udkun−1−k, k ∈ [n− 2].

Proof. We show the result by induction on the length n of P . Clearly, the result holds
for n = 3 and n = 4. For n > 5, without loss of generality, we assume that P starts with
u. We first show the result under the restriction P 6= ukdun−1−k, udkun−1−k, k ∈ [n− 2].
Then, the path obtained by deleting the first u of P and the path Pd obtained by shifting
the first d of P to the beginning of P , both end with u and have at least two peaks,
so that by the induction hypothesis, we can find two Hamiltonian cycles Cu and Cd of
G([udn−3ud, P ]) and G(Pd) respectively.

It is easy to see that I(P ) is partitioned as I(P ) = [udn−3ud, P ] ∪ I(Pd) ∪ ue1n−1, so
that it is enough to join the cycles Cu, Cd and the edge ue1n−1 into a single cycle.

Clearly, since the vertex udn−3u2 (resp. f(udn−3u2) = dudn−4u2) has degree 2 in
G([udn−3ud, P ]) (resp. 3 in G(Pd)), the cycle Cu (resp. Cd) contains both
e1 = {udn−3u2, udn−3ud} and e2 = {udn−3u2, udn−4udu} (resp. either one of f(e1) or
f(e2)). Then, for e = e1 or e = e2, we have that e belongs to Cu and f(e) to Cd.

Furthermore, since the vertex f(udn−1) = dudn−2 has degree 2 in G(Pd), the edge
f(ue1n−1) = f({udn−1, udn−2u}) = {dudn−2, dudn−3u} belongs to Cd.

Then, using basic constructions 1 and 2 for the pairs of parallel edges (ue1n−1, f(ue
1
n−1))

and (e, f(e)) respectively, we can join the cycles Cu, Cd and the edge ue1n−1 into a single
Hamiltonian cycle C of G(P ) (see Fig. 4, where e = e2).

We now come to the remaining special cases.
First case: Let P = ukdun−1−k, k ∈ [2, n− 2]. In this case, I(P ) is partitioned as

I(P ) = [udn−3ud, P ] ∪ I(dun−3du) ∪ ue1n−1 ∪ {dun−1, dun−2d},

Thus, working as in the general case, where Cd is now a Hamiltonian cycle of G(dun−3du),
we obtain a Hamiltonian cycle C of G(I(P ) \ {dun−1, dun−2d}). Then, since the edge
{udun−2, udun−3d} belongs to C and is parallel to the edge {dun−1, dun−2d}, according
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P = ukdun−1−k

udun−2

udun−3d
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udn−3ud

dudn−2

dudn−3u

dn−2ud
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dun−2d
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ue1n−1

f(ue1n−1)

e2

f(e2)

Cu

Cd

Figure 5: The construction of a Hamiltonian cycle of G(P ) when P = ukdun−1−k, k ∈
[2, n− 2].

to the basic construction 1, we can join {dun−1, dun−2d} with C to obtain a Hamiltonian
cycle of G(P ) (see Fig. 5).
Second case: Let P = udkun−1−k, k ∈ [2, n− 2]. For k 6 n− 4, I(P ) is partitioned as

I(P ) = [udn−3ud, s2(P )] ∪ I(Pd) ∪ ue1n−1 ∪ {P, s(P )},

where s(P ) = udkun−2−kd and s2(P ) = udkun−3−kdu. Thus, working as in the gen-
eral case, where Cu is now a Hamiltonian cycle of G([udn−2ud, s2(P )]), we obtain a
Hamiltonian cycle C of G(I(P ) \ {P, s(P )}). Then, since the edge f({P, s(P )}) =
{dudk−1un−1−k, dudk−1un−2−kd} belongs to C and is parallel to the edge {P, s(P )}, we
can join {P, s(P )} with C to obtain a Hamiltonian cycle of G(P ) (see Fig. 6).

For k = n− 3 (resp. k = n− 2), i.e., P = udn−3u2 (resp. P = udn−2u), we have that
I(P ) = I(Pd) ∪ ue1n−1 ∪ {P, s(P )} (resp. I(Pd) ∪ ue1n−1), and the required Hamiltonian
cycle of G(P ) follows by joining the cycle Cd with the edges ue1n−1, {P, s(P )} (resp. the
edge {P, s(P )} = ue1n−1).
Third case: Let P = udun−2. In this case, I(P ) is partitioned as I(P ) = I(s2(P )) ∪
{P, s(P )} ∪ {f(P ), f(s(P ))}. Then, following the proof of the general case for the path
s2(P ) = udun−4du, we can join the cycles Cu and Cd using the parallel edges e =
{s2(P ), s3(P )} and f(e), in order to obtain a Hamiltonian cycle Cs2(P ) of G(s2(P )), which
contains the edge {s2(P ), f(s2(P ))}. (In Fig. 7, this cycle consists of all red and all
non-dotted black edges.) Then, by replacing this edge in Cs2(P ) by the path of ver-
tices (s2(P ), s(P ), P, f(P ), f(s(P )), f(s2(P ))), we obtain the required cycle of G(P ) (see
Fig. 7).

We note that, for some paths, the desired Hamiltonian cycle is asked to satisfy certain
conditions, as in the following result, which will be used in the proof of Proposition 9.
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f(s(P ))
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Figure 6: The construction of a Hamiltonian cycle of G(P ) when P = udkun−1−k, k ∈
[2, n− 4].

P
s(P ) = udun−3d

s3(P ) = udun−5du2 udun−4d2
f(s(P )) = dun−2ds2(P ) = udun−4du
f(s2(P )) = dun−3du

udn−1
udn−2u

udn−3ud

dudn−2

dudn−3u

dn−2ud

Pd = f(P )

dudn−4ud

dun−4du2
dun−3d2

ue1n−1
f(ue1n−1)

Cu

Cd

Figure 7: The construction of a Hamiltonian cycle of G(P ) when P = udun−2, n > 5.

Proposition 3. For the path Pλ = udλurdu ∈ Pn, where λ, r > 0, there exists a Hamilto-
nian cycle CPλ

of G(Pλ) which contains the path of vertices (Pλ, f(Pλ), f
2(Pλ), . . . , f

λ(Pλ))
and the edges udλue1n−2−λ, for r > 1, udλue2n−2−λ, for r > 2 and udλue3n−2−λ, for r > 3.

Proof. We use induction with respect to λ.
Let λ = 0, i.e., P0 = ur+1du. First, notice that since the vertex u2dr+1 (resp. u3d2)

has degree 2, for r > 1 (resp. r = 2), the edge u2e1n−2 = {u2dr+1, u2dru} (resp. u2e2n−2 =
{u2dud, u3d2}) belongs to any cycle of G(P0). For r > 3, starting from any Hamiltonian
cycle C1 of G(ur−1du) and applying the method used in the proof of Proposition 2 (first
special case) for Cu = uC1, we construct a Hamiltonian cycle C2 of G(urdu) which contains
all the edges of uC1 except the deleted edges {udur, udur−1d} and {udr−2udu, udr−1u2}
(see Fig. 5 for k = 1 and n = r + 2). In particular, the edges ue2n−1 and ue3n−1 belong to
C2. Then, by applying once more the same method for Cu = uC2, we obtain a cycle CP0

of
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Pλ

udn−3ud

e dPλ−1 = f(Pλ)
f(e)

df(Pλ−1) = f 2(Pλ)

dfλ−1(Pλ−1) = fλ(Pλ)

dn−2ud

f(ue1n−1)

udn−1

udn−2u
ue1n−1

udλC

dCPλ−1

Figure 8: The construction of the cycle CPλ
for λ, r > 1.

G(P0) which contains all the edges of uC2 except {udu
r+1, udurd} and {udr−1udu, udru2}.

It follows that the edges u2e2n−2 and u2e3n−2 belong to CP0
.

For λ > 1, using the induction hypothesis, there exists a Hamiltonian cycle CPλ−1
of

G(Pλ−1) which contains the path of vertices (Pλ−1, f(Pλ−1), . . ., f
λ−1(Pλ−1)). For r = 0,

i.e., Pλ = udλ+1u, the cycle CPλ
is obtained by joining the cycle dCPλ−1

with the edge
ue1n−1. For r > 1, consider any Hamiltonian cycle C of G(urdu). As in the case where
λ = 0, C contains the edge ue1n−2−λ and, for r > 2, the edge ue2n−2−λ. Furthermore, for
r > 3, by taking C = C2 (of case λ = 0), we may also assume that C contains the edges
ue2n−2−λ and ue3n−2−λ. Since I(Pλ) is partitioned as

I(Pλ) = [udn−3ud, Pλ] ∪ I(dPλ) ∪ ue1n−1,

it is enough to join the cycles udλC, dCPλ−1
and the edge ue1n−1 to a Hamiltonian cycle

CPλ
of G(Pλ). This is done in the same way as in the proof of the general case in

Proposition 2. The only difference is that here we use Pλ instead of udn−3u2 and e is
either {Pλ, ud

λur−1du2} or {Pλ, ud
λurd2} (see Fig. 8).

It is easy to check that the path of vertices

(Pλ, f(Pλ), f
2(Pλ), . . . , f

λ(Pλ)) = (Pλ, dPλ−1, df(Pλ−1), . . . , df
λ−1(Pλ−1))

belongs to the cycle CPλ
. Furthermore, since the cycle CPλ

contains all the edges of the
cycle udλC, except the deleted edge e, it will contain the edges udλue1n−2−λ, for r > 1,
udλue2n−2−λ, for r > 2 and udλue3n−2−λ, for r > 3.

3 Counting the difference of even and odd ranks

In this section, we give a sufficient and necessary condition for a path P , in order to have
|E(P )| = |O(P )|, which will be used in the next section, for the proof of Theorem 1 for
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paths ending with d. For this, we consider the difference mapping ∆ on P defined by

∆(P ) = |E(P )| − |O(P )| =
∑

S6P

(−1)[ρ(S) is odd],

and we study its properties. We note that ∆(Pu) = 0, ∆(dP ) = ∆(P ) and ∆(dn) = 1,
n > 0.

We first give some definitions and notation. For any set of paths A, we define

E(A) = {Q ∈ A : ρ(Q) is even}, O(A) = {Q ∈ A : ρ(Q) is odd}

and ∆(A) = |E(A)| − |O(A)|.

In particular, we have

E(P ) = E([d|P |, P ]), O(P ) = O([d|P |, P ]) and ∆(P ) = ∆(I(P )).

Moreover, we define

I0(P ) = {Q 6 P : |Q|u = |P |u} and ∆0(P ) = ∆(I0(P )).

Finally, for a path P 6= dn, we set θ(P ) to be the path obtained by deleting the rightmost
u of P . We note that θ(Pd) = θ(P )d and I0(θ(P )u) is the set of paths in I0(P ) ending
with u.

In the following result we summarize the properties of ∆0 and ∆, as well as the
connection between them.

Lemma 4. For any path P ∈ P, we have that:

i) ∆(P ) = ∆0(P )−∆0(θ(P )u), for P 6= d|P |.

ii) ∆0(Pu) = (−1)|P |u+1∆0(P ).

iii) ∆0(Pd) = (−1)|P |u (∆0(P ) + ∆0(θ(P )d)), for P 6= d|P |.

iv) ∆(Pd) = (−1)|P |u∆0(P ).

v) ∆(Pdd) = (−1)|P |u(∆(Pd)−∆(θ(P )dd)), for P 6= d|P |.

vi) ∆(Pudi) = (−1)|P |u+1 (∆(Pudi−1)−∆(Pdi)), for i > 1.

vii) ∆(Pudi) = ∆(Pudi−2)−∆(θ(P )di), for i > 2 and P 6= d|P |.

viii) (−1)(
|P |u
2
)∆(P ) > 0.
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Proof. i) The restriction of the switch involution on the set [d|P |, P ] \ {S ∈ I0(P ) :
S ends with d} is still an involution, so that

∆(P ) = ∆({S ∈ I0(P ) : S ends with d})

= ∆(I0(P ))−∆({S ∈ I0(P ) : S ends with u})

= ∆0(P )−∆0(θ(P )u).

ii) For any path Q ∈ I0(P ) we have that ρ(Qu) = ρ(Q) + |Q|u + 1 = ρ(Q) + |P |u + 1,
and since I0(Pu) = I0(P )u, it follows that

∆0(Pu) = ∆(I0(P )u) =

{

∆0(P ), |P |u + 1 is even

−∆0(P ), |P |u + 1 is odd
= (−1)|P |u+1∆0(P ).

iii) Note that the set I0(Pd) is the disjoint union of the sets I0(P )d and I0(θ(Pd)u).
Using relation ii) and the fact that the switch involution defines a bijection between
I0(P )d and I0(P )u that reverses the parity of the rank, we have that

∆0(Pd) = ∆(I0(P )d) + ∆(I0(θ(Pd)u)) = −∆(I0(P )u) + ∆(I0(θ(Pd)u))

= −∆0(Pu) + (−1)|θ(Pd)|u+1∆0(θ(Pd))

= (−1)|P |u∆0(P ) + (−1)|P |u∆0(θ(P )d)

iv) When P = d|P |, the result holds trivially. Otherwise, using i), ii) and iii), we have
that

∆(Pd) = ∆0(Pd)−∆0(θ(Pd)u)

= (−1)|P |u(∆0(P ) + ∆0(θ(P )d))− (−1)|P |u∆0(θ(Pd)),

and the result follows, since θ(P )d = θ(Pd).
v) Using relations iii) and iv), we have that

∆(Pdd) = (−1)|P |u∆0(Pd) = ∆0(P ) + ∆0(θ(P )d)

= (−1)|P |u(∆(Pd)−∆(θ(P )dd))

vi) Usings relations ii) and iv), we obtain that

∆(Pud) = (−1)|P |u+1∆0(Pu) = ∆0(P ) = (−1)|P |u∆(Pd),

so that the required equality holds for i = 1, since ∆(Pu) = 0. Moreover, for i > 2, the
result follows immediately by applying v) for the path Pudi−2.

vii) By applying twice relation vi) and then relation v) for the path Pdi−2, we obtain
that

∆(Pudi) = (−1)|P |u+1
(
∆(Pudi−1)−∆(Pdi)

)

= ∆(Pudi−2)−∆(Pdi−1) + ∆(Pdi−1)−∆(θ(Pdi−2)dd)

= ∆(Pudi−2)−∆(θ(P )di).

viii) The result follows easily by induction on the length and using vi) and vii).
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In the sequel, we give some conditions in order to have ∆(P ) = 0, for a path P .
Clearly, since ∆(Pu) = 0 and ∆(dP ) = ∆(P ), it is enough to restrict ourselves to paths
starting with u and ending with d. We start with some necessary conditions in the next
result.

Proposition 5. Let P be a path in P that starts with u, ends with d and satisfies ∆(P ) =
0. Then,

i) |P |d is even.

ii) If |P | is even, then P ends with ud.

Proof. i) Assume that the result is false and let P be a path with minimum length such
that P starts with u, ends with d, ∆(P ) = 0 and |P |d is odd. We consider the following
two cases:

First case: P ends with ud, i.e., P = Qud, Q ∈ P. Clearly, since ∆(ud) = 1, we have
that Q 6= ε, so that Q starts with u. Then, from vi) of Lemma 4, we have that

0 = ∆(Qud) = (−1)|Q|u+1(∆(Qu)−∆(Qd)) = (−1)|Q|u∆(Qd),

which is a contradiction, since |Qd| < |P | and |Qd|d is odd.
Second case: P ends with dd, i.e., P = Qudi, Q ∈ P, i > 2. Clearly, since |udi|d = i

and ∆(udi) = [i is odd], we obtain that Q 6= ε, so that Q starts with u. Then, from
relation vii) of Lemma 4, we have that

0 = ∆(Qudi) = ∆(Qudi−2)−∆(θ(Q)di).

Using the above equality and since |Qudi−2|u = |P |u and |θ(Q)di|u = |P |u − 2, from viii)

of Lemma 4, we obtain that (−1)(
|P |u
2 )+(|P |u−2

2
)∆2(θ(Q)di) > 0. Since the exponent of

−1 is odd, we deduce that ∆(θ(Q)di) = 0, which also implies that |θ(Q)|u > 0. Thus,
θ(Q)di is a path of length less than |P | that starts with u, ends with d2 and satisfies
∆(θ(Q)di) = 0 and |θ(Q)di)|d is odd, which is a contradiction.

ii) The proof is similar to the above second case and it is omitted.

Our aim is to give a sufficient and necessary condition in order to have ∆(P ) = 0 for
a path P . As we will see, this condition is based on the valleys of the path. For this, we
need some more definitions.

A path P is decomposed with respect to a certain valley as P = LduR, or P = Ld if
this valley is the last step of P , where L,R ∈ P. This valley is called odd whenever |L| is
even. Moreover, if both |L|u and |L|d are even, then it is called critical. For example, the
path P = uududduud has three valleys (colored red), the first (leftmost) is critical, the
second is not odd and the third is odd but not critical, whereas the path Q = uduudduudd
has no critical valleys.

Similarly, if P = LudR or P = Lu, the peak following L is called odd whenever |L|
is even. In the following, we will refer to every occurrence of either a peak or a valley in
a path P as a peak/valley of P . We note that a path has no odd peak/valley iff it has
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no ascent or descent of odd length. This implies that if the leftmost odd peak/valley of
a path is a valley, then it is critical. On the other hand, if the leftmost odd peak/valley
is a peak, it is possible that the path has no critical valleys. (An example is the path
P = uuddudud, where the leftmost odd peak/valley is colored red.)

Next, we introduce an involution φ on P, which is similar to the one presented by
Ruskey (see [12], p.133). (Ruskey defines φ on the interval I0(u

kdn−k) in order to prove a
sufficient and necessary condition for a Hamiltonian path to exist in the subgraph induced
by this interval.)

For every path P we define φ(P ) to be the path obtained from P by turning the
leftmost odd peak/valley (a peak becomes valley and vice versa). It is straightforward to
see that φ is an involution on P that changes the rank of paths with an odd peak/valley
by one. On the other hand, it fixes the paths with no odd peak/valley, i.e., paths with
no ascent or descent of odd length. Obviously, these paths always have even length.
Moreover, the parity of their rank depends on the number of u’s. In particular,

φ(P ) = P ⇒ ρ(P ) ≡ ρ(d|P |du|P |u) =
|P |u(|P |u + 1)

2
(mod 2). (3)

This can be easily verified using the fact that each u in P has an even number of d’s on
its right.

The use of φ simplifies the evaluation of ∆(P ). Indeed, every pair of distinct paths
S, T in [d|P |, P ], such that φ(S) = T have ranks of different parity, thus giving zero
contribution to the value of ∆(P ). Hence,

∆(P ) = ∆(UP ), where UP = {S 6 P : φ(S) = S or φ(S) 66 P}. (4)

In the next result, we give the necessary conditions in order to have ∆(P ) = 0, for a
path P with no critical valleys.

Proposition 6. Let P ∈ P be a path starting with u, ending with d and having no critical
valleys. Then, ∆(P ) = 0, if either |P | is odd, or |P |, |P |d are even and P ends with ud.

Proof. Firstly, assume |P | is odd. Then, there exists no path S 6 P such that φ(S) = S
(any such path must have even length). Moreover, since P has no critical valleys, there
exists no path S 6 P such that φ(S) 66 P . Indeed, any such path must have a common
valley with P , which is the leftmost odd peak/valley of S, hence a critical valley of S.
Then, it follows easily that this valley must also be a critical valley of P , which is a
contradiction. From the above, it follows that Up is empty, so that ∆(P ) = ∆(UP ) = 0.

Secondly, assume |P |, |P |d are even and P ends with ud, i.e., P = Qud. Then |Q|u is
odd and Lemma 4vi) gives ∆(Qud) = (−1)|Q|u∆(Qd) = 0, since Qd has odd length and
no critical valleys.

We now come to the main result of this section.

Theorem 7. A path P ∈ P starting with u and ending with d has |E(P )| = |O(P )| (i.e.,
∆(P ) = 0) iff P has no critical valleys and i) |P | is odd, or ii) |P |, |P |d are even and P
ends with ud.
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Proof. In view of Propositions 5 and 6, it is enough to show that if P has a critical valley,
then ∆(P ) 6= 0. For the rest of the proof, we assume that |P |d is even and that if |P |
is even then P ends with ud, otherwise the result follows from Proposition 5. It follows
that the last step of P is not a critical valley. Let P = LduR, where L,R ∈ P, be the
decomposition of P with respect to its leftmost critical valley and let Q = LudR.

We first show that

∆(P ) = ∆(Q) + (−1)|P |+1+|L|u/2|Φ0(L)|∆(R), (5)

where Φ0(L) = {T 6 L : φ(T ) = T, |T |u = |L|u}. Note that |Φ0(L)| > 0, since d|L|du|L|u ∈
Φ0(L). In order to prove equality (5), we first note that UQ ⊆ UP and every path
S ∈ UP \ UQ satisfies S 6 P , φ(S) 6 Q and φ(S) 66 P , therefore the leftmost odd
peak/valley of S coincides with the leftmost critical valley of P , i.e., S = TduZ, where
T ∈ Φ0(L), Z 6 R. Using relations (2) and (3), it follows that

ρ(S) = ρ(T ) + ρ(duZ) + |duZ||T |u = ρ(T ) + ρ(Z) + |Z|+ 1 + (|Z|+ 2)|T |u

≡
|T |u(|T |u + 1)

2
+ ρ(Z) + |Z|+ 1 + (|Z|+ 2)|T |u ≡ ρ(Z) + |Z|+ 1 + |T |u/2

≡ ρ(Z) + |P |+ 1 + |L|u/2 (mod 2).

Then, using equation (4), we have that

∆(P )−∆(Q) = ∆(UP \ UQ) =
∑

S∈UP \UQ

(−1)[ρ(S) is odd]

=
∑

T∈Φ0(L)

∑

Z6R

(−1)[ρ(Z)+|P |+1+|L|u/2 is odd]

= (−1)|P |+1+|L|u/2|Φ0(L)|
∑

Z6R

(−1)[ρ(Z) is odd]

= (−1)|P |+1+|L|u/2|Φ0(L)|∆(R),

so that equality (5) holds.
Since |P |d is even, it is easy to see that the two summands of the right-hand side of

equation (5) never have opposite signs. Indeed, using Lemma 4 viii), we have that

(−1)|P |+1+|L|u/2∆(Q)∆(R) > 0

⇔
(|R|u + |L|u + 1)(|R|u + |L|u) + |R|u(|R|u − 1) + |L|u

2
+ |P |+ 1 ≡ 0 (mod 2)

⇔ |R|u + |P |+ 1 ≡ 0 (mod 2)

⇔ |P |d ≡ 0 (mod 2).

Therefore, it is enough to prove that always one of the summands is non-zero.
Assume the opposite, i.e, ∆(P ) = ∆(Q) = ∆(R) = 0, and take P to have the minimum

positive number of critical valleys. Clearly, P has exactly one critical valley, otherwise
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Q would contradict the minimality of P . Since, ∆(d|R|) = 1, the path R has at least
one u, therefore it is decomposed as R = diR′, i > 0, where R′ starts with u. According
to Proposition 5i), relation ∆(R′) = ∆(R) = 0 implies that |R′|d is even. Furthermore,
since |P |d and |L|d are even, it follows that i is odd. Then, we can easily check that the
path uR′ has no critical valleys, so that, by Proposition 6, we have that ∆(uR′) = 0.
By partitioning the interval [d|R

′|+1, uR′] into [ud|R
′|, uR′] and [d|R

′|+1, dT ], where T is the
path obtained from uR′ by deleting its first d, we have that

0 = ∆(uR′) = ∆([ud|R
′|, uR′]) + ∆(dT ) = (−1)|R

′|+1∆(R′) + ∆(T ) = ∆(T ).

This contradicts Proposition 5i), since |T |d is odd.

The above result will be used repeatedly in the following section.

4 The Hamiltonicity for paths ending with d

In this section, we show Theorem 1 for paths ending with d. It is enough to consider
paths starting with u. For this, we denote by Kn, n > 4, the set of paths P ∈ Pn that
start with u and end with d, have at least two peaks and satisfy |E(P )| = |O(P )|, and
we set K =

⋃

n>4Kn. In Proposition 9, we show that the graph G(P ) is Hamiltonian for
every path P ∈ K, completing the proof of Theorem 1 for paths ending with d. Any path
P ∈ K is decomposed as

P = uk1dλ1uk2dλ2 · · ·ukρdλρ , where ρ > 2 and ki, λi > 1, for all i ∈ [ρ].

We first give the following Lemma, which is an immediate consequence of Theorem 7 and
will be used repeatedly and without further reference in the proof of Proposition 9.

Lemma 8. Let P = uk1dλ1uk2dλ2 · · ·ukρdλρ ∈ P and define P3 = uk3dλ3 · · ·ukρdλρ when-
ever ρ > 3. If P ∈ K, then the following paths also belong to K:

1. f(P ), whenever k1 is even.

2. s(P ), whenever k1, k2 are odd and ρ > 3.

3. f 2(P ), whenever k1 is odd and k1 > 3.

4. s2(P ), whenever k1 is even and k2 > ρ = 2, or k1 odd, k2 even and either ρ > 3 or
λ2 > ρ = 2.

5. uk2dλ2P3, whenever k1 is even and ρ > 3.

6. udλ1uk2dλ2 · · ·ukρdλρ, whenever k1 is odd and k1 > 3.

7. uk1dλ2P3, whenever k2, λ1 are even and ρ > 3.

8. uk1dλ2−1P3, whenever k1, λ1 are odd, k2 is even and either ρ > 3 and λ2 > 2, or
ρ > 4 and λ2 = 1.
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9. P3, whenever k1, k2 are odd and ρ > 4.

10. uk1dλ1uk2dλ2f 2(P3), whenever k1, k2 are odd, ρ = 3 and k3 > 2.

Proposition 9. For every path P = uk1dλ1uk2dλ2 · · ·ukρdλρ ∈ Kn, there exists a Hamilto-
nian cycle CP of G(P ). Moreover, if k1 is odd, then CP satisfies the following properties:

1. uk1dλ1ue1n−k1−λ1−1 belongs to CP , whenever k2 > 2 or k2 = 1, λ1 is odd and |P |u >

k1 + 2.

2. Either uk1dλ1ue2n−k1−λ1−1 or u
k1dλ1ue3n−k1−λ1−1 belong to CP , whenever |P |u > k1+2

and n > k1 + λ1 + 4.

3. e(P ) belongs to CP .

4. e(f(P )) belongs to CP , whenever k1 = 1, k2 and λ1 are even and ρ > 3.

5. The path of vertices
< P > = uk1dλ1uk2dλ2 · · ·ukρ−1dλρ−1ukρ−1(udλρ, f(udλρ), . . . , fλρ+1(udλρ) = dλρ+1)
belongs to CP , whenever ρ = 3, λ1 = 1 and k2 is odd.

6. e(uk1dλ1udn−k1−λ1−1) belongs to CP , whenever λ1 is even.

7. e(uk1dλ1uk2dudn−k1−λ1−k2−2) belongs to CP , whenever λ1 is odd, k2 is even and ρ > 3.

Proof. We show the result by induction on the length and the ordering of the paths. This
is done by considering several cases.

Case A: k1 even In this case, in view of Theorem 7, λ1 is also even and f(P ) =
uk1−1dudλ1−1uk2dλ2 · · ·ukρdλρ ∈ Kn. Then, by the induction hypothesis, there exists a
Hamiltonian cycle Cf(P ) of G(f(P )) satisfying the associated properties. Clearly,

I(P ) \ I(f(P )) = [uk1dn−k1, P ].

We consider three subcases:
(i) ρ > 3. Then, the path S = uk2dλ2 · · ·ukρdλρ also belongs to K, so that, by

the induction hypothesis, there exists a Hamiltonian cycle CS of G(S). It follows that
the cycle C = uk1dλ1CS is a Hamiltonian cycle of G([uk1dn−k1−2ud, P ]). The vertex
uk1dn−k1−2ud has two valleys, therefore it has two neighbors in this graph, so that the
edges uk1e2n−k1

and uk1e3n−k1
belong to C. Moreover, according to properties 1 and 2

for the path f(P ), the edge f(uk1e1n−k1
) = uk1−1due1n−k1−1 and either one of the edges

f(uk1e2n−k1
) = uk1−1due2n−k1−1 or f(uk1e3n−k1

) = uk1−1due3n−k1−1 belong to Cf(P ). Then,
using the basic constructions 1 and 2 for the pairs of parallel edges (uk1e1n−k1

, f(uk1e1n−k1
))

and (e, f(e)), where e = uk1e2n−k1
or e = uk1e3n−k1

, we join the cycles C and Cf(P ) and the
edge uk1e1n−k1

into a Hamiltonian cycle CP of G(P ) (see Fig. 9(i)).
(ii) ρ = 2 and k2 = 1, i.e., P = uk1dλ1udλ2. In this case, the set I(P )\I(f(P )) consists

entirely of the vertices of

<P > = uk1dλ1(udλ2, dudλ2−1, . . . , dλ2u, dλ2+1).
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uk1dn−k1

uk1dn−k1−1u

uk1dn−k1−2ud

P
f(P )

e

uk1e1n−k1

C

Cf(P )

P = uk1dλ1udλ2

uk1dλ1+1udλ2−1

uk1dλ1+λ2u

uk1dλ1+λ2+1

f(P )

e
Cf(P )

s2(P )

P = uk1dλ1uk2dλ2

f(P )

e

C ′

Cf(P )

(i) (ii) (iii)

Figure 9: The construction of Cp for k1 even, in each one of the three subcases i) ρ > 3,
ii) ρ = 2 and k2 = 1, iii) ρ = 2 and k2 > 2.

On the other hand, according to property 5 for the path f(P ), the path of vertices

<f(P )> = uk1−1dudλ1−1(udλ2, dudλ2−1, . . . , dλ2u, dλ2+1).

belongs to Cf(P ). The paths of vertices < P > and < f(P ) > are parallel and they
both have length λ2 + 1, which is odd, since λ2 must be even. Then, using the basic
construction 1, we obtain the required cycle CP , which consists of the vertices of Cf(P )

and the vertices of < P > (see Fig. 9(ii)).
(iii) ρ = 2 and k2 > 2, i.e., P = uk1dλ1uk2dλ2 . Clearly, since by Proposition 5 the

number |P |d = λ1 + λ2 is even, we have that λ2 is also even. It follows from Theorem 7
that n is odd, so that k2 is also odd.

The construction of Cp in this case is a combination of the constructions in the previous
two cases. Firstly, by applying the method used in the first case for the path s2(P ) =
uk1dλ1uk2−2du2dλ2−1, we obtain a Hamiltonian cycle C ′ of G([uk1dn−k1−2ud, s2(P )]) which
can be joined with the cycle Cf(P ) into a Hamiltonian cycle C ′′ of G([uk1dn−k1−2ud, s2(P )]∪
I(f(P ))). Clearly, by property 5 of the cycle Cf(P ), we deduce that C ′′ contains the path
of vertices < f(P ) >. Next, since the set I(P )\ ([uk1dn−k1−2ud, s2(P )]∪I(f(P ))) consists
entirely of the vertices of < P >, as in the proof of case (ii), the cycle C ′′ and the path
of vertices < f(P ) > can be joined to give the required cycle Cp (see Fig. 9(iii)).

Case B: k1 odd, k1 > 3 In this case, I(P ) is decomposed as

I(P ) = uk1−1I(R) ∪ I(f 2(P )) ∪ uk1−1e1n−k1+1,

where R = udλ1uk2dλ2 · · ·ukρdλρ and f 2(P ) = uk1−2du2dλ1−1uk2dλ2 · · ·ukρdλρ . Clearly,
since R ∈ Kn−k1+1 and f 2(P ) ∈ Kn, by the induction hypothesis, there exist Hamiltonian
cycles CR of G(R) and Cf2(P ) of G(f 2(P )) which satisfy the associated properties.
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P = uk1−1R

uk1−1dn−k1+1

uk1−1dn−k1u
uk1−1dn−k1−1ud

dn−2ud

f 2(P )

uk1−1e1n−k1+1

f(uk1−1e1n−k1+1)

e

f(e)

uk1−1CR

Cf2(P )

Figure 10: The construction of CP for k1 odd, k1 > 3.

First, note that f(uk1−1ein−k1+1) = uk1−2duein−k1
, for every i ∈ [3]. Then, by prop-

erty 2 for the path f 2(P ), we obtain that either one of the edges f(uk1−1e2n−k1+1) or
f(uk1−1e3n−k1+1) belongs to the cycle Cf2(P ). On the other hand, since both uk1−1e2n−k1+1

and uk1−1e3n−k1+1 belong to the cycle uk1−1CR, we obtain that, for e = uk1−1e2n−k1+1 or
e = uk1−1e3n−k1+1, the edge e belongs to uk1−1CR and f(e) belongs to Cf2(P ). Further-
more, by property 1 for the path f 2(P ), we obtain that also the edge f(uk1−1e1n−k1+1)
belongs to the cycle Cf2(P ). Then, using the basic constructions 1 and 2, for the pairs
(uk1−1e1n−k1+1, f(u

k1−1e1n−k1+1)) and (e, f(e)) respectively, we can join the cycles uk1−1CR,
Cf2(P ) and the edge uk1−1e1n−k1+1 into a Hamiltonian cycle CP of G(P ) (see Fig. 10). Fi-
nally, notice that the cycle CP contains all the edges of the cycle uk1−1CR, except the edge
e, therefore, from the properties of CR, we deduce automatically the required properties
of CP .

Case C: k1 = 1, ρ = 2, λ2 = 1 In this case, P = udλ1uk2d and we have that

I(P ) \ I(s(P )) = {f i(P ) : 0 6 i 6 λ1}, where s(P ) = udλ1uk2−1du.

From Proposition 3, it follows that there exists a Hamiltonian cycle Cs(P ) of G(s(P ))
containing the path of vertices (s(P ), f(s(P )), . . . , fλ1(s(P ))), and the edges udλ1ue1n−λ1−2

for k2 > 2, udλ1ue2n−λ1−2 for k2 > 3, udλ1ue3n−λ1−2 for k2 > 4.
Clearly, since P ∈ Kn, it follows that |P |d is even, so that λ1 is odd. Thus, the

parallel paths of vertices (P, f(P ), . . . , fλ1(P )) and (s(P ), f(s(P )), . . . , fλ1(s(P ))) have
odd length. It follows, using the basic construction 1 (see Fig. 2), that the cycle Cs(P ) can
be expanded into a cycle CP , which contains also the edges f i(P ), 0 6 i 6 λ1. Clearly,
the cycle CP is a Hamiltonian cycle of G(P ) satisfying the required properties (i.e., 1, 2
and 3).

Case D: k1 = 1, k2 even and if ρ = 2 then λ2 > 2 In this case, we set P =
udλ1uk2dλ2Q, where Q = ε and λ2 > 2, or Q = uk3dλ3 · · ·ukρdλρ . Then, since the path

s2(P ) =

{

udλ1+1u2dλ2−1Q, for k2 = 2,

udλ1uk2−2du2dλ2−1Q, for k2 > 2,
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belongs to Kn, by the induction hypothesis, there exists a Hamiltonian cycle Cs2(P ) of
G(s2(P )) which satisfies the associated properties. Furthermore, using the equality

I(P ) \ I(s2(P )) =

λ1⋃

i=0

f i(udλ1uk2−1)[d|T |, T ],

where T = udλ2Q, we will construct a Hamiltonian cycle C of G(I(P ) \ I(s2(P ))) which
is joined suitably with the cycle Cs2(P ) in order to construct the desired cycle CP . This is
done by considering several subcases:

D1. P = udλ1uk2dλ2, k2 even and λ2 > 2 In this case T = udλ2, so that I(P ) \
I(s2(P )) is a grid of paths with λ2 + 2 rows and λ1 + 1 columns. More precisely, we have
that

I(P ) \ I(s2(P )) = {Pj,i : i ∈ [0, λ1], j ∈ [0, λ2 + 1]},

where

Pj,i = f i(udλ1uk2−1)f j(udλ2) =

{

diudλ1−iuk2−1djudλ2−j, j 6 λ2,

diudλ1−iuk2−1dλ2+1, j = λ2 + 1.
.

Clearly, since |P |d is even, in this case, we have that λ1, λ2 have the same parity,
which leads to two further subcases:

i) If λ1, λ2 are even, we construct first the
λ2

2
+ 1 (horizontal) cycles

(Pj,0, Pj,1, . . . , Pj,λ1
, Pj+1,λ1

, . . . , Pj+1,1, Pj+1,0, Pj,0), j ∈ [0, λ2 + 1], j even and join them
into a single cycle C, according to the basic construction 2, using the pairs of parallel
edges ({Pj−1,λ1−1, Pj−1,λ1

}, {Pj,λ1−1, Pj,λ1
}), j ∈ [2, λ2], j even (see Fig. 11 for λ1 = 4 and

λ2 = 6). Next, using the parallel edges e(s(P )) = {P1,0, P1,1} of C and e(s2(P )) of Cs2(P ),
we join the cycles C and Cs2(P ) into a Hamiltonian cycle CP of G(P )

Next, we verify that the cycle CP satisfies the required properties (i.e., 1, 2, 3 and 6).
Indeed, the edge e(P ) = {P0,0, P0,1} belongs to CP . Furthermore, for k2 = 2, the edges

udλ1ue1n−λ1−2 = {Pλ2,0, Pλ2+1,0}, udλ1ue2n−λ1−2 = {Pλ2−2,0, Pλ2−1,0},

e(udλ1udn−λ1−2) = {Pλ2+1,0, Pλ2+1,1}

belong to CP . On the other hand, for k2 > 2, by properties 1, 2 and 6 for s2(P ), it
follows that the edges udλ1ue1n−λ1−2, e(ud

λ1udn−λ1−2) and either one of udλ1ue2n−λ1−2 and
udλ1ue3n−λ1−2 belong to Cs2(P ) and thus also to CP .
ii) If λ1, λ2 are odd and λ2 > 3, first we construct the (λ1 + 1)/2 (vertical) cycles

(P0,i, P1,i, . . . , Pλ2+1,i, Pλ2+1,i+1, Pλ2,i+1, . . . , P0,i+1, P0,i), i ∈ [0, λ1], i is even,

and, for λ1 > 3, we join them into a cycle C, according to the basic construction 2, using
the pairs of parallel edges ({P0,i−1, P1,i−1}, {P0,i, P1,i}), i ∈ [2, λ1 − 1], i even, whereas,
for λ1 = 1, C = (P0,0, P1,0, . . . , Pλ2+1,0, Pλ2+1,1, . . . , P0,1, P0,0) (see Fig. 12, for λ2 = 5 and
either λ1 = 1 or λ1 = 5).
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P = P0,0
P0,1

fλ1(P ) = P0,λ1

s(P ) = P1,0 P1,λ1

P2,λ1

Pλ2+1,0 Pλ2+1,λ1

e(P )

e(s(P ))

s2(P )
f(s2(P ))

e(s2(P ))

Cs2(P )

C

Figure 11: The construction of Cp for P = udλ1uk2dλ2 , for k2, λ1, λ2 even.

Clearly, by applying property 6 (resp. 7) for the path s2(P ), when k2 = 2 (resp.
k2 > 2), we deduce that the edge e = e(udλ1uk2−2dudλ2) belongs to the cycle Cs2(P ).
Thus, using this edge and its parallel edge e(udλ1uk2−1dλ2+1) = {Pλ2+1,0, Pλ2+1,1} of C, we
can join the cycles C and Cs2(P ), according to the basic construction 2, into a Hamiltonian
cycle CP of G(P ) (see Fig. 12). Clearly, as in the previous subcase, the cycle CP satisfies
the required properties (i.e., 1, 2 and 3).

D2. P = udλ1uk2dλ2Q, where Q = uk3dλ3
· · ·ukρdλρ, ρ > 3 and k2 even We

consider two subcases:
i) λ1 even. In this case the path T = udλ2Q belongs to K, so that by the induction hy-
pothesis there exists a Hamiltonian cycle CT of G(T ) satisfying the associated properties.
We will construct the Hamiltonian cycle C of G(I(P ) \ I(s2P )) into two steps.

First, using the pairs (ei, ei+1), 0 6 i 6 λ1−2 and i even, and (gi, gi+1), 1 6 i 6 λ1−1
and i odd, where ei = f i(udλ1uk2−1){T, f(T )} and gi = f i(udλ1uk2−1){T, S}, where S is
the neighbor of T in CT , other than f(T ), we join according to the basic construction
2 the isomorphic cycles f i(udλ1uk2−1)CT , 0 6 i 6 λ1 into a Hamiltonian cycle C ′ of

G
(
⋃λ1

i=0 f
i(udλ1uk2−1)I(T )

)

(see Fig. 13 for λ1 = 4). Clearly, since s(P ) = udλ1uk2−1f(T ),

the edge e(s(P )) belongs to C ′.
Let e = udλ1uk2−1ei|T |, where i = 2 or 3, such that e belongs to the path in the

cycle udλ1uk2−1CT with endpoints the vertices P and udλ1uk2−1d|T |−2ud that does not
contain s(P ), and let g be the edge in this path adjacent to e. Then, by using the reverse
procedure of the basic construction 2 for the pair (g, f(g)), we can split the cycle C ′ into
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P = P0,0 f(P ) = P0,1

s(P ) = P1,0

Pλ2+1,0 Pλ2+1,1

e(P )

e

s2(P )

Cs2(P )

λ1 = 1

C

P = P0,0

s(P ) = P1,0

Pλ2+1,0

f(P )e(P ) fλ1(P ) = P0,λ1

Pλ2+1,λ1

e

s2(P )

Cs2(P )

λ1 > 3

C

Figure 12: The construction of Cp for P = udλ1uk2dλ2 , for k2 even, λ1, λ2 odd, λ2 > 3.

P = udλ1uk2−1T

s(P )

udλ1uk2−1d|T |−2ud

e0

f(P )

f(s(P ))e1
g1

f 2(P )

e2
g2

f 3(P )

e3
g3

fλ1(P )
gλ1

udλ1uk2−1CT

Figure 13: The construction of the cycle C ′ for k1 = 1, k2 even, ρ > 3 and λ1 even
(λ1 = 4).
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P

s(P )

udλ1uk2−1d|T |−2ud
udλ1uk2−1d|T |−1u

udλ1uk2−1d|T |

e

g

f(P )

f(s(P ))

f(e)

f(g)

f 2(P )

f 2(e)

f 3(P ) fλ1(P )e(P ) e(f(P ))

udλ1uk2−1e1|T |

s2(P ) f(s2(P ))

Cs2(P )

Figure 14: The construction of Cp for k1 = 1, k2 even, ρ > 3 and λ1 even (λ1 = 4).

two cycles. It is easy to check that one of these cycles contains the edge f(e) and the
other contains the edge f 2(e), so that, using the pair (f(e), f 2(e)), we can rejoin these
two cycles to a Hamiltonian cycle with the same vertices with C ′ and also containing the
edge e(f(udλ1uk2−1)d|T |−2du). (In Fig. 14, this cycle consists of all red, all non-dashed
black edges and the edge e(s(P )).) Next, by substituting this edge with the path (colored
magenta in Fig. 14) starting at f(udλ1uk2−1)d|T |−2du, ending at f 2(udλ1uk2−1)d|T |−2du
and passing through the vertices f i(udλ1uk2−1)d|T |−1u, f i(udλ1uk2−1)d|T |, 0 6 i 6 λ1, we
obtain the cycle C. Finally, using the parallel edges e(s(P )) of C and e(s2(P )) of Cs2(P ),
we join the cycles C and Cs2(P ) to a Hamiltonian cycle CP of G(P ) (see Fig. 14).

Clearly, by the above construction, it follows that the edges e(P ), e(f(P )) and, for
k2 = 2, the edges udλ1uei|T |, i ∈ [3], and e(udλ1ud|T |−1u) belong to C. Furthermore,

for k2 > 2, the edges udλ1ue1|T |, e(ud
λ1ud|T |−1u) and either one of the edges udλ1ue2|T | or

udλ1ue3|T | belong to Cs2(P ), by the induction hypothesis. Thus, the cycle CP satisfies the

required properties (i.e., 1, 2, 3, 4 and 6).
ii) λ1 odd. We first note that in this case the cycle Cs2(P ) contains the edge e =
e(udλ1uk2−2dudn−λ1−k2−1). Indeed, this follows from property 6, if k2 = 2, and from
property 7, if k2 > 2.

We will construct a Hamiltonian cycle C of G(I(P ) \ I(s2(P ))) which contains the
edge e′ = e(udλ1uk2−1dn−λ1−k2). Then, using the pair (e, e′) of parallel edges, we can join
the cycles Cs2(P ) and C according to the basic construction 2, into a Hamiltonian cycle
CP of G(P ). The construction of the cycle C is done by considering two further cases:
1) Assume that either λ2 = 1 and ρ > 4, or λ2 > 2. Clearly, we have that

[d|T |, T ] = [ud|T |−1, T ] ∪ [d|T |, f(T )], where T = udλ2Q, f(T ) = dudλ2−1Q.

Then, since in this case the path udλ2−1Q belongs to K, by the induction hypothesis,
there exists a Hamiltonian cycle Cf(T ) of G(f(T )).
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Let A be the subset of [d|T |, f(T )] consisting of the paths that start with du, i.e.,
A = f([ud|T |−1, T ]). Clearly each vertex of A is adjacent in Cf(T ) to at least one vertex
of A. For every path S ′ ∈ A, the path S ∈ [ud|T |−1, T ] such that f(S) = S ′ is called the
inverse image (with respect to f) of S ′. Firstly, we describe an algorithm for constructing
a cycle from two copies of [d|T |, T ], using the following steps:

S1. Sketch two copies of the cycle Cf(T ) and for each one of them spread a copy of the
interval [ud|T |−1, T ] so that every vertex S ∈ [ud|T |−1, T ] is facing the vertex f(S) of
Cf(T ). Then, connect each copy of the cycle Cf(T ) with a copy of the path of vertices
(d|T |, d|T |−1u, d|T |−2ud). In Fig. 15, the copies of the two cycles are presented as two
concentric circles and the elements of [ud|T |−1, T ] and A are marked with dots of the
same color (black and blue).

S2. For each copy of the cycle, delete the edge ej|T |, where j = 2 or 3, lying on the left

of vertex d|T |−2ud.

S3. Delete alternatively edges with endpoints in A, starting from the clockwise first
(resp. second) edge after ej|T | in the first (resp. second) copy of Cf(T ). This way, no
adjacent edges are deleted and if an edge is deleted in one copy, its corresponding
edge in the other copy is not deleted.

S4. For each S1 in a copy of [ud|T |−1, T ], add the edge {S1, S2} (resp. {S1, f(S1)}) if
there exists (resp. does not exist) S2 ∈ [ud|T |−1, T ] such that {f(S2), f(S1)} is not
a deleted edge.

S5. Connect each vertex of the first copy having degree 1 in the graph obtained after
the application of the previous steps, with its corresponding vertex in the second
copy.

To see that the resulting graph is a cycle, we can decompose the graph obtained after
the application of the first two steps into subgraphs consisting of either two copies of
a maximal path of vertices not in A, or two copies of a maximal path of vertices in A
and their inverse images. Then, each subgraph is transformed into a cycle, by applying
the remaining steps to it. The resulting cycles can then be joined according to the basic
construction 2 into a single cycle. This join recovers the edges deleted in the decomposition
stage, so that this description is equivalent to the above algorithm and their results are
the same.

The resulting cycle is depicted in Fig. 15, where the edges added at steps S4 and S5
are marked by green and red color respectively. Also note that each vertex belonging to
[ud|T |−1, T ] is adjacent to its corresponding vertex in the other copy. This is an important
property that will be used in the sequel.

Next, by applying the above construction for the two copies f i−1(udλ1uk2−1)[d|T |, T ]
and f i(udλ1uk2−1)[d|T |, T ], where i ∈ [λ1], i odd, we obtain a Hamiltonian cycle Ci of
G(f i−1(udλ1uk2−1)[d|T |, T ] ∪ f i(udλ1uk2−1)[d|T |, T ]).
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d|T |−2ud
d|T |−1u
d|T |

ej|T |

Figure 15: The cycle generated by two copies of [d|T |, T ].

It is easy to see that for each i ∈ [λ1] odd, the edges ei−1 and ei belong to Ci, where
ei = f i(udλ1uk2−1){d|T |, d|T |−1u}, i ∈ [0, λ1]. Then, for λ1 > 1, using the pairs of parallel
edges (ei, ei+1), where i ∈ [λ1 − 2] odd, we can join according to the basic construction
2 all cycles Ci into the desired cycle C (consisting of all red, all black non-dashed edges
and e′ in Fig. 16). Finally, for λ1 = 1, we set C = C1.

It is clear from the construction of C1 that the cycle C contains the edge e′ =
e(udλ1uk2−1dn−λ1−k2) and every edge of the form e(S), where S ∈ I(P ) starts with udλ1uk2.
In particular, the edges e(P ) and e(udλ1uk2dudn−λ1−k2−3) belong to C. Moreover, for
k2 = 2 (resp. k2 > 2) the edge udλ1ue1n−λ1−2 and either one of the edges udλ1ue2n−λ1−2

or udλ1ue3n−λ1−2 belong to C1 (resp. Cs2(P )). Thus, the cycle CP satisfies the required
properties 1, 2, 3 and 7.
2) Assume that λ2 = 1 and ρ = 3, i.e., P = udλ1uk2duk3dλ3 . We note that in this case
k3, λ3 must be even. Indeed, since P ∈ K, by Proposition 5, we have that |P |d = λ1+1+λ3

is even, which gives that λ3 is even. Furthermore, since λ3 6= 1, by Theorem 7, the length
of P is odd, so that k3 is also even.

We consider the path R = udλ1uk2duk3−2du2dλ3−1. Clearly, since R ∈ K, with
R 6 P , and R satisfies the conditions of the previous case, there exists a Hamiltonian
cycle C ′ of G(I(R) \ I(s2(R))) which contains the edges e′ = e(udλ1uk2−1dn−λ1−k2) and
e(udλ1uk2dudn−λ1−k2−3). We can easily check that the set I(P ) \ I(s2(P )) is written as a
disjoint union

I(P ) \ I(s2(P )) = (I(R) \ I(s2(R))) ∪ Z, where Z =
⋃

i∈[0,λ1]
j∈[0,λ3+1]

{Pj,i, Qj,i} and

Pj,i = f i(udλ1)uk2duk3−1f j(udλ3), Qj,i = f i(udλ1)uk2−1duk3f j(udλ3).
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C3C4

e
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Figure 16: The construction of C and Cp for k1 = 1, k2 even, λ1 odd (λ1 = 7) and either
ρ > 3 and λ1 > 2 or ρ > 4 and λ1 = 1, where A = udλ1uk2−1d|T |−1u and B = udλ1uk2−1d|T |.

We note that f(Pj,i) = Pj,i+1, f(Qj,i) = Qj,i+1 and s(Pj,i) = Qj,i, for all i, j. In partic-
ular, since P = P0,0, we have that f(P ) = P0,1 and s(P ) = Q0,0. We will construct a
Hamiltonian cycle CZ of G(Z) as follows:

First, for each i ∈ [0, λ1], we construct the vertical cycles

Ci = (P0,i, P1,i, . . . , Pλ3,i, Pλ3+1,i, Qλ3+1,i, Qλ3,i, . . . , Q1,i, Q0,i, P0,i)

and then we join them to a cycle CZ , according to the basic construction 2, using the
pairs of parallel edges

({P0,i, P1,i}, {P0,i+1, P1,i+1}), i ∈ [0, λ1 − 1], i is even and

({Q0,i, Q1,i}, {Q0,i+1, Q1,i+1}), i ∈ [1, λ1 − 2], i is odd.

Next, using the parallel edges e(P1,0) = e(udλ1uk2duk3−1dudλ3−1) of CZ and e(R) =
e(udλ1uk2duk3−2du2dλ3−1) of C ′, we can join the cycles C ′ and CZ into the desired cy-
cle C of G(I(P ) \ I(s2(P ))), which contains the edge e′ (see Fig. 17, where C consists of
all non-dashed black, red and blue edges and the edge e′). Clearly, the edge e(P ) belongs
to CZ and the edge e(udλ1uk2dudn−λ1−k2−3) belongs to C ′. Moreover, for k2 = 2 (resp.
k2 > 2) the edge udλ1ue1n−λ1−2 and either udλ1ue2n−λ1−2 or udλ1ue3n−λ1−2 belongs to C ′

(resp. Cs2(P )). Thus, the cycle CP satisfies also in this case the required properties 1, 2,
3, and 7.

Case E k1 = 1, k2 odd. In this case, we can easily check, using Theorem 7, that λ1,
λ2 have the same parity. If ρ = 2, then P has even length and, according to Theorem 7,
it ends with ud, so that λ2 = 1 and this case is already covered in case C. Therefore, it
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P = P0,0

P1,0

Pλ3+1,0

s(P )

Q1,0
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f(P ) Q0,1

R

e′

s2(P )

e

C ′

CZ

Cs2(P )

C0 C1 C2 C3 C4 C5

Figure 17: The construction of C and Cp for k1 = 1, k2 even, λ1 odd (λ1 = 5), λ2 = 1
and ρ = 3.

is enough to consider that ρ > 3, i.e., P = udλ1uk2dλ2Q, where Q = uk3dλ3 · · ·ukρdλρ . In
this case, the path

s(P ) =

{

udλ1+1udλ2−1Q, if k2 = 1

udλ1uk2−1dudλ2−1Q, if k2 > 1

belongs to Kn, so that, by the induction hypothesis, there exists a Hamiltonian cycle Cs(P )

of G(s(P )) which satisfies the associated properties.
We will construct a Hamiltonian cycle C of G(I(P ) \ I(s(P ))) which contains the

edges e(P ), e(f(P )) whenever λ1 is even, udλ1ue1n−λ1−2 whenever λ1 is even and k2 =
1, and the edge e′ = e(udλ1uk2dn−λ1−k2−1) whenever λ1 is odd. We note that, for λ1

even, if k2 > 1, then by property 4 it follows that the edge e(f(s(P ))) belongs to Cs(P ),
whereas if k2 = 1, then by property 1 it follows that the edge udλ1+1ue1n−λ1−3 belongs to
Cs(P ). Moreover, for λ1 odd, by property 7, if k2 > 1, and by property 6, if k2 = 1, it
follows that the edge e = e(udλ1uk2−1dudn−λ1−k2−2) belongs to Cs(P ). Then, the required
Hamiltonian cycle CP of G(P ) is created by joining the cycles C and Cs(P ), according to
the basic construction 2, using the pairs (e(f(P )), e(f(s(P )))), for λ1 even and k2 > 1,
(udλ1ue1n−λ1−2, ud

λ1+1ue1n−λ1−3), for λ1 even and k2 = 1, and (e′, e) for λ1 odd.
It remains to construct the cycle C and show that the induced cycle CP satisfies the

required properties. For this, we consider two cases.

E1 ρ > 4. In this case, Q ∈ K, so that by the induction hypothesis there exists a
Hamiltonian cycle CQ of G(Q) which satisfies the required properties. Then, using the
equality

I(P ) \ I(s(P )) =

λ1⋃

i=0

f i(udλ1)uk2dλ2 [d|Q|, Q]
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P

udλ1uk2dλ2+|Q|−2ud

udλ1uk2dλ2+|Q|−1u
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s(P ) f(s(P )) f 2(s(P ))
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udλ1+1ue1n−λ1−3

k2 = 1
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Figure 18: The construction of Cp for k1 = 1, k2 odd, ρ > 4, λ1 even (λ1 = 4). The two
blue (resp. cyan) edges are used in the case where k2 = 1 (resp. k2 > 1).

and the isomorphic cycles f i(udλ1)uk2dλ2CQ, i ∈ [0, λ1], we will construct the cycle C.
For this, we further consider two subcases.
i) λ1 (and λ2) even. In this case, the construction of C is the same as in case D2(i) (see
Fig. 14) and is omitted. Clearly, from this construction, it follows that C contains the
edges e(P ), e(f(P )) and, for k2 = 1, also the edges e(udλ1udn−λ1−2) and udλ1uein−λ1−2,
i ∈ [3]. Furthermore, for k2 > 1, by the induction hypothesis, the cycle Cs(P ) contains
the edges udλ1ue1n−λ1−2, e(udλ1udn−λ1−2) and either one of the edges udλ1ue2n−λ1−2 or
udλ1ue3n−λ1−2. Thus, the cycle CP satisfies the required properties 1 (for k2 > 2), 2, 3 and
6 (see Fig. 18).
ii) λ1 (and λ2) odd. The construction of the cycle C in this case is similar to the con-
struction used in case D2(ii) (first case). First, we describe an algorithm for constructing
a cycle from two copies of the interval [d|Q|, Q], using the following steps:

S1. Sketch two copies of the cycle CQ, each one of them connected to a copy of the path
of vertices (d|Q|, d|Q|−1u, d|Q|−2ud). In Fig. 19, the two copies of the two cycles are
presented as two concentric circles.

S2. Delete alternatively half of the edges of the first (resp. second) copy of CQ, starting
from the clockwise first (resp. second) edge after the vertex d|Q|−2ud.

S3. In the graph obtained from the previous two steps, connect each vertex in [d|Q|, Q]\
{d|Q|−2ud, d|Q|−1u} from the one copy with its corresponding vertex in the other
copy. It is easy to check that the resulting graph is a cycle such that every two
equal vertices in [d|Q|, Q] \ {d|Q|−2ud, d|Q|−1u} are adjacent.

Next, by applying the above construction for the two copies f i−1(udλ1)uk2dλ2 [d|Q|, Q]
and f i(udλ1)uk2dλ2 [d|Q|, Q], where i ∈ [λ1], i odd, we obtain a Hamiltonian cycle Ci of
G(f i−1(udλ1)uk2dλ2 [d|Q|, Q] ∪ f i(udλ1)uk2dλ2[d|Q|, Q]).
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d|Q|−2ud
d|Q|−1u
d|Q|

Figure 19: The cycle generated by two copies [d|Q|, Q].

It is easy to see that for each i ∈ [λi] odd, the edges ei−1 and ei belong to Ci, where
ei = f i(udλ1)uk2dλ2{d|Q|, d|Q|−1u}, i ∈ [0, λ1]. Then, for λ1 > 1, using the pairs of parallel
edges (ei, ei+1), where i ∈ [λ1 − 2] odd, we can join according to the basic construction 2
all cycles Ci into the desired cycle C. Finally, for λ1 = 1, we set C = C1. A figure for this
construction is omitted, since it is almost identical to Fig. 16. The only difference is that
now the green circle represents Cs(P ) and A = udλ1uk2dλ2d|Q|−1u, B = udλ1uk2dλ2d|Q|.

It is clear from the construction of C1 that e(S) belongs to C1 for every S ∈ I(P ) \
udλ1uk2dλ2{d|Q|−2ud, d|Q|−1u} starting with udλ1uk2dλ2 . In particular, the edges e(P ) and
e′ = e(udλ1uk2d|Q|+λ2) belong to C. Moreover, for k2 = 1 (resp. k2 > 1) the edge
udλ1ue1n−λ1−2 and either one of the edges udλ1ue2n−λ1−2 or udλ1ue3n−λ1−2 belong to C1

(resp. Cs(P )). Thus, the cycle CP satisfies the required properties 1, 2 and 3.

E2 ρ = 3, i.e., P = udλ1uk2dλ2uk3dλ3 . We note that in this case k3 must be odd and
λ3 even. Indeed, since P ∈ Kn, by Proposition 5, we have that |P |d = λ1 + λ2 + λ3 is
even, so that since λ1 + λ2 is even, we deduce that λ3 is also even. Then, since λ3 6= 1,
by Theorem 7, we have that |P | is odd, which gives that k3 is odd.

Assume first that k3 > 1 and let R = udλ1uk2dλ2uk3−2du2dλ3−1. Then, R ∈ Kn, R 6 P
and R has four peaks, so that it satisfies the conditions of the previous case. It follows
that there exists a Hamiltonian cycle C ′ of G(I(R) \ I(s(R))) which contains the edge
e(R), the edge e(f(R)) for λ1 even, the edge udλ1ue1n−λ1−2 for λ1 even and k2 = 1, and
the edge e′ = e(udλ1uk2dn−λ1−k2−1) for λ1 odd. Moreover, since

I(P ) \ I(s(P )) =

λ1⋃

i=0

f i(udλ1)uk2dλ2 [dk3+λ3 , uk3dλ3 ] and

I(R) \ I(s(R)) =

λ1⋃

i=0

f i(udλ1)uk2dλ2 [dk3+λ3 , uk3−2du2dλ3−1],
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P = P0,0 P0,1 P0,2 P0,λ1

P1,0

P1,1

Pλ3+1,0

e(f(P ))

e(P1,0)

Cs(P )

C ′

CZ

R
f(R)

e(R)

udλ1ue1n−λ1−2
e′

s(P )

e(f(s(P )))

e

C

Figure 20: The cycle CP for P = udλ1uk2dλ2uk3dλ3 , k2 odd, k3 > 1, λ1 > 1, is constructed
by joining the cycles C and Cs(P ) according to the three cases: i) λ1 even and k2 > 1, ii)
λ1 even and k2 = 1, iii) λ1 odd.

P = P0,0 f(P ) = P0,1

s(P ) = P1,0

Pλ3+1,0

e(P )

R

uduk2dλ2uk3−2dudλ3

e′

s(P )

e Cs(P )

C ′

C

Figure 21: The construction of CP for P = udλ1uk2dλ2uk3dλ3 , k2 odd, k3 > 1, λ1 = 1.
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we obtain that
I(P ) \ I(s(P )) = (I(R) \ I(s(R))) ∪ Z, (6)

where

Z = {Pj,i : j ∈ [0, λ3 + 1], i ∈ [0, λ1]} and Pj,i = f i(udλ1)uk2dλ2uk3−1f j(udλ3).

Following the construction used in case D1(i) for λ1 > 1 and in case D1(ii) for λ1 = 1, we
obtain a Hamiltonian cycle CZ of G(Z). Then, we join the cycles C ′ and CZ into a cycle
C, according to the basic construction 2, using the parallel edges e(P1,0) ∈ CZ , e(R) ∈ C ′

for λ1 > 1 (see Fig. 20), and e(Pλ3+1,0) ∈ CZ , e(udu
k2dλ2uk3−2dudλ3) ∈ C ′ for λ1 = 1 (see

Fig. 21). In view of equality (6), C is a Hamiltonian cycle of G(I(P ) \ I(s(P ))).
For k3 = 1, we have that I(P ) \ I(s(P )) = Z and we take C = CZ .
We can easily check that for both cases the cycle C contains the edge e(f(P )) for

λ1 > 1, the edge udλ1ue1n−λ1−2 for λ1 even, k2 = 1, and the edge e′ = e(udλ1uk2dn−λ1−k2−1)
for λ1 odd. Thus, the cycle C satisfies the required conditions in order to be joined with
the cycle Cs(P ), to obtain the cycle CP .

Finally, also in this case, it is easy to check that the cycle CP satisfies the required
properties 1, 2, 3, 4, 5 and 6.
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