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Abstract

Recently, motivated to control a distribution of the vertices having specified
degree in a degree factor, the authors introduced a new problem in [Graphs Combin.
39 (2023) #85], which is a degree factor problem of graphs whose vertices are colored
with red or blue. In this paper, we continue its research on regular graphs.

Among some results, our main theorem is the following: Let a, b and k be
integers with 1  a  k  b  k + a + 1, and let r be a sufficiently large integer
compared to a, b and k. Let G be an r-regular graph. For every red-blue vertex
coloring of G in which no two red vertices are adjacent, there exists a factor F of
G such that degF (x) ∈ {a, b} for every red vertex x and degF (y) ∈ {k, k + 1} for
every blue vertex y.
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1 Introduction

We consider simple graphs, which have neither loops nor multiple edges. Let G be a
graph. Then V (G) and E(G) denote the vertex set and the edge set of G, respectively,
and |G| denotes the order of G. Thus |G| = |V (G)|. For a vertex v of G, let NG(v) and
degG(v) denote the neighborhood and the degree of v in G, respectively. For two disjoint
sets X, Y ⊆ V (G), let eG(X, Y ) denote the number of edges of G between X and Y . Let
Z denote the set of integers. For a set S ⊆ Z, a graph G is called an S-graph if degG(v) ∈ S
for every vertex v ∈ V (G). An {r}-graph is said to be r-regular. Similarly, a spanning
subgraph F of G is called an S-factor of G if degF (v) ∈ S for every vertex v ∈ V (G).
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In particular, an {a, b}-factor F of G satisfies degF (v) = a or b for every vertex v of G.
Moreover, a {k}-factor is briefly called a k-factor.

In this paper, we consider degree factors of regular graphs. We begin with some known
theorems related to our results.

Theorem 1. Let λ, r and k be integers with 1  λ  r and 1  k < r. Let G be a λ-edge
connected r-regular graph. If one of the following conditions holds, then G has a k-factor.

(i) G is a bipartite graph (König [10]).
(ii) Both r and k are even (Petersen [13]).
(iii) r is even, k is odd, |G| is even and r/λ  k  r − r/λ (Gallai [6]).
(iv) r is odd, k is even and k  r − r/λ (Gallai [6]).
(v) Both r and k are odd and r/λ  k (Gallai [6] and Bäbler [2]).

As a corollary of Theorem 1(ii)–(v), we obtain the following.

Corollary 2. Let λ, r and k be integers with 1  λ  r and r/λ  k  r − r/λ. Let G
be a λ-edge connected r-regular graph such that k|G| is even. Then G has a k-factor.

As a relaxation of k-factors, the existence of {k, k + 1}-factors is also studied.

Theorem 3. Let r and k be integers with 1  k < r. Let G be an r-regular graph. Then
the following hold.

(i) G has a {k, k + 1}-factor (Tutte [14]).

(ii) For a maximal independent set W of G, there exists a {k, k+1}-factor F of G such
that degF (x) = k for every x ∈ V (G) − W , as well as a {k, k + 1}-factor H such
that degH(x) = k + 1 for every x ∈ V (G)−W (Egawa and Kano [4]).

(iii) If k  2r/3− 1, then G has a {k, k+ 1}-factor each of whose components is regular
(Kano [8]).

Note that Theorems 1 and 3 and their proofs are found in [1]. Here we focus on
Theorem 3(ii), which controls a distribution of the vertices of degree k or k + 1 in a
{k, k + 1}-factor. Inspired by the result, new version problems were posed in [5] as
follows: Let G be a graph. We color every vertex of G with red or blue, and let R(G)
and B(G) be the set of red vertices and the set of blue vertices of G, respectively. For
two sets SR, SB ⊆ Z, a spanning subgraph F of G is called a two-tone (SR, SB)-factor of
G if degF (x) ∈ SR for every x ∈ R(G) and degF (y) ∈ SB for every y ∈ B(G). Note that
if G has no blue vertices (resp. no red vertices), then a two-tone (SR, SB)-factor becomes
an SR-factor (resp. an SB-factor) of G.

Two-tone factors of cubic graphs were studied as follows (here, Theorem 4(i) was
obtained in [7] as a byproduct of other results).

Theorem 4. Let G be a connected cubic graph. For every red-blue vertex coloring of G,
the following statements hold.

(i) If G is 3-edge connected and |R(G)| is even, then G has a two-tone ({1}, {0, 2})-
factor (Kaiser [7]).

the electronic journal of combinatorics 31(1) (2024), #P1.40 2



(ii) If G is claw-free and |R(G)| is even, then G has a two-tone ({1}, {0, 2})-factor
(Furuya and Kano [5]).

(ii) If G is 3-edge connected claw-free, |R(G)| is even and the distance between any
two red vertices is at least 3, then G has a two-tone ({1}, {2})-factor (Furuya and
Kano [5]).

In this paper, we continue the research of two-tone factors of regular graphs. Our first
result is the following.

Theorem 5. Let r and k be integers with 1  k < r, and let G be an r-regular graph.
For every red-blue vertex coloring of G, G has a two-tone ({k − 1, k}, {k, k + 1})-factor.

Note that Theorem 5 can be used to prove Theorems 1(i) and 3(i) as follows. For an
r-regular graph G, if we color all vertices of G with blue, then by Theorem 5, we can find
a {k, k + 1}-factor of G, and so Theorem 3(i) is obtained. We next prove Theorem 1(i)
by using Theorem 5. Let G be an r-regular bipartite graph with the bipartition (X, Y ).
We color all vertices in X with red and all vertices in Y with blue. Then by Theorem 5,
G has a two-tone ({k − 1, k}, {k, k + 1})-factor F . By counting the number of edges of
F , we can verify that F must be a k-factor of G, and hence Theorem 1(i) is obtained.

Next we add some distance conditions on red vertices, and prove the following two
theorems.

Theorem 6. Let r and k be integers with 0  k < r. Let G be an r-regular graph. For
every red-blue vertex coloring of G in which no two red vertices are adjacent, G has a
two-tone ({k}, {k, k + 1})-factor.

Theorem 7. Let r, a and k be integers with 0  a  r and 0  k < r. Let G be an
r-regular graph. For every red-blue vertex coloring of G in which the distance between any
two red vertices is at least 3, G has a two-tone ({a}, {k, k + 1})-factor.

Note that Theorems 6 and 7 are also stronger versions of Theorem 3(i). Thus, con-
sidering the best possibility of Theorem 3(i), we cannot strengthen Theorems 6 and 7 by
replacing “{k, k + 1}” with “{k}”.

Remark that if both r and k are even, then the distance condition in Theorem 6
is redundant (see Theorem 1(ii)). On the other hand, in any other cases, the distance
condition in Theorem 6 is necessary. Let r and k be integers with 0  k < r, and suppose
that at least one of r and k is odd. Then it is known that there exists a connected r-
regular graph G having no k-factor (see [3]). We color all vertices of G with red. Then
there are two adjacent red vertices and G has no two-tone ({k}, {k, k + 1})-factor.

The distance condition in Theorem 7 is also necessary if a /∈ {k, k+1}. Let r, a and k
be integers with 0  a  r, 0  k < r and a /∈ {k, k+1}. Let G be an r-regular bipartite
graph with the bipartition (X, Y ). We color all vertices in X with red and all vertices in
Y with blue. Then there are two red vertices at distance 2 and we can easily verify that
G has no two-tone ({a}, {k, k + 1})-factor.

Our next aim is to strongly control the degree of red vertices in Theorem 6. The
following theorem is our main result.

the electronic journal of combinatorics 31(1) (2024), #P1.40 3



Theorem 8. Let a, b and k be integers with 1  a  k  b  k + a + 1, and let r be
a sufficiently large integer compared to a, b and k. Let G be an r-regular graph. Then
for every red-blue vertex coloring of G in which no two red vertices are adjacent, G has a
two-tone ({a, b}, {k, k + 1})-factor.

Note that if r satisfies the following inequality, then Theorem 8 holds.

r  max
(k + 1)(a+ 1)

k + a+ 2− b
,
(k + 1)(b− 1)

a
, b+ 1


.

Although we cannot drop the condition that b  k + a+ 1 in Theorem 8 for convenience
of the proof, we do not know whether the condition is necessary or not. So we pose the
following problem for readers.

Problem 9. Let a, b and k be integers with 1  a  k and a + k + 2  b  r, and let
r be a sufficiently large integer compared to a, b and k. Let G be an r-regular graph.
Does G have a two-tone ({a, b}, {k, k + 1})-factor for every red-blue vertex coloring of G
in which no two red vertices are adjacent?

We finally focus on another additional condition, which is the edge-connectivity, and
prove the following theorem.

Theorem 10. Let λ, r and k be integers with 1  λ  r and r/λ  k  r − r/λ. Let
G be a λ-edge connected r-regular graph. Then for every red-blue vertex coloring of G
in which |R(G)| is even if k is odd, and |B(G)| is even if k is even, G has a two-tone
({k}, {k − 1, k + 1})-factor.

Let us remark that Theorem 10 is a generalization of Corollary 2 and Theorem 4(i).
In Section 2, we give a stronger proposition than Theorem 5 (see Proposition 12), and by
using the proposition, we prove Theorem 7. We prove Theorems 6 and 10 in Sections 3
and 4, respectively. In Section 5, we prove Theorem 8, whose proof is fairly long.

2 Proof of Theorems 5 and 7

Let G be a graph, and let g, f : V (G) → Z be functions satisfying g(v)  f(v) for all
v ∈ V (G). A spanning subgraph F of G is called a (g, f)-factor of G if g(v)  degF (v) 
f(v) for all v ∈ V (G). The following theorem plays a key rule in the proof of Theorems 5
and 7

Theorem 11 (Kano and Saito [9], see [1, Theorem 4.14]). Let G be a graph. Let g, f :
V (G) → Z be functions, and let θ be a real number with 0  θ  1. If g(v)  θ degG(v) 
f(v) and g(v) < f(v) for all v ∈ V (G), then G has a (g, f)-factor.

We start with the following proposition. Note that if we consider an {r′− 1, r′}-graph
G with no vertex of degree r′ − 1, then Proposition 12 implies Theorem 5.
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Proposition 12. Let r′ and k be integers with 1  k < r′. Let G be an {r′− 1, r′}-graph.
Then for every red-blue vertex coloring of G in which every vertex of degree r′ − 1 is red,
G has a two-tone ({k − 1, k}, {k, k + 1})-factor.
Proof. Define two functions g, f : V (G) → Z as

g(v) =


k − 1 if v ∈ R(G)

k if v ∈ B(G),
and f(v) =


k if v ∈ R(G)

k + 1 if v ∈ B(G).

Note that g(v) < f(v) for all v ∈ V (G). Let θ = k/r′. For a vertex v ∈ V (G), if
degG(v) = r′ − 1, then v is red and g(v) = k − 1  θ degG(v)  k = f(v) because k < r′;
and if degG(v) = r′, then g(v)  k = θ degG(v)  f(v). Hence by Theorem 11, G has a
(g, f)-factor, which is the desired factor.

Proof of Theorem 7. Let r, a, k and G be as in Theorem 7. For each x ∈ R(G), take
a set S(x) of a edges of G incident with x. Let K be the spanning subgraph of G with
E(K) =


x∈R(G) S(x). Since the distance between any two red vertices is at least 3, for

each y ∈ B(G), we have |NG(y) ∩ R(G)|  1, and so degK(y) ∈ {0, 1}. If k = 0, then K
is the desired factor. Thus we may assume that k  1.

Let G′ = G−R(G). Then degG′(v) ∈ {r−1, r} for all v ∈ V (G′), i.e., G′ is an {r−1, r}-
graph. We recolor every vertex of G′ with red or blue so that R(G′) = {v ∈ V (G′) :
degK(v) = 1} and B(G′) = V (G′)−R(G′). Note that for a vertex v ∈ V (G′), if degG′(v) =
r−1, then degK(v) = 1, and hence v is colored with red. By Proposition 12 with r′ = r, G′

has a two-tone ({k−1, k}, {k, k+1})-factor H. Let F be the spanning subgraph of G with
E(F ) = E(K)∪E(H). For a vertex v ∈ V (G), if v ∈ R(G), then degF (v) = degK(v) = a;
if v ∈ B(G) and degK(v) = 1, then degF (v) = degK(v) + degH(v) ∈ {1 + (k − 1), 1 + k};
if v ∈ B(G) and degK(v) = 0, then degF (v) = degK(v) + degH(v) ∈ {0 + k, 0 + (k + 1)}.
Consequently, F is the desired factor.

3 Proof of Theorems 6

Let G be a graph. For an integer-valued function h defined on V (G) and a set X ⊆ V (G),
we briefly write

h(X) :=


v∈X

h(v).

In particular, we define degG(X) by letting degG(X) =


v∈X degG(v). A criterion for a
graph to have an (g, f)-factor is given in the following theorem.

Theorem 13 (Lovász [11], see [1, Theorem 4.1]). Let G be a graph. Let g, f : V (G) → Z
be functions satisfying g(v)  f(v) for all v ∈ V (G). Then G has a (g, f)-factor if and
only if for all pairs of disjoint sets S, T ⊆ V (G),

γ(S, T ) := f(S) + degG(T )− g(T )− eG(S, T )− q∗(S, T )  0,

where q∗(S, T ) denotes the number of components D of G− (S ∪ T ) satisfying

g(u) = f(u) for all u ∈ V (D), and f(D) + eG(D, T ) ≡ 1 (mod 2). (1)
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A componentD of G−(S∪T ) satisfying (1) is called a q∗-odd component of G−(S∪T ).
We now prove Theorem 6.

Proof of Theorem 6. Let r, k and G be as in Theorem 6. If k = 0, then the spanning
subgraph of G having no edge is the desired factor. Thus we may assume that k  1.

Define two functions g, f : V (G) → Z as

g(v) = k and f(v) =


k if v ∈ R(G)

k + 1 if v ∈ B(G).

Then G has a two-tone ({k}, {k, k+ 1})-factor if and only if G has a (g, f)-factor. Hence
by Theorem 13, it suffices to show that γ(S, T ) = f(S) + degG(T ) − g(T ) − eG(S, T ) −
q∗(S, T )  0 for all pairs of disjoint sets S, T ⊆ V (G).

Since r  1, every component of G contains at least one blue vertex. This together
with the fact that g(y) < f(y) for all y ∈ B(G) leads to q∗(∅, ∅) = 0. Hence for the case
of S = T = ∅, we have γ(∅, ∅) = −q∗(∅, ∅) = 0. Thus we may assume that S ∪ T ∕= ∅.

Let D1, D2, . . . , Dm be the q∗-odd components of G − (S ∪ T ), where m = q∗(S, T ).
Since Di satisfies (1), V (Di) ⊆ R(G). Since no two red vertices are adjacent, this implies
that Di consists of exactly one red vertex. Hence eG(S ∪ T,Di) = r. Let θ = k/r. Then
0 < θ < 1, and we have

γ(S, T ) = f(S) + degG(T )− g(T )− eG(S, T )− q∗(S, T )

 k|S|+ degG(T )− k|T |− eG(S, T )−m

=
k

r
degG(S) +


1− k

r


degG(T )− eG(S, T )−m

 θ




1im

eG(S,Di) + eG(S, T )



+ (1− θ)




1im

eG(T,Di) + eG(T, S)


− eG(S, T )−m

=


1im


θeG(S,Di) + (1− θ)eG(T,Di)− 1


. (2)

For each i ∈ {1, 2, . . . ,m}, let ϕi = θeG(S,Di)+(1−θ)eG(T,Di)−1. By the conditions
that 1  k < r and θ = k/r, we easily obtain that 1  θr and 1  (1− θ)r.

If eG(S,Di)  1 and eG(T,Di)  1, then ϕi  θ + (1 − θ) − 1 = 0. If eG(S,Di) = 0,
then eG(T,Di) = eG(S∪T,Di) = r, and hence ϕi = (1−θ)eG(T,Di)−1 = (1−θ)r−1  0.
If eG(T,Di) = 0, then eG(S,Di) = eG(S ∪ T,Di) = r, and hence ϕi = θeG(S,Di) − 1 =
θr− 1  0. In either case, we have ϕi  0. Hence by (2), γ(S, T ) 


1im ϕi  0. This

completes the proof of Theorem 6.

the electronic journal of combinatorics 31(1) (2024), #P1.40 6



4 Proof of Theorem 10

Let G be a graph, and let g, f : V (G) → Z be functions satisfying g(v)  f(v) and
g(v) ≡ f(v) (mod 2) for all v ∈ V (G). A spanning subgraph F of G is called a parity
(g, f)-factor of G if g(v)  degF (v)  f(v) and degF (v) ≡ f(v) (mod 2) for all v ∈ V (G).
A criterion for a graph to have a parity (g, f)-factor is given in the following theorem.

Theorem 14 (Lovász [12] (see [1, Theorem 6.1]). Let G be a graph. Let g, f : V (G) → Z
be functions satisfying g(v)  f(v) and g(v) ≡ f(v) (mod 2) for all v ∈ V (G). Then G
has a parity (g, f)-factor if and only if for all pairs of disjoint sets S, T ⊆ V (G),

η(S, T ) := f(S) + degG(T )− g(T )− eG(S, T )− q(S, T )  0,

where q(S, T ) denotes the number of components D of G− (S ∪ T ) satisfying

f(D) + eG(D, T ) ≡ 1 (mod 2). (3)

A component D of G−(S∪T ) satisfying (3) is called a q-odd component of G−(S∪T ).
Proof of Theorem 10. Let λ, r, k and G be as in Theorem 10. Define two functions
g, f : V (G) → Z as

g(v) =


k if v ∈ R(G)

k − 1 if v ∈ B(G),
and f(v) =


k if v ∈ R(G)

k + 1 if v ∈ B(G).

Then G has a two-tone ({k}, {k − 1, k + 1})-factor if and only if G has a parity (g, f)-
factor. Hence by Theorem 14, it suffices to show that η(S, T ) = f(S)+degG(T )− g(T )−
eG(S, T )− q(S, T )  0 for all pairs of disjoint sets S, T ⊆ V (G).

By the assumption on the cardinality ofR(G) andB(G), we have f(V (G)) = k|R(G)|+
(k + 1)|B(G)| ≡ 0 (mod 2). Since G is connected, this implies that for the case of
S = T = ∅, η(∅, ∅) = −q(∅, ∅) = 0. Thus we may assume that S ∪ T ∕= ∅.

Let D1, D2, . . . , Dm be the q-odd components of G − (S ∪ T ), where m = q(S, T ).
Since G is λ-edge connected, eG(S ∪ T,Di)  λ for every i ∈ {1, 2, . . . ,m}. Let θ = k/r.
Then 0 < θ < 1, and we have

η(S, T ) = f(S) + degG(T )− g(T )− eG(S, T )− q(S, T )

 k|S|+ degG(T )− k|T |− eG(S, T )−m

=
k

r
degG(S) +


1− k

r


degG(T )− eG(S, T )−m

 θ




1im

eG(S,Di) + eG(S, T )



+ (1− θ)




1im

eG(T,Di) + eG(T, S)


− eG(S, T )−m

=


1im


θeG(S,Di) + (1− θ)eG(T,Di)− 1


. (4)
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For each i ∈ {1, 2, . . . ,m}, let ϕi = θeG(S,Di)+(1−θ)eG(T,Di)−1. By the conditions
that r/λ  k  r(1 − 1/λ) and θ = k/r, we obtain 1  θλ and 1  (1 − θ)λ since
k  r(1− 1/λ) implies that θ  1− 1/λ and 1/λ  1− θ.

If eG(S,Di)  1 and eG(T,Di)  1, then ϕi  θ+(1−θ)−1 = 0. If eG(S,Di) = 0, then
eG(T,Di) = eG(S ∪ T,Di)  λ, and hence ϕi = (1− θ)eG(T,Di)− 1  (1− θ)λ− 1  0.
If eG(T,Di) = 0, then eG(S,Di) = eG(S ∪ T,Di)  λ, and hence ϕi = θeG(S,Di) − 1 
θλ− 1  0. In either case, we have ϕi  0. Hence by (4), η(S, T ) 


1im ϕi  0. This

completes the proof of Theorem 10.

5 Proof of Theorem 8

Let a, b, k, r and G be as in Theorem 8. Since r is sufficiently large, we may assume
that r  max{(k + 1)(a + 1)/(k + a + 2 − b), (k + 1)(b − 1)/a, b + 1}. If b = k, then by
Theorem 6, G has a two-tone ({b}, {k, k+1})-factor. Thus we may assume that k+1  b.
In particular, a < b. If Y is a subset of a set X, then we often write X − Y for X \ Y .

Let R = R(G) and B = B(G). By Theorem 6, there exists a two-tone ({a}, {a, a+1})-
factor H of G. Since a  k, H is also a two-tone ({a, b}, {a, a + 1, . . . , k + 1})-factor
of G. Let m be the maximum value of min{degF (y) : y ∈ B} among all two-tone
({a, b}, {a, a+ 1, . . . , k + 1})-factors F of G. Namely,

m = max

min


degF (y) : y ∈ B


: F is a two-tone

({a, b}, {a, a+ 1, . . . , k + 1})-factor of G

.

Let F be the family of two-tone ({a, b}, {a, a + 1, . . . , k + 1})-factors F of G that
satisfies (i) min{degF (y) : y ∈ B} = m and (ii) |{y ∈ B : degF (y) = m}| is as small as
possible.

If m  k, then min{degF (y) : y ∈ B}  k for F ∈ F , and hence F is a two-tone
({a, b}, {k, k + 1})-factor of G, as desired. Thus, by way of contradiction, suppose that
m  k − 1.

Now we give some notations and terminologies. Let F ∈ F . Define

RF (i) = {x ∈ R : degF (x) = i} for i ∈ {a, b}, and
BF (j) = {y ∈ B : degF (y) = j} for j ∈ {m,m+ 1, . . . , k + 1}.

Then BF (m) ∕= ∅, and |BF (m)| is minimum. For two vertices y ∈ BF (m) and v ∈ V (G),
a path P is called an alternating (F, y, v)-path if the following three conditions hold. For
convenience, we allow the case of y = v, that is, P is a (F, y, y)-path consisting of one
vertex y and having length 0.

(A1) y and v are the end-vertices of P .
(A2) if y ∕= v, then the edge of P incident with y belongs to E(G)− E(F ), and
(A3) the edges of P are alternately in E(G)− E(F ) and in E(F ).

For F ∈ F , we further define some sets of vertices related to alternating paths.
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• Let V even
F (resp. V odd

F ) be the set of vertices v ∈ V (G) such that there exists an
alternating (F, y, v)-path of even length (resp. odd length) for some y ∈ BF (m).

• For each i ∈ {a, b}, let Reven
F (i) = RF (i) ∩ V even

F and Rodd
F (i) = RF (i) ∩ V odd

F .

• For each j ∈ {m,m + 1, . . . , k + 1}, let Beven
F (j) = BF (j) ∩ V even

F and Bodd
F (j) =

BF (j) ∩ V odd
F .

We restate that for a vertex y ∈ BF (m), there is an alternating (F, y, y)-path in G, and
so Beven

F (m) = BF (m).

Claim 15. Let F ∈ F . Then

(i) V even
F = Reven

F (a) ∪Reven
F (b) ∪Beven

F (m) ∪Beven
F (m+ 1).

(ii) V odd
F = Rodd

F (a) ∪Rodd
F (b) ∪Bodd

F (k + 1).

Proof of (i). Suppose that there exists an alternating (F, y1, y2)-path P of even length
for y1 ∈ BF (m) and y2 ∈ BF (j) with j ∈ {m + 2,m + 3, . . . , k + 1}. Then the spanning
subgraph F1 of G defined by

E(F1) = (E(F ) ∪ E(P ))− (E(F ) ∩ E(P ))

satisfies degF1
(y1) = degF (y1) + 1 = m + 1, degF1

(y2) = degF (y2) − 1 ∈ {m + 1,m +
2, . . . , k}, and degF1

(v) = degF (v) for every v ∈ V (G)− {y1, y2}. Hence F1 is a two-tone
({a, b}, {m,m+1, . . . , k+1})-factor of G and |BF1(m)| < |BF (m)|, which contradicts the
fact that F ∈ F (or the definition of m). Thus Beven

F (j) = ∅ for all j ∈ {m + 2,m +
3, . . . , k + 1}, which proves (i).

Proof of (ii). Suppose that there exists an alternating (F, y1, y2)-path P of odd length for
y1 ∈ BF (m) and y2 ∈ BF (j) with j ∈ {m,m+1, . . . , k}. Then the spanning subgraph F2 of
G defined by E(F2) = (E(F )∪E(P ))−(E(F )∩E(P )) satisfies degF2

(y1) = degF (y1)+1 =
m+1, degF2

(y2) = degF (y2)+ 1 ∈ {m+1,m+2, . . . , k+1}, and degF2
(v) = degF (v) for

every v ∈ V (G) − {y1, y2}. Hence F2 is a two-tone ({a, b}, {m,m + 1, . . . , k + 1})-factor
of G and |BF2(m)| < |BF (m)|, which contradicts the fact that F ∈ F (or the definition
of m). Thus Bodd

F (j) = ∅ for all j ∈ {m,m+ 1, . . . , k}, which proves (ii).

Claim 16. V even
F ∩ V odd

F = ∅ for F ∈ F .

Proof. Suppose that there exists a vertex z ∈ V even
F ∩V odd

F . Then for some y1, y2 ∈ BF (m),
there exist an alternating (F, y1, z)-path Q1 of even length and an alternating (F, y2, z)-
path Q2 of odd length. Since m  k− 1, we have (BF (m)∪BF (m+1))∩BF (k+1) = ∅.
This together with Claim 15 implies that z ∈ R. Then |V (Q1)|  3.

Write NQ1(z) = {w1} and NQ2(z) = {w2}. Note that zw1 ∈ E(F ) and zw2 ∈ E(G)−
E(F ). Since Q1 − z is an alternating (F, y1, w1)-path of odd length and Q2 − z is an
alternating (F, y2, w2)-path of even length, we have w1 ∈ V odd

F and w2 ∈ V even
F . Since R is

an independent set of G, this together with Claim 15 implies that w1 ∈ Bodd
F (k + 1) and

w2 ∈ Beven
F (m) ∪Beven

F (m+ 1).
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Since zw1 ∈ E(F ), if w1 /∈ V (Q2), then Q2 + zw1 is an alternating (F, y2, w1)-path of
even length, and hence w1 ∈ Beven

F (k+1), which contradicts Claim 15. Thus w1 ∈ V (Q2).
Let Q′

2 be the subpath of Q2 connecting y2 and w1. Since w1 ∈ BF (k + 1) and
Beven

F (k + 1) = ∅ by Claim 15, Q′
2 is an alternating (F, y2, w1)-path of odd length. In

particular, the unique edge of Q′
2 incident with w1 belongs to E(G)−E(F ). Since zw1 ∈

E(F ) and zw2 ∈ E(G)−E(F ), we have w1 ∕= w2. Then Q′
2+{w1z, zw2} is an alternating

(F, y2, w2)-path of odd length, and hence w2 ∈ BF (k+1) by Claim 15. On the other hand,
Q2 − z is an alternating (F, y2, w2)-path of even length, and so w2 ∈ BF (m)∪BF (m+ 1)
by Claim 15. This is a contradiction since m+1 < k+1. Therefore, the claim holds.

Claim 17. Let F ∈ F . Then

(i) NG−E(F )(v) ⊆ V odd
F for every v ∈ V even

F , and

(ii) NF (v) ⊆ V even
F for every v ∈ V odd

F .

Proof of (i). Suppose that there exists a vertex u ∈ NG−E(F )(v)\V odd
F for some v ∈ V even

F .
If v ∈ BF (m), then vu is an alternating (F, v, u)-path of length one, and so u ∈ V odd

F ,
which is a contradiction. Thus v ∕∈ BF (m).

Let P be an alternating (F, y, v)-path of even length for some y ∈ BF (m). Then
|V (P )|  3 and the unique edge of P incident with v belongs to E(F ). Since vu ∈
E(G) − E(F ), if u /∈ V (P ), then P + vu is an alternating (F, y, u)-path of odd length,
and hence u ∈ V odd

F , which is a contradiction. Thus u ∈ V (P ). If u = y, then yv is an
alternating (F, y, v)-path of length one, and so v ∈ V odd

F , which contradicts v ∈ V even
F .

Thus u ∕= y.
Let P ′ be the subpath of P connecting y and u. Since u /∈ V odd

F , P ′ is an alternating
(F, y, u)-path of even length. Since uv ∈ E(G)−E(F ), P ′+uv is an alternating (F, y, v)-
path of odd length, and hence v ∈ V even

F ∩ V odd
F , which contradicts Claim 16.

Proof of (ii). Suppose that there exists a vertex u ∈ NF (v) \ V even
F for some v ∈ V odd

F .
Then there exists an alternating (F, y, v)-path P of odd length for some y ∈ BF (m). Note
that |V (P )|  2 and the unique edge of P incident with v belongs to E(G)−E(F ). Since
vu ∈ E(F ), if u /∈ V (P ), then P + vu is an alternating (F, y, u)-path of even length,
and hence u ∈ V even

F , which is a contradiction. Thus u ∈ V (P ). Let P ′ be the subpath
of P connecting y and u. Since u /∈ V even

F , P ′ is an alternating (F, y, u)-path of odd
length. In particular, |V (P ′)|  2 and the unique edge of P ′ incident with u belongs to
E(G) − E(F ). Since uv ∈ E(F ), P ′ + uv is an alternating (F, y, v)-path of even length,
and hence v ∈ V even

F ∩ V odd
F , which contradicts Claim 16.

Choose an element F0 of F so that |Reven
F0

(b)|+ |Rodd
F0

(a)| is as small as possible.

Claim 18. (i) eF0({x}, BF0(k + 1))  b− a− 1 for every x ∈ Reven
F0

(b).

(ii) eG−E(F0)({x}, BF0(m) ∪BF0(m+ 1))  b− a− 1 for every x ∈ Rodd
F0

(a).

Proof of (i). Suppose that eF0({x}, BF0(k + 1))  b − a for some x ∈ Reven
F0

(b). Take
z1, z2, . . . , zb−a ∈ NF0(x) ∩ BF0(k + 1). Let F1 = F0 − {xzi : i ∈ {1, 2, . . . , b − a}}.
Then degF1

(x) = degF0
(x) − (b − a) = a, degF1

(zi) = degF0
(zi) − 1 = k (> m) for
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every i ∈ {1, 2, . . . , b − a}, and degF1
(v) = degF0

(v) for every v ∈ V (G) − {x, zi : i ∈
{1, 2, . . . , b−a}}. In particular, every red vertex u ∕= x satisfies degF1

(u) = degF0
(u) since

u and x are not adjacent. Hence F1 is a two-tone ({a, b}, {m,m + 1, . . . , k + 1})-factor,
min{degF1

(y) : y ∈ B} = m and BF1(m) = BF0(m). This implies that F1 ∈ F and
x ∈ RF1(a).

Now we show that

x /∈ Rodd
F1

(a). (5)

Suppose that x ∈ Rodd
F1

(a). Then there exists an alternating (F1, y, x)-path P of odd
length for some y ∈ BF1(m). Recall that x ∈ Reven

F0
(b). If P is an alternating (F0, y, x)-

path, then x ∈ V even
F0

∩ V odd
F0

, which contradicts Claim 16. Thus P is not an alternating
(F0, y, x)-path. By the definition of F1, the unique edge of P incident with x is zsx for
some s ∈ {1, 2, . . . , b − a}. Then P − x is an alternating (F0, y, zs)-path of even length,
and hence zs ∈ Beven

F0
(k + 1), which contradicts Claim 15. Thus (5) holds.

Suppose that there exists a vertex x′ ∈ (Reven
F1

(b) ∪ Rodd
F1

(a)) \ (Reven
F0

(b) ∪ Rodd
F0

(a)).
By x ∈ Reven

F0
(b), we have x′ ∕= x, and so degF1

(x′) = degF0
(x′) as x′ is a red vertex.

By the choice of x′, there exists an alternating (F1, y
′, x′)-path Q for some y′ ∈ BF1(m)

that is not an alternating (F0, y
′, x′)-path. Since F1 = F0 − {xzi : i ∈ {1, 2, . . . , b − a}},

this implies that xzt ∈ E(Q) for some t ∈ {1, 2, . . . , b − a}. Let Q′ be the subpath of Q
connecting y′ and x. By (5), Q′ is an alternating (F1, y

′, x)-path of even length. Since
xzt ∈ E(G)−E(F1), zt /∈ V (Q′). Hence Q′ + xzt is an alternating (F1, y

′, zt)-path of odd
length, and hence zt ∈ Bodd

F1
(k), which contradicts Claim 15. Thus Reven

F1
(b) ∪ Rodd

F1
(a) ⊆

Reven
F0

(b) ∪ Rodd
F0

(a). Since x ∈ Reven
F0

(b) \ (Reven
F1

(b) ∪ Rodd
F1

(a)) by degF1
(x) = a and (5), we

have |Reven
F1

(b)|+ |Rodd
F1

(a)| < |Reven
F0

(b)|+ |Rodd
F0

(a)|, which contradicts the choice of F0.

Proof of (ii). Suppose that eG−E(F0)({x}, BF0(m) ∪ BF0(m + 1))  b − a for some x ∈
Rodd

F0
(a). Take w1, w2, . . . , wb−a ∈ NG−E(F0)(x) ∩ (BF0(m) ∪ BF0(m + 1)). Let F2 = F0 +

{xwi : i ∈ {1, 2, . . . , b − a}}. Then degF2
(x) = degF0

(x) + (b − a) = b, degF2
(wi) =

degF0
(wi)+ 1 ∈ {m+1,m+2} ⊆ {m+1,m+2, . . . , k+1} for every i ∈ {1, 2, . . . , b− a},

and degF2
(v) = degF0

(v) for every v ∈ V (G)−{x, wi : i ∈ {1, 2, . . . , b−a}}. In particular,
every red vertex u ∕= x satisfies degF2

(u) = degF0
(u) since u and x are not adjacent. Hence

F2 is a two-tone ({a, b}, {m,m + 1, . . . , k + 1})-factor, min{degF2
(y) : y ∈ B}  m and

|BF2(m)|  |BF0(m)|. Considering the definitions of m and F , this forces min{degF2
(y) :

y ∈ B} = m and |BF2(m)| = |BF0(m)|, and so F2 ∈ F . If wi ∈ BF2(m + 1) for some
i ∈ {1, 2, . . . , b−a}, which is equivalent to wi ∈ BF0(m), then |BF2(m)| < |BF0(m)|, which
is a contradiction. Thus

wi /∈ BF0(m) ∪BF2(m+ 1) for every i ∈ {1, 2, . . . , b− a}. (6)

Now we show that

x /∈ Reven
F2

(b). (7)

Suppose that x ∈ Reven
F2

(b). Then there exists an alternating (F2, y, x)-path P of even
length for some y ∈ BF2(m). Recall that x ∈ Rodd

F0
(a). If P is an alternating (F0, y, x)-

path, then x ∈ V even
F0

∩ V odd
F0

, which contradicts Claim 16. Thus P is not an alternating
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(F0, y, x)-path. By the definition of F2, the unique edge of P incident with x is wsx for
some s ∈ {1, 2, . . . , b − a}. Then P − x is an alternating (F0, y, ws)-path of odd length,
and hence by (6), ws ∈ Bodd

F0
(m+ 1), which contradicts Claim 15. Thus (7) holds.

Suppose that there exists a vertex x′ ∈ (Reven
F2

(b)∪Rodd
F2

(a)) \ (Reven
F0

(b)∪Rodd
F0

(a)). By
x ∈ Rodd

F0
(a), we have x′ ∕= x, and so degF2

(x′) = degF0
(x′) as x′ is a red vertex. There

exists an alternating (F2, y
′, x′)-path Q for some y′ ∈ BF2(m) that is not an alternating

(F0, y
′, x′)-path. Since F2 = F0+{xwi : i ∈ {1, 2, . . . , b−a}}, this implies that xwt ∈ E(Q)

for some t ∈ {1, 2, . . . , b−a}. Let Q′ be the subpath of Q connecting y′ and x. By (7), Q′

is an alternating (F2, y
′, x)-path of odd length. Since xwt ∈ E(F2), we have wt /∈ V (Q′).

Hence Q′ + xwt is an alternating (F2, y
′, wt)-path of even length. This together with (6)

leads to wt ∈ Beven
F2

(m + 2), which contradicts Claim 15. Thus Reven
F2

(b) ∪ Rodd
F2

(a) ⊆
Reven

F0
(b) ∪ Rodd

F0
(a). Since x ∈ Rodd

F0
(a) \ (Reven

F2
(b) ∪ Rodd

F2
(a)) by degF2

(x) = b and (7), we
have |Reven

F2
(b)|+ |Rodd

F2
(a)| < |Reven

F0
(b)|+ |Rodd

F0
(a)|, which contradicts the choice of F0.

Recall that no two red vertices are adjacent in G. Hence by Claims 15, 16, 17(ii) and
18(i), we have

a|Rodd
F0

(a)|+ b|Rodd
F0

(b)|+ (k + 1)|Bodd
F0

(k + 1)|
= eF0(R

odd
F0

(a), V even
F0

) + eF0(R
odd
F0

(b), V even
F0

) + eF0(B
odd
F0

(k + 1), V even
F0

)

= eF0(V
odd
F0

, V even
F0

)

= eF0(V
odd
F0

, Reven
F0

(a)) + eF0(V
odd
F0

, Reven
F0

(b)) + eF0(V
odd
F0

, Beven
F0

(m))

+ eF0(V
odd
F0

, Beven
F0

(m+ 1))

 a|Reven
F0

(a)|+ (b− a− 1)|Reven
F0

(b)|+m|Beven
F0

(m)|
+ (m+ 1)|Beven

F0
(m+ 1)|. (8)

Furthermore, it follows from Claims 15, 16, 17(i) and 18(ii) that

(r − a)|Reven
F0

(a)|+ (r − b)|Reven
F0

(b)|+ (r −m)|Beven
F0

(m)|+ (r −m− 1)|Beven
F0

(m+ 1)|
= eG−E(F0)(R

even
F0

(a), V odd
F0

) + eG−E(F0)(R
even
F0

(b), V odd
F0

)

+ eG−E(F0)(B
even
F0

(m), V odd
F0

) + eG−E(F0)(B
even
F0

(m+ 1), V odd
F0

)

= eG−E(F0)(V
even
F0

, V odd
F0

)

= eG−E(F0)(V
even
F0

, Rodd
F0

(a)) + eG−E(F0)(V
even
F0

, Rodd
F0

(b))

+ eG−E(F0)(V
even
F0

, Bodd
F0

(k + 1))

 (b− a− 1)|Rodd
F0

(a)|+ (r − b)|Rodd
F0

(b)|+ (r − k − 1)|Bodd
F0

(k + 1)|. (9)
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Then, for any two positive real numbers α and β, we have

0  α


the left side of (8)

−


the right side of (8)



+ β


the left side of (9)

−


the right side of (9)



=

αa− β(b− a− 1)


|Rodd

F0
(a)|+


αb− β(r − b)


|Rodd

F0
(b)|

+

α(k + 1)− β(r − k − 1)


|Bodd

F0
(k + 1)|

+

−αa+ β(r − a)


|Reven

F0
(a)|+


−α(b− a− 1) + β(r − b)


|Reven

F0
(b)|

+

−αm+ β(r −m)


|Beven

F0
(m)|

+

−α(m+ 1) + β(r −m− 1)


|Beven

F0
(m+ 1)|. (10)

Put α = r − k − 1 and β = k + 1. Recall that k + 1  b  k + a + 1, r  (k + 1)(a +
1)/(k + a+ 2− b) and r  (k + 1)(b− 1)/a. Then we obtain

αa− β(b− a− 1) = (r − k − 1)a− (k + 1)(b− a− 1)

= ra− (k + 1)(b− 1)  0, (11)

αb− β(r − b) = (r − k − 1)b− (k + 1)(r − b) = r(b− k − 1)  0, (12)

α(k + 1)− β(r − k − 1) = (r − k − 1)(k + 1)− (k + 1)(r − k − 1) = 0, (13)

−αa+ β(r − a) = −(r − k − 1)a+ (k + 1)(r − a) = r(k + 1− a) > 0, (14)

−α(b− a− 1) + β(r − b) = −(r − k − 1)(b− a− 1) + (k + 1)(r − b)

= r(k + a+ 2− b)− (k + 1)(a+ 1)  0, (15)

−αm+ β(r −m) = −(r − k − 1)m+ (k + 1)(r −m) = r(k + 1−m) > 0, (16)

and
−α(m+ 1) + β(r −m− 1) = −(r − k − 1)(m+ 1) + (k + 1)(r −m− 1)

= r(k −m) > 0. (17)

Since Beven
F0

(m) = BF0(m) ∕= ∅, it follows from (11)–(17) that

0  (−αm+ β(r −m))|Beven
F0

(m)| > 0,

which is a contradiction.
This completes the proof of Theorem 8. □
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